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Abstrat. We present an approah for the rule-based transformation

of hierarhially strutured (hyper)graphs. In these graphs, distinguished

hyperedges ontain graphs that an be hierarhial again. Our framework

extends the double-pushout approah from at to hierarhial graphs. In

partiular, we show how to onstrut reursively pushouts and pushout

omplements of hierarhial graphs and graph morphisms. To further en-

hane the expressiveness of the approah, we also introdue rule shemata

with variables whih allow to opy and to remove hierarhial subgraphs.

1 Introdution

Reently, the idea of using rule-based graph transformation as a framework

for spei�ation and programming has reeived some attention, and several re-

searhers have proposed struturing mehanisms for graph transformation sys-

tems to make progress towards this goal (see for example [2, 8, 10℄). Struturing

mehanisms will be indispensable to manage large numbers of rules and to de-

velop omplex systems from small omponents that are easy to omprehend.

Moreover, we believe that it will be neessary to struture the graphs that are

subjet to transformation, too, in order to ope with appliations of a realisti

size. A mehanism for hiding (or abstrating from) subgraphs in large graphs will

failitate both the ontrol of rule appliations and the visualization of graphs.

In this paper we introdue hierarhial hypergraphs in whih ertain hyper-

edges, alled frames, ontain hypergraphs that an be hierarhial again, with

an arbitrary depth of nesting. We show that the well-known double-pushout

approah to graph transformation [5, 3℄ extends smoothly to these hierarhi-

al (hyper)graphs, by giving reursive onstrutions for pushouts and pushout

omplements in the ategory of hierarhial graphs. Hierarhial transformation

rules onsist of hierarhial graphs and an be applied at all levels of the hi-

erarhy, where the \dangling ondition" known from the transformation of at

graphs is adapted in a natural way.
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To further enhane the expressiveness of hierarhial graph transformation

for programming purposes (without damaging the theory), we also introdue

rule shemata ontaining frame variables. These variables an be instantiated

with frames ontaining hierarhial graphs, and an be used to opy or remove

frames without looking at their ontents. Our running example of a queue im-

plementation indiates that this onept is useful, as it allows to delete and to

dupliate queue entries regardless of their struture and size.

Finally, we relate hierarhial graph transformation to the onventional trans-

formation of at graphs by introduing a attening operation. Flattening reur-

sively replaes eah frame in a hierarhial graph by its ontents, yielding a at

graph without frames. Every transformation step on hierarhial graphs|under

a mild assumption on the transformed graph|gives rise to a onventional step

on the attened graphs by using the attened rule.

2 Graph Transformation

If S is a set, the set of all �nite sequenes over S, inluding the empty sequene

�, is denoted by S

�

. The ith element of a sequene s is denoted by s(i), and its

length by jsj. If f : S ! T is a funtion then the anonial extensions of f to

the powerset of S and to S

�

are also denoted by f . The omposition g Æ f of

funtions f : S ! T and g : T ! U is de�ned by (g Æ f)(s) = g(f(s)) for s 2 S.

A pushout in a ategory C (see, e.g., [1℄) is a tuple (m

1

;m

2

; n

1

; n

2

) of mor-

phisms m

i

: O ! O

i

and n

i

: O

i

! O

0

with n

1

Æm

1

= n

2

Æm

2

, suh that for all

morphisms n

0

i

: O

i

! P (i 2 f1; 2g) with n

0

1

Æm

1

= n

0

2

Æm

2

there is a unique

morphism n : O

0

! P satisfying n Æ n

1

= n

0

1

and n Æ n

2

= n

0

2

.

Let L be an arbitrary but �xed set of labels. A hypergraph H is a quintuple

(V

H

; E

H

; att

H

; lab

H

; p

H

) suh that

{ V

H

and E

H

are �nite sets of nodes and hyperedges, respetively,

{ att

H

: E

H

! V

�

H

is the attahment funtion,

{ lab

H

: E

H

! L is the labelling funtion, and

{ p

H

2 V

�

H

is a sequene of nodes, alled the points of H .

In the following, we will simply say graph instead of hypergraph and edge instead

of hyperedge. We denote by A

H

the set V

H

[ E

H

of atoms of H . In order to

make this a useful notation, we shall always assume without loss of generality

that V

H

and E

H

are disjoint, for every graph H .

A morphism m : G ! H between graphs G and H is a pair (m

V

;m

E

) of

mappings m

V

: V

G

! V

H

and m

E

: E

G

! E

H

suh that m

V

(p

G

) = p

H

and,

for all e 2 E

G

, lab

H

(m

E

(e)) = lab

G

(e) and att

H

(m

E

(e)) = m

V

(att

G

(e)). Suh

a morphism is injetive (surjetive, bijetive) if both m

V

and m

E

are injetive

(respetively surjetive or bijetive). If there is a bijetive morphism m : G! H

then G and H are isomorphi, whih is denoted by G

�

=

H . For a morphism

m : G ! H and a 2 A

G

we let m(a) denote m

V

(a) if a 2 V

G

and m

E

(a) if

a 2 E

G

. The omposition of morphisms is de�ned omponentwise.



For graphs G and H suh that A

G

\A

H

= ;, the disjoint union G+H yields

the graph (V

G

[ V

H

; E

G

[ E

H

; att ; lab; p

G

), where

att(e) =

�

att

G

(e) if e 2 E

G

att

H

(e) otherwise

and lab(e) =

�

lab

G

(e) if e 2 E

G

lab

H

(e) otherwise

for all edges e 2 E

G

[ E

H

. (If A

G

\ A

H

6= ;, we assume that some impliit

renaming of atoms takes plae.) Notie that this operation is assoiative but

does not ommute sine G+H inherits its points from the �rst argument.

We reall the following well-known fats about pushouts and pushout omple-

ments in the ategory of graphs and graph morphisms (see [5℄). Let m

1

: G! H

1

and m

2

: G ! H

2

be morphisms. Then there is a graph H and there are mor-

phisms n

1

: H

1

! H and n

2

: H

2

! H suh that (m

1

;m

2

; n

1

; n

2

) is a pushout.

Furthermore, H and the n

i

are determined as follows. Let H

0

be the disjoint

union of H

1

and H

2

, and let � be the equivalene relation on A

H

0

generated

by the set of all pairs (m

1

(a);m

2

(a)) suh that a 2 A

G

. Then H is the graph

obtained from H

0

by identifying all atoms a; a

0

suh that a � a

0

(i.e., H is the

quotiont graphH

0

=�). Moreover, for i 2 f1; 2g and a 2 A

H

i

, n

i

(a) = [a℄

�

, where

[a℄

�

denotes the equivalene lass of a aording to �.

In order to ensure the existene and uniqueness of pushout omplements (i.e.,

the existene and uniqueness of m

2

and n

2

if m

1

and n

1

are given), additional

onditions must be satis�ed. Below, we only need the ase where both of the

given morphisms are injetive. In this ase it is suÆient to assume that the

dangling ondition is satis�ed. Two morphisms m

1

: G ! H

1

and n

1

: H

1

! H

satisfy the dangling ondition if no edge e 2 E

H

nn

1

(E

H

1

) is attahed to a node

in n

1

(V

H

1

) n n

1

(m

1

(V

G

)). It is well-known that, if m

1

and n

1

are injetive, then

there are m

2

and n

2

suh that (m

1

;m

2

; n

1

; n

2

) is a pushout, if and only if m

1

and n

1

satisfy the dangling ondition. Furthermore, if they exist, then m

2

and

n

2

are uniquely determined (up to isomorphism).

A transformation rule (rule, for short) is a pair t : L

l

 I

r

!R of morphisms

l : I ! L and r : I ! R suh that l is injetive. L, I , and R are the left-hand

side, interfae, and right-hand side of t. A graph G an be transformed into a

graph H by an appliation of t, denoted by G )

t

H , if there is an injetive

morphism o : L! G, alled an ourrene morphism, suh that two pushouts

L I R

G K H

l

r

o

exist. It follows from the fats about pushouts and pushout omplements realled

above that suh a diagram exists if and only if l and o satisfy the dangling

ondition, and in this ase H is uniquely determined up to isomorphism. Notie

that we only onsider injetive ourrene morphisms, whih is done in order to

avoid additional diÆulties when onsidering the hierarhial ase. On the other

hand, the morphism r of a rule t : L

l

 I

r

!R is allowed to be non-injetive.



3 Hierarhial Graphs

Graphs as de�ned in the previous setion are at. If someone wished to imple-

ment, say, some ompliated abstrat data type by means of graph transforma-

tion, there would be no struturing mehanisms available, exept for the possi-

bilities the graphs themselves provide. Thus, any strutural information would

have to be oded into the graphs, a solution whih is usually inappropriate and

error-prone. To overome this limitation, we introdue graphs with an arbitrarily

deep hierarhial struture. This is ahieved by means of speial edges, alled

frames, whih may ontain hierarhial graphs again. In fat, it turns out to

be useful to be even more general by allowing some frames to ontain variables

instead of graphs. These strutures will be alled hierarhial graphs.

Let X be a set of symbols alled variables. The lass H(X ) of hierarhial

graphs with variables in X onsists of triples H = hG;F; tsi suh that G is a

graph (the root of the hierarhy), F � E

G

is the set of frame edges (or just

frames), and ts : F ! H(X ) [ X assigns to eah frame f 2 F its ontents

ts(f) 2 H(X ) [ X . Formally, H(X ) is de�ned indutively over the depth of

frame nesting, as follows. A triple H = hG;F; tsi as above is in H

0

(X ) if F = ;.

In this ase, H may be identi�ed with the graph G. For i > 0, H 2 H

i

(X ) if

ts(f) 2 H

i�1

(X ) [ X for every frame f 2 F . Finally, H(X ) denotes the union

of all these lasses: H(X ) =

S

i�0

H

i

(X ). (Notie that H

i

(X ) � H

i+1

(X ) for

all i � 0. We have H

0

(X ) � H

1

(X ) beause an empty set of frames trivially

satis�es the requirement; using this, H

i

(X ) � H

i+1

(X ) follows by an obvious

indution on i � 0.) The sets H(;) and H

i

(;) (i � 0) are briey denoted by H

and H

i

, respetively. These variable-free hierarhial graphs are those in whih

we are mainly interested.

Notie that, to avoid unneessary restritions, the de�nition of a hierarhial

graph H = hG;F; tsi does not impose any relation between the nodes and

edges of G and those of ts(f), f 2 F . Restritions of this kind may be added

for spei� appliation areas, but the results of this paper hold in general.

Example 1 (Queue graphs). As a running example, we show how queues and

their typial operations an be implemented using hierarhial graph transfor-

mation. Two kinds of frames are used to represent queues as hierarhial graphs:

Unary item frames ontain the graphs stored in the queue; binary queue frames

ontain a queue graph, whih is a hain of edges onneting their begin point to

their end point, every node in between arrying an item frame.

Figure 1 shows two queue frames. Nodes are drawn as irles, and �lled if

they are points. Edges are drawn as boxes, and onneted to their attahments

(a)

Fig. 1. Two queue frames representing (a) an empty queue (b) a queue of length 3



by lines that are ordered ounter-lokwise, starting at noon. Frames have double

lines, and their ontents is drawn inside.Plain binary edges are drawn as arrows

from their �rst to their seond attahment (as in simple graphs). In our examples,

their labels do not matter, and are omitted. (In the item graphs, the arrowheads

are omitted too.) Frame labels are not drawn either, as queue and item frames

an be distinguished by their arity.

Note that item frames may ontain graphs of any arity; in Figure 1 (b), they

have 1, 2, and no points, respetively.

Unless they are expliitly named, the three omponents of a hierarhial

graph H are denoted by H , F

H

, and ts

H

, respetively. The notations V

H

, E

H

,

att

H

, lab

H

, p

H

, and A

H

are used as abbreviations denoting V

H

, E

H

, att

H

,

lab

H

, p

H

, and A

H

, respetively. Furthermore, we denote by X

H

the set ff 2

F

H

j ts

H

(f) 2 Xg of variable frames of H and by

var (H) = ts

H

(X

H

) [

[

f2F

H

nX

H

var(ts

H

(f))

the set of variables ourring in H .

Let G and H be hierarhial graphs suh that A

G

\ A

H

= ;. The disjoint

union of G and H is denoted by G + H and yields the hierarhial graph K

suh that K = G +H , F

K

= F

G

[ F

H

, and ts

K

(f) equals ts

G

(f) if f 2 F

G

and ts

H

(f) if f 2 F

H

. For a hierarhial graph G and a set S = fH

1

; : : : ; H

n

g

of hierarhial graphs, we denote G +H

1

+ � � �+H

n

by G +

P

H2S

H . (Notie

that, although the disjoint union of hierarhial graphs does not ommute, this

is well de�ned as it does not depend on the order of H

1

; : : : ; H

n

).

We will now generalize the onept of morphisms to the hierarhial ase.

The de�nition is quite straightforward. Suh a hierarhial morphism h : G! H

onsists of an ordinary morphism on the topmost level and, reursively, hierar-

hial morphisms from the ontents of non-variable frames to the ontents of

their images. Naturally, only variable frames an be mapped to variable frames,

but they an also be mapped to any other frame arrying the right label.

Formally, let G;H 2 H(X ). A hierarhial morphism h : G ! H is a pair

h = hh; (h

f

)

f2F

G

nX

G

i where

{ h : G! H is a morphism,

{ h(f) 2 F

H

for all frames f 2 F

G

, where h(f) 2 X

H

implies f 2 X

G

, and

{ h

f

: ts

G

(f) ! ts

H

(h(f)) is a hierarhial morphism for every f 2 F

G

nX

G

.

For atoms a 2 A

G

, we usually write h(a) instead of h(a). Furthermore, a hier-

arhial morphism h : G! H for whih G;H 2 H

0

is identi�ed with h.

The omposition h Æ g of hierarhial morphisms g : G ! H and h : H ! L

is de�ned in the obvious way. It yields the hierarhial morphism l : G! L suh

that l = h Æ g and, for all frames f 2 F

G

nX

G

, l

f

= h

g(f)

Æ g

f

. The hierarhial

morphism g is injetive if g is injetive and, for all f 2 F

G

nX

G

, g

f

is injetive.

It is surjetive up to variables if g is surjetive and, for all f 2 F

G

nX

G

, g

f

is

surjetive up to variables. Finally, g is bijetive up to variables if it is surjetive up

to variables and injetive. If G does not ontain variables, we speak of surjetive



and bijetive hierarhial morphisms. A bijetive hierarhial morphism is also

alled an isomorphism, and G;H 2 H are said to be isomorphi, G

�

=

H , if there

is an isomorphism m : G! H .

Let H be the ategory whose objets are variable-free hierarhial graphs

and whose morphisms are the hierarhial morphisms h : G! H with G;H 2 H

(whih is indeed a ategory, as one an easily verify). The main result we are

going to establish in order to obtain a notion of hierarhial graph transformation

is that H has pushouts. For this, looking at the indutive de�nition of hierarhial

graphs and their morphisms, it is a rather obvious idea to proeed by indution

on the depth of the frame nesting. The indution basis is then provided by

the non-hierarhial ase realled in Setion 2. In order to use the indution

hypothesis, we have to redue the depth of a hierarhial graph in some way. This

an be done on the basis of a rather simple onstrution. Given a hierarhial

graph H 2 H

i

, we take the ontents of its frames out of these frames (whih,

thereby, beome ordinary edges) and add them disjointly to H , thus obtaining

a hierarhial graph in H

i�1

(provided that i > 0). Denoting this mapping by

', we get the desired theorem, whih is the main result of this setion. It states

that the ategory H has pushouts, and the proof shows how to onstrut them

e�etively.

Theorem 1. For every pair m

1

: G! H

1

and m

2

: G! H

2

of morphisms in H

there are morphisms n

1

: H

1

! H and n

2

: H

2

! H in H (for some hierarhial

graph H) suh that (m

1

;m

2

; n

1

; n

2

) is a pushout. Furthermore, (m

1

;m

2

; n

1

; n

2

)

is a pushout in the ategory of graphs.

Proof sketh. The proof works by indution on i, where H

1

; H

2

2 H

i

. The ase

i = 0 is the non-hierarhial one, and it is easy to see that every pushout in the

ategory of non-hierarhial graphs and morphisms is a pushout in H as well.

Thus, let i > 0. Extending ' to morphisms in the anonial way, one obtains

'(m

1

) = (m

0

1

: G

0

! H

0

1

) and '(m

2

) = (m

0

2

: G

0

! H

0

2

) where H

0

1

; H

0

2

2 H

i�1

.

By the indution hypothesis, this yields a pushout (m

0

1

;m

0

2

; n

0

1

; n

0

2

) for some

n

0

j

: H

0

j

! H

0

(j 2 f1; 2g). Now, it an be shown that n

0

j

= '(n

j

) for hierar-

hial morphisms n

j

: H

j

! H , yielding a ommuting square (m

1

;m

2

; n

1

; n

2

).

Intuitively, the parts of H

0

whih stem from the ontents of a frame f in H

j

an

be stored in n

0

j

(f), turning this edge into a frame of the hierarhial graph H

onstruted. The main part of the proof is to show that H and the hierarhial

morphisms n

j

obtained in this way are well de�ned.

Finally, one has to verify the universal pushout property of (m

1

;m

2

; n

1

; n

2

).

Let l

1

: H

1

! L and l

2

: H

2

! L be suh that (m

1

;m

2

; l

1

; l

2

) ommutes and let

'(l

j

) = (l

0

j

: H

0

! L

0

) for j 2 f1; 2g. Then (m

0

1

;m

0

2

; l

0

1

; l

0

2

) ommutes as well.

Therefore, the pushout property of (m

0

1

;m

0

2

; n

0

1

; n

0

2

) yields a unique morphism

l

0

: H

0

! L

0

suh that l

0

j

= l

0

Æ n

0

j

. Again, l

0

an be turned into l : H ! L with

l

0

= '(l) and l

j

= l Æ n

j

for j 2 f1; 2g. Furthermore, for k : H ! L with k 6= l

we have '(k) 6= '(l), whih shows that l is unique, by the uniqueness of l

0

. ut

Notie that the proof of Theorem 1 yields a reursive proedure to onstrut

pushouts in H , based on the onstrution of pushouts in the ase of ordinary

graph morphisms.



The onstrution in the proof of the theorem yields a orollary for the speial

ase where m

1

and m

2

are injetive. Obviously, in this ase the hierarhial

morphisms m

0

1

and m

0

2

in the proof are also injetive. As a onsequene, it

follows that (m

f

1

;m

f

2

; n

m

1

(f)

1

; n

m

2

(f)

2

) is a pushout for every frame f 2 F

G

. This

yields the following speialization of Theorem 1.

Corollary 1. Let m

1

: G! H

1

and m

2

: G! H

2

be injetive hierarhial mor-

phisms in H . Then, one an onstrut hierarhial morphisms n

1

: H

1

! H and

n

2

: H

2

! H suh that (m

1

;m

2

; n

1

; n

2

) is a pushout, as follows:

{ n

1

and n

2

are suh that (m

1

;m

2

; n

1

; n

2

) is a pushout,

{ for every frame f 2 F

G

, n

m

1

(f)

1

and n

m

2

(f)

2

are onstruted reursively in

suh a way that (m

f

1

;m

f

2

; n

m

1

(f)

1

; n

m

2

(f)

2

) is a pushout, and

{ for every frame f 2 F

H

i

nm

i

(F

G

) (i 2 f1; 2g), n

f

i

is an isomorphism.

Next, we shall see how pushout omplements an be obtained. For simpliity,

we onsider only the ase where the two given hierarhial morphisms are both

injetive. This enables us to make use of Corollary 1 in an easy way, whereas

the more general ase would be unreasonably ompliated as it required a hier-

arhial version of the so-alled identi�ation ondition [5℄.

Clearly, in order to ensure the existene of pushout omplements, a hier-

arhial version of the dangling ondition must be satis�ed. However, for the

hierarhial ase it must also be required that, intuitively, no frame is deleted

unless its ontents is deleted as well. Let H

1

2 H(X ) and G;H 2 H (right be-

low, we shall only use the following de�nition for H

1

2 H, but later on the more

general ase H

1

2 H(X ) will turn out to be valuable, too). Two hierarhial

morphisms m : I ! L and n : L! G satisfy the hierarhial dangling ondition

(dangling ondition, for short) if

{ m and n satisfy the (non-hierarhial) dangling ondition,

{ for every frame f 2 F

L

n (m(F

I

) [X

L

), n

f

is bijetive up to variables, and

{ for every frame f 2 F

I

nX

I

, m

f

and n

m(f)

satisfy the dangling ondition.

Notie that this ondition oinides with the usual one in the speial ase

where m and n are ordinary graph morphisms, beause in this ase only the �rst

requirement is relevant as there are no frames. Intuitively, the seond part of

the ondition states that, as mentioned above, a frame an be deleted only if its

ontents is deleted as well (at least in the ase where L 2 H; the more general

ase is not yet our onern). As the proof below shows, this orresponds to the

last item in Corollary 1 (and is thus indeed neessary).

Theorem 2. Let m

1

: G ! H

1

and n

1

: H

1

! H be injetive hierarhial

morphisms in H . Then there are hierarhial morphisms m

2

: G ! H

2

and

n

2

: H

2

! H suh that (m

1

;m

2

; n

1

; n

2

) is a pushout, if and only if m

1

and n

1

satisfy the dangling ondition. In this ase m

2

and n

2

are uniquely determined.

Proof. Let G 2 H

i

. Again, we proeed by indution on i. Clearly, if m

2

and n

2

exist, thenm

2

must be injetive sine n

1

Æm

1

= n

2

Æm

2

is injetive. By Corollary 1

this means that m

2

and n

2

exist if and only if they an be onstruted in suh

a way that the following are satis�ed:



(1) m

2

and n

2

are suh that (m

1

;m

2

; n

1

; n

2

) is a pushout,

(2) for every frame f 2 F

G

, the hierarhial morphisms m

f

2

and n

m

2

(f)

2

are

onstruted reursively, so that (m

f

1

;m

f

2

; n

m

1

(f)

1

; n

m

2

(f)

2

) is a pushout, and

(3) for every frame f 2 F

H

i

nm

i

(F

G

) (i 2 f1; 2g), n

f

i

is an isomorphism.

Asm

1

and n

1

satisfy the dangling ondition,m

2

and n

2

exist and are uniquely

determined (sine m

1

and n

1

satisfy the dangling ondition for non-hierarhial

morphisms), and (3) is satis�ed for i = 1 (beause of the seond part of the

dangling ondition). Furthermore, the indution hypothesis yields the required

hierarhial morphisms m

f

2

and n

m

2

(f)

2

satisfying (2), for every frame f 2 F

G

.

Together with the remaining requirement in (3) (i.e., the ase where i = 2) this

determines m

2

and n

2

up to isomorphism, thus �nishing the proof. ut

4 Hierarhial Graph Transformation

Based on the results presented in the previous setion we are now able to de�ne

rules and their appliation in the style of the double-pushout approah. From

now on, a rule t : L

l

 I

r

!R is assumed to onsist of two hierarhial morphisms

l : I ! L and r : I ! R, where L; I;R 2 H and l is injetive. The hierarhial

graphs L, I , and R are alled the left-hand side, interfae, and right-hand side.

The appliation of rules is de�ned by means of the usual double-pushout

onstrution, with one essential di�erene. In order to make sure that transfor-

mations an take plae on an arbitrary level in the hierarhy of frames (rather

than only on top level) one has to employ reursion.

De�nition 1 (Transformation of hierarhial graphs). Let t : L

l

 I

r

!R

be a rule. A hierarhial graph G 2 H is transformed into a hierarhial graph

H 2 H by means of t, denoted by G)

t

H , if one of the following holds:

(1) There is an injetive hierarhial morphism o : L! G, alled an ourrene

morphism, suh that there are two pushouts

L I R

G K H

l

r

o

in H , or

(2) H

�

=

G via some isomorphism m : G ! H , and there is a frame f 2 F

G

suh that ts

G

(f) )

t

ts

H

(m(f)) and ts

H

(m(f

0

))

�

=

ts

G

(f

0

) for all f

0

2

F

G

n ffg.

For a set T of rules, we write G)

T

H if G)

t

H for some t 2 T .
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Fig. 2. The onatenation rule and its appliation

Example 2 (Conatenation of queues). In Figure 2, we show a onatenation rule

for queues that identi�es two queue frames and onatenates their ontents, and

a transformation with this rule. The digits in the rule indiate how the nodes of

the graphs have to be mapped onto eah other.

It should be notied that the de�nition of transformation steps requires o-

urrene morphisms to be injetive. Therefore, we need three variants of this

rule where node 1 is identi�ed with node 2, or 7 with 8, or both 1 with 2 and 7

with 8. (Similar variants are needed for the rules in the subsequent examples.)

Sine ourrene morphisms are injetive, we get the following theorem as a

onsequene of Theorems 1 and 2.

Theorem 3. Let t : L

l

 I

r

!R be a rule, G 2 H, and o : L! G an ourrene

morphism. Then the two pushouts in De�nition 1(1) exist if and only if o satis�es

the dangling ondition.

1

Furthermore, in this ase the pushouts are uniquely

determined up to isomorphism.

Proof. By Theorem 2 the pushout on the left exists if and only if the dangling

ondition is satis�ed, and if it exists then it is uniquely determined up to iso-

morphism. Finally, by Theorem 1 the pushout on the right always exists, and it

is a general fat known from ategory theory that a pushout (m

1

;m

2

; n

1

; n

2

) is

uniquely determined (up to isomorphism) by the morphisms m

1

and m

2

. ut

The reader should also notie that, as a onsequene of the e�etiveness of

the results presented in Setion 3, given a tranformation rule, a hierarhial

graph, and an ourrene morphism satisfying the dangling ondition, one an

e�etively onstrut the required pushouts.

1

If the rule t : L

l

 I

r

!R in question is lear we say that o satis�es the dangling

ondition if l and o do.



Unfortunately, the notion of transformation of hierarhial graphs is not yet

expressive enough to be satisfatory for ertain programming purposes. There

are some natural e�ets that one would ertainly like to be able to implement as

single transformation steps, but whih annot be expressed by rules. Consider

the example of queues, for instane. It should be possible to design a rule dequeue

whih removes the �rst item in a queue, regardless of its ontents. However, this

is not possible as the dangling ondition requires the ourrene morphism to

be bijetive on the ontents of deleted frames. Conversely, another rule enqueue

should take an item frame, again regardless of its ontents, and add it to the

queue|preferably without a�eting the original item frame. In order to imple-

ment this, one has to irumvent two obstales. First, hierarhial morphisms

preserve the frame hierarhy, whih implies that, intuitively, rules annot move

frames aross frame boundaries. Seond, by now it is simply not possible to

dupliate frames together with their ontents.

This is where variables start to play an important role. The idea is to turn

from rules to rule shemata and to transform hierarhial graphs by applying

instanes of these rule shemata. In order to make sure that an ourrene mor-

phism satisfying the dangling ondition always yields a well-de�ned transforma-

tion, we restrit ourselves to left-linear rule shemata. For this, a hierarhial

graph H is alled linear if no variable ours twie in H .

A variable instantiation for H 2 H(X ) is a mapping � : var (H) ! H. The

appliation of � to H is denoted by H�. It turns every variable frame f 2 X

H

into

a frame whose ontents is �(ts

H

(f)). By the de�nition of hierarhial morphisms,

for every hierarhial morphism h : G! H suh that G 2 H and every variable

instantiation � for H , h an as well be understood as a hierarhial morphism

from G to H�. In the following, this hierarhial morphism will be denoted by h�.

Based on this observation, rule shemata and their appliation an be de�ned.

De�nition 2 (Transformation by rule shemata). A rule shema, denoted

by t : L

l

 I

r

!R, is a pair onsisting of hierarhial morphisms l : I ! L and

r : I ! R, where L;R 2 H(X ), I 2 H, L is linear, and var (R) � var(L). If � is

a variable instantiation for L then the rule t

0

: L�

l�

 I

r�

!R� is an instane of t.

A rule shema t transforms G 2 H into H 2 H, denoted by G V

t

H ,

if G )

t

0

H for some instane t

0

of t. For a set T of rule shemata we write

GV

T

H if GV

t

H for some t 2 T .

Example 3 (The rule shemata enqueue and dequeue). In Figure 3, we show

a rule shema that inserts a framed item graph at the tail of a queue graph,

and a transformation with that rule. The item frame ontains the variable x.

Otherwise, it would not be possible to dupliate the item graph, and to move it

into the queue frame.

In Figure 4, we show a rule shema that removes the �rst item frame in a

queue graph. The item graph is denoted by the variable x so that it an be

removed entirely.

For pratial purposes De�nition 2 is not very onvenient beause there are

in�nitely many instanes of a rule shema as soon as it ontains at least one
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Fig. 3. The rule shema enqueue and its appliation
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Fig. 4. The rule shema dequeue

variable. Therefore, the naive approah to implement V

t

by onstruting all

its instanes and then testing eah of them for appliability does not work.

However, there is quite an obvious way how one an do better than that. Consider

some linear hierarhial graph L 2 H(X ) and a hierarhial graph G 2 H, and

let o : L ! G be a hierarhial morphism. Then, due to the linearity of L, o

indues a variable instantiation �

o

: var(L) ! H and an ourrene morphism

inst(o) : L�

o

! G, as follows. For all x 2 var(L), if there is some f 2 X

L

suh

that ts

L

(f) = x then �

o

(x) = ts

G

(o(f)). Otherwise, �

o

(x) = �

o

f
(x), where

f 2 F

L

n X

L

is the unique frame suh that x 2 var (ts

L

(f)). Furthermore,

inst(o) = o and for all f 2 F

L

, inst(o)

f

is the identity on ts

G

(o(f)) if f 2 X

L

and inst(o)

f

= inst(o

f

) otherwise.

The theorem below states that the transformations given by a rule shema

t : L

l

 I

r

!R an be obtained by onsidering ourrene morphisms o : L ! G

that satisfy the dangling ondition.

Theorem 4. Let t : L

l

 I

r

!R be a rule shema and G 2 H.

1. If o : L ! G is an ourrene morphism satisfying the dangling ondition,

then inst(o) is an ourrene morphism for L�

o

satisfying the dangling on-

dition.



2. If � : var(L)! H is a variable instantiation and q : L�! G is an ourrene

morphism satisfying the dangling ondition, then � = �

o

and q = inst(o)

(up to isomorphism) for some ourrene morphism o : L! G satisfying the

dangling ondition.

The proof by indution on i, where L 2 H

i

(X ), is rather straightforward and

is therefore skipped in this short version.

5 Flattening

A natural operation on hierarhial graphs is the attening operation whih

removes the hierarhy by reursively replaing every frame with its ontents.

For this, we use the well-known onept of hyperedge replaement (see [9, 4℄) in

a slightly generalized form. Flattening is similar to (a reursive version of) the

operation ' onsidered in Setion 3, but it removes all frames and identi�es their

attahed nodes with the orresponding points of their ontents. If the numbers

of attahed nodes and points di�er, the additional nodes of the longer sequene

are treated like ordinary nodes. In addition, attening forgets about the points

of its argument, so that the resulting graph is \unpointed".

It will be shown in this setion that, under modest assumptions, hierarhial

graph transformation is ompatible with the attening operation: A transforma-

tion G)

t

H indues a orresponding transformation G

0

)

t

0

H

0

, where G

0

, H

0

,

and t

0

are the attened versions of G, H , and t, respetively.

In order to proeed, we �rst need to de�ne hyperedge replaement on hierar-

hial graphs. Let H be a hierarhial graph and onsider a mapping � : E ! H

suh that E � E

H

, alled a hyperedge substitution for H . Hyperedge replaement

yields the hierarhial graph H [�℄ obtained from H+

P

e2E

�(e) by deleting the

edges in E and identifying, for all e 2 E, the ith node of att

H

(e) with the ith

point of p

�(e)

, for all i suh that both these nodes exist.

Finally, for all H 2 H, let (H) = H [�℄ where � : F

H

! H is given indu-

tively by �(f) = (ts

H

(f)) for all f 2 F

H

. Then, the attening of H yields the

graph at(H) = hV

(H)

; E

(H)

; att

(H)

; lab

(H)

; �i. For most of the onsidera-

tions below, it is suÆient to study the mapping  , whih removes the hierarhy

without forgetting points, instead of at .

We an atten morphisms as well. Consider a hierarhial morphism h : G!

H with G;H 2 H and let � =  Æ ts

G

and � =  Æ ts

H

. Then, (h) is

the morphism m : (G) ! (H) de�ned indutively, as follows. For all a 2

A

(G)

, if a 2 A

G

then m(a) = h(a), and if a 2 A

�(f)

for some f 2 F

G

then

m(a) = (h

f

)(a). Furthermore, at(h) = (m

0

: at(G) ! at(H)) is given by

m

0

(a) = m(a) for all a 2 A

at(G)

. (Notie that, although the two ases in the

de�nition of m(a) above interset, they are onsistent with eah other.)

Above, it was mentioned that the main result of this setion holds only

under a ertain assumption. The reason for this is that a morphism at(h)

may be non-injetive although h : G ! H itself is injetive. This is aused by

the fat that building (G) may identify some nodes in V

G

beause they are



inident with a frame whose ontents has repetitions in its point sequene. If

the attahed nodes of the frame are distint, hyperedge replaement identi�es

them (by identifying eah with the same point of the ontents). Thus, attening

may turn an ourrene morphism into a non-injetive morphism, making it

impossible to apply the orresponding attened rule. In fat, the dual situation

where there are idential attahed nodes of a frame while the orresponding

points of its ontents are distint, must also be avoided. The reason lies in the

reursive part of the de�nition of )

t

. If a rule is applied to the ontents of some

frame, but the replaement of the frame identi�es two distint points of the

ontents beause the orresponding attahed points of the frame are idential,

the attened rule annot be applied either.

For this, all a hierarhial graph H 2 H identi�ation onsistent if every

frame f 2 F

H

satis�es the following:

(1) For all i; j 2 [min(jatt

H

(f)j ;

�

�

p

ts

H

(f)

�

�

)℄, att

H

(f)(i) = att

H

(f)(j) if and only

if p

ts

H

(f)

(i) = p

ts

H

(f)

(j), and

(2) ts

H

(f) is identi�ation onsistent.

The reader ought to notie that identi�ation onsisteny is preserved by

the appliation of a rule t : L

l

 I

r

!R if R is identi�ation onsistent and r is

injetive. Thus, if we restrit ourselves to systems with rules of this kind then

all derivable hierarhial graphs are identi�ation onsistent (provided that the

initial ones are).

It is not very diÆult to verify the following two lemmas.

Lemma 1. For every injetive hierarhial morphism h : G ! H (G;H 2 H)

suh that H is identi�ation onsistent, (h) is injetive.

Lemma 2. If (m

1

;m

2

; n

1

; n

2

) is a pushout in H , then (at(m

1

);at(m

2

);

at(n

1

);at(n

2

)) is a pushout as well.

As a onsequene, one obtains the main theorem of this setion: If a rule an

be applied to an identi�ation onsistent hierarhial graph, then the attened

rule an be applied to the attened graph, with the expeted result.

Theorem 5. Let t : L

l

 I

r

!R be a rule and let t

0

: L

0

l

0

 I

0

r

0

!R

0

be the rule

given by l

0

= at(l) and r

0

= at(r). For every transformation G )

t

H suh

that G is identi�ation onsistent, there is a transformation at(G))

t

0

at(H).

Proof sketh. Consider a transformation step G)

t

H . Due to the de�nition of

)

t

there are two ases to be distinguished. If there is a double-pushout dia-

gram as in the �rst ase of De�nition 1, Lemmas 1 and 2 yield a orresponding

\attened" diagram. The seond ase to be onsidered is the reursive one, i.e.,

the transformation takes plae inside a frame f . In this ase it may be assumed

indutively that the diagram orresponding to a transformation of the attened

ontents of f exists. Due to the assumed identi�ation onsisteny the attened

ontents of f is injetively embedded in at(G). Therefore, the given diagram

an be extended to a larger pushout diagram in the required way, retaining the

injetivity of the ourrene morphism. ut



It should be notied that the attening proess implies a loss of ruial stru-

tural information so that there is no hane to prove the onverse of the theorem.

6 Conlusion

We onlude this paper by briey mentioning some related work and possible

diretions for future researh.

Pratt [15℄ was probably the �rst to onsider a onept of hierarhial graph

transformation, where he used a ertain kind of node replaement to de�ne the

semantis of programming languages. His graph onept was extended in [6℄

by allowing edges between subgraphs ontained in di�erent nodes, but without

de�ning transformation.

A di�erent onept of graph nesting is given by the abstration mehanisms

of the (old) graph transformation system Agg [12℄ and the multi-level graph

grammars of [13℄, providing at graphs with several views whih are related by

a rigid layering and a partial inlusion ordering, respetively.

An indiret nesting onept an be found in the framework of [16℄ and the new

Agg system [7℄, where nesting is realized by labels and attributes, respetively.

The idea of using variables to extend the double-pushout approah with

non-loal e�ets, like opying and removal of subgraphs, is also followed in the

so-alled substitution-based approah to graph transformation [14℄ (working on

at hypergraphs).

One diretion for future work on hierarhial graph transformation is to lift

to the hierarhial setting the lassial results of the double-pushout approah,

like sequential and parallel ommutativity, results on parallelism, onurreny

and amalgamation, et. Another important task is to ombine hierarhial graph

transformation in an orthogonal way with onepts for struturing and ontrol-

ling systems of rules. As mentioned in the introdution, several suh onepts

(mainly for at graphs) have reently been proposed in the literature.

A further topi of researh is to develop hierarhial graph transformation

towards objet-oriented graph transformation, as outlined in [11℄. There the idea

is to restrit the visibility of frames so that only rules designated to some frame

type may inspet or update the ontents of frames of this type. Suh frame types

ome lose to \lasses", and the designated rules orrespond to \methods". In

this way frames an be seen as objets of their types that an only be manipulated

by invoking the methods of the lass.
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