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Abstract 

Interceptive timing (IntT) is a fundamental ability underpinning numerous actions (e.g. ball catching), but 

its development and relationship with other cognitive functions remains poorly understood. Piaget (1955) 

suggested that children need to learn the physical rules that govern their environment before they can 

represent abstract concepts such as number and time. Thus, learning how objects move in space and time 

may underpin the development of related abstract representations (i.e. mathematics). To test this 

hypothesis, we captured objective measures of IntT in 309 primary school children (4-11 years), 

alongside ‘general motor skill’ and ‘national standardized academic attainment’ scores. Bayesian 

estimation showed that IntT (but not general motor capability) uniquely predicted mathematical ability 

even after controlling for age, reading and writing attainment. This finding highlights that interceptive 

timing is distinct from other motor skills with specificity in predicting childhood mathematical ability 

independent of other forms of attainment and motor capability. 

 

Keywords: Interceptive Timing; Mathematics; Reading; Writing; Education; Posture 
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Introduction 

Interceptive timing (IntT) is a fundamental human sensorimotor ability that underpins actions 

where the goal is to make contact with a target when the target and human are in relative motion 

(e.g hitting a baseball). These tasks require both spatial and temporal accuracy, and proficiency 

in these tasks appears later in a child’s developmental history than skills with minimal temporal 

constraints such as reaching to static objects (Sugden & Wade, 2013). Neurologically intact adult 

humans show exquisite precision in IntT, with elite baseball batters able to swing their bat to a 

spatial accuracy of ±1.5cm and a temporal accuracy of ±10ms (Tresilian, 1999). The IntT skills 

of humans are a testimony to the incredible learning capacity of the sensorimotor system and its 

ability to overcome the challenges involved in controlling over 600 muscles with the inherent 

difficulties of nonlinearity, nonstationarity, information delays, and noise whilst operating within 

an uncertain world (Franklin & Wolpert, 2011). Temporal processing delays are particularly 

problematic when performing IntT tasks and so the individual will need to make predictions 

about where the object and the limb will be at the time of desired contact (Tresilian, 2012). 

These predictions require precise estimates of how the object will move over time, together with 

state estimates of the neuromuscular system. 

 

 

It is widely believed that sensorimotor prediction relies on internal models within the 

sensorimotor system. Internal models allow for prediction of object motion through space and 

time (Merfeld, Zupan, & Peterka, 1999), with forward models used to estimate the sensory 

consequences of motor commands (Flanagan & Wing, 1997; Wolpert, Miall, & Kawato, 1998).  

Thus, the development of these models is central to the ontogenetic acquisition of IntT skills. 

The deleterious impact of developmental delays in motor prediction can be readily imagined 

with regard to a child’s ability to engage in physical activity. But it is possible that sensorimotor 

impairments have consequences for a child’s cognitive capabilities in a manner that is not so 

readily appreciated by educational authorities (Cameron et al., 2012; Grissmer, Grimm, Aiyer, 

Murrah, & Steele, 2010; Roebers et al., 2014; Son & Meisels, 2006). Such proposals are 

consistent with the view that the phylogenetic emergence of higher-order cognitive abilities were 

built upon the evolutionary platform provided by the motor system (Barton, 2012), particularly 
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with respect to estimating the future state of the environment and physical body (Desmurget & 

Grafton, 2000). 

 

The idea that higher-order cognitive processes emerged from sensorimotor abilities is attractive 

(Wilson, 2002). It has been suggested that the fundamental importance of sensorimotor 

substrates to cognition extends both to the individual as well as the species, with Piaget (1955) 

suggesting that ontogeny recapitulates phylogeny in this regard. Thus, Piaget proposed that 

sensorimotor interactions with the environment underpin the development of cognitive 

representations, including our understanding of number. This idea has received a surge of 

support over the last decade, with evidence that abstract representations of number are grounded 

in early interactions with objects and an understanding of physical space (de Hevia & Spelke, 

2010; Nieder & Dehaene, 2009). There is evidence to suggest that the basic spatial processing 

abilities in infants (6-13 months) are related to the mathematical capabilities developed at 4 years 

of age (Lauer & Lourenco, 2016). It also appears that number representations become spatially 

orientated (Fias, van Dijck, & Gevers, 2011) with representations of number and space sharing 

overlapping neural circuitry (Hubbard, Piazza, Pinel, & Dehaene, 2005).  

 

Given that there appear to be close links between spatial and temporal representations (Bueti & 

Walsh, 2009; Burr, Ross, Binda, & Morrone, 2011; Chang, Tzeng, Hung, & Wu, 2011; Lourenco 

& Longo, 2010; Srinivasan & Carey, 2010; White & Diedrichsen, 2010; Wijdenes, Brenner, & 

Smeets, 2014) it is no great leap to hypothesize that representations of space, time and number 

will all be processed by related systems. There is currently no direct evidence examining whether 

a child’s skill performing IntT is related to their ability in mathematics, but a robust test of this 

hypothesis would be to measure IntT skill and relate this to standardized school mathematical 

measures. A failure to find a relationship would allow us to reject the hypothesis, whilst a more 

general relationship between IntT skill and cognitive ability (e.g. in reading and writing) would 

suggest that there is no specific functional relationship between mathematics and IntT over and 

above general academic achievement. 

 

Thus, we developed an IntT task with 54 moving targets to test 309 primary school children 

(aged 4-11 years) (see Figure 1). Three target speeds and three target widths were presented (9 
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trial types) with a sufficient range to challenge older children whilst allowing younger children to 

also succeed. The number of targets hit (IntT score) was the primary measure of interest. In a 

separate task the manual dexterity and postural control abilities of the children were measured to 

distinguish between general motor skill and IntT abilities. Mathematics ability was obtained 

from the children’s nationally standardized mathematics attainment scores (1-14 scale; see 

Supplementary materials). These, along with reading and writing scores, were provided by the 

school.  

 

Methods 

 

Participants 

Participants were recruited from a state primary school in Bradford, West Yorkshire, UK. There were 368 

children in UK school years 1 to 6 (aged 4-11 years) at the time of testing. All children were invited to 

take part in the study. The children completed two test sessions in which they completed a range of motor 

and cognitive tasks. All motor tasks took place in the first session. Ethical approval was obtained from the 

University of Leeds (School of Psychology) Ethics and Research committee.   

 

From the 368 children at the school, 309 full data sets were included in the data analysis. Eleven children 

were removed from the 368 because they were classed as having special education needs (SEN) by the 

school. Twenty-nine were excluded because the experimenter recorded that they did not complete one or 

more tasks. Fourteen were excluded because they did not provide data on the interception task and five 

did not provide data on postural control. 

 

Measures 

 

Interceptive Timing Task 

Children completed a computer based interception task in which they hit moving targets by controlling a 

custom-made 1-DoF joystick (see Figure 1). The joystick was placed next to a horizontally positioned 

BenQ XL2720Z LCD gaming display (Resolution: 1920 ൈ 1080, size: 598 X 336mm, brightness: 300cd / 

m2, refresh rate: 144Hz). The position of the joystick was represented on screen by a black rectangular 

‘bat’ (dimensions: 10 ൈ 15mm) that was always in line with the joystick. All stimuli were generated using 

Python 2.7.9.  
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Figure 1. a) The experimental setup for a right handed child: children viewed a horizontally 

oriented monitor while controlling an onscreen 'bat' via a 1-DoF manipulandum (placed on the left of the 

display for left handed participants with stimuli reversed). b) Schematic of the target and bat on the 

experimental display, and manipulandum to the right of the display. Targets moved from left to right 

across the screen. Participants were instructed to hit the target from beneath with the bat. c) Possible 

outcomes: in the upper panel the bat has arrived too early and missed the target. In the middle panel the 

bat successfully hits the target on the underside. In the lower panel the bat was too late and missed the 

target.  

 

A ‘start box’ appeared onscreen at the beginning of every trial and the participant was instructed to place 

the bat within it (coordinates [570mm, 20mm]; coordinate origin at bottom left of screen). A black target 

(height: 15mm) then appeared at the left hand side of the screen (coordinates [0mm,150mm] (for left 

handed participants the apparatus and stimuli were reversed, with the manipulandum placed on the left 

side of the screen). After a delay drawn from a uniform distribution U(0.25, 3.0 sec) the target moved 

from left to right at a constant speed. The center of the target passed in front of the center of the bat after 

moving 570mm. The children were instructed to hit the target with the bat. The target was successfully hit 

if the upper edge of the bat collided with the lower edge of the target (see Figure 1c). The target then 

stopped moving, turned red and span before disappearing, thereby providing motivating animated 

feedback for the children. If the bat passed in front of the target’s horizontal path the target immediately 

stopped moving and then remained on screen for 1 second. Thus, participants could not simply move the 

bat in front of the target’s path and wait for the target. If the bat crossed the target’s path after the target 

had moved too far to be struck then the target stopped and remained visible for 1 second. The position of 

the bat and target was timestamped and saved to computer memory at 144Hz. The bat’s positional data 
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were filtered using a low pass second order zero-lag Butterworth filter with a cut off frequency of 10Hz. 

Spline interpolation was used to estimate the time at which the bat reached the interception point. The 

total number of targets hit by each participant provided our measure of interceptive timing ability.  

 

Children performed 54 trials in which the target speed (250mm\s, 400mm\s, 550mm\s) and target width 

(30mm, 40m, 50mm) varied (9 trial types x 6). Each target type was presented in a block of 3 trials, with 

2 blocks for each trial type. The blocks were pseudorandomly ordered with the constraint that two blocks 

of the same kind could not occur sequentially. All participants experienced an identical pseudorandom 

sequence of blocks.  

 

Manual Dexterity  

To distinguish between general motor skills and IntT ability we took measures of manual dexterity and 

postural ability. Manual dexterity was measured using the Kinematic Assesment Tool (Flatters, Hill, 

Williams, Barber, & Mon-Williams, 2014) which consists of three sensorimotor tasks that are presented 

on a tablet computer screen (Toshiba Portege M700-13p tablet, screen: 260x163 mm, 1200x800 pixels, 

60 Hz refresh rate) and completed using a hand-held stylus. The planar position of the stylus was recorded 

at 120Hz and smoothed using a 10Hz dual-pass Butterworth filter at the end of each testing session.  

 

 

Figure 2. a) Steering task: Participants traced a spatial path (oriented in different ways) from the open to 

the closed black dot using the stylus, while staying within a moving box.  b) Aiming Task: Participants 

made movements to sequentially appearing targets (indicated by the numbers – invisible to participant) 

with a stylus. Open circles were not visible when moving between dots two and three. c) Tracking task: 

Participants followed a dot with the stylus. In the first trial the dot followed the dashed (invisible) path. In 

the second trial the guide track was visible. In each trial the dot made three revolutions of the figure of 

eight pattern at each speed: fast, medium and slow.  

 

Steering Task 

The steering task required participants to trace a path displayed on the tablet (Figure 2a). A box moved 

along the path every 5 seconds. Participants were told to trace the path as accurately as possible while 
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ensuring they stayed within the moving box at all times. At each time point (120Hz) the minimum two-

dimensional distance between a reference path and the stylus was calculated. The arithmetic mean was 

calculated for these values across each trial, giving a measure of path accuracy (PA). The ideal trial time 

if the participant remained within the moving box was 36 seconds. To normalise PA for task time, PA 

was adjusted by the percentage that participant’s actual MT deviated from the ideal 36 seconds value 

(adjusted PA). Adjusted PA, a measure that incorporated both timing and accuracy components, was used 

to determine performance on the steering task (with larger values indicating worse performance). 

 

Aiming Task 

The aiming task (Figure 2b) required participants to make 75 aiming movements to sequentially 

appearing circular targets (5mm diameter). Once the participant successfully moved the stylus to the 

target dot then that target disappeared and the next target appeared (see Flatters, Hill et al., (2014) for 

details). Movement time (MT) was the measure of interest and was defined as the time between arriving at 

one target location and arriving at the next. The mean MT over the first 50 trials provided our measure of 

‘aiming’ performance (with longer trials indicating worse performance). The last 25 trials contained 

‘jump’ trials in which the target dot moved position during the aiming movement and were not of interest 

in this experiment.   

 

Tracking Task (with and without spatial guide) 

Participants completed two types of trial in the tracking task (Figure 2c). In the first trial, they placed the 

stylus on a static dot (10 mm diameter) displayed on the center of the screen. After one second the dot 

began to move across the screen in a ‘figure-of-8’ pattern. Participants were instructed to keep the tip of 

the stylus as close as possible to the dot’s center for the duration of the trial. The dot completed nine 

revolutions of the ‘figure-of-8’ pattern. The dot moved at a ‘slow’ pace during the first three revolutions. 

In the next three revolutions the dot moved at a ‘medium’ pace and in the last three the dot moved at a 

‘fast pace’ (see Flatters, Hill et al., (2014) for details). Participants then completed a second trial which 

was identical to the first except that a black 3mm wide ‘guide’ line was displayed on the screen, 

indicating the path which the dot would follow.  

 

The root mean square error (RMSE) provided a measure of the participant’s spatio-temporal accuracy, 

where the error was the straight line distance in mm between the center of the target dot and the stylus. A 

separate RMSE score was calculated for each target speed within each trial. The median value of these 

was taken to provide an overall measure of performance on the tracking task (with larger values 

indicating worse performance).  
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Postural control Task 

Postural movements were measured using a custom rig (Flatters, Culmer, Holt, Wilkie, & Mon-Williams, 

2014). Children stood with their feet shoulder width apart on a Nintendo Wii Fit board, which recorded 

the participant’s center of pressure (COP) at 60Hz. The data were filtered using a wavelet filter as 

described in (Flatters, Culmer, et al., 2014). The two-dimensional path length subtended by the COP (in 

mm) provided a measure of balance, first with eyes open and then with eyes closed. Larger values 

therefore indicated worse performance.  

 

Academic Attainment  

Nationally standardized academic attainment scores for mathematics, reading and writing were provided 

by the school (https://www.gov.uk/national-curriculum/overview). Children were graded on a scale from 

1 to 15 which map to UK standardized scores (see Supplementary information).   

 

Data Analysis 

Ordered-probit regression was employed to model the data. This is appropriate when the dependent 

variable is ordinal, as is the case for the academic attainment metrics. The model linearly combines 

predictor variables (IntT, manual dexterity, posture and age) to generate a latent academic attainment 

score for the ݅௧௛ data point (ݕ௜כ). This is done in exactly the same way as in linear regression, 

כ௜ݕ  ൌ ܰሺߤ௜ǡ ௜ߤ (Equation 1)   (ߪ ൌ ௜்ܺ  (Equation 2)   ߚ

 

where ܺ ௜்  is a vector of predictors, ߚ is a vector of regression coefficients and ߤ௜ is the expected latent 

attainment outcome for the ݅௧௛ participant (Eqn 2). The latent attainment score (ݕ௜כ) is then drawn from a 

normal distribution with mean ߤ௜ and standard deviation ߪ (Eqn 1). However, unlike in standard 

regression, ݕ௜כ is a latent score which is then mapped to the ordinal attainment variable (ݕ௜ሻ. This is done 

by slicing through the latent outcome scale with ordered thresholds ܥǡ ǥ  is the number of ܭ ௄ିଵ, whereܥ

possible categorical outcomes. The ordered outcome ݕ is then defined by which thresholds כݕ falls 

between (as illustrated in Figure 3). This is known as the probit link function.  
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Figure 3.  Illustration of an ordered probit model. The upper line represents a continuous latent 

attainment score. The expected latent attainment score for the ݅th participant is given by ߤ௜ ൌ ௜்ܺ  and is ,ߚ

represented by the position of the black dot on the upper line. A latent attainment score ݕ௜כ is then sampled 

from a normal distribution (curved black line) with mean ߤ௜, and standard deviation ߪ. The observed 

attainment score then depends on which of the thresholds ܥǡ ǥ  .falls between כ௜ݕ ௄ିଵ (grey dotted lines)ܥ

Here ݕ௜כ falls between the 2nd and 3rd thresholds, giving an observed attainment score of 3. Note that the 

threshold parameters will not necessarily be equally spaced.  

 

As in standard regression we wish to fit the model parameters (the regression coefficients and standard 

deviations; ߚ and ߪ) to the data. In addition we also wish to simultaneously fit the threshold parameters 

 While methods such as maximum likelihood can be used to fit the model, we employed .(ଵǥ௄ିଵܥ)

Bayesian estimation techniques to yield a joint posterior distribution over all model parameters. Formally, 

we estimated the posterior distribution ܲሺߚǡ ǡߪ  & ሻ using the No-U-Turn algorithm (Hoffmanݕଵǥ௄ିଵȁܥ

Gelman, 2011) implemented in RStan 2.16.2. The posterior distribution was summarized using 95% 

highest density intervals (HDI) which provide an upper and lower bound for an interval which, according 

to the posterior, has a 95% probability of containing the true model parameter value, given the data, 

likelihood and priors. The width of the HDI provides information about the estimate’s precision.  

 

A model was fit separately for each of the attainment outcomes (mathematics, reading and writing).  For 

each model a representative sample was taken from the posterior distribution. Four chains of 10,000 

samples were started at random locations of the joint posterior parameter space. Each chain first took 

5000 warm up samples that were then discarded. Convergence was assessed by visually inspecting the 
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chains and examining the gelman-rubin statistic (෠ܴ) (Gelman, 2014) and effective sample size of all 

parameters. All ܴ෠ values were close to 1 and the effective sample size was >6000 for all parameters.  

 

Results 

We were primarily interested in whether IntT would be predictive of mathematics attainment after 

controlling for age and other motor skills. Figure 4a indicates that there is a relationship between 

mathematics attainment and IntT but also between these variables and age (Figure 4b, c). Figure 4d plots 

the correlation between interceptive timing and mathematics attainment after controlling for age (ݎ ൌͲǤʹͲͺሻ.  
 

 

Figure 4. a,b,c) Correlations between Mathematics Attainment, Interceptive Timing (IntT) and Age. d) 

Partial correlation between IntT and Mathematics Attainment after controlling for Age. The fitted black 

lines are the least squared regression lines. Note: Pearson’s correlation coefficients are given but these 

values should be treated with caution due to ordinal nature of attainment scores (hence reporting of the 

ordinal probit model elsewhere).  

 

Whilst Figure 4 provides a useful illustration of the range of performance of children in the interceptive 

timing task, the primary question of interest was whether IntT would be predictive of mathematics 

attainment even after controlling for age and general motor skills. Linear regression is not the most 

appropriate model for these data given that the attainment metrics used were ordinal in nature (thus the 

Pearson’s correlation coefficients given in Figure 4 should be interpreted with caution). In order to fully 

capture the relationships between the variables of interest, we utilized an ordered probit model to make 

inferences from the data. First we fitted the model separately for each educational attainment outcome 

(mathematics, reading and writing). We then examined the 95% highest density interval (HDI; thick 

horizontal black lines in Figure 5) for each ߚ parameter, to determine the region where the true parameter 

was likely to fall (with 95% confidence, given the likelihood, priors and the data).  The ߚ parameters 
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determine the amount by which a 1 unit change in the predictor variable will change the latent academic 

attainment score (see Figure 3).  

 

The ߚ coefficient for IntT (Figure 5, green curves, second column) was clearly non-zero for the 

mathematics attainment model (Figure 5, top row; 95% HDI excluded zero for IntT), with a mean 

estimate of 0.03 (95% HDI = [0.01, 0.05]). This suggests that for every five additional targets hit, the 

model estimates an average increase of 0.15 on latent mathematics score for that individual. The link 

between IntT and mathematics attainment can be contrasted with the reading and writing models (Figure 

5, second column, middle and bottom row) where the 95% HDI of the IntT slopes contained zero and 

concentrated around comparatively smaller values, suggesting li ttle or no relationship. Thus it appears 

that IntT may have a specific relationship with mathematics, but not educational attainment in general. 

This pattern contrasts with the other motor measures, none of which showed the same specificity for 

mathematics. Fine motor skills (Figure 5, Purple) showed a more general relationship with attainment 

measures: Steering had clear non-zero relationships with all three attainment scores, while Aiming also 

showed a possible relationships with mathematics, reading and writing. Tracking only showed a non-zero 

relationship with reading, while smaller coefficient values were more likely for mathematics and writing.  

 

 

Figure 5. Marginal posterior distributions over ߚ coefficients (i.e. regression slopes) for the Mathematics, 

Reading and Writing models. For clarity the x-axes for Steering, Aiming, Tracking and Balance have been 

reversed since for these measures negative values indicate an increase in the latent attainment score. The 

x-axis scales are consistent within columns to allow comparisons between Mathematics, Reading and 

Writing models. The black vertical dashed lines highlight the zero point where there would be no clear 

relationship, and the filled black circles represent the means and horizontal bars the 95% HDI.   
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Balance measures of gross motor skills showed no clear relationship with mathematical or reading 

attainment scores, though there did seem to be a relationship between balance with eyes closed and 

writing attainment (Figure 5, Orange). This pattern highlights the importance of having a stable base 

when performing fine motor tasks such as writing (Flatters, Mushtaq, et al., 2014).   

 

Effect size 

The modelling performed in the previous section provides a method for describing the association 

between particular variables. However the ߚ coefficients are scale specific and the observed coefficients 

may reflect small effects with little real-world significance. To allow for a meaningful examination of the 

size of these effects we estimated how many months of age the typical range of scores on each 

sensorimotor task was worth, with respect to the associated increase in academic attainment. To perform 

this calculation the typical range was defined as two times the standard deviation (SD) for each 

sensorimotor task after controlling for age (see Supplementary materials for further details). 

 

The effect size was calculated as follows, 

݄݁݃݊ܽܿ ݁݃ܽ ݐ݈݊ܽ݅ݒ݅ݑݍܧ  ൌ  ʹ ൈ ௝ܦܵ ൈ ௔௚௘ߚ௝ߚ ൈ ͳʹ 

 

where ܵ  ௝ by 2 toܦܵ ௔௚௘ is the coefficient for age. We multipliedߚ ௝ is the corresponding model coefficient andߚ ,௝ is the estimated standard deviation for the ݆th sensorimotor measure (after controlling for age)ܦ

give the typical range of scores, and by 12 to convert the units from years to months. A detailed example 

of the effect size calculation, and how ܵܦ௝ was calculated is provided in the Supplementary materials.  
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Figure 6. a) Equivalent change in age (months) explained by change in performance in IntT and fine 

motor skills (Steering, Aiming and Tracking) for Mathematics (Dark bars), Reading (White bars) and 

Writing Attainment (Grey bars). b) Equivalent change in age for the Mathematics attainment motor task 

predictors both with (light bars) and without (dark bars) Reading and Writing included as predictors. 

Adding Reading and Writing had little effect on the beta value for IntT, but it did change beta values for 

Steering, Aiming and Tracking. The vertical error bars indicate the Standard Deviation of the posterior 

(SD).  

 

The ‘equivalent change in age’ metrics (Figure 6a) highlight that the typical range of IntT scores for 

mathematics attainment is equivalent to approximately 5.5 months of age (i.e. for children of the same 

age with interceptive timing scores differing by the typical range we should expect a difference in latent 

mathematics attainment equivalent to 5.5 months). Steering actually has a larger effect size for 

mathematics attainment than IntT (8.8 months) but Steering also has similar large effects for reading and 

writing attainment (9.8 and 9.1 months respectively) whereas IntT has very little effect on these other 

attainment scores (0.3 and 0.7 months respectively).  The ‘equivalent change in age’ metric for Aiming 

suggests that for mathematics attainment, Aiming has a similar effect size to IntT (5.7 months), but with 

values of 4.4 months and 3.4 months for reading and writing respectively. Tracking had a value of 5 

months for reading attainment, and smaller values for mathematics and writing attainment (2.5 and 4 

months).   

 

As with any observational study, there is always the possibility that omitted variables (e.g. general 

intelligence, or hand writing ability) may be mediating the relationship between the sensorimotor 
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measures and academic attainment (see discussion). A reviewer noted that controlling for reading and 

writing scores (by including them as predictors in the mathematics model), may reduce the chances of an 

omitted variable bias, and also provide a useful test of whether the relationship between IntT and 

mathematics could be explained by a more general relationship between sensorimotor performance and 

academic ability. Thus, we carried out further (exploratory) analyses of the data by adding reading and 

writing to the mathematics model (see Figure 6b). Adding the additional educational attainment scores 

resulted in a substantial drop in the estimated ‘equivalent age’ effect size estimate for general fine motor 

measures (Steering, Aiming and Tracking), but the effect size of IntT was left largely unchanged.  

 

Discussion 

This study demonstrates for the first time that interceptive timing ability can predict mathematical 

performance in primary school children. This finding is consistent with human sensorimotor systems and 

cognitive abilities being intrinsically linked. Correlational studies always raise questions about the 

direction of causality, but in this case it is difficult to see how enhanced mathematics ability could have 

improved performance on the IntT task given that the task involved sub-second sensorimotor processes 

(mean movement time = 340ms, SD = 266). We probed the relationship in a variety of ways to determine 

whether it could be simply explained by generalized links between motor performance and educational 

attainment. We did indeed observe that some measures of fine motor skill had a general relationship with 

academic attainment: notably manual ‘Steering’ predicted academic attainment on reading, writing and 

mathematics. However IntT reflected a more specialized relationship independent of general motor 

ability, and also independent of academic attainment scores for reading and writing.  

 

It is worth considering whether there is an obvious unmeasured mediating variable that could explain this 

relationship. For example, imagine that the children who are better at mathematics are also those that 

spend longer playing computer games and it is this exposure that leads to improved interceptive timing 

(rather than mathematics ability per se). Whilst it is impossible to completely rule-out such mediating 

variables, the specificity of the observed relationship makes it seem unlikely. In the computer game 

example, the games played would have to have no effect on general fine motor skills (Steering, Tracking 

and Aiming), nor on academic attainment for reading or writing. As such this explanation cannot rely on 

general exposure to computer games, rather it would require specific training to ensure that those who are 

better at mathematics are selected to improve their interceptive timing abilities (whilst leaving other 

general fine motor control unchanged). There was no evidence that games of such specificity were being 

deployed in this way within the school that took part in this study.  
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When considering why there is a relationship between sensorimotor IntT capability and the cognitive 

development of a child, one must also allow for the possibility that sensorimotor performance is a proxy 

measure of psychopathology, especially as populations with clinical motor control deficits sometimes 

exhibit poor mathematics ability (Pieters, Desoete, Van Waelvelde, Vanderswalmen, & Roeyers, 2012; 

Tinelli et al., 2015; Van Rooijen, Verhoeven, & Steenbergen, 2011). Indeed, ‘fine motor skills’ can 

predict measures of mathematics ability in healthy children (Carlson, Rowe, & Curby, 2013; Grissmer et 

al., 2010; Luo, Jose, Huntsinger, & Pigott, 2007; Pagani, Fitzpatrick, Archambault, & Janosz, 2010; Son 

& Meisels, 2006). Whilst our data confirm these findings by showing a relationship between fine motor 

tasks (Steering and Aiming) and mathematics attainment, the relationship seemed to generalize to all the 

educational attainment measures (mathematics, reading and writing). Furthermore when we controlled for 

fine motor skills (Steering, Aiming and Tracing) we still found IntT score was predictive of mathematics 

attainment (but not reading or writing attainment). These controls would seem to rule out simplistic 

explanations based on IntT skills acting as a proxy measure for psychopathology, and also other potential 

mediating variables such as differences in parental involvement, access to technology, or social economic 

status (Ritchie & Bates, 2013).  

 

These findings are consistent with the idea that number representations are linked with concepts of time 

and space, perhaps through a common representation of magnitude (Walsh, 2003). It is possible that 

children must first learn the physical rules that govern how objects move before they can form related 

abstract representations (Piaget, 1955). The ability to learn these physical rules is likely to vary between 

individuals, and our findings may reflect variance in the development of the neural structures that 

underpin predictive learning regarding how objects move in space and time. In this regard, our results are 

consistent with recent findings showing that basic spatial processing abilities in infants relate to later 

mathematical ability (Lauer & Lourenco, 2016).  

 

We should emphasize that we believe the relationship between IntT ability and mathematics is likely to be 

complex, since it is a matter of common observation that not all elite sports people are excellent 

mathematicians, whilst many people with physical disability excel in mathematics. When evaluating the 

observed relationships between motor control performance and educational attainment outcomes it is 

worth considering the magnitude of the observed effects.  Once the change in attainment scores are 

transformed into ‘equivalent change in age’ units (Figure S1 and Figure 6) it can be seen that the fine 

motor measure ‘Steering’ accounts for approximately 9 months difference in reading, writing and 

mathematics attainment. Whilst this finding is noteworthy, it is likely that the relationship between 

Steering and mathematics is fairly general since it disappears once reading and writing attainment have 
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been taken into account, possibly relating to general executive function (Roebers et al., 2014). In contrast 

to the Steering measure, IntT has a smaller relationship with mathematics attainment (approximately 5.5 

months) but this is independent of reading and writing attainment (Figure 6). An important point to 

consider is whether an ‘equivalent change in age’ value of 5.5 months is actually important. From the 

perspective of a child with reduced academic attainment this would be considered a substantial difference. 

However, because the mathematics attainment scores themselves are fairly coarse it actually takes quite a 

large change in mathematical ability to move between attainment brackets. It would, therefore, be unwise 

to use effects of this magnitude to try to persuade school teachers to redirect precious resources away 

from mathematics teaching in order to target training of interceptive timing. However, these effects do 

suggest that we should not neglect the importance of sensorimotor development in young children (given 

that the environment – broadly construed – is known to exert a large influence on sensorimotor ability). 

Indeed, the present work complements reports that physical activity can exert positive benefits on 

cognitive processing, even if the mechanisms remain opaque (Hill, Williams, Aucott, Thomson, & Mon-

Williams, 2011). Thus, the quality of early sensorimotor interactions with the environment may have 

important implications for children’s education.  
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Supplementary Information 

Ordered Probit Model 

The full ordered probit model and priors are specified below with Interceptive Timing (IntT), age, steering, aiming, 

tracking and postural balance (eyes open and eyes closed) scores entered as predictors. The model was based on 

Kruschke (2015) and the model code is available online at https://github.com/OscartGiles/Ordered-Probit-Stan.   

ࢼ  ׽ ܰሺͲǡ ࣆ ሻܭ ൌ ଵ࡯ ࢼࢄ ؠ ͳǤͷ ࡯௧ୀଶǥ௄ିଵ ׽ ܰሺݐ ൅ ͲǤͷǡ ௄ିଵ࡯ ሻܭ ؠ ܭ െ ͲǤͷ  ݕ݄ܿݑܽܥ ̱ ߪାሺͲǡ ͳͲͲሻ 

௜ǡ௞ࣂ ൌ ۔ۖەۖ
ۓ ͳ െ ߶ ቀఓ೔ି࡯భఙ ቁ ǡ ݇ ൌ ͳ߶ ቀఓ೔ି࡯ೖషభఙᇱ ቁ െ  ߶ ቀఓ೔ି࡯ೖఙ ቁ ǡ ͳ ൏ ݇ ൏ ߶ܭ ቀఓ೔ି࡯ೖషభఙ ቁ ǡ ݇ ൌ ܭ  

 ሻ࢏ࣂሺܔ܉܋ܑܚܗ܏܍ܜ܉۱ ̱࢏࢟    

 

Where ܰ  is the number of data points, ܭ is number of levels in the attainment outcome,  ݅ ൌ ͳ ǥ ܰ, ݇ ൌ ͳ ǥ ݐ and ,ܭ ൌ ͳ ǥ ܭ െ ͳ. ࢄ is an ܰ ൈ ͹ matrix of predictor variables where the first column is equal to 1. ࣂ is an ܰ ൈ  ܭ 

matrix, specifying the probabilities of obtaining each observed academic attainment score for the ݅th participant. ߶ 

is the cumulative normal function. ࣆ represents a continuous latent attainment outcome, and y is the observed 

attainment scores. 

The first and last threshold value ࡯ଵand ࡯௄ିଵ were fixed in order to identify the model. Thus all other model 

parameters must be interpreted with regards to this constraint. In addition, each threshold parameter was constrained 

to be greater than the last (࡯௞ ൏  .(௞ାଵ࡯
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Effect size calculations 

In the main text we provide an estimate of the effect size for each predictor in the model in terms of the equivalent 

change in age that would be required to produce the same change on the latent attainment score as the typical range 

of each of the sensorimotor measures (where the typical range was defined as ʹ  times the standard deviation of the 

motor measure of interest). The effect size can be formally defined as,  

݄݁݃݊ܽܿ ݁݃ܽ ݐ݈݊ܽ݅ݒ݅ݑݍܧ ൌ  ʹ ൈ ௝ܦܵ ൈ ௔௚௘ߚ௝ߚ ൈ ͳʹ 

where ܵ  ௝ is theߚ ,௝ is the estimated standard deviation for the ݆th sensorimotor measure (after controlling for age)ܦ

corresponding model coefficient and ߚ௔௚௘ is the coefficient for age. For clarity we illustrate this graphically in 

Figure S1 (see caption for details).  

 

 

 

 

Figure S1: Illustration of how the effect size metric was calculated. The top line shows the latent Mathematics 

attainment score (ߤ௜ሻ on a continuous scale. The model states that ߤ௜ ൌ ௜்ܺ ܺ where ,ߚ  is a design matrix specifying 

the predictor scores for each participant. As we change the values of the predictor variables, the predicted latent 

attainment score will change. Changing a motor task score by the typical range (left side; open to filled purple 

circle) results in a change in the predicted latent attainment score (open to filled black circle). Our effect size 

measure defines how much we would need to change the age predictor (right side; open to filled blue circle) in order 

to achieve the same change in the latent attainment score. In other words, how many months the typical range of the 

sensorimotor task predictor is worth.  
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Typical range of sensorimotor measures after controlling for age 

We chose the typical range to be ʹ ൈ  above and below the ܦܵ as this is the difference between a score one ܦܵ

mean. We therefore needed to estimate the ܵܦ for each motor task. However, we know that a substantial proportion 

in the variance in each motor task is explained by age. Thus we calculated the ܵ  after controlling for age. For a ܦ

single motor task we could calculate this by fitting a simple regression with age as a predictor and the motor task as 

the outcome variable. The SD then provides a measure of the variance not explained by age. Here we used a 

“seemingly unrelated regression” model which allowed for all the motor tasks to be modelled as output variables 

simultaneously. This is essentially the same as fitting multiple simple regressions between age and each motor task, 

except that the covariance between motor tasks is also estimated. The full model code is provided at 

https://github.com/OscartGiles/Hitting-the-target.  

 

 

 

Understanding how the latent attainment score maps to the observed score 

The latent attainment score is mapped to the observed data by a probit link function. For a given predicted latent 

attainment score (ߤሻ the model provides a vector of probabilities for each possible ordered attainment outcome. For 

illustrative purposes, Figure S2a shows the probability distribution when ߤ ൌ ͷ, which we refer to here as ߤଵ 

(orange bars) and when ߤ increases as a result of IntT increasing by the typical range, referred to as ߤଶ (blue bars). 

We can see that in both cases an attainment score of 5 is most probable, but in the latter case higher scores have 

become more probable overall, while the probability of lower scores has decreased. Figure S2b shows the logarithm 

of the ratio between the two probability distributions shown in Figure S2a. Again, this shows that observed 

attainment scores above 5 are more probable when the latent attainment score is increased (positive values), while 

lower scores are less probable (negative values). 

 

https://github.com/OscartGiles/Hitting-the-target
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Figure S2: a) The probability of obtaining each possible observed Mathematics attainment outcome (ݕሻ when the 

latent Mathematics score is equal to 5 (ߤଵ; orange bars) and when the latent Mathematics score increases by the 

amount induced by the typical range of the interceptive timing metric (ߤଶ; blue bars). b) Log ratio of probability of 

each observed Mathematics attainment score given ߤଵ and ߤଶ. Dark line shows the posterior mean. Grey lines show 

100 random samples from the posterior.  

 

Graphical probes of model fit – Posterior predictive checks 

To assess how well the model captures the data we simulated 16,000 data sets from the posterior (ݕ௥௘௣ሻ and 

calculated the mean and standard deviation for each. The distribution of these test statistics are shown in Figure S3a 

and S3b respectively. The true mean and SD of the observed data is clearly plausible under the model simulations, 

suggesting this model captures these statistics well. We also calculated the mean score for each data point across all 

the expected score for each data point, ܧ൫ݕ௥௘௣൯. This is plotted again IntT in figure S4 (red dots) while the true 

Mathematics attainment scores are also plotted against IntT (blue dots). It’s clear that the model captures the general 

pattern of observed relationship between interceptive timing and Mathematics attainment well. 
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Figure S3: Distribution of the (a) mean and (b) standard deviation of test statistics for 16,000 simulated data sets 

(blue kernel density plots) alongside the true data sets (vertical black dashed line).  

 

 

Figure S4: The expected value of the simulated data (ݕ௥௘௣ሻ as a function of IntT score (blue dots). The observed data 

is also shown as a function of IntT score (red dots).  

 

School Attainment Metrics: 

Table S1 shows how the educational attainment code maps to the original code used by schools, as well as the 

school year and age at which children are expected to reach key attainment levels. 
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Table S1. Attainment score conversion table. A scale of 1 to K (where K was the highest observed score in the data) 

was used for the Bayesian Attainment Model. This scale maps to the UK nationally standardized scores. The school 

year and age at which children are expected to achieve these scores is shown.    

 

Attainment 
Score 

Government 
Code 

Expected 
Year Group 

Expected 
Age 

1 1c 
 

 

2 1b 
 

 

3 1a 
 

 

4 2c 
 

 

5 2b 2 6-7 

6 2a 
 

 

7 3c 
 

 

8 3b 
 

 

9 3a 

 

 

10 4c 
 

 

11 4b 6 10-11 

12 4a 
 

 

13 5c 
 

 

14 5b 9 13-14 

15 5a 
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Table S2. In UK primary schools, mathematics is taught and assessed in two stages ʹ Key stage 1 (years 1 and 2 

when the children are 4-6 years) and Key stage 2 (years 3 to 6 when the children are 7-11 years). The table below is 

an extracted from: https://www.gov.uk/government/collections/national-curriculum-assessments-test-

frameworks  

 Year  

Key Stage 1 

The mathematics taught is very 

practical and related to everyday 

experiences. A variety of 

resources, such as coins, dice, 

dominoes, playing cards, beads 

and plastic bricks for counting. 

 

1 number bonds, early skills for multiplication and solving 

simple problems; very practical mathematic related to 

everyday experiences. 

 

2 working on numbers through rehearsal and using addition and 

subtraction facts regularly; using number lines, tracks and 100 

squares. 

Key Stage 2 

Shape, space, data handling, 

money and measures in addition to 

numeracy. 

 

Children are expected to read, 

write and order numbers on a 

number line (and place value 

cards, beads on a string etc).  

 

3 puzzles, problems and investigations to practice, consolidate 

and extend understanding with an emphasis on real world 

situations. 

4 decimals (particularly with money and measurement); 

equivalent fractions introduced via diagrams and number lines 

used to teach fractions. 

5 Fractions, decimals and percentages; comparing, ordering and 

converting and solving problems in a meaningful context 

6 more complicated problems, including those that have 

decimals, fractions and percentages; expectation of working 

systematically, using the correct symbols and to check their 

results. They also learn about positive and negative numbers. 

 

 

 

https://www.gov.uk/government/collections/national-curriculum-assessments-test-frameworks
https://www.gov.uk/government/collections/national-curriculum-assessments-test-frameworks
https://www.gov.uk/government/publications/key-stage-1-mathematics-test-framework
https://www.gov.uk/government/publications/key-stage-2-mathematics-test-framework

