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Abstract

Graph theory is a body of mathematics dealing with problems of connectivity, flow, and

routing in networks ranging from social groups to computer networks. Recently,

network applications have erupted in many fields, and graph models are now being

applied in landscape ecology and conservation biology, particularly for applications

couched in metapopulation theory. In these applications, graph nodes represent habitat

patches or local populations and links indicate functional connections among

populations (i.e. via dispersal). Graphs are models of more complicated real systems,

and so it is appropriate to review these applications from the perspective of modelling in

general. Here we review recent applications of network theory to habitat patches in

landscape mosaics. We consider (1) the conceptual model underlying these applications;

(2) formalization and implementation of the graph model; (3) model parameterization;

(4) model testing, insights, and predictions available through graph analyses; and (5)

potential implications for conservation biology and related applications. In general,

and for a variety of ecological systems, we find the graph model a remarkably robust

framework for applications concerned with habitat connectivity. We close with

suggestions for further work on the parameterization and validation of graph models,

and point to some promising analytic insights.
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I N T R O D U C T I O N

Ecology and conservation biology are much invested in

habitat connectivity and its implications for populations

(Tischendorf & Fahrig 2000; Fahrig 2003; Calabrese &

Fagan 2004; Chetkiewicz et al. 2006; Crooks & Sanjayan

2006; Beier et al. 2008). Graph theory (also called network

theory) is a branch of mathematics concerned explicitly with

connectivity. Graph theory has been around for centuries

but recently the theory and its applications have been

undergoing explosive growth in many disciplines including,

finally, landscape ecology and conservation biology (Bunn

et al. 2000; Urban & Keitt 2001; Keitt 2003; Rothley & Rae

2005; Fall et al. 2007; Estrada & Bodin 2008; McRae et al.

2008). A graph is a set of nodes (points) connected by links

(lines); a link between two points indicates a functional

connection between the two nodes. In landscape ecology,

the nodes typically represent habitat patches and links

indicate dispersal potential or frequency between patches.

This representation invokes a metapopulation model of the

habitat mosaic (Hanski & Gilpin 1991; Urban & Keitt 2001).

Graphs are models of landscapes – that is, simplifications

of a more complicated reality – and so it is appropriate to

consider the application of these models in the same way we

might evaluate other models used in ecology. This invites a

series of very pragmatic questions: What is the underlying

conceptual model of the system? How might we formalize

and implement (codify) this conceptual model? How will the

model be parameterized? Which parameters are most

sensitive, most uncertain? What insights might be garnered

from a formal analysis of the model? Can the model be

extended to applications beyond those used to build it

initially, and how might these extensions be validated with

independent data? Importantly, can graph models provide

predictions about landscapes that are not available from

other models we already use?

Here we review recent applications of graph theory to

habitat mosaics, focusing on applications in landscape
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ecology and conservation biology. In particular, we consider

the match between the ecology of interest and its

abstraction as a graph, and review the sorts of insights that

can be obtained from graphs or network models. We offer

suggestions to reduce uncertainties concerned with model

implementation and parameterization, and emphasize

potential means for verifying or validating graph models

empirically. Finally, we point to promising avenues for the

analysis of graph models and their application to conserva-

tion planning.

Networks and graph theory: definitions

Graph theory dates back to Euler (300+ years ago) and

it persists now as a multithreaded discipline in natural

sciences, social sciences, engineering, and mathematics.

Because of this, the theory and applications have evolved a

rich vocabulary that sometimes is not consistent across

disciplines. Graph definitions are reviewed from an ecolog-

ical perspective by Urban & Keitt (2001), Fall et al. (2007),

and Minor & Urban (2008). Here we define concepts and

terms that will be used in the discussion that follows.

A graph G is a set of nodes (also called vertices) V and

links (or edges) E (Fig. 1). A graph with n nodes and p links

has order n and value (or size) p. The nodes may be annotated

with additional attributes such as their spatial coordinates,

size, and quality or productivity. A link ab between nodes a

and b indicates some functional connection; in the case of a

network of habitat patches, this connection is typically

related to dispersal. The links might be of various kinds:

binary adjacencies (connected ⁄ not), or they might represent

distance, or the likelihood or the rate of dispersal. In a

graph in which the links represent distance or other

quantities, the links are weighted. Links by convention are

bidirectional (i.e. link ab implies the symmetric back-link ba).

Alternatively, the connections might be directional, in which

case the links are by convention called arcs and the graph is

directed, a digraph. Because these fluxes are often asymmetric

for biophysical reasons (gravity, air or water currents) or for

biological reasons (e.g. to reflect the population sizes of the

donor nodes), habitat graphs are often weighted digraphs.

In some instances, it might make sense for there to be more

than one link between a pair of nodes. Such parallel links

give rise to a multigraph; these links might represent

alternative dispersal routes between a pair of nodes, or

connections of qualitatively different types (and see below).

Of course, the same ecological system can be represented

by a variety of graphs of differing complexity – and these

alternative formulations will be appropriate to different

applications.

We should point out at the outset that �graph theory� is a

much larger subject than �network theory� or �network

analysis�. Graph theory includes algebraic analysis of graphs,

geometric problems, and a lot of �pure math� that is not

directly relevant here. Network analysis (or theory) is

concerned with topological or functional relationships

among nodes in a graph. While this usage might not be

universal, we will attempt to adhere to this convention in

this discussion. In particular, we will use �graph� to refer to

the general data structure and use �network� to connote

topological relationships on graphs.

A walk on a graph is a sequence from node to node along

links or arcs; a path is a walk in which no node (and hence

no link) is revisited. The length of a path is the sum of the

weights of all the links (or arcs) in the path; for an

unweighted graph, this is simply the number of links. A

graph in which each node can be reached via some path

from any other node is connected, while an unconnected

graph consists of multiple (connected) subgraphs or

components.

A central task in network analysis is to find the shortest path

between any pair of nodes in a graph; shortest path

algorithms are well developed and some popular algorithms

have been known for decades (e.g. Dijkstra 1959), although

many are still being improved in terms of computational

performance. For an undirected graph of order n, there are

(n ) 1) shortest paths from each node. The longest shortest

path between any pair of nodes is the graph�s diameter. A

graph with long shortest paths is comparatively slow to

traverse, while one with very short paths is faster. In some

cases, it is convenient to index this by simply averaging the

shortest paths, referred to as the graph�s characteristic path

length.

A tree in a graph is a path without cycles and with only

one link between any pair of nodes, and a spanning tree is a

tree that visits every node in a graph. There might be several

of these for any given graph. A minimum spanning tree is a

Figure 1 Schematic of a simple graph, to illustrate key definitions.

Top: a simple (unweighted) graph. Bottom: a weighted digraph,

with nodes attributed with their sizes, arrows on arcs indicating the

direction of movement and line thicknesses indicating magnitude

of fluxes.
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spanning tree with the lowest total weight (there also might

be more than one of these, if there are ties among shortest

paths). A minimum spanning tree provides an easy

representation of the skeleton of the graph, a quick

visualization of its topology. Other indices provide a richer

illustration of the same concept. In particular, various

centrality indices highlight the backbone of the graph. For

example, node betweenness tallies the number of shortest paths

in a graph that pass through a given node; that node has

high centrality because it is between many pairs of nodes.

Alternatively, degree centrality tallies the number of neighbours

for each node, while closeness centrality is the inverse of the

average path lengths from a node to each of its neighbours

(Freeman 1978).

Graphs can exhibit various levels of clustering or community

structure. Here, a community refers to a group of nodes that

are highly connected: a cluster is correctly evoked by the

adage �Friends of friends are also friends�, which implies

�triangles� among members of a community or cycles in a

graph. Not surprisingly, social network theory is a branch of

graph theory much invested in community structure

(Wasserman & Faust 1994; Girvan & Newman 2002;

Freeman 2004).

M E T A P O P U L A T I O N M O D E L S A N D

I M P L E M E N T A T I O N A S G R A P H S

Graph models of habitat mosaics implicitly or explicitly

invoke metapopulations as a conceptual foundation. There

are at least two versions of this conceptual model. One is

Pulliam�s (1988) source ⁄ sink model. In this, source habitat

patches are those with positive net reproduction (i.e.

births > deaths), which then are capable of exporting

surplus individuals to nearby patches. By contrast, sink

patches have negative net reproduction and so depend on

nearby source patches for long-term persistence. A well-

documented example concerns forest birds subject to nest

predation and brood parasitism in forest edges. In this

example, sink patches are small or have a high proportion

of forest edge, and so vulnerable bird species often fail to

fledge young successfully (Donovan et al. 1997; Thomp-

son et al. 2002). Source patches, by comparison, are large

or productive and have core areas well buffered from

patch edge effects. The source–sink model is framed in

terms of local dispersal, especially the one-way dispersal

flux from sources to sinks. In terms of graph theory, this

would invite implementations in terms of weighted

digraphs: sources would have high dispersal outward

(large weights on out-arcs) whereas sinks would have a

high dispersal subsidy (negligible out-flux but high weights

on in-arcs).

The other model of metapopulations is older but less

formally described in current applications; this is the

spreading-of-risk (den Boer 1968) or the long-distance

rescue (Brown & Kodric-Brown 1977) model. The spread-

ing-of-risk model is evoked by the adage �Don�t put all of

your eggs in one basket� and is readily envisioned for patchy

systems subject to disturbance: we hope that a single

disturbance would not destroy the entire system but, rather,

that distal regions would escape local disturbance and

provide dispersers to recolonize the patches suffering local

extinctions. This conceptual model invites graph implemen-

tation in terms of measures of the overall traversability of

the graph – metrics such as graph diameter or characteristic

path lengths.

It is worth emphasizing these alternative – but not

competing – conceptual models of metapopulations because

most applications concerned with connectivity do not

specify which model is being invoked. We make the

distinction because graph models provide straightforward

methods to invoke either model. Urban & Keitt (2001)

illustrated these two models, underscoring the likelihood

that patches important in Pulliam�s model (i.e. strong

sources) need not be the same patches important to long-

distance traversability of the network (e.g. stepping-stones).

Estrada & Bodin (2008) suggested a similar distinction

about the role of nodes in network connectivity, based on

different indices of centrality (and see below). It is worth

noting that the �original� metapopulation model, that of

Levins (1969), is not much invoked in network applications

– perhaps because it is not explicit about the role each patch

might play in the network.

Graphs provide a simple but effective means of depicting

the overall structure of a habitat mosaic in terms of

metapopulation structure. For example, a highly connected

graph might function as a single patchy population (sensu

Harrison 1994), while a largely unconnected graph might

effectively be a set of isolated populations; intermediate

cases or various regions or components of a graph would be

obvious on inspection.

As an overall summary of the graph, the leading

eigenvalue of the link weight matrix (with weights estimated

as area-weighted dispersal probabilities) is the metapopulation

capacity of the landscape as defined by Hanski & Ovaskainen

(2000) – explicitly linking metapopulation theory to graph

data structures. Coincidentally, in social network theory, the

eigenvector corresponding to the dominant eigenvalue of

this matrix summarizes the contribution of each node to

network connectivity – its eigenvector centrality (Borgatti

2005).

Implementation and parameterization

Implementing a graph model essentially consists of defining

the nodes and links ecologically. A graph model typically

represents discrete elements of habitat as graph nodes,

262 D. L. Urban et al. Review and Synthesis

� 2009 Blackwell Publishing Ltd/CNRS



essentially collapsing the landscape into a binary �habi-

tat ⁄ non-habitat� world. Further, the model invokes an

�island� view of habitats: discrete habitat islands in a �sea�
of non-habitat (MacArthur & Wilson 1967). In this model,

the patches are often clustered as like-valued cells in a raster

data layer in a geographical information system (GIS), or

equivalently, as polygons in a vector representation. Patches

are connected by links if they are within some species-

specific dispersal distance (Bunn et al. 2000; Urban & Keitt

2001; D�Eon et al. 2002). An alternative formulation

represents each cell of the raster dataset as a node, with

links connecting neighbouring cells (4, 8, or more, depend-

ing on the application). In either case, node definition

implies an explicit definition of �habitat� for the application.

This might be extracted from vegetation or land cover types

from a GIS (e.g. O�Brien et al. 2006), or it could involve a

more nuanced statistical model of potential habitat for a

focal species (e.g. Minor & Urban 2007).

It should be noted that there are other alternatives for

node definition. O�Brien et al. (2006, see also Fall et al. 2007)

defined habitat nodes by creating a Delaunay tesselation of

their study area, ensuring that any location could be

unambiguously associated with a reference habitat node.

In this case, the focal species was the woodland caribou

(Rangifer tarandus caribou), a species that uses �habitat� patches

but also ranges beyond these patches into �non-habitat�. The

tesselation also provides for a parsimonious planar graph

(illustrated, via a Delauny tesselation, in Fig. 2g). In a planar

graph, links can be drawn without crossing each other; in a

minimum planar graph (Fall et al. 2007), each node is

connected only to its topological neighbours – a nicety that

facilitates graph creation and some subsequent analyses.

Ecologically, insisting on a minimum planar graph dictates

that organisms dispersing from a given node can only

traverse the graph via stepping-stone paths through topo-

logical neighbours (i.e. a bird could not fly directly to a

nearby habitat patch even if that patch was within the

dispersal capacity of the species). This represents a trade-off

between ecology and computational efficiency, as with other

ecological models.

For habitat graphs, links typically represent dispersal rates

or likelihoods. Even so, these can be specified at varying

levels of precision. As the simplest case, links can be

represented as binary (0 ⁄ 1). More typically, links are

represented by distances or functional distances between

nodes. Simple Euclidean distances, in map units, can be

computed either between node centroids or between the

edges of patches; this might be a matter of computational

convenience, but it does have some implications about how

we presume species dispersal actually occurs. Recently,

applications have become more invested in functional

distances instead of simple Euclidean distances. Functional

distances are weighted to reflect the relative navigability or

resistance to dispersal of matrix habitats between focal

habitat patches. In a GIS, these distances are computed as

�least-cost paths� using standard routing algorithms. In this,

(f)

(a) (b) (c) (d)

(g)(e)

Figure 2 Examples of graphs. Top panel: well-studied �theoretical graphs� – (a) regular, (b) random, (c) scale-free and (d) small-world. Bottom

panel: graphs more typical of landscapes – (e) a graph in which nodes are linked if they are less than some threshold distance apart (this

example includes two separate components), (f) a regular planar graph representing a raster grid (each cell joined to its four cardinal

neighbours) and (g) a minimum planar graph defined by a Delaunay tesselation (DT, dashed lines) from a Voronoi diagram (VD, solid lines).

The VD connects the nodes. The DT is defined by lines that bisect the links of the VD; the intersections of the DT lines outline polygons

that tile the surface parsimoniously. The DT ⁄ VD pair is a dual graph. Note that the regular graph (f) is also a dual graph, as an underlying

raster grid is represented computationally as a graph with nodes at the centre of each cell and links to its four cardinal neighbours.
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the algorithm finds the shortest route between two nodes

(patches) through a �cost surface� defined to represent the

relative resistance of the intervening matrix.1 Although these

algorithms have been known for some time – Urban &

Shugart (1986) suggested their use for spatially explicit

metapopulation models – it has only recently become

computationally feasible to compute least-cost links for a

large graph with hundreds of nodes (Bunn et al. 2000; Larkin

et al. 2004; Theobald 2006) and it remains largely infeasible

to do this analysis for several thousand nodes. It is worth

emphasizing that this means that constructing a graph can be a

computational bottleneck, if this entails computing least-

cost links between all pairs of nodes. Actually analysing

extremely large graphs is currently not a problem compu-

tationally; available software packages can handle millions of

nodes.

Best et al. (unpublished) devised a method to implement

least-cost links for large networks in a GIS environment.

They convert the raster cost surface to a triangulated

irregular network (TIN), and embed the habitat patches into

this TIN. Because the TIN is itself a graph, they can then

use extremely efficient graph algorithms to find the least-

cost paths (LCPs) for all pairs of nodes, extracting only the

habitat nodes as the final graph. The analyses are performed

using graph routines from the NetworkX module in Python

(networkx.lanl.gov). Using this approach, graphs with

thousands of nodes can be constructed and displayed in

ArcGIS (ESRI, Redlands, CA, USA).

Note that while least-cost links are appealing conceptu-

ally, it has proven remarkably difficult to parameterize these

directly; indeed, link definition in general seems as much a

working hypothesis as an actual parameterization. Promising

developments that should facilitate the implementation of

least-cost links (i.e. by parameterizing cost surfaces) include

telemetry data with high spatiotemporal resolution (e.g.

McDonough & Paton 2007) or field experiments that allow

animals to �choose� among cover types and so quantify

resistances (Ovaskainen 2004; Belisle 2005), and genetic data

(Cushman et al. 2006; Arens et al. 2007; McRae & Beier

2007) or isotopic analysis (Cook et al. 2007), which can

verify inferences about movement.

In many applications, link weights (actual or weighted

distances) are truncated relative to some maximum

dispersal distance for the target species. This requires an

empirical estimate of the dispersal capacity, if not an actual

dispersal kernel or distance-decay function. New methods

mentioned above in relation to calibrating resistances might

also be useful in estimating maximum effective dispersal

ranges.

McRae and colleagues (McRae 2006; McRae & Beier

2007; McRae et al. 2008) have promoted circuit theory as a

way to model connectivity. Circuits are graphs, defined in

terms of resistances between nodes (i.e. based on a cost

surface as above). Founded in random walk theory, circuit

theory provides intuitive analytic analogues for resistance,

conductance, and flow over networks depicted as �wiring

diagrams�. In terms of dispersal, circuits offer the advantage

that multiple pathways may be modelled between pairs of

nodes, with these paths quantified in terms of relative flow

rates; the effective conductance of the connection between

two nodes can be integrated over all possible paths. A slight

disadvantage of this approach is that circuit links cannot be

directional (McRae et al. 2008).

In a marine application concerned with connectivity

among coral reefs, Treml et al. (2008) simulated larval

dispersal via modelled ocean currents to estimate dispersal

likelihoods among reefs, generating a weighted digraph for

the Tropical Pacific. Similar approaches could be developed

for terrestrial systems using models of dispersal based on

appropriate life-history data. For example, Gustafson &

Gardner (1996) developed a dispersal simulator based on

correlated random walks by �virtual� animals subject to

behavioural rules and physiological constraints. They used

the model to estimate the likelihoods (rates) with which

organisms dispersing from each patch might successfully

arrive at each other patch.

While graphs are often abstractions of real systems, some

network models are rather straightforward to implement, as

the ecosystem is already structured as a network. Schick &

Lindley (2007) developed a graph model for salmonid

populations in streams in the Sierra Nevada of California. In

this, stream segments (reaches partitioned by elevation

zones) were defined as nodes, and arcs were parameterized

based on return rates from the ocean, with some small

chance that fish would return to streams other than their

natal reach based on empirically observed �straying� rates.

It might be useful here to comment on �structural

connectivity� as sometimes used to describe physical features

of landscapes such as forest patches, hedgerows, and other

elements obvious to the human eye. While it might be

tempting to represent these as graph models, this raises the

difficulty that, unless the graph model is implemented

to represent some actual target species (i.e. �functional

connectivity�), there is no way to estimate link weights

meaningfully: all graph models should represent functional

connectivity.

1This analysis invites some confusion. The GIS-based algorithm actually

finds a least-cost path between two habitat patches by finding the

shortest path between them based on a raster cost surface, which is itself

a regular graph. The result is a single link between two nodes, a least-cost

link. Done for all pairs of nodes, the result is a graph of least-cost links.

One might then find shortest paths between these nodes, based on the

computed link weights. Thus, this analysis is nested: least-cost paths for the

habitat graph are computed as least-cost paths on the graph representing

the cost surface. We will try to distinguish least-cost links from shortest

paths in the larger graph.
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An alternative method to define a graph invokes a slightly

different conceptual model. In this, nodes represent habitat

patches that tile the landscape (e.g. as in a tesselation), and

the links represent the likelihood that individuals moving

within the patch might encounter the boundary to an

adjacent patch and �pass through�. This model echoes the

�boundary dynamics� conceptualization of Wiens et al.

(1985), which considers the balance of within- and

between-patch movements as a function of patch size and

the permeability of the boundaries between patches.

Behavioural responses to habitat boundaries have been

explored for a variety of taxa (reviewed by Ries et al. 2004),

which would seem to provide an empirical basis for this

model. A compelling feature of this conceptual model is

that it invites estimates of the permeability of the shared

boundaries between adjacent habitat patches – a rather

straightforward implementation in a GIS. For example, one

might assign a permeability to each land cover type in a

GIS, and compute link weights based on the relative

permeability of land covers at shared borders between

patches. This implementation, while subject to the same

uncertainties about habitat (boundary) resistances that apply

to least-cost links, also would force a more formal

consideration of the likely shift in the proportion of

within-patch dispersal as patch size increases (Fagan &

Lutscher 2006). To our knowledge, this conceptual model

has not been developed in graph applications. Cantwell and

Forman (1993) explored the topology of graphs defined by

the juxtaposition of different patch types, but they did not

focus on boundary permeability explicitly. Margosian et al.

(in press) approximated this approach in a graph-based

analysis of agricultural pests in counties of the American

Great Plains. In this, links were drawn as lines connecting

county centroids, and link weights were assigned based on

the amount of agricultural land cover intersected by these

lines (regions with high agricultural land cover were

considered less resistant to pest transmission). Note that

this approach is very similar to the Voronoi diagram used to

generate a Delaunay tesselation of a landscape (Fall et al.

2007; and see Fig. 2g), and is rather straightforward to

implement in a GIS.

Additional behavioural ecology might be incorporated

into link weights. For example, one might estimate link

weights based on the viewshed of dispersing organisms, in

which dispersal likelihoods are based on patches visible

from a focal vantage point (the donor node). Graf et al.

(2007) modelled the effects of topographic interference in

the viewsheds of the caercaillie (Tetrao urogallus) in central

Europe.

In short, ecologists have explored a variety of ways to

implement spatially articulated ecosystems as graphs. We

have been quick – perhaps too quick – to adopt least-cost

links as a means for constructing graphs. It might be fruitful

to explore alternative conceptual models of species dispersal

as this effects connectivity.

M O D E L V E R I F I C A T I O N A N D V A L I D A T I O N

Modellers sometimes distinguish two kinds of model tests.

Model verification refers to tests of model output against

data used to build the model. This is a necessary test, as it

establishes the extent to which the model does what it was

designed to do. But the test is not independent of the data,

and so this is a comparatively weak test – after all, the

model should do as it was designed. A more stringent test,

model validation, tests the model against data that were not

used in model development. This independent test pro-

vides a cleaner test of the model; indeed, the farther

removed from the development case, the stronger the test.

While verification demonstrates that the model successfully

implements basic assumptions about the system, validation

establishes that the assumptions themselves are reasonable.

Continued validation tests establish the domain within

which the model can �safely� be applied, its domain of

applicability.

Applied to graphs, we might consider model testing at

multiple levels. Here, we might use verification to refer to

tests of the construction of the graph itself. That is, can we

adequately represent habitat patches and dispersal fluxes

with appropriate nodes and links? Model validation might

then consider whether network-level implications of the

graph model are reasonable and consistent with available

data.

Some steps have already been taken in this direction.

McRae & Beier (2007) tested their circuit-theory models

using genetic data from two distinct taxa: big-leaf mahog-

any (Swietenia macrophylla, a tropical hardwood tree) and the

wolverine (Gulo gulo, a North American carnivorous

mammal). Their verification tests showed that circuit

theory was better able to predict genetic differentiation

between populations than were conventional gene flow

models. Driezen et al. (2007) used telemetry data to verify

least-cost links estimated for the hedgehog (Erinaceus

europaeus). They found that the animals selected routes that

were better than random but that fell somewhat short of

least-cost routes.

Variations on Mantel tests can be used to select among

alternative formulations of network connections. A Mantel

test is a correlation or regression on distance matrices

(Legendre & Legendre 1998). In this case, one distance

matrix would be a candidate set of graph distances (shortest

paths or link weights) between pairs of patches, and the

other matrix would be ecological (species composition) or

perhaps genetic distances. A simple test would require that

the Mantel correlation be higher for cost-weighted distances

than for simple Euclidean distances. Treml has found some
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success in this approach with marine systems (E.A. Treml,

unpublished data, and see Hedgecock et al. 2007). This

approach might also be used to select among alternative

path weights or cost surfaces (Cushman et al. 2006).

Urban (2005) suggested that, if networks are an

appropriate model for metapopulations, then we should

be able to observe emergent behaviours at the level of the

graph component, a level of organization between the

single patch and the entire landscape. In this, graph

component membership could be entered into a regression

as a dummy variable; a significant partial on this variable

would indicate that the components share ecological

function. Minor et al. (in press) used this approach and

found the composition of exotic plants was more similar

within graph components than among components, vali-

dating the network model.

Ultimately, the criterion for judging a graph model is

based on how well graph metrics correspond to measures

obtained from the represented system. Minor & Urban

(2007) compared the performance of a graph model to

that of a spatially explicit population model (SEPM) in

selecting important patches for wood thrush (Hylocichla

mustelina) conservation. Both models used the same habitat

and dispersal distance but the SEPM employed at least

nine additional life-history and behavioural parameters in

order to simulate complicated population dynamics. Their

model tests showed that the graph model made predic-

tions very similar to the complicated SEPM and – in its

simplicity – even offered insights about network structure

not easily obtained from the simulator; this was because

the SEPM made predictions at the level of the single

patch while the graph model could assess the entire

network.

An appealing feature of graph models is the ease with

which they can be used to refine our knowledge of species

biology, develop better parameter estimates, and feed back

to improve themselves in an iterative, targeted sampling

approach. In this, the model itself provides a sampling

frame, and the aim is to use model uncertainty as a guide to

tactical field studies (Urban 2002). For example, we might

be uncertain about the dispersal capacity of a focal

organism. We can tackle this uncertainty by creating two

graphs that bracket the range of possible dispersal distances.

Each graph (one with shorter links than the other) will

highlight habitat patches that are isolated from the rest of

the landscape; isolated patches in the longer-distance graph

will be a subset of isolated patches in the shorter-distance

graph. The key is to focus sampling efforts on the habitat

patches that are isolated in the short-distance graph but not

in the long-distance graph. If these patches are occupied, we

might conclude that the dispersal distance of our organism

is closer to our longer estimate than to our shorter estimate;

the opposite holds true as well.

M O D E L A N A L Y S I S

Model analysis includes several techniques geared to

understanding the qualitative and quantitative implications

of the model as implemented and parameterized (reviewed

by Gardner & Urban 2003). Here we review applications

based on (1) visualization and interpretation; (2) analytic

or theoretic results from graph theory; (3) methods

for evaluating alternative model scenarios; (4) sensitivity

and uncertainty analysis; and (5) �engineering solutions�
aimed at optimizing particular network properties, especially

connectivity.

Visualization and interpretation

One of the compelling features of a graph model is that they

tend to be intuitive and accessible on inspection. Illustra-

tions of graphs, overlaid onto a GIS map, provide an

immediate summary of patterns of connectivity in a

landscape and provide an easy means to visually explore

the implications of assumptions about link weights or

dispersal biology (Bunn et al. 2000; Urban & Keitt 2001).

One particularly informative representation of a landscape

graph is a series of figures that show how connectivity varies

with different assumptions about dispersal capacity for the

target species (Bunn et al. 2000; D�Eon et al. 2002). A

general result of this analysis is that landscape connectivity

(measured as graph diameter) typically shows a strongly

nonlinear threshold response to increasing dispersal capacity

(illustrated by Urban & Keitt 2001; Fig. 3). In this, graph

diameter increases rapidly as the graph coalesces into a large

component; the diameter then decreases as long stepping-

stone paths are replaced by direct connections. This curve

implies that habitat graphs have a connectivity level at which

the network is fully connected but slow, because the paths

are indirect stepping-stone routes. At lower dispersal

capacities, the graph is less connected (leaving some nodes

isolated), while at higher capacities the graph is much �faster�
because the connections are direct. This threshold in

connectivity is exactly analogous to the percolation thresh-

old in raster lattices (themselves a special form of graph;

Stauffer 1985; Keitt et al. 1997), and provides a convenient

index by which to assess the dispersal capacity of a target

species relative to the landscape – termed �scale-matching�
by Brooks (2003). Along with this illustration of connec-

tivity thresholds, the same analysis also highlights separate

graph components as a function of dispersal capacity, as

well as any obvious instances of dispersal isolation or highly

connected regions in the graph.

Similarly, the results of basic graph measures such as

centrality scores can be readily visualized in a GIS

environment as an intuitive way to interpret network

topology. Betweenness centrality is a measure of the role
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each node or link in a graph might play in network traffic as

measured in shortest paths. For example, nodes with high

betweenness might be deemed crucial to graph connectivity

because of the high traffic implied by their position in the

network. Bodin & Norberg (2007) used betweenness indices

from social network theory to identify well-connected

compartments (sub-networks) of habitat patches for the

ring-tailed lemur (Lemur catta) in southern Madagascar.

Mapping betweenness scores in this way can readily

emphasize the well-connected backbone of a landscape

(Fig. 4). Estrada & Bodin (2008) explored a variety of

centrality indices for this purpose. They found that the

indices captured conceptually different aspects of connec-

tivity. For example, degree centrality seemed to capture local

patterns of connectivity in dense regions of the graph, while

betweenness centrality reflected long-distance connectivity

over the graph. This result echoes the results of Urban &

Keitt (2001), concerning the various roles that nodes might

play in network connectivity and inviting reflection on

the alternative source ⁄ sink compared to spreading-of-risk

metapopulation models.

Borgatti (2005) emphasized the mode of transfer of

information among nodes in a network and the implications

of this for choosing an appropriate index of betweenness.

For example, the way that a package is delivered to its target

destination is quite different from the way rumours spread

through friendship networks. Borgatti (2005) categorized

transfers in terms of mode of transmission and allowable

trajectories of these transmissions. Modes include parallel

duplication (copies of the information move from one node

to many), serial duplication (one to one), or transfer (only

one package of information exists at a time). Allowable

trajectories include shortest paths (termed geodesics in social

network theory), paths (with no repeated nodes or links),

trails (nodes may be revisited, but links cannot), or walks

(any sequence of nodes and links is permitted). Ecologically,

these distinctions are important because they evoke differ-

ent kinds of applications. For example, we might model the

dispersal of large mammals as individual packages, each

animal choosing a (perhaps least-cost) route during dis-

persal. This presumes some discriminatory capacity by the

animal. By contrast, we might model the dispersal of a

cohort of propogules as divisible flow, with various

proportions of the pool moving to various patches, and

perhaps subsequently moving from these to other patches,

and so on; the dispersal flux to any target patch is then the

net flux from all paths that end at the target, no matter what

the route. This model might apply to active dispersers or to

passive (�unthinking�) species. Clearly, the underlying con-

ceptual model should inform what mode of transfer the

graph links represent. Importantly, the mode of transfer

implies a corresponding index of centrality; Borgatti (2005)

tabulates appropriate choices.

Least-cost links are conceptually appealing, but these can

be limited or even misleading in that they show by definition

Figure 4 A graph of forest habitat patches in the Piedmont of

North Carolina, with nodes sized in proportion to their between-

ness centrality. Larger nodes have higher centrality, and highlight

the pattern of flow across the landscape (after Bodin & Norberg

2007).
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Figure 3 Relationship between landscape connectivity (as diameter

of the graph�s largest component) vs. joining distance, or the

maximum dispersal distance at which two nodes are considered

connected (redrawn from Urban & Keitt 2001). Inset: the peak in

graph diameter corresponds to the replacement of longer stepping-

stone paths with shorter direct links.
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the path of minimum cost. This ignores the likelihood that

there might be multiple alternative paths, perhaps including

some that are nearly as short as the minimum cost. Pinto &

Keitt (2008) developed two extensions to least-cost links,

conditional minimum transit costs (CMTCs) and multiple

shortest paths (MSPs), to facilitate the exploration of

redundant paths. CMTC(V,S,T) is defined as the least-cost

distance from S to T conditional on that path passing

through node V. Analytically this is a relatively straightfor-

ward extension of a common shortest-path algorithm.

Dijkstra�s (1959) algorithm finds the shortest paths from

node S to all other nodes in a graph, returning this result as a

tree rooted at S. Combining the tree rooted at S with the

corresponding tree rooted at T provides the CMTCs for all

routes between these two nodes. This analysis can be

performed readily in a GIS (Fig. 5), and Theobald (2006)

has developed tools for constructing network models in this

way. The MSP method relies on randomly deleting links in

Monte Carlo fashion. At each iteration, the least-cost path is

identified, and when a link from the actual shortest path is

deleted the path is re-routed. The result over many iterations

is a set of shortest paths, which can be arbitrarily edited to

retain any path shorter than an user-specified threshold.

Pinto & Keitt (2008) retained paths within 10% of the true

length. Similarly, tools from circuit theory can be used to

identify all possible routes and the cumulative flow between

graph nodes; this provides a powerfully visual summary of

the routing of flows among nodes (McRae 2006; McRae

et al. 2008).

In practice, these approaches are important for two

reasons. First, management agencies might not be poised to

pursue optimal least-cost paths, but might instead welcome

a set of �nearly optimal� alternative paths connecting valued

habitat patches. Of course, information on whether such

alternatives exist would also be welcome. Second, we might

desire some degree of redundancy in paths, simply as

insurance. Given these goals, analytic approaches to identify

multiple, alternative routes invite further exploration. In

this, the approaches of Theobald (2006), Pinto & Keitt

(2008), or results from circuit theory might be implemented

as multigraphs, with multiple links (of varying weights)

between pairs of nodes.

Graphs in theory and practice

An early impetus for applications of graph theory in

conservation was the likelihood that existing theory might

contribute immediately and powerfully to conservation

applications (Urban & Keitt 2001). One goal of model

analysis is a search for an �analytic� solution, which is a

general solution to the model expressed in terms of model

parameters. A statement of the stability conditions for a

population model, expressed explicitly in terms of demo-

graphic rates, is one familiar example. This sort of analysis

has not been a large part of applications of graph theory to

habitat mosaics. In part, this might reflect our lack of

familiarity with available analyses. But it might also reflect a

separation within graph theory itself, between people who

study algorithms and algorithmic solutions to applications,

and those who explore graphs as an exercise in pure

mathematics (e.g. Chartrand 1977). For the latter, a typical

graph problem is an �n,p,k� question: Does a graph of order n

and size p have some property k? For example, a theorist

might wish to prove that any graph for which the degree of

each node is even (i.e. is connected to an even number of

nodes) can be visited with a Hamiltonian circuit (a path that

visits each node once, never back-tracking, and returns to its

starting position – the basis for �travelling salesman� and

�postman� problems). The solution to this problem is to prove

that this conjecture about node degrees is true; a person

concerned with conservation applications would like to

identify that route. From this perspective, graph algorithms

Figure 5 Conditional minimum transit costs between two focal

nodes, illustrating all possible routes between the two nodes. Left:

cost–distance surface between the two focal nodes (black patches

at top and bottom), truncated to a maximum cost–distance of

25 km; darker shades are farther from the target patch at bottom.

Right: this cost–distance surface thresholded to 22 km, revealing a

�braided stream� of possible routes. The least-cost path (solid black

line) has length 21 663 m. The figure reveals a possible bottleneck

(arrow) where the path is highly constrained by nearby develop-

ment, but also reveals an alternative �western� route that is only a

few hundred metres longer. Figure generated using the corridor

function in the Spatial Analyst extension to ArcGIS (ESRI,

Redlands, CA, USA).
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would seem to have more to offer to ecology and

conservation biology than graph theory itself.

There is, however, a large and growing body of work on

generalizations about graphs based on their topology or

other statistical properties. For example, there has been a

great deal of work recently on random graphs, small-world

networks, and scale-free graphs (e.g. Watts & Strogatz 1998;

Watts 1999; Strogatz 2001; Barabasi & Bonabeau 2003,

Newman 2008). But actual habitat mosaics seem to not

quite fit the definitions of these well-studied networks. In

particular, the geography of habitat networks – with

functional connections based largely on proximity – seems

to make habitat mosaics more akin to regular graphs or

minimum planar graphs than to small-world or scale-free

graphs (Fig. 2). This is because natural adjacencies governed

by physical proximity tend to not include the long-distance

connections that define small worlds; similarly, geography

seems to constrain habitat networks so that these tend not

to include the extremely connected nodes (hubs) that

characterize scale-free networks (Minor & Urban 2008).

Intriguingly, it is easy to envision anthropogenic connec-

tions that defy the natural geometry of landscapes, and so

introduce unnaturally long-distance or fast connections.

Many examples of invasive species or introduced pests

might fit this definition. For example, while natural links

(arcs) connecting coral reefs are governed by ocean currents

(Treml et al. 2008), other connections are made via ballast

water from ships following trade routes that are indepen-

dent of currents. Similarly, many invasives are spread by

human-facilitated paths that defy natural adjacencies (via

airline connections, ports of call, and other transportation

hubs). Thus, there is some potential for posing invasive

species issues in terms of natural graphs overlain with

anthropogenic �short-cuts� that might impart a predictably

unnatural small-world behaviour to human-modified sys-

tems. In graph terms, these would be multigraphs, having

qualitatively different types of links between nodes (i.e.

natural and anthropogenic).

It seems that emerging work with landscape graphs might

actually inform this body of work about network topology

and graph behaviour. The infusion of social network theory

into these analyses seems especially promising.

Evaluating alternative landscape scenarios

Landscapes are large by conventional definitions, and

experiments with landscape pattern are logistically difficult.

Consequently, landscape ecologists often rely on models to

evaluate alternative scenarios about landscape management

(Dale 2003). In this, the model provides a form of

experimental control, so that alternatives can be assessed

within the common framework of the model itself. From

this perspective, graph models are especially appealing

because graph analyses tend to be computationally expedi-

ent. For example, Keitt et al. (1997) developed a patch-

deletion algorithm for landscape analysis, in which the

ecological value of each patch could be assessed relative to

the overall value of the initial (baseline) landscape.2 In this

case, they computed a measure of landscape connectivity for

the baseline landscape, then removed each patch in turn and

recomputed the connectivity index. The importance of each

patch to connectivity was indexed by the difference in

connectivity affected by the loss of that patch. Estrada-Pena

(2003) followed a similar approach in northern Spain, using

ticks (Ixodes ricinus) as indicators for the movements of their

hosts; he was able to identify important stepping-stones as

well as isolated habitat patches based on relative tick

abundances. Urban & Keitt (2001) generalized this approach

to multiple indices of patch importance, recognizing that a

patch might be important due to its productivity, local

connections (source strength, after Pulliam 1988), or role as

a stepping-stone in long-distance connectivity (see also

Bunn et al. 2000). Pascual-Hortal & Saura (2006) extended

this approach to explore a larger set of connectivity indices.

Schick & Lindley (2007) reversed the node deletion logic

to develop an assessment of restoration potential using

graphs. After first documenting the actual fragmentation of

the system, they explored several node addition scenarios.

They found that adding (restoring) populations with high

source strength (i.e. both large and highly connected) first

had the highest restorative impact on the populations in the

graph.

This general approach is noteworthy because it can be

conducted for hundreds to thousands of habitat patches, an

otherwise daunting computational demand that is mini-

mized by using efficient graph algorithms.

Sensitivity and uncertainty analysis

Sensitivity or uncertainty analysis are a related set of model

analyses, in which the goal is to understand why the model

behaves as it does – that is, how the model responds to

individual parameters, given the model structure. A sensitive

parameter is one for which a small change in the parameter

value elicits a large change in model output. An uncertain

parameter is one that is sensitive within the range of

precision with which it can be estimated. In the context

of graph models of metapopulations, sensitivity and

uncertainty might apply to the definition of graph nodes

(i.e. the habitat model) and the definition of links (based on

data about dispersal capacity, and in the case of least-cost

paths, knowledge about the relative habitat resistance of

2Not coincidentally, this analysis echoes now-conventional �species deletion

sensitivity� in food web analysis (Pimm 1980), which also involves the

iterative deletion of nodes from a graph.
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various land cover types). To date, this sort of analysis has

not been pursued much in ecological applications of

graphs. Minor et al. (2008, and see Urban et al. 2006)

developed graph-based simulation models for the wood

thrush (Hylocichla mustelina) and explored their sensitivity to

alternative definitions of �habitat� and different assumptions

about the dispersal capacity of the bird. Schick & Lindley

(2007) tested the sensitivity of all five parameters in their

network model of salmonid populations, and found that

the results were most sensitive to assumptions about

straying and recruitment into the recipient populations.

Rayfield et al. (2008) have explored the sensitivity of graph

solutions to various estimates of dispersal resistances used

to compute least-cost links. They found their results

reasonably robust to such variation, although local

solutions (i.e. paths involving particular nodes or habitat

patches) varied in a manner that is probably idiosyncratic to

a particular landscape. Given the fundamentally uncertain

nature of dispersal data, this sort of analysis warrants

further attention by ecologists using graph models.

Information on model sensitivity would suggest which

parameters dominate model behaviour (i.e. which

parameters matter), while uncertainty analysis would

marshal further studies to refine estimates of parameters

that are sensitive and uncertain.

Network engineering and optimization

A final sort of model analysis might be referred to as

�engineering solutions� for graphs. In particular, this would

include formal network optimization, such as to maximize

connectivity. Little work has been carried out on network

optimization for habitat mosaics. This is despite the reality

that in many areas of network applications – for example,

communications – the explicit goal is optimization. One

analysis with clear potential for habitat mosaics is the

so-called maximum-flow ⁄ minimum-cut optimization

(Phillips et al. 2008). This analysis seeks a set of �cuts� (link

removals) from the network that would disconnect a donor

node from a target node. The solution takes advantage of

the fact (from Menger�s theorem) that this minimum cut

also represents the maximum flow between the two nodes.

The analysis effectively identifies the dispersal bottlenecks

between the two focal nodes.

The task of optimizing a habitat network would seem

especially compelling for the design of nature reserve

systems. Phillips et al. (2008) used network optimization for

a conservation application in the Cape province of South

Africa, to find optimal connections between existing habitat

patches for this flora and the modelled locations where

these species might need to live in a future climate

(a connection in time as well as space). Their analysis used

linear programming methods to minimize the amount of

habitat area needed to be preserved to maintain an adequate

connected area of suitable habitat over time.

P R O M I S I N G A P P L I C A T I O N S

Once calibrated for a particular species, graph models can

offer novel insights into many conservation and ecology

questions. Network topology has potentially important

implications for population stability and resilience. For

example, Minor & Urban (2008) suggest that clustering may

improve population persistence on habitat patches, while

Melian & Bascompte (2002) indicate that compartmental-

ization may help isolate deleterious effects of disturbances.

Krause et al. (2003) showed a strong relationship between

compartmentalization and resilience in food webs. An

increased understanding of the ecological consequences of

network topology is critical for making better conservation

decisions and predictions about the consequences of

anthropogenic or natural disturbances. Network analysis,

as developed in other disciplines, offers a variety of

compelling applications. Here we consider a few especially

promising cases.

We previously raised the issue of multigraphs, in which

natural and anthropogenic links are identified separately.

This case is a natural fit for applications concerned with

the spread of invasive species, infectious disease or

pathogens. One way to consider such cases is to contrast

the dynamics of the system as governed by natural when

compared to human-mediated connections (empirically, a

model selection exercise). As network models are already

well developed in epidemiology (Newman 2002; Franc

2004), this seems a fruitful direction for ecological

applications.

Maximum flow ⁄ minimum cut problems seem especially

well suited to applications concerned with migration

between two natural endpoints (Phillips et al. 2008).

Migration corridors between winter and summer ranges

are one obvious case. Large-scale corridor projects represent

another promising case, as these typically involve a more-or-

less linear (if braided) stream of core reserves; examples

might include the Yellowstone-to-Yukon corridor, the

Meso-American corridor in Latin America, NATURA2000

in Europe, and similar efforts.

Multispecies conservation planning is increasingly com-

mon (Nicholson & Possingham 2006), and this invites

applications that overlay multiple graphs. Because multiple

target species may exhibit different patterns of connectiv-

ity based on their dispersal biology, the simplest option

may be to construct and analyse graphs independently for

several species, and then overlay or intersect the solutions

to find locations that are important to several species. This

could apply to instances where the habitat nodes are

similar across species but the dispersal biology differs
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(Bunn et al. 2000), or to cases where the nodes themselves

vary among species (i.e. the species use different habitats).

In addition, we may want to design nature reserve systems

that are maximally connected with respect to dispersal

of target species while minimally connected in terms of

contagious disturbances, invasive species, or pathogens. At

the least, we might identify regions within a landscape

(subgraphs) that are connected for one target but not the

other.

Social network theory offers a few especially compelling

applications. Borgatti (2006) has recently introduced the

notion of key players in social networks. Two instances are

relevant. In one case, the task is to identify a set of nodes of

order k, whose removal would maximally disrupt commu-

nication within the network. The theory is well developed

for application such as the disruption of terrorist cells, but

the relevance to ecological applications such as invasive

species or pathogens is obvious. Reciprocally, one might

wish to identify the set of key players who collectively could

communicate with most of the members of the network.

This case is well developed in human health applications

based on the rapid diffusion on new knowledge into a social

network or community (e.g. safe sex practices that might

curb the spread of HIV). Here, the analogy in conservation

might be to identify a set of nodes (nature reserves) that

could act as source patches for, and thus connect, the rest of

a functional landscape. Importantly, key player analysis is

fundamentally different from other graph analyses such as

node-removal exercises, in that the number of key players is

specified in advance and the solution varies depending on

how many players are targeted. This is because connections

between potential key players are often redundant (�friends

of friends are also friends�).
This last case – identifying the minimal set of reserves

that might maximally serve a landscape – invites a

comparison to the design of computer networks (Albert

et al. 2000). In this, a few hubs (servers) are protected while

a large number of client machines are less so. The design is

such that network performance is not compromised by the

loss of a client machine; only the loss of a server affects the

network. The same is true of the performance of the web:

most URLs could be lost with no real impact, but the loss of

Google or Yahoo would be dramatic. Implicitly at least, we

seem to want to design the nature reserve systems this same

way: Parks or protected areas would serve as the hubs, with

the implicit assumption that habitat outside the reserve

system might be lost with little impact on the network�s
function to preserve the long-term viability of biodiversity.

Network models obviously could have much to contribute

to reserve system design. In particular, issues of network

resilience as a function of node failure rates and redundancy

are well studied for networks in engineering but unexplored

by ecologists. Especially, network design might invite us to

consider resilience as the relevant goal of reserve network

design, when compared to resistance. Resilience refers the

ability of the system to recover from perturbation (i.e. to

accept node failure, while including redundancy in system

design), by resistance connotes a system designed to

withstand perturbation (i.e. to deny node failure). It is

perhaps simplistic to argue that reserve design has focused

mostly on a resistance model; but it would be equally

simplistic to deny the wealth of insights and analytic rigor

available by exploring a resilience model for conservation

applications.

C O N C L U S I O N

Graph models offer a versatile representation of habitat

mosaics and can provide insight into a variety of ecological

questions at both the patch and landscape-level. The flexible

data requirements and well-developed algorithms make

these models accessible and useful to a wide variety of

researchers. The simple act of drawing a graph can provide a

quick visual assessment of the landscape, which in some

cases might be all that is needed; more sophisticated

analyses offer added value. A limiting factor, however, is our

ability to parameterize these models in an ecologically

relevant way. Building graphs from empirical dispersal data,

and validating these models with independent data, will take

this approach from the hypothetical to the tangible and

establish graph-theoretic approaches as a crucial component

of the ecologist�s toolbox. There remains a wealth of

theoretical insight and algorithmic power available to

ecologists, and we hope that this review offers useful

guidance for further efforts.
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