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Abstract 

 

Objectives: The effects of vascular occlusion on recovery of physiological and neuromuscular 

markers over 24h, and hormonal reactivity to subsequent exercise were investigated. 

Design: Counterbalanced, randomised, crossover  

Methods: Academy rugby players (n=24) completed six 50-m sprints (five-min inter-set 

recovery) before occlusion cuff application (thighs) and intermittent inflation to 171-266 
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mmHg (Recovery) or 15 mmHg (Con) for 12-min (two sets, three-min repetitions, three-min 

non-occluded reperfusion). Countermovement jumps, blood (lactate, creatine kinase), saliva 

(testosterone, cortisol), and perceptual (soreness, recovery) responses were measured before 

(baseline) and after (post, +2h, +24h) sprinting.  Saliva was sampled after a 30-min resistance 

exercise session performed 24h after sprinting. 

Results: Although sprinting (total: 40.0 ± 2.8 s, p=0.238; average: 6.7 ± 0.5 s, p=0.674) 

influenced creatine kinase (p<0.001, +457.1 ± 327.3 ·L-1, at 24h), lactate (p<0.001, 6.8 ± 2.3 

mmol·L-1, post), testosterone (p<0.001, -55.9 ± 63.2 pg·ml-1, at 2h) and cortisol (p<0.001, -

0.3 ± 0.3 g·dl-1, at 2h) concentrations, countermovement jump power output (p<0.001, -

409.6 ± 310.1 W; -5.4 ± 3.4 cm, post), perceived recovery (p<0.001, -3.0 ± 2.3, post), and 

muscle soreness (p<0.001; 1.5 ± 1.1, at 24h), vascular occlusion had no effect (all p>0.05) on 

recovery. In response to subsequent exercise performed 24h after vascular occlusion, 

testosterone increased pre-to-post-exercise (Recovery: p=0.031, 21.6 ± 44.9 pg·ml-1; Con: 

p=0.178, 10.6 ± 36.6 pg·ml-1) however Δtestosterone was not significantly different 

(p=0.109) between conditions. 

Conclusions: Vascular occlusion had no effect on physiological or neuromuscular markers 2h 

or 24h after sprinting or in response to a physical stress test.    

 

Keywords: Occlusion, sprint, hormonal reactivity 

 

Introduction  

 

Physical and metabolic disturbances result from team sport match-play1.  Accordingly, 

various measures are applied to indicate the presence of exercise-induced muscle damage 

(EIMD) and the efficacy of recovery interventions2.  Elevated Creatine Kinase (CK) 

concentrations3, disruption in the hormonal milieu (i.e., testosterone; T, cortisol; C)4, and 

impairments in neuromuscular function (NMF) occur post-match5; with perturbations 
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occurring for at least 48h3,5.  The use of hormonal responses, such as changes in T and C 

indicate anabolic and catabolic balance6 and thus readiness-to-train or competition-

preparedness, is an emerging concept in the fatigue-recovery paradigm7.   

 

As short-term post-match fatigue impairs subsequent performance, recovery strategies (e.g. 

cold-water immersion and active recovery) are an integral component of weekly training 

practices that have been extensively investigated (for review see8).  More recently, vascular 

occlusion, the use of blood pressure cuffs applied on specific limbs to restrict blood-flow, has 

been suggested as a recovery strategy9,10.  While exact mechanisms are unclear, vascular 

occlusion is purported to elevate adenosine concentrations and activation of adenosine tri-

phosphate (ATP) sensitive potassium channels (KATP), increasing blood flow11 and benefiting 

oxygen and nutrient delivery via vasculature dilation; a response likely exaggerated during 

reperfusion, possibly improving substrate re-synthesis11. Alternatively, attenuated 

inflammatory responses10 and reduction of muscle oedema and intramuscular pressure 

decrease nocioreceptor stimulation, potentially reducing muscle soreness12. 

 

Unfortunately, the evidence for vascular occlusion as an effective post-exercise recovery 

modality is currently inconsistent. Two investigations identified improved recovery10,11 

whereas others13,14,15 disagree.  Methodological differences exist when implementing vascular 

occlusion, for example standardised cuff pressures have been implemented despite 

recommendations regarding individualised application relative to thigh girth and resting blood 

measurements16.  Similarly, inconsistent timings of recovery assessments (i.e., 1-72h) post-

occlusion exist between studies.  Previous research has also required players to remain rested 

for the duration of post-exercise recovery; however, this has limited application to applied 

practice where football or rugby players are frequently required to play multiple games within 

a week (i.e., <72h separating games), and train when complete physical recovery may not be 

achieved17.  Accordingly, identification of the physiological response to a subsequent physical 
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stressor may denote if players are adequately recovered to return to training.  Notably, T is a 

stress biomarker; consequently, the monitoring of T in response to a physical stress test could 

provide information on readiness to train/compete18.   

 

The primary aim of the study was therefore to investigate the effects of post-exercise vascular 

occlusion (using individualised cuff pressures) on recovery (2h and 24h) of physiological and 

performance markers following maximal sprint exercise whilst also considering the hormonal 

reactivity to a subsequent exercise challenge performed at 24h.  It was hypothesised that 

vascular occlusion implemented post-exercise would facilitate the recovery of biochemical, 

neuromuscular and hormonal markers measured after 24h. 

 

Method  

 

Following institutional ethical approval and informed written consent, 24 male Academy 

rugby union players (age: 21.8 ± 3.0 y, mass: 96.9 ± 10.1 kg, stature: 1.85 ± 0.09 m) 

participated in the study during pre-season (1–2 sessions per day 4–5 days a week; strength, 

power, speed training). All participants were informed of the experimental procedures, the 

purpose of the study, and possible risks.  

 

Participants attended the testing venue four times.  Two main trials (Vascular occlusion: 

Recovery; Control: Con), seven days apart, were completed on an indoor 3G surface 

(temperature: 20C; humidity: 41%) in a randomised, counter-balanced, crossover design.  

Measurement timings were consistent between trials to limit circadian variation, and 

participants refrained from alcohol and intense physical exercise in the 24h preceding trials.  

 

On arrival for main trials, participants rested for 10-min before recording blood pressure 

(Omron Healthcare, Europe; systolic >140 mmHg and diastolic >90 mmHg precluded further 

study involvement).  Thigh girth, physiological (capillary blood and saliva) and perceptual 
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(soreness and recovery) assessments followed. After a 10-min standardised warm-up, 

participants performed two maximal countermovement jumps (CMJ) separated by 90 s 

(portable force platform: Type 92866AA, Kistler, Germany) to assess NMF5,19.  A further 10-

min warm-up followed (20 m dynamic exercises and accelerations, two-50 m sprints at 80% 

and 100% effort) with five-min of enforced rest before six-50 m (each separated by five-min 

rest) timed sprints (Brower Timing System, Salt Lake City, Utah, USA) were performed to 

induce muscle damage20,21 (Figure 1).  As per pre-exercise instructions, maximal effort was 

required across all six sprints, but no encouragement was provided during exercise. 

Participants and coaches were blinded from sprint timings and feedback was not provided 

until all trials were completed.  Average, and cumulative sprint times were recorded for the 

six sprints. 

 

Immediately post-exercise, baseline measures were repeated before occlusion cuffs were 

applied to the proximal point of the thighs while participants lay supine.  The cuff (11 cm; 

Sports Rehab Tourniquet, Sportsrehab) was manually inflated to 15 mmHg (Con), reflecting 

previous research9, or to 60% of individually calculated pressures (171-266 mmHg; 

Recovery), determined from thigh girth and blood pressure measurements16.  Cuffs were 

applied for a total of 12-min (two cycles of three-min occlusion, three-min reperfusion)9 as 

reports suggest that three-min cycles of occlusion fulfil the duration threshold and a total 

ischemic stimulus of at least four-min is required to elicit a protective effect in human 

myocardium, irrespective of the number of ischemic cycles22.  After 2h and 24h baseline 

measures were repeated; timings which are consistent with previous research20,21 and 

represent the duration between competition and return to training. 

 

To assess hormonal reactivity to a subsequent exercise stimulus performed after 24h, saliva 

was collected five-min before and immediately after a 30-min physical stress test (three sets 

of power cleans and back squats, four sets of bench press and bench pull at relative loads of 
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60-85% 1RM; one and three-min rest between sets and exercises, respectively).  Participants 

were accustomed to the resistance exercise and testing procedures employed and these 

protocols were sufficient to elicit a stress response18. Session supervisors provided technical 

support only and were not aware of the condition that players were in. Feedback was not 

provided regarding within-session performance. 

 

***** INSERT FIGURE 1 NEAR HERE ***** 

 

Saliva collection required passive drooling (~2 ml) into a sterile vial (SalivaBio, Salimetrics 

LLC, USA) after refraining from brushing of teeth, drinking hot fluids, or eating hard foods 

2h beforehand.  All samples were stored (-15°C) immediately after collection and transferred 

to -80°C within 4h of collection.  Post thawing, centrifugation (Micro Centaur, MSE, London, 

United Kingdom; five-min at 3000 revolutions·min-1) preceded duplicate analysis of T and C 

concentrations due to known reliable reflections of gonadal function23 using indirect enzyme-

linked immunosorbent assay (ELISA) kits (Salimetrics Europe Ltd., Suffolk, U.K.).  The 

lowest detection limits for T and C were 6.1 pg·ml-1 and 0.012 g·dl-1 respectively, and inter-

assay CV values were <10% in both cases.   

 

Participants provided a 20 μL fingertip capillary blood sample (analysed retrospectively for 

lactate concentrations; Biosen C-Line Clinic, EKF Diagnostic GmgH, Barleben, Germany).  

Additionally, 120 μL sample was collected, immediately centrifuged (3000 revolutions·min-1 

for 10-min; Labofuge 400R, Kendro Laboratories, Germany) for the extraction of plasma, and 

stored (−80°C) until later analysis. Plasma samples thawed before 6 μL was used for CK 

analysis (automated analyser; ABX Pentra 400, Horiba ABX, Montpellier, France).  Sample 

testing was carried out in duplicate, intra sample CV values were <2.0%.  

Perceived lower body muscle soreness was assessed using a 7-point Likert scale ranging from 

zero (complete absence of soreness) to six (severe pain limiting movement) which is reliable 

ACCEPTED M
ANUSCRIP

T



 7 

and valid24.  Perception of recovery status was assessed using a 11-point likert scale25 from 

zero (very poorly recovered/extremely tired) to 10 (very well recovered) which reflects 

changes in total sprint time relative to prior exercise21.  Participants were familiar with the 

scales and were asked to base scores on perceived soreness during normal movement and 

were alone when recording scores to reduce influences of peers. 

Assessment of CMJ was completed on a portable force platform (Kistler instrument Ltd., 

Farnborough, UK) sampling at 1000 Hz.  Peak power output (PPO) of the lower body was 

calculated as previously described19.  The vertical component of the ground reaction force and 

participants’ body weight were used to determine instantaneous velocity and displacement of 

the centre of gravity19. Instantaneous power output was determined using Equation 1 and the 

highest value produced was deemed PPO. Jump height (JH) was defined as the difference in 

vertical displacement of the center of gravity between take-off (toes leave the force plate) and 

maximum displacement19.  

 

Equation 1:  

Power (W) = Vertical ground reaction force (N) x vertical velocity of centre of gravity (m.s.-1) 

 

Statistical analysis 

 

All data is presented as mean ± standard deviation (SD).  Following confirmation of 

parametric assumptions, multivariate analysis of variance (MANOVA) with Bonferroni 

adjustment assessed between-trial differences for variables with multiple time points per trial 

(i.e. T, C, T:C ratio, perception muscle soreness and recovery, CK, blood lactate, PPO and 

JH). A one-way ANOVA was performed to assess between-trial differences in response to the 

physical stress test (T, C, T:C ratio and perception muscle soreness).  Paired samples t-tests 

were performed for between-trial comparisons of data expressed over a single time point 

within a trial (i.e. mean and total sprint times, T and C pre-and post-stress test).  Statistical 
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analyses were carried out using SPSS (SPSS Chicago, IL) with significance being accepted at 

p≤0.05. 

 

Results 

 

There were no significant differences between conditions for total (Recovery: 39.86 ± 2.87 s; 

Con: 40.26 ± 2.77 s, p=0.238) or average (Recovery: 6.69 ± 0.47 s; Con: 6.71 ± 0.46 s, 

p=0.674) sprint times.  The Δlactate concentrations from pre-to-post sprinting showed no 

significant difference between conditions (Recovery: 6.88 ± 2.53 mmol·l-1, 85 ± 6%; Con: 

6.76 ± 2.04 mmol·l-1, 86 ± 5%, p=0.807, Figure 2). 

 

There was a significant time effect for CK (F(1,48)=72.928, p<0.001, Figure 2) with increases 

at 24h compared to pre-sprints in both Recovery (408.19 ± 291.45 ·L-1, 55 ± 33%, p<0.001) 

and Con (506.02 ± 359.14 ·L-1, 56 ± 34% p<0.001).  However, there was no significant 

interaction effects between condition and time (F(1, 48)=1.157, p=0.293). 

 

***** INSERT FIGURE 2 NEAR HERE ***** 

 

Muscle soreness (F(2, 95)=7.714, p<0.001) and perception of recovery (F(2, 88)=70.931, p<0.001) 

were affected by sprinting, with the greatest change in muscle soreness occurring 24h post 

exercise (Recovery: 1.5 ± 1.0; Con: 1.6 ± 1.1).  There was no significant interaction effects 

between time and condition for muscle soreness (F(2, 95)=0.009, p=0.993) or perception of 

recovery (F(2, 88)=0.158, p=0.924). 

 

Sprint exercise affected PPO (F(2, 96)=42.141, p<0.001) and JH (F(2, 82)=58.353, p<0.001) with 

PPO (Recovery: 417.74 ± 293.09 W, 8 ± 4%, p<0.001; Con: 401.46 ± 332.69 W, 7 ± 5%, p < 

0.001) and JH (Recovery: 5.49 ± 3.24 cm, 13 ± 7%, p<0.001; Con: 5.38 ± 3.66 cm, 13 ± 8%, 
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p<0.001) decreasing post-sprints (Figure 3).  No further timing effects and no effect of 

Recovery on PPO (F(2, 96)=0.304, p=0.757) or JH (F(2, 82)=0.304, p=0.436) occurred. 

 

Sprinting increased T (F(2, 100)=20.127, p<0.001, Figure 2), T:C ratio (F(2, 95)=19.200, p<0.001) 

and decreased C (F(2, 89)=32.651, p<0.001, Figure 2).  However, condition did not affect the 

recovery of T (F(2, 100)=2.159, p=0.114), C (F(2, 89)=0.640, p=0.531) or T:C ratio (F(2, 95)=0.299, 

p=0.759).   

 

Testosterone significantly increased in response to the physical stress test in the Recovery 

(+21.58 ± 44.90 pg·ml-1, 7 ± 17%, p=0.031) but not the Con (+10.62 ± 36.57 pg·ml-1, 4 ± 

13%, p=0.178) with no differences in baseline values between conditions (p=0.232); 

however, ΔT was similar between conditions (p=0.109).  Cortisol declined over time 

(F(1,46)=7.806, p<0.001), pre-to post physical stress test (Recovery: -0.14 ± 0.23 g·dl-1, 38 ± 

72%, p=0.007; Con: -0.17 ± 0.27 g·dl-1, 50 ± 94%, p=0.006), with similar results for T:C 

ratio (F(1, 46)=29.836, p<0.001).  Recovery had no impact on hormonal response as no 

differences were observed between conditions (T; p=0.226, C; p=0.679, T:C; p=0.421). 

 

***** INSERT FIGURE 3 NEAR HERE ***** 

 

 

 

Discussion 

 

This study aimed to investigate the effects of individualised vascular occlusion on recovery 

(2h and 24h) of physiological and neuromuscular indices following sprint exercise while also 

considering hormonal reactivity to subsequent training. Vascular occlusion did not influence 

the physiological or neuromuscular markers measured 2h or 24h after sprint exercise in 
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Academy rugby players. Perception of muscle soreness was not different between conditions, 

sprinting, increased muscle soreness 24h post-exercise. As similar between-condition 

responses to a physical stress test occurred at 24h, vascular occlusion did not facilitate 

recovery following 2h or 24h of rest, nor change the hormonal response to a subsequent 

physical stress test.  Likewise, vascular occlusion did not detrimentally affect any measures 

assessed, recovery rate was not negatively influenced in comparison to Con, thus alleviating 

concerns about using this strategy, acutely, within season. 

 

Total (p=0.238) and average (p=0.674) sprint times were consistent between conditions with 

similar physiological responses being observed. Johnston et al.21 highlighted CK values 

increased by 570 ·L-1 (current results +506.02 ·L-1).  Compared to match responses, 

increases of 586.6 ·L-1 (4; 24h post-soccer match) and 431 ·L-1 (26; 16h post-rugby match) 

have been reported.  However, time and distance of maximal sprint completed in a match 

cannot be controlled and varies depending on position, therefore comparison against match 

outcome is difficult as many factors may influence performance on match day. Nevertheless, 

previous reports suggest that six 50m sprints reflect normal training sessions27. 

 

The current study individualised cuff pressure (171-226 mmHg) as a standard pressure 

applied to different individuals may non-uniformly influence the pressure exerted on the 

vasculature and thus impact the degree of blood flow restriction.  Loenneke et al.28 suggested 

that pressures aiming to restrict blood flow of the lower body should be determined by limb 

circumference; findings supported by observations that thigh circumference is the biggest 

predictor of arterial occlusion in the lower body (=0.570)16 with brachial systolic blood 

pressure being an additional significant predictor (=0.231)16.  That said, in contradiction to 

the findings of Beaven et al.9 who identified improved peak power recovery 24h after 

occlusion, we observed no effects on recovery.  Although comparable vascular occlusion 

timings were used, cuff pressures differed between the studies (i.e., a standardised 220 mmHg 
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versus individualised application).  Alternative methodological factors may be influencing the 

resulting outcome of vascular occlusion as a recovery modality; cuff pressure was determined 

from a regression equation16 based on non-elite participants, although this protocol considers 

thigh girth, tissue type (muscle or fat) may impact the level of blood flow restriction, a 

variable which will vary between elite-trained and untrained participants, training status may 

also impact effectiveness of vascular occlusion used for recovery.   

 

An alternative methodological discrepancy existing between previous research is the training 

status of participants.  Research completed by Beaven et al.9 investigated healthy, active non-

sport participating males and found vascular occlusion improved recovery.  However, 

Northey et al. 14 and the current study investigated the use of vascular occlusion in well-

trained individuals, identifying no effect on recovery. This potentially suggests that training 

status may mediate the efficacy of vascular occlusion as a recovery strategy. However, even 

with a group of active or well-trained participants, high inter-individual variability in EIMD 

marker responses has been found even when participants perform the same exercise29.  

Research suggests that the large inter-individual variability including non-modifiable factors 

(ethnicity, age, and gender) could be responsible for most of the equivocal findings and 

uncertainties regarding EIMD etiology29; another variable potentially explaining variation 

between the current study and previous work.  Therefore, it may be important to examine the 

use of vascular occlusion on an individual basis as it may offer a practical recovery option for 

some athletes/players and at some levels of performance. 

A novel aspect of this research was the response of a physical stress test as an indicator of 

recovery status and readiness-to-train following sprint exercise at 24h. Within the literature, 

previous recovery studies have assessed response to a recovery strategy when the athlete is 

rested, however players are frequently required to return to training 24h after a match. 

Therefore, hormonal response to a physical stress test may indicate if players are recovered 

and able to return to training.  In the current study, T increased pre-to post stress test in both 

conditions (Recovery: 21.58 ± 44.90 pg·ml-1, 7 ± 17%, p=0.031; Con: 10.62 ± 36.57 pg·ml-1, 
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4 ± 13 %, p=0.178), but ΔT was not significantly different between conditions, suggesting 

Recovery had no impact on hormonal response.  Furthermore, C showed a significant decline 

from pre-to post-stress test in both the Recovery (0.14 ± 0.23 g·dl-1, 38 ± 72%, p=0.007) and 

Con (0.17 ± 0.27 g·dl-1, 50 ± 94%, p=0.006).  Therefore, consistent with rested results, there 

was no difference between conditions regarding rate of recovery following a physical stress 

test. 

 

Limitations of the research should be acknowledged; the placebo effect is not accounted for, 

which may be important to consider. Within Con, cuffs were still applied and therefore is 

difficult to blind participants from the conditions due to the obvious difference in cuff 

pressure.  Therefore, a further condition would be optimal to identify the impact of vascular 

occlusion, determining whether there is a placebo or physiological effect on performance 

when compared against a control in which cuffs are absent as completed by Marocolo et al. 30.  

Similarly, it is difficult to blind testers to conditions due to variation in cuff pressure, 

however, all testers and coaches were informed that no verbal encouragement was to be given 

during exercise (sprints, jumps, stress test).  

 

Conclusions 

 

The data presented in this investigation highlight application of two cycles of vascular 

occlusion administered intermittently after sprinting did not influence, either positively or 

negatively, physiological or neuromuscular markers of recovery assessed after 2h or 24h of 

rest or after a subsequent physical stress test.   

 

Practical Implications 

 Individualised vascular occlusion applied post-exercise didn’t influence recovery or 

readiness-to-train after 24h 
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 An absence of negative effects for physiological and performance markers alleviates 

concerns about the use of vascular occlusion within season  

 Methodological variations (such as exercise protocol, cuff pressure, duration of 

occlusion and training status) may be modulating the efficacy of vascular occlusion 

as a recovery strategy  
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Figure 1: Timeline of data collection. Con; control trial, Recovery; occlusion trial, RE; 

resistance exercise. Measurements: salivary testosterone, salivary cortisol (), blood sampling 

for blood lactate and Creatine Kinase (), perception muscle soreness questionnaires (), 

countermovement jump () 

 

 

Figure 2: Physiological responses (a) Testosterone (b) cortisol (c) Creatine Kinase (d) Blood 
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lactate collected pre, post, 2 h and 24 h post sprint protocol (* p<0.05) 

 

Figure 3: (a) Peak power output and (b) jump height, determined from countermovement 

jump collected pre, post, 2 h and 24 h post sprint 
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