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Abstract: Dietary sugar consumption, in particular sugar-sweetened beverages and the 
monosaccharide fructose, has been linked to the incidence and severity of non-alcoholic fatty 
liver disease (NAFLD). Intervention studies in both animals and humans have shown large 
doses of fructose to be particularly lipogenic. While fructose does stimulate de novo lipogenesis 
(DNL), stable isotope tracer studies in humans demonstrate quantitatively that the lipogenic 
effect of fructose is not mediated exclusively by its provision of excess substrates for DNL. 
The deleterious metabolic effects of high fructose loads appear to be a consequence of altered 
transcriptional regulatory networks impacting intracellular macronutrient metabolism and 
altering signaling and inflammatory processes. Uric acid generated by fructose metabolism 
may also contribute to or exacerbate these effects. Here we review data from human and 
animal intervention and stable isotope tracer studies relevant to the role of dietary sugars on 
NAFLD development and progression, in the context of typical sugar consumption patterns 
and dietary recommendations worldwide. We conclude that the use of hypercaloric, supra-
physiological doses in intervention trials has been a major confounding factor and whether 
or not dietary sugars, including fructose, at typically consumed population levels, effect 
hepatic lipogenesis and NAFLD pathogenesis in humans independently of excess energy 
remains unresolved. 
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1. Introduction 

Non-alcoholic fatty liver disease (NAFLD) is defined by the accumulation of fat in the liver in the 
absence of excess alcohol consumption. The incidence of NAFLD worldwide has risen markedly in recent 
years in parallel with the increasing prevalence of global obesity and recent estimates are that there are 
approximately one billion cases worldwide [1]. Obesity and type 2 diabetes are strong risk factors for 
the development of NAFLD [2,3], and it is often regarded as the hepatic manifestation of the metabolic 
syndrome [4]. However, these interrelationships are complex and clearly dependent on genetic, ethnic 
and environmental factors, as NAFLD patients may be normal weight [5] and individuals with insulin 
resistance do not always develop NAFLD [6]. There is no licensed pharmaceutical therapy for the 
treatment of NAFLD, therefore clinical guidelines to date agree that weight loss through lifestyle 
modification is the first-line approach along with management of co-morbidities as necessary [7,8].  
A number of dietary factors have been implicated in the pathogenesis of NAFLD with a recent focus on 
dietary carbohydrates, sugar-sweetened beverages and the monosaccharide fructose in particular [9–11]. 
This follows on from older observations of carbohydrate-induced hypertriglyceridemia [12]. Fructose 
has been scrutinized in part because its hepatic metabolism differs from glucose and high fructose intakes 
have been shown to alter hepatic insulin sensitivity, increase lipogenesis and ectopic lipid disposition in 
human [13–15] as well as rodent studies [16,17]. Mechanistically, the adverse metabolic effects of high 
fructose intakes have been linked to its provision of increased substrate to de novo lipogenesis (DNL), 
transcriptional activation of lipogenesis, lipotoxicity and the generation of excess uric acid leading to 
mitochondrial and endoplasmic reticulum oxidative stress [18–21]. However, two very recent meta-analyses 
have concluded that fructose intervention trials examining liver outcomes have largely been done in 
healthy male participants receiving very high (100–200 g/day) doses of fructose and have often been 
confounded by excess energy intakes [22,23]. Provocatively, Chung et al. [23] suggest there is some 
evidence that hypercaloric fructose and glucose diets have similar effects on liver fat.  

Despite a large body of work the health and metabolic effects of fructose and other dietary sugars are 
unresolved [24]. Whether or not fructose affects hepatic lipogenesis and NAFLD pathogenesis independently 
of excess energy remains an outstanding question. Here we review data from human and animal intervention 
and stable isotope tracer studies relevant to the role of dietary sugars on NAFLD development and 
progression, in the context of typical sugar consumption patterns and dietary recommendations worldwide. 

2. Dietary Sugars and Health 

2.1. Public Health Recommendations 

The role of dietary sugars in health and disease has long been contentious. While high intakes have been 
associated with increased risk for obesity, cardiovascular disease, diabetes and dental caries in addition to 
NAFLD, existing data are often ambiguous [25,26]. Public health advice regarding dietary carbohydrate 
and sugar intake varies depending on the advising body [27]. Both the World Health Organization (WHO) 
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and the UK Scientific Committee on Nutrition (SACN) have commissioned reviews on dietary carbohydrates 
and have released draft reports for public consultation on guidelines for sugar consumption this year 
(2014) [28,29]. One benefit of these reviews has been the clarification of the definitions of various groups 
of sugars including “free sugars”, which are now defined as: all monosaccharides (glucose, fructose, 
galactose) and disaccharides (sucrose, lactose, maltose, trehalose) added to foods by the manufacturer, 
cook, or consumer. The sugars naturally present in honey, syrups, and fruit juices are also included in 
the definition [30]. 

In advance of updating their guidelines, the WHO commissioned systematic reviews on dietary sugars 
and body weight and dental caries [30,31]. The review of dietary sugar and body weight examined over 
1700 research trials and cohort studies and concluded that, in adults consuming ad libitum diets, the 
intake of free sugars was a determinant of body weight [30]. The results showed that reduced intake of 
sugars was associated with a decrease in body weight (95% CI 0.39 to 1.21 kg), and increased intake of 
free sugars was associated with a corresponding increase in body weight (0.30 to 1.19 kg). However, 
when sugars were exchanged isoenergetically with other carbohydrates there was no effect. The authors 
acknowledged the significant heterogeneity evident among the trials included as, in part, inherent to 
interventions in free living people consuming ad libitum diets, but conclude that their results give an 
indication of what might be achieved by population changes in intake of dietary sugars. Interestingly, 
the draft recommendations of the WHO, for reduced intake of free sugars throughout the life-course and 
the intake of free sugars not to exceed 10% of total energy, were based on the evidence for reducing the 
risk of dental caries rather than obesity [28].  

Separately, SACN also commissioned systematic reviews to inform their report and concluded there is 
a dose response relationship between total energy intake and % of energy from sugars and that “in relation 
to both improving oral health and reducing the risk of weight gain, sugars should provide no more than 
10% of dietary energy” [29]. Furthermore, they recommended the dietary reference value for free sugars 
be set at a population average of around 5% of dietary energy in order to achieve no more than 10% of 
total energy intake at an individual level, and consumption of sugar-sweetened beverages should be 
minimized. These recommendations are much more restrictive than those given by the US, whose 
guidelines say added sugars should not be more than 25% of energy intake [32] and the European Food 
Safety Authority, who concluded there was insufficient evidence to set an upper limit for added sugar 
intakes [33]. 

2.2. Dietary Fructose 

The role of dietary fructose in health has been questioned in part because its consumption in the form 
of high-fructose corn syrup (HFCS; also referred to as glucose-fructose syrup or isoglucose) has increased 
dramatically in the United States since its introduction in 1967, and this increase has occurred roughly 
in parallel with the increase in obesity and metabolic disease [34]. In addition to HFCS, fructose is found 
in the diet in fruit and honey and, along with glucose, as a component of the disaccharide sucrose. However, 
although mean daily intakes of fructose (49 g/day across all age and gender groups) increased a small 
amount over the last 40 years in the United States, they alone do not explain the dramatic increase in daily 
energy and carbohydrate intakes over the same period [35]. The most recent data shows that between 1999 
and 2008 the consumption of added sugars in the United States actually decreased from a mean of 100 
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g/day to 77 g/day [36]. This was linked primarily to a reduced consumption of sugar-sweetened beverages; 
however overall intakes, contributing to 15% of energy intake, are still much higher than dietary 
recommendations.  

In the United Kingdom (UK) and Europe, although mean total sugar intakes are high at approximately  
100 g/day (20%–25% of energy intake) in adults and children over 4 years, over 50% of the sugar 
consumed is sucrose, and mean intakes of glucose and fructose (15–18 g/day) are much lower than those 
in the United States [37,38]. The European Union (EU) is the largest producer of beet sugar and current 
agricultural policies limit the production of HFCS, so sugar-sweetened beverages in the EU are sweetened 
primarily with sucrose from beet sugar.  

A recent raft of systematic reviews with meta-analyses have examined the effect of fructose intakes on 
cardio-metabolic risk factors, including blood lipids [39–41], blood pressure [40,42] and body  
weight [43]. Conclusions are equivocal and influenced largely by fructose dose and hypercaloric energy 
intakes. For instance, Zhang and colleagues show no effect on total cholesterol and LDL cholesterol when 
fructose intakes were less than 100 g/day [39]. Similarly, David Wang et al. observed no effect of isocaloric 
fructose substitution at median intakes less than 20% of energy on post prandial triglycerides (TG), but 
observed a postprandial TG-raising effect in hypercaloric trials where fructose provided 25% excess 
energy above the background diet [41]. Likewise fructose had no effect on body weight in isocaloric 
trials, but was associated with weight gain in hypercaloric trials that used more than 100 g/day  
fructose [43]. All authors commented on the heterogeneity and weak quality of trials included, with 
small sample sizes and short duration the rule [39–43]. Of note, the SACN carbohydrate working group 
noted the paucity of trials on fructose that met their inclusion criteria (randomization and duration longer 
than six weeks) and concluded “there is a lack of evidence to draw conclusions on the impact of sugars 
intake on the majority of cardio-metabolic outcomes in adults, including body weight” [29]. Here we 
focus on studies that have implicated dietary sugar, in particular sugar-sweetened beverages and fructose 
on liver fat and NAFLD pathogenesis. 

3. Molecular Evidence for a Differential Role for Fructose in NAFLD Pathogenesis  

3.1. Transcriptional Regulation of Lipogenic Enzyme Expression 

Classic nutrition feeding studies in rats from Naismith [44], Yudkin [45] and others [46] established 
a differential effect of dietary sugars on the activity of lipogenic enzymes, liver fat and fasting serum TG 
levels. Using diets where 65%–75% of energy was derived from glucose, fructose, sucrose or starch, these 
studies showed that fructose alone increased the activity of lipogenic enzymes, including fatty acid synthase, 
and increased serum and hepatic TG levels. Landmark tracer studies on perfused rat livers demonstrated 
that fructose, but not glucose, increased the esterification of fatty acids and increased very low density 
lipoprotein (VLDL)-TG secretion from the liver [47,48]. Many decades of work, as reviewed by Mayes 
[49], established that observed fructose-induced perturbations of hepatic carbohydrate and lipid 
metabolism were due to it by-passing the phosphofructokinase rate limiting step in glycolysis. In contrast 
to glucose, fructose is first rapidly phosphorylated by fructokinase to fructose 1 phosphate, then split 
into trioses by the activity of aldolase prior to converging with glucose metabolism. 

 



Nutrients 2014, 6 5683 
 

With the advent of the molecular biology era came a focus on the transcriptional response to dietary 
sugars and much progress has been made in understanding the regulation of lipogenic gene expression. 
Early work established the induction of the mRNA for pyruvate kinase by fructose [50], and indeed it was 
analysis of the pyruvate kinase promoter that led to the seminal identification of the carbohydrate response 
element [51]. The identification of the sterol regulatory element-binding protein 1 (SREBP-1) [52] and 
the carbohydrate-responsive element-binding protein (ChREBP) [53] has precipitated decades of work 
characterizing their roles as the major transcriptional regulators of lipogenesis in the liver. Regulation of 
the activity of the three SREBP isoforms (SREBP-1a, SREBP-1c and SREBP2) and ChREBP is intricate, 
involving both transcriptional and post-transcriptional mechanisms. However, it is now established that 
the induction of hepatic glycolytic and lipogenic gene transcription by insulin and glucose is largely 
mediated by SREBP-1c, and ChREBP respectively, but involves crosstalk with many nutrient-sensitive 
nuclear receptors [54–58]. 

Fructose also induces both SREBP-1c and ChREBP activities; the induction of SREBP-1c by fructose 
has been shown through animal knock-out experiments to be intriguingly dependent on the enzyme 
stearoyl-CoA desaturase (SCD) and its production of endogenous oleate [59]. More recently, work using 
antisense oligonucleotides (ASO) has demonstrated that induction of SREBP-1c by fructose is also 
dependent on the peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1beta), a 
transcriptional coactivator for SREBP-1 [60]. PGC-1β ASO treatment reduced the expression of SREBP-1c 
and downstream lipogenic genes and improved the metabolic profile of rats fed a 60% fructose diet for 
four weeks. Nagai et al. showed that the PGC-1β knockdown decreased the occupancy of the SREBP-1c 
promoter by SREBP1 and the liver X receptor (LXR). The mechanism for how fructose induces ChREBP 
activity is less clear than that of glucose, but ChREBP knockout mice are markedly intolerant to fructose, 
dying within a few days of being fed a high fructose diet [61]. Interestingly, while ChREBP knockdown 
by ASO treatment reduced lipogenic gene expression and plasma TG levels in high-fructose fed rats it 
did not alter hepatic lipid (TG or DAG) content [62]. The knockdown of ChREBP appeared to reduce DNL 
by 30%, assessed by deuterium incorporated into palmitate TG, but this was not significant (p = 0.1). 
Importantly, ChREBP, SREBP-1c and LXR have all been shown to be expressed at higher levels in 
NAFLD patients [63–66]. 

In addition to ChREBP and SREBP-1c, relatively recent research has identified the X-box binding 
protein 1 (XBP1) as a novel transcription factor also regulating hepatic lipogenesis [67]. Conditional 
knockout of XBP1 in mouse liver reduced DNL, TG secretion and plasma TG levels without causing 
steatosis. XBP1 was strongly induced in mice fed a 60% fructose diet for 7 days and was shown by 
chromatin immunoprecipitation assays to directly activate a subset of key lipogenic genes including 
SCD, diacylglycerol acetyltransferase 2 and acetyl CoA carboxylase 2. As SCD is also induced by 
SREBP-1c [59], the interplay between nutrient signaling, the transcription factors regulating hepatic 
lipogenesis, their coactivators, corepressors and target genes is clearly complex. Novel systems biology 
tools permit the analyses of large-scale gene regulatory and metabolic networks and offer the promise 
of yielding a mechanistic understanding of their disruption in disease and the development of  
network-based drugs with fewer adverse effects [68]. Although these tools have been underused in 
NAFLD research to date [69], it is hoped that future application of systems approaches will further our 
understanding of the contribution of dietary sugars to disease progression. 
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3.2. Uric Acid 

Uric acid is the end product of purine catabolism typically excreted in the urine. An imbalance in the 
production and excretion of uric acid leads to hyperuricemia and, in some individuals, gout or urolithiasis. 
Hyperuricemia has been associated with a variety of diseases including chronic kidney disease, obesity, 
hypertension, and cardiovascular events; however, as recently concluded by Gustafsson [70], the available 
data preclude a causal relationship. The hyperuricemic effect of fructose was first observed in children 
with and without hereditary fructose intolerance given fructose intravenously at 0.5 g/kg bodyweight [71]. 
Subsequent infusion studies in monkeys and human adult males confirmed that high doses of fructose 
but not glucose, galactose or mannose caused a rapid increase in plasma and urine uric acid levels [72,73]. 
This is a result of alterations in purine metabolism as a result of the rapid phosphorylation of fructose by 
fructokinase to fructose 1 phosphate, which leads to a sharp decrease in hepatic ATP levels [49]. In contrast 
to fructose infusion, the relationship between dietary fructose and serum uric acid levels is less clear. At a 
population level, US males, but not females, with the highest intakes of added sugars and sugar-sweetened 
beverages have higher plasma uric acid levels [74]. However in a separate cross-sectional study, although 
consumption of sugar-sweetened beverages was positively associated with plasma urate, in multivariate 
analysis fructose intake was not [75]. In addition, a meta-analysis of fructose feeding trials and serum uric 
acid concluded that energy is confounding factor; with isocaloric fructose having no effect but hypercaloric 
supplementation of extremely large fructose doses (>200 g/day) increasing serum uric acid levels [76]. 
The results of Zgaga and colleagues [75] show that plasma urate levels also relate to the amounts of dairy, 
calcium and meat in the diet; highlighting that sugar-sweetened beverages or fructose may be proxy 
markers of a poorer diet overall.  

Case-control and cross-sectional studies have observed elevated serum uric acid levels to be 
independently associated with NAFLD in both children and adults [77–82]; while one prospective study 
in a large (n = 6890) Chinese population has shown a linear relationship between baseline serum uric 
acid levels and incidence of NAFLD after three years [83]. In an observational study that linked higher 
dietary fructose levels to histological severity of NAFLD, uric acid levels were associated with fructose 
consumption [84]. However, cause and effect between fructose intake, serum uric acid levels and liver fat 
or NAFLD severity is not entirely clear cut. Vos and colleagues reported that in children with NAFLD, 
while uric acid was increased in patients with definite NASH, there was no difference in sugar sweetened 
beverage consumption between the subgroups of patients [85]. While, in a study by Johnston et al. [86], 
a high fructose (25% of energy) intervention elevated serum uric acid levels and a high glucose intervention 
lowered serum uric acid levels, there was no change in liver TG levels when this was done isocalorically. 
When the intervention was given in a hypercaloric fashion, liver TG levels increased in both groups. 

Mechanistically, the equivalent elevation of TG by glucose observed by Johnston might be explained 
in the context of a recent study in animals suggesting endogenous production of fructose from glucose 
drives fructose-induced fatty liver [87]. Building on previous work [88], Lanaspa and colleagues show 
that mice lacking either the fructokinase or aldose reductase genes are protected from developing hepatic 
steatosis [87]. Aldose reductase metabolizes glucose to sorbitol which is then oxidized to fructose in the 
“polyol pathway”. These data are interesting in light of other work from the same group showing that 
uric acid activated fructokinase gene expression in a ChREBP dependent fashion [21] and uric acid 
associated mitochondrial stress led to increased DNL and TG accumulation in hepatocytes in vitro [20]. 

 



Nutrients 2014, 6 5685 
 
Although preclinical, these mechanistic studies give weight to the argument that uric acid has an independent 
and deleterious effect on hepatic lipid metabolism and raise the question of whether allopurinol, or other 
uric acid lowering agents, may be useful in the treatment of NAFLD. 

4. Dietary Sugar and NAFLD 

4.1. Observational Data Associating Sugar Intake and NAFLD 

In addition to mechanistic studies, several observational studies have established a link between fructose 
consumption and the presence and progression of NAFLD. Case-control studies using NAFLD patients 
and BMI-, age- and sex-matched controls have reported more than double the intake of fructose in NAFLD 
patients relative to the control group, as determined by self-reported soft drink consumption [89–91]. In 
addition, of several biochemical and dietary variables, fructose consumption was found to be the best 
predictor of the presence of NAFLD in some cohorts [89,90]. Likewise, Zelber-Sagi et al. found significantly 
higher carbohydrate consumption from soft drinks in ultrasound-diagnosed NAFLD patients compared to 
controls (23 vs. 12 g/day) [92], while in patients diagnosed with or without NAFLD during liver resections 
or biopsies, the intakes of those identified with NAFLD pathology had significantly higher fructose 
intakes than those without (52 vs. 42 g/day) [93]. However, in both studies NAFLD patients tended to 
have higher energy intake overall, although these differences were not significant. In addition, neither 
study matched cases with controls, resulting in a higher average BMI and more males in the NAFLD 
groups [92,93]. 

While the severity of fatty liver assessed by ultrasound was associated with higher soft drink consumption 
in the Israeli cohorts of Assy et al. and Abid et al. [89,90], Abdelmalek and colleagues were the first to 
examine the association between fructose consumption and NAFLD histological grading [84]. Using 
ordinal logistic regression models they showed that dietary consumption of seven or more servings of 
fructose per week was associated with significantly higher histological grades of fibrosis (cumulative odds 
ratio and 95% confidence interval: 2.6 [1.4, 5.0]), and lower histological grades of steatosis (0.4 [0.2, 0.9]). 
Notably, patients reporting the highest fructose intake had significantly elevated serum uric acid levels 
and consumed many more total calories and calories from all macronutrients than those who reported 
consuming either no fructose or less than seven servings per week. 

However, not all observational studies have found a positive association between fructose intake  
and NAFLD. A cross-sectional study in American children with NAFLD found no association between 
sucrose-sweetened beverage intake and histological steatosis, NASH or ballooning severity [85]; and in 
a large Finnish adult population fructose consumption was inversely associated with NAFLD risk 
defined by the algorithm tests “Fatty Liver Index” and the “NAFLD fat score” [94]. However, all data 
should be interpreted in view of the limitations of observational studies [95]. In addition, most studies 
use self-reported beverage intake as a proxy for fructose consumption, which may result in misreporting, 
miss other key sources of fructose in the diet and, as already mentioned, may potentially act as a marker 
for an unhealthy diet and lifestyle. 
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4.2. Short-Term Sugar Interventions (≤7 days) and Liver Fat  

In order to determine causality between the associations found between fructose consumption and 
NAFLD, several dietary interventions have been undertaken. Over a short time period (6–7 days), fructose 
feeding of 3–3.5 g/kg/day (approximately 30%–35% of total energy intake) in solution in addition to a 
control diet has consistently been shown to increase intrahepatocellular lipid (IHCL) compared to the 
control diet alone, with changes ranging from 16% to 115% [15,96–99] (Figure 1, Table 1). However, 
most studies have administered fructose without an isocaloric comparator; therefore, it is unclear whether 
effects result from fructose per se or simply excessive energy consumption. In order to address these 
issues, Ngo Sock et al. performed a crossover study with a control diet alone, or in combination with 3.5 
g/kg/day fructose or glucose [96]. When values at the end of each condition were compared, fructose 
resulted in a significant increase in IHCL (52%) compared to the control diet, but variation in response 
to glucose meant that the 58% increase noted after seven days was not significant. In contrast, a recent 
study showed that feeding 3 g/kg/d of either fructose or glucose over 6–7 days significantly increased 
IHCL compared to a control diet, and when expressed relative to control values and directly compared, 
the increase in liver fat after fructose ingestion was significantly higher than after glucose ingestion 
(113% vs. 59%) [99]. Therefore, although the available literature suggests ingesting large quantities of 
fructose hypercalorically over short time periods does enhance lipid storage, whether this is as a result 
of fructose metabolism itself or simply increased substrate supply is less clear. 

Figure 1. The effect of hypercaloric monosaccharide feeding on IHCL over seven days or less. 
* Values estimated from figures, T2D; type 2 diabetes, IHCL; intrahepatocellular lipid. 
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Table 1. Summary of study characteristics of short-term (≤7 days) monosaccharide feeding trials and IHCL outcome. 

Reference Participant Characteristics 
Study 

Design 

Duration of 

Intervention 
Intervention Dose 

Dose as % Energy 

Requirement 
Comparator Assessment, Units 

% Change IHCL 

Post-Intervention 
Significance 

Le et al.,  

2009 [15] 

HM (n = 8) & male o/s T2D  

(n = 16), mean age 24 year (HM) 

and 25 year (o/s T2D), mean 

weight 71 kg (HM) and 75 kg 

(o/s T2D) 

Randomized 

cross-over 

7 days (4–5 

week washout) 

3.5 g/kg/day 

fructose 
+35% Control diet 1H-MRS, volume % 

71% (HM) and 

78% (o/s T2D) 

increase §,† 

Absolute change  

p < 0.05 within groups 

Lecoultre et al., 

2013 [99] 

Males (17 in fructose and 11  

in glucose group), 23 year, 72 kg, 

mean BMI 22 kg/m2 

Randomized 

cross-over 

6–7 days (≥4 

week washout) 

3 g/kg/day 

fructose or glucose 
+~31% * Control diet 1H-MRS, mmol/kg 

113% (F) and  

59% (G) increase 

Absolute change p < 0.05 

within groups, % change 

p < 0.05 between groups 

Ngo Sock et al., 

2010 [96] 
Males (11), 25 year, 72 kg 

Randomized 

cross-over 

7 days (2–3 

weeks washout) 

3.5 g/kg/day 

fructose or glucose 
+~36% * Control diet 1H-MRS, mmol/kg 

52% (F) and  

58% (G) increase 

Fructose p < 0.05 for  

% change vs. CD 

Sobrecases et al., 

2010 [98] 
Males (12), 24 year, 23 kg/m2 Cross-over 7 days 

3.5 g/kg  

fat-free mass/d 
+35% Control diet 1H-MRS, mmol/kg 16% increase 

p < 0.05 vs. CD  

(% change) 

Theytaz et al., 

2012 [97] 
Males (9), 23 year, 23 kg/m2 

Randomized 

cross-over 

6 days (4–10 

weeks washout) 

3 g/kg/day 

fructose 
+~30% * Control diet 1H-MRS, volume % 116% increase † 

p < 0.05 vs. CD  

(absolute change) 

* Values estimated from SACN Dietary Reference Values for Energy [100] based on gender, age and weight of participants. § Values estimated from figures. † %changes calculated from absolute values. IHCL: intra-

hepatocellular lipid; HM: healthy males; o/s T2D: offspring of people with type 2 diabetes; CD: control diet; 1H-MRS: proton-magnetic resonance spectroscopy; F: fructose; G: glucose. 
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4.3. Long-Term Sugar Feeding and Liver Fat 

In contrast to short-term feeding studies, results of long-term interventions are more mixed (Table 2, 
Figure 2). When provided in addition to baseline energy intake, evidence of a deleterious effect of fructose 
is inconclusive; an additional 18%–25% of energy consumed as pure fructose by healthy subjects over 
four weeks in the studies of Le et al. [101] and Silbernagel et al. [102] failed to result in an increase in 
IHCL compared to baseline. In contrast, in centrally obese men, when fructose or glucose was provided as 
an additional 25% energy intake for two weeks, significant increases in IHCL compared to baseline were 
observed; however, there were no differences between the groups consuming either glucose or fructose 
(IHCL increased by 26% and 24%, respectively) [86]. In a separate study, a significant increase in liver 
fat was observed in overweight adults who consumed 106 g/day sucrose in the form of a sweetened 
beverage for six months, but not in matched subjects who consumed an equivalent amount of energy as 
milk [103]. Although intriguing, given the vastly different macro- and micronutrient composition of the 
beverages, these data are somewhat difficult to interpret. Other isocaloric trials have failed to demonstrate 
an adverse effect of fructose on IHCL. For example, in healthy adults computed tomography scans 
showed no difference in liver fat after 10 weeks of 55% HFCS consumption accounting for 8, 18 or 30% 
of energy intake compared to sucrose or baseline values[104], while substitution of 25% energy in a 
controlled diet with glucose or fructose resulted in no differences in IHCL [86]. Overall, neither 
hypercaloric nor isocaloric interventions over more than seven days demonstrate a definitive effect of 
fructose on increasing liver fat compared to baseline, or an isocaloric comparator. 

4.4. Interventions Aimed at Reducing Fructose Intakes and Liver Fat 

In addition to studying the effect of the addition of fructose on IHCL profiles, another approach has 
been to reduce fructose intake and examine hepatic lipid content. A decrease in total fructose consumption 
by 50% for six months resulted in a reduction of liver fat in adults with NAFLD [105]. However, it is 
unclear whether these results were a direct result of fructose reduction or an overall change in dietary 
composition and energy restriction. In an alternative design, Jin et al. recruited Hispanic-American 
adolescents who were already consuming three sucrose-sweetened beverages per day and replaced them 
with either glucose or fructose sweetened beverages for four weeks. They found no difference between 
IHCL levels in those continuing with fructose-containing beverages and those consuming glucose only, 
suggesting that replacing fructose with glucose did not improve hepatic lipid storage over this time 
period [106]. Again, these data do not provide a conclusive role for fructose in NAFLD independent 
from glucose or other forms of sugar. However, better controlled trials of this nature would allow a 
meaningful and physiologically relevant intervention in people with NAFLD and may help to further 
elucidate any association between fructose consumption and IHCL. 

Taken together, intervention results do not provide sufficient evidence that fructose acts a significant 
lipogenic precursor, especially when compared directly with glucose, a conclusion supported by two recent 
meta-analyses, mentioned previously [22,23]. Some of this may be due to the heterogeneous nature of 
these interventions; in long term studies duration ranges from two weeks to six months, with fructose 
delivered alone, or as part of HFCS or sucrose, at either hyper or isocaloric levels with the habitual diet 
(Table 2). This is in contrast to a largely homogenous group of participants, namely young, healthy  
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males [22,23]. In addition, most studies supplied the intervention solution with a meal; however, a recent 
study over 6 weeks suggests that sucrose-sweetened beverages are more lipogenic when consumed  
in-between, rather than with meals [107]. Therefore, it seems there is more research required to address 
the impact on timing of beverages, as well as some of the issues of: insufficient study duration and 
participant numbers, lack of isocaloric comparators, hypercaloric feeding and the limited participant 
demographic, in order to provide a conclusive role for fructose at levels relevant to population intake in 
hepatic fat accumulation. 

Figure 2. The effect of isocaloric (IC) and hypercaloric monosaccharide feeding on IHCL over 
more than seven days. (A) Changes in interventions using fructose and/or glucose. Interventions 
were hypercaloric unless otherwise stated (B) Changes in interventions using alternative 
fructose-containing solutions and comparators (Bravo et al. [104]; isocaloric  
high-fructose corn syrup (HFCS) vs. sucrose, Maersk et al. [103]; hypercaloric sucrose-
sweetened beverage (SSB) vs. milk). * Values estimated from figures, IHCL; 
intrahepatocellular lipid. 
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Table 2. Summary of study characteristics of long-term monosaccharide feeding trials and IHCL outcome. 

Reference Participant characteristics Study design 
Duration of 

Intervention 
Intervention Dose 

Dose as % Energy 

Requirements  
Comparator 

Assessment, 

Units 

% Change IHCL  

Post-Intervention 
Significance 

Bravo et al., 2013 

[104] 

Males and females (n = 64  

in total), mean age 42.2 year,  

mean BMI 23–35 kg/m2 

Randomized, 

partially blinded, 

parallel intervention 

10 weeks 

8%, 18% or 30% of 

energy intake as 

HFCS or sucrose  

8%, 18% or 30%  Baseline 
CT, % liver 

fat content 

22, 18 and 11% 

increase (HFCS)  

and 16, 13 and 7% 

decrease (S) for  

8, 18 and 30% 

supplementation † 

NSD in absolute 

changes in any 

group 

Johnston et al., 

2013 [86] 

Centrally obese males (15 in 

fructose and 17 in glucose group), 

35 year (F) and 33 year (G), 30 

kg/m2 (F) and 28.9 kg/m2 (G) 

Randomized 

parallel intervention 
2 weeks 

25% of energy intake 

as glucose or fructose 

(IC) or same weight 

in addition to control 

diet (HC) 

25% (IC) or  

+25% (HC) 
Baseline 

1H-MRS, 

volume % 

After IC condition 4% 

increase (F) and 1% 

decrease (G), after HC 

condition 24% (F) and 

26% (G) increase † 

NSD after IC diet, 

absolute values of 

fructose and 

glucose p < 0.05 

vs. baseline 

Le et al., 2006 

[101] 

Males (7), 24.7 year, mean weight 

69.3 kg 

Parallel 

intervention 
4 weeks 1.5 g/kg/day +18%  Baseline 

1H-MRS, 

mmol/kg 
17% increase §,† 

NSD in absolute 

changes 

Maersk et al., 

2012 [103] 

Males and females (10 in SSB 

group and 12 in milk group), 39 

year (SSB) and 38 year (milk), 

31.3 kg/m2 (SSB) and 31.9 kg/m2 

(milk) 

Randomized 

parallel intervention 
6 months 

106 g/day SSB or 

equivalent energy as 

milk 

+~16% (males) 

and +~20% 

(females) * 

Baseline 
1H-MRS, 

arbitrary units 

36% increase after 

SSB, 9% decrease 

after milk § 

p < 0.05 for % 

change between 

SSB and milk 

Silbernagel et al., 

2011 [102] 

Males and females (10 in fructose 

and 10 in glucose groups),  

30.5 year, 25.9 kg/m2 

Randomized, 

single-blinded 

parallel intervention 

4 weeks 
150 g/day fructose or 

glucose 
+~25%  Baseline 

1H-MRS, 

volume % 

34% (F) and 33% (G) 

increase † 

NSD in absolute 

changes 

* Values estimated from SACN Dietary Reference Values for Energy [100] based on the gender and mean age and weight of participants. § Values estimated from figures. † %changes calculated from absolute values. 

IHCL: intra-hepatocellular lipid; HFCS: High-fructose corn syrup; IC: isocaloric; CT: computed tomography; S: sucrose; NSD: no significant differences; F: fructose; G: glucose; HC: hypercaloric;  
1H-MRS: proton-magnetic resonance spectroscopy, SSB: sucrose-sweetened beverage. 
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5. Measurement of Hepatic De novo Lipogenesis  

Fat in the liver may arise from many sources, including dietary fat as discussed by Green and Hodson 
in a separate review paper in this edition [108]. Several studies have investigated the extent to which 
carbohydrate-induced DNL may be causal in the development of NAFLD and we will focus on those 
here. De novo lipogenesis is the term used for the synthesis of fatty acids from non-lipid precursors such 
as fructose, glucose or amino acids. To estimate DNL in vivo, several different stable isotope approaches 
may be used and it is worth taking the time to consider the relative merits of each method in order to 
interpret data from the literature. If liver samples cannot be accessed, then VLDL-TG is used as a proxy 
marker of the hepatic TG pool. VLDL-TG can be specifically isolated using techniques such as 
immunoaffinity chromatography [109]. Otherwise, a TG-rich lipoprotein fraction (usually “Sf 20-400”) 
is taken but this also contains chylomicron remnants. Studies that do not separate intestinal from hepatic 
lipoproteins (e.g., Chong et al. [110], Parks et al. [13], Donnelly et al. [111]) therefore include measurements 
of intestinal DNL. It should be noted that the release of non-esterified fatty acids from adipose tissue 
(formed by DNL) could indirectly contribute to the measurement of DNL in liver and VLDL-TG. As 
previously discussed by others [110], this is thought to be quantitatively minor but has not been  
directly measured. 

It is important to note the main product of DNL in humans is palmitate and most researchers only 
monitor the appearance of the stable isotope label in palmitate-TG. Although the result is usually expressed 
as “%DNL”, it does not equate to the total TG pool that has arisen by DNL. Therefore, the term “%DNL” 
although commonly used, may be somewhat misleading if not understood correctly. Recently, this point 
was illustrated by Lambert et al. [112] who measured fatty acid synthesis in VLDL-TG to estimate hepatic 
DNL in people with type 1 diabetes and controls. They comprehensively measured DNL in the different 
VLDL-TG fatty acids and reported that the mean %DNL in palmitate in the control group was 14% 
whereas it was 2% for oleic acid. This agrees with earlier work that found that the proportion of newly 
synthesized stearate (18:0) was less than half that measured for palmitate [113]. Taking into account 
fatty acid concentration, Wilke et al. [114] found that palmitate, followed by 18:1 fatty acids, and then 
myristate were quantitatively the major fatty acids formed by de novo lipogenesis. Thus, %DNL is an 
important measure of de novo lipogenesis, which usually refers specifically to palmitate, the main product 
of DNL. 

5.1. Deuterated Water 

Since water is used in the synthesis of fatty acids, deuterated water (2H2O) can be used to calculate 
the fractional synthesis of fatty acids. Deuterated water is either given orally (in vivo) or in the cell media 
(in vitro) and the appearance of 2H in the fatty acid acyl chain is determined, allowing for the relative 
proportion of hydrogens donated by NADPH or H2O. 

5.2. [13C]acetate 

[13C]acetate can also be used to calculate DNL and the method is based on equilibration in the precursor 
pool of acetyl CoA, the building block of fatty acid synthesis. Labelling of the precursor pool is a clear 
advantage of the method, but the protocol requires a fairly long intravenous infusion time. A seminal 
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piece of work in this area was that of Hellerstein et al. who used a thorough mathematical approach 
(mass isotopomer distribution analysis, MIDA) to show that DNL was quantitatively very low after an 
overnight fast (less than 1%) in healthy humans [113]. 

5.3. [13C]sugars 

In order to assess the contribution of dietary sugars to DNL, sugars labelled with 13C have been traced 
into TG-fatty acids in a limited number of studies. Whereas the approaches above using deuterated water 
and [13C]acetate measure %DNL from all precursor sources, it should be noted that tracing the 
incorporation of dietary sugars into TG will not include the upregulation of DNL from other sources 
(i.e., the precursor pool is not labelled). Therefore the use of [13C] sugars does not measure % DNL but 
rather gives an assessment of any changes/differences in the DNL pathway.  

5.4. Fatty Acid Profile 

The fatty acid composition of liver-TG or VLDL-TG has been used to infer the extent of DNL in 
human studies without the need for isotope labelling. Hudgins et al. [115] used an ingenious technique 
whereby they matched the fatty acid composition of the diet to an individuals’ adipose tissue composition 
so that the essential fatty acid 18:2 n-6 could be used as a non-isotopic marker of non-DNL fatty acids in 
VLDL-TG. Thus, fatty acids formed de novo were calculated from the dilution of 18:2 n-6 in VLDL-TG 
relative to the composition in the diet. A limitation is that the method requires an adaptation period and 
controlled feeding, therefore it is not the most appropriate choice for cross-sectional or short-term feeding 
studies. A point to note, regarding the use of hepatic fatty acid composition in relation to liver fat 
accumulation, is that it is essential to use a single lipid pool (i.e., TG). It has been elegantly shown by 
Peter et al. [116] that as liver accumulates TG, the ratio of TG to phospholipid increases and the relative 
proportions of different fatty acids in the total lipid pool change such that the ratio of 18:1 n-9/18:0 
increases simply because the fatty acid composition of the two lipid pools are different. Therefore the 
results of studies that have measured fatty acid composition in liver samples in relation to NAFLD or liver 
fat must be interpreted with caution if specific lipid pools (e.g., TG) have not been sampled [117,118]. 

Hepatic lipids comprise a complex range of species [119] and TG is the most abundant which accumulates 
further in simple steatosis. However, liver fat accumulation is characterized by the accumulation of both TG 
and cholesterol, with TG and cholesteryl ester allowing storage for excess fatty acid moieties [120]. A 
high fructose ad libitum diet leads to a greater increase in hepatic TG than cholesterol in a mouse  
model [121]. However, in humans this has not been well studied. 

6. The Contribution of DNL to Hepatic Lipid Accumulation 

6.1. Metabolic Fate of Fructose 

Changes in hepatic DNL in response to fructose ingestion have been measured in a few human studies. 
Chong et al. [110] gave [13C]glucose or fructose as 0.75 g/kg body weight to healthy participants. The 
sugars were traced into TG-fatty acids and TG-glycerol, and although significantly more TG-fatty acids 
were derived from fructose than glucose, in the short term only a very small proportion of TG-fatty acids 
were derived from fructose (<0.5%), compared with 38% TG-glycerol formed de novo. Four hours after 
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ingestion, newly synthesized fatty acids from fructose made up less than one percent of circulating 
VLDL-TG. For those individuals who synthesized detectable amounts of fatty acids, palmitate was the 
major end point of fatty acid synthesis (Figure 3), in agreement with studies mentioned above. However 
from the point of view of the metabolic fate of fructose, the results showed that only 0.05% and 0.15% of 
fructose were converted to TG-fatty acids and TG-glycerol, respectively. Values after glucose ingestion 
were close to 0%. This work, and other human studies using isotopically labelled tracers have been 
comprehensively reviewed by Sun and Empie [122]. They concluded that the immediate metabolic fate of 
ingested fructose was not into plasma TG (<1%) but towards oxidation (45%) and conversion to glucose 
(41%). Conversion to lactate is also quantitatively important. 

Figure 3. The % of individual fatty acids (±SEM) that have arisen by DNL 4 h after healthy 
subjects consumed 0.75 g fructose/kg body weight (9% of energy requirement) as part of a 
mixed liquid meal. Calculated from data collected for Chong et al. [110]. 

 

6.2. The Contribution of DNL to Liver Fat Accumulation 

It is difficult to directly assess the impact of DNL on liver fat accumulation because of the 
inaccessibility of the liver in humans, but Donnelly et al. [111] were able to directly assess DNL in obese 
and morbidly obese individuals undergoing a scheduled liver biopsy. In these individuals, over one 
quarter of palmitate in liver TG was accounted for by DNL, with a similar pattern in lipoprotein TG, 
showing that VLDL-TG is a good proxy marker for liver TG. The high level of DNL compared with 
other studies suggests that DNL may be upregulated in individuals who have been in a state of caloric 
excess and could contribute to liver fat accumulation in NAFLD. An alternative explanation is a 
methodological difference between this and other studies; in the Donnelly paper there was a long tracer 
infusion time, specifically 4 days of [13C] acetate infusion. The same group have since compared % DNL 
and rate of DNL fatty acid synthesis in individuals with low and high liver fat and found that mean 
values were significantly higher in the high liver fat group (10% vs. 23% and 2.6 vs. 1.5 µmol/min 
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respectively) during a 12 h period after an evening meal [123] in accord with an earlier, smaller 
postabsorptive study [124] as discussed in [123]. 

6.3. Hepatic DNL in Response to Fructose 

In this section we report studies that have measured %DNL in VLDL-TG as a proxy for liver TG. In 
an acute setting, healthy individuals consumed 85 g sugar added to a meal. Using [13C]acetate to measure 
DNL, it was shown that DNL was higher when subjects ingested a meal containing 50% glucose and 
50% fructose (16%) compared with 8% when the sugar was only glucose [13]. Moreover, after a 
subsequent meal, there was an increase in plasma VLDL-TG concentrations. Rather than being due to 
increased DNL per se, it was suggested that the stimulation of DNL created “a metabolic milieu that enhances 
subsequent esterification of fatty acids flowing to the liver to elevate TG synthesis postprandially”. In another 
arm of the study, 25% glucose and 75% fructose was given and there was no difference in %DNL 
compared with the 50:50 arm, suggesting no dose effect, although it may be an issue of insufficient 
power (n = 6 subjects). Stanhope et al. [14] measured DNL in subjects who had consumed fructose or 
glucose sweetened beverages, providing 25% energy, for 10 weeks with significant increases in body 
weight. Surprisingly, they found a significant increase in fasting plasma TG concentrations after the 
glucose diet, but not after fructose. However, postprandial lipaemia was higher after the fructose diet 
compared with baseline but this effect was not seen in the glucose arm. There was a parallel increase in 
%DNL in the fructose arm which increased from 11 to 17%. There was no significant difference in 
fasting DNL after the two diets. The study design did not allow any quantitation of the contribution of 
fructose to the enhanced postprandial lipaemia but in accordance with Parks et al. [13], it was suggested 
that increased fatty acid esterification from other sources may play a role. In response to a high fructose 
diet (3 g fructose per kg per day given as a supplement in drinks) vs. a control diet without the drinks, 
fasting DNL was significantly higher (9% vs. 2%) [125]. 

The percentage term for DNL may be adjusted for the fatty acid pool size, and when combined with 
flux data, can give a quantitative result such as mg palmitate in VLDL-TG that has arisen from DNL per 
day [126], but this has rarely been done in fructose feeding studies. Moreover, in order to precisely quantify 
of the amount of palmitate synthesized in response to a dietary sugar, the amount that remains in the 
liver would need to be accounted for. Because of the difficulty of accurately assessing this, it remains 
unresolved. However, the present evidence suggests a greater effect of fructose than glucose on DNL, 
particularly in the postprandial period, but more studies are required to show the effect in response to 
habitually consumed foods containing fructose. 

7. Conclusions 

Despite a large body of work the health and metabolic effects of fructose and other dietary sugars are 
unresolved. Multiple mechanisms have been described for how large doses of fructose are lipogenic and 
have adverse metabolic effects. The data taken together suggest that although fructose does stimulate DNL 
to some extent, quantitatively the lipogenic effect of fructose is not mediated exclusively by its provision 
of excess substrates for DNL. The deleterious metabolic effects of supra-physiological fructose loads 
are a consequence of altered transcriptional regulatory networks impacting intracellular macronutrient 
metabolism, including fatty acid oxidation and esterification, along with altering signaling and 
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inflammatory processes. Increased production of uric acid may also contribute to or exacerbate these 
effects. Pragmatically, in the context of epidemic levels of obesity, reducing dietary sugar consumption 
is a prudent public health message. However, whether or not dietary sugars, including fructose, at 
typically consumed population levels, effects hepatic lipogenesis and NAFLD pathogenesis in humans 
independently of excess energy remains an unresolved question. 
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