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SUMMARY 

A recent unsymmetric 4-node, 8-DOF plane element US-ATFQ4, which exhibits excellent precision 

and distortion-resistance for linear elastic problems, is extended to geometric nonlinear analysis. 

Since the original linear element US-ATFQ4 contains the analytical solutions for plane pure bending, 

how to modify such formulae into incremental forms for nonlinear applications and design an 

appropriate updated algorithm become the key of the whole job. First, the analytical trial functions 

should be updated at each iterative step in the framework of updated Lagrangian (UL) formulation 

that takes the configuration at the beginning of an incremental step as the reference configuration 

during that step. Second, an appropriate stress update algorithm in which the Cauchy stresses are 

updated by the Hughes-Winget method is adopted to estimate current stress fields. Numerical 

examples show that the new nonlinear element US-ATFQ4 also possesses amazing performance for 

geometric nonlinear analysis, no matter regular or distorted meshes are used. It again demonstrates 

the advantages of the unsymmetric finite element method with analytical trial functions. 

 

KEY WORDS: finite element; unsymmetric 4-node plane element; geometric nonlinear analysis; UL 

formulation; analytical trial function; mesh distortion

 

1. INTRODUCTION 
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The traditional 4-node, 8-DOF isoparametric element with full integration scheme, denoted by Q4, 

is one of the most popular models adopted for two-dimensional (2D) finite element analysis. 

However, in many high-order problems, this model exhibits an over-stiff behavior and suffers from 

various locking problems, and this situation will become worse if distorted meshes are used [1, 2]. In 

order to improve the performance of element Q4, some researchers developed incompatible models, 

such as the element Q6 proposed by Wilson et al. [3] and its modified version QM6 proposed by 

Taylor et al. [4], the Abaqus incompatible elements CPS4I/CPE4I [5] with assumed strains [6], and 

so on. Although these incompatible models have reliable performance for regular meshes generally, 

they are still sensitive to mesh distortion and will lose most precision in distorted meshes. Reduced 

integration scheme was also suggested to resist over-stiff and sensitive problems to mesh distortion. 

Nevertheless, it may deteriorate the precision for stresses and bring hourglass problem (over-soft) [5]. 

During the past decades, numerous efforts have been made to look for robust 4-node, 8-DOF 

quadrilateral element models. In addition to the above incompatible and reduced integration schemes, 

some other techniques, including the hybrid stress method [7-12], the quasi-conforming method [13], 

the generalized conforming method [2], the improved enhanced strain method [14-16], the B-bar 

method [17], the quadrilateral area coordinate method [18-27], etc., can be found in related 

references. Although these models can improve the performance more or less, the sensitivity 

problem to mesh distortion has never been overcome from the outset. Specially, no element can 

overcome the obstacle stipulated by MacNeal’s theorem [28, 29]: any 4-node, 8-DOF plane 

membrane element will either lock in in-plane bending or fail to pass a C0 patch test when the 

element’s shape is an isosceles trapezoid, which means such elements must be sensitive to mesh 

distortions. 

Recently, Cen et al. [30] developed an unsymmetric 4-node, 8-DOF plane element US-ATFQ4 

based on the virtual work principle [31]. In the formulations of element US-ATFQ4, two different 

sets of shape functions are simultaneously used. The first set which comes from the traditional 

4-node bilinear isoparametric element Q4 is employed as test functions, while the second set, which 

is employed as trial functions, uses analytical solutions for plane pure bending in terms of the second 

form of quadrilateral area coordinates (QACM-II) (S, T) [24]. This element exhibits excellent 
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performance in rigorous tests and successfully breaks through the limitation defined by MacNeal’s 

theorem [28, 29], that it to say, it is insensitive to various serious mesh distortions. 

Actually, since mesh distortions will appear more easily due to large strains, or large 

displacements, or large rotations, a distortion-resistance finite element model should be more 

valuable in nonlinear analysis. For geometric nonlinear problems, there are usually three Lagrangian 

kinematic descriptions for finite element analysis [32], including total Lagrangian (TL) formulation, 

updated Lagrangian (UL) formulation and corotational (CR) formulation. The TL formulation 

requires that all quantities are referred to the original, undeformed configuration, while the UL 

formulation takes the current configuration, i.e. the configuration at the beginning of an incremental 

step, as the reference configuration during that step. In the CR formulation, the displacements and 

rotations are allowed to be arbitrarily large, but strains are limited to be small. Among these three 

formulations, the UL formulation is often preferred because it possesses better flexibility for solving 

various complicated nonlinear problems. Usually, it adopts the concept of Cauchy (physical) stress, 

and uses the rate-of-deformation as a measure of stain rate, but other measures of strain or strain rate 

can also be used [33]. Furthermore, a procedure for evaluating current stresses is required in the 

implementation of the UL formulation, and a so-called incrementally objective stress update scheme 

that can exactly account for the proper rotation of the stresses in a rigid body rotation for large 

deformation problems is needed. Hughes and Winget [34] introduced the concept of incremental 

objectivity, and Rashid [35] further distinguished it into weak objectivity and strong objectivity. 

Subsequently, Simo and Hughes [36] gave an extensive discussion on the incrementally objective 

stress update algorithms based on the concept of Lie derivatives. 

Recently, new displacement-based 4-node, 8-DOF plane quadrilateral finite element models for 

analysis of geometric nonlinear problems can still be found in various literatures, such as the 

nonlinear quadrilateral area coordinate element AGQ6-I [23], the nonlinear quasi-conforming 

element [37], the nonlinear assumed strain MITC element [38], and so on. However, as previously 

mentioned, no model can break MacNeal’s theorem, so that their performances cannot be guaranteed 

when severely distorted mesh appears. Some researchers hoped to solve this difficulty by introducing 

other new techniques, such as the 4-node Hu–Washizu elements based on skew coordinates 
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presented by Wisniewski et al. [39,40], the elements with the additional rotational degrees of 

freedom presented by Zouari et al. [41], the hybrid discontinuous Galerkin method proposed by 

Wulfinghoff et al. [42], the partition of unity-based ‘FE-meshfree’ method proposed by Rajendran et 

al. [43], and so on. Nevertheless, the computation costs also increase at the same time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

It is very interesting that whether the unsymmetric element US-ATFQ4 [30], which possesses high 

distortion-resistance for linear elastic problems, can be extended to nonlinear applications. However, 

some researchers negative this extension, they think that the approach, which employs the analytical 

solutions satisfying all governing equations for linear elasticity, restricts the element to linear elastic 

analysis [44]. In fact, the analytical trial functions are only the functions of physical coordinates with 

material constants. These coordinates and material constants can be updated referred to the current 

configuration at each iterative step, so that it is possible to use them as part of the incremental 

equations of the UL formulation. 

The main purpose of this paper is to extend the 4-node, 8-DOF unsymmetric element US-ATFQ4 

to the geometric nonlinear analysis. Since the original linear element US-ATFQ4 contains the 

analytical solutions for plane pure bending, how to modify such formulae into incremental forms for 

nonlinear applications and design an appropriate updated algorithm become the key of the whole job.  

As many engineering materials still present small strain state in practice [45], this paper will only 

focus on small strain with large displacement/rotation problems. The content of the work is 

organized as follows: In Section 2, the UL formulation is briefly reviewed. In Section 3, the 

formulations of element US-ATFQ4 for geometric nonlinear analysis are established, and the 

numerical implementation in Abaqus UEL [5] is also introduced. In the following Section 4, several 

typical geometric nonlinear numerical examples are employed to test the performance of the present 

formulations. It can be seen that the proposed nonlinear element US-ATFQ4 can provide excellent 

results in both regular and distorted meshes, which demonstrates the advantages of the new 

unsymmetric finite element method with linear analytical trial functions. 

 

2. BRIEF REVIEW ON THE UPDATED LAGRANGIAN FORMULATION 

As shown in Figure 1, a general deformable body experiencing large displacement motion in the 
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Cartesian coordinate system is considered. C0, C1 and C2 are the configurations of the body at times 

0, t and t+t, respectively. The Cartesian coordinates of a point P within the body at these three 

different configurations are  0 0 0, ,x y z ,  , ,t t tx y z  and  , ,t t t t t tx y z   , respectively, in which 

the left superscripts refer to the times for three different configurations of the body. So the 

displacement increments are given by  , 1,2,3t t t

i i iu x x i   . Note: two types of notation, 

indicial notation and matrix notation, are both used in this paper. In order to avoid confusion with 

nodal values, the Cartesian coordinates are expressed by (x, y, z), rather than the form with subscripts, 

i.e. 1 2 3, ,x x x y x z   . For the components of a vector, their subscripts are also expressed by (x, y, 

z), rather than (1, 2, 3), for example, the components of the displacement increments iu  in three 

dimensions are 1 2 3, ,x y zu u u u u u   . The nodal indices are indicated by upper case letters, for 

example, iIu  is the i-component of the displacement increments at node I [33]. In conformance with 

the rules of Einstein notation, indices repeated twice in a term should be summed. 

In the updated Lagrangian (UL) formulation, the equilibrium equation of the body at time t+t 

referred to configuration C1 can be derived by the principle of virtual displacements, and expressed 

by [46]: 

 d d d 0
t t t

t t t t t t t t t t t

t ij t ij t i i t i i
V V S

S V f u V t u S           ,              (1) 

where t t

t ijS  and t t

t ij
  denote, respectively, the second Piola-Kirchoff stress tensor and the 

Green-Lagrange strain tensor, which are defined at time t+t and referred to configuration C1; and  

d d =
t t

t t t t t t t t

t i i t i i ext
V S

f u V t u S W      ,                           (2) 

where t t

extW   denotes the external virtual work at time t+t; t t

t if
  and t t

t it
  denote, 

respectively, the components of the body force vector and the boundary traction vector applied to 

configuration C2 and referred to configuration C1; iu  denotes virtual displacement vector imposed 

on configuration C2; 
tV and t S  denote the volume and the surface area of the body under 

discussion referred to configuration C1, respectively. 
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Equation (1) is a nonlinear equation for solving the displacement increments iu . In order to make 

it computationally tractable, equation (1) is usually linearized by introducing following relations and 

approximations [46]: 

t t t

t ij ij t ijS S   , ( t t

t ij ijS  ),                                   (3) 

 , , , ,

1 1
;

2 2

t t

t ij t ij t ij t ij

t ij t i j t j i t ij t k i t k j

e

e u u u u

  



   



  


,                           (4) 

;t ij t ijrs t rs t ij t ijS C e e    ,                                    (5) 

where t

ij  are the components of the known Cauchy stresses at time t; t ije  and t ij  are the linear 

and nonlinear incremental strains referred to configuration C1, respectively; , = i
t i j t

j

u
u

x




 are the 

derivatives of the displacement increments iu  refer to the coordinates
 t

jx ; t ijrsC  are the 

components of the incremental stress-strain relation tensor at time t referred to configuration C1.    

Substitution of equations (3), (4) and (5) into equation (1) yields the linearized equilibrium 

equation: 

d d d
t t t

t t t t t t t

t ijrs t rs t ij ij t ij ext ij t ij
V V V

C e e V V W e V           .            (6) 

 

3. EXTENSION OF THE UNSYMMETRIC 4-NODE, 8-DOF PLANE ELEMENT 

US-ATFQ4 FOR GEOMETRIC NONLINEAR ANALYSIS 

3.1 Geometric nonlinear Formulations for element US-ATFQ4 

In this section, the unsymmetric 4-node plane membrane element US-ATFQ4 [30], which can 

perfectly break through MacNeal’s theorem [28, 29] and possesses excellent distortion-resistance for 

linear elasticity [30], is extended to applications for geometric nonlinear problems. 

A 4-node, 8-DOF plane quadrilateral element is shown in Figure 2. Nodes 1, 2, 3 and 4 are the 

corner nodes;    , ,t t t t

I I I Ix y S T，  are, respectively, the Cartesian coordinates and quadrilateral area 

coordinates (QACM-II) [24] (see Appendix A) of the corner node I  1,2,3,4I   at time t; Iu  is 
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the  -component  1,2   of the displacement increments at node I. For the unsymmetric element 

US-ATFQ4 [30], two different sets of interpolation functions for displacement fields are 

simultaneously used. The first set is for the virtual displacement fields  u  and employs the shape 

functions of the traditional 4-node bilinear isoparametric element: 

   x e

y

u

u


 



  
      

  
u N q ,                                         (7) 

where 

 
T

1 1 2 2 3 3 4 4

e

x y x y x y x yu u u u u u u u            q ,           (8) 

1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0

N N N N

N N N N

 
     

 
N ,                        (9) 

with 

    
1

1 1 , 1,2,3,4
4

I I IN I       .                        (10) 

And  eq  is the nodal virtual displacement vector;   N  is the interpolation function matrix of 

traditional 4-node bilinear isoparametric element;  ,I I   are the nodal isoparametric coordinates. 

The second set is for the real incremental displacement fields  u  and adopts a composite 

coordinate interpolation scheme with analytical trial functions: 

    

1

2

7 8

3

7 8

8

1 0 0 0

0 1 0 0

t t t t
x

t t t t
y

u x y U U

u x y V V









 
 
       

      
      

 
  

u P α

M

           (11) 

where i (i=1~8) are eight undetermined coefficients; 7

tU , 7

tV  , 8

tU  and 8

tU  are the linear 

displacement solutions for plane pure bending in arbitrary direction and in terms of the second form of 

quadrilateral area coordinates (QACM-II) (S, T) [24] (see Appendix A) at time t. The detailed 

expressions of 7

tU , 7

tV  , 8

tU  and 8

tU  are derived by reference [30] and given in Appendix B. 

Substitution of nodal coordinates (including Cartesian and QACM-II) and nodal displacement 
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increments into equation (11) yields: 

   ˆx t e

y

u

u

         
  

u N q ,                                          (12) 

where  

 
T

1 1 2 2 3 3 4 4

e

x y x y x y x yu u u u u u u u    q ,                    (13) 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

t t t t t t t t

t

t t t t t t t

N N N N N N N N

N N N N N N N N

 
     

  

N .             (14) 

And  eq  is the nodal displacement increment vector; ˆt 
 

N  is the composite coordinate 

interpolation functions matrix. The detailed expressions of ˆt 
 

N  are given in Appendix B. It can be 

seen that the interpolation functions matrix ˆt 
 

N  depends on current coordinates, so the analytical 

trial functions should be updated at each iterative step in the framework of updated Lagrangian 

formulation. 

The first term at the left side of equation (6) can be rewritten as following matrix form: 

     

T

, 11 12 16 ,

, 21 22 26 ,

, , 61 62 66 , ,

T T

d

ˆ d

t

t
e

t
e

t

t ijrs t rs t ij
V

t x x t t t t x x

t

t y y t t t t y y
V

e

t x y t y x t t t t x y t y x

e t t e t

t L t t L
V

e

C e e V

u C C C u

u C C C u d V

u u C C C u u

V







 



    
    

     
         

       





 q B C B q

,             (15) 

where  

1, 4,

1, 4,

1, 1, 4, 4,

0 ... 0

0 ... 0

...

t x t x

t

t L t y t y

t y t x t y t x

N N

N N

N N N N

 
 

     
 
 

B ,                                (16) 

 

11, 12, 17, 18,

21, 22, 27, 28,

11, 21, 12, 22, 17, 27, 18, 28,

ˆ ˆ ˆ ˆ...

ˆ ˆ ˆ ˆ ˆ...

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ...

t t t t

t x t x t x t x

t t t t t

t L t y t y t y t y

t t t t t t t t

t y t x t y t x t y t x t y t x

N N N N

N N N N

N N N N N N N N

 
 

     
 

     

B u .     (17) 

The second term at the left side of equation (6) can be rewritten as 
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   

 

, , , , , , , ,

, , , , , , , ,

T

,

,

,

,

d

+ d

0 0

0 0
=

0 0

0 0

t

t
e

t
e

t t

ij t ij
V

t t

xx x x x x y x y x yy x y x y y y y y
V

e

t t

xy x x x y y x y y x y x x y y y x

t t
x x xx xy

t t
x y yx yy

t tV
y x xx xy

t t
y y yx yy

V

u u u u u u u u

u u u u u u u u V

u

u

u

u

  

     

    

  

  

  

  

   


  


 
 
 
 
 
 
 







   

,

,

,

,

T T

d

ˆ d
t

e

x x

x y t

e y x

y y

e t t t e t

t NL t NL
V

e

u

u
V

u

u

V

   
   

  
  
  
     

           



 q B σ B q
(

,             (18) 

where 

1, 4,

1, 4,

1, 4,

1, 4,

0 ... 0

0 ... 0

0 ... 0

0 ... 0

t x t x

t y t yt

t NL

t x t x

t y t y

N N

N N

N N

N N

 
 
      
 
  

B ,                          (19) 

11, 12, 17, 18,

11, 12, 17, 18,

21, 22, 27, 28,

21, 22, 27, 28,

ˆ ˆ ˆ ˆ...

ˆ ˆ ˆ ˆ...
ˆ

ˆ ˆ ˆ ˆ...

ˆ ˆ ˆ ˆ...

t t t t

t x t x t x t x

t t t t

t y t y t y t yt

t NL t t t t

t x t x t x t x

t t t t

t y t y t y t y

N N N N

N N N N

N N N N

N N N N

 
 
 

     
 
 
 

B .                        (20) 

The last term at the right side of equation (6) can be rewritten as 

       

T

T T T

d d

2

d d

t t
e

t t
e e

t

t xx xx

t t t t

ij t ij t yy yy
V V

e t

t xy xy

t t e t t t

t t L
V V

e e

e

e V e V

e

V V

 

   

 

 

   
   

    
   
   

     

 

  e σ q B σ% %

.                  (21) 

Thus, from equations (15-21), equation (6) can be expressed by following matrix form 

         

       

T TT T

T T T

ˆ ˆd d

d

t t
e e

t
e

e t t e t e t t t e t

t L t t L t NL t NL
V V

e e

e t t e e t t t

t ext t L
V

e e

V V

V

 

 

                    

      

  

 

q B C B q q B σ B q

q F q B σ

(

%

.  (22) 

Since  eq  in above equation are arbitrary, the following finite element equations can be obtained: 
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   t e e t t e

t T t

e e

     K q R ,                                 (23) 

where 

t e t e t e

t T t L t NL
           K K K ,                                    (24) 

     int

t t e t t e t e

t t ext t

  R F F ,                                  (25) 

 
T

ˆ d
t

e

t e t t t

t L t L t t L
V

V         K B C B ,                             (26) 

T
ˆ d

t
e

t e t t t t

t NL t NL t NL
V

V             K B σ B
(

,                          (27) 

      
T T

d d
t t

e e

t t e t t t t t t

t ext t t
V S

V S          F N f N t ,                (28) 

    
T

int d
t

e

t e t t t

t t L
V

V   F B σ% .                                  (29) 

The increments of the nodal displacements from the time t to t+t,  eq , can be obtained by solving 

equation (23). Usually,  eq  will be used to update the displacements, strains, and stresses at time 

t+t. Here, in order to obtain the values of Cauchy stress efficiently and accurately, instead of usual 

strategy, and the Hughes-Winget method [34] is adopted to update the stresses at time t t : 

     
Tt t t          σ R σ R σ ,                                 (30) 

where 

 ;

t t t t
xx xyxx xyt t

t t t t
yx yyyx yy

  

  

 



 

    
              

σ σ ,                     (31) 

   

 

1
1 01 1

,
0 12 2

xx xy

yx yy

xx xy

yx yy

R R

R R

W W

W W

       
                     

  
   

  

R I W I W I

W

,         (32) 

with 

 /2 , /2 ,

1

2
t t t tW u u        ,                                   (33) 

   /2

/2 , /2

1
= ; , , 1,2

2

t t t t t

t t t t

u
u x x x

x


    



  

 


  


.          (34) 
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W , which are defined at the midpoint of the time interval, are the increments in spin; R  are the 

increments in rotation; and the subscripts t and t+t, respectively, refer to the beginning and the end of 

the increment. 

For the isotropic elastic case, we have: 

'

'
'

'2

'

1 0

1 0
1

21
0 0

2

xx xx

yy yy

xy xy

D
E

D

D

 

 


 

 
     
    

      
         

 

,                               (35) 

where E E   and     for plane stress problem, whereas 2/ (1 )E E     and / (1 )      

for plane strain problem, in which E  and   are Young’s modulus and Poisson’s ratio, respectively; 

and D , which are also defined at the midpoint of the time interval, are the strain increments, 

   /2 , /2 ,

1
, , 1,2

2
t t t tD u u           .                        (36) 

 

3.2 Numerical implementation 

In this paper, the present geometric nonlinear formulations of element US-ATFQ4 will be compiled 

and implemented in commercial software SIMULA Abaqus via the user element subroutine (UEL) [5], 

and the corresponding flowchart is given by Figure 3. First, an input-file is written with Abaqus 

keywords [5] to define an analysis. Then, this input-file is submitted to Abaqus/Standard and the 

program is run to solve specified problems. All results will be output by automatically writing in an 

Odb file. Figure 3 also shows the incremental-iterative Newton-Raphson schemes for solving the 

nonlinear problems. 

All terms of the element formulations are evaluated by using a 2×2 Gauss integration scheme. 

Figure 4 plots the computation flowchart of the nonlinear formulations of element US-ATFQ4 in UEL. 

 

4. NUMERICAL EXAMPLES  

In this section, four examples using traditional regular and new distorted mesh divisions are adopted 

to assess the performance of the new formulations. All nonlinear finite element equations are solved by 
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the full Newton-Raphson method and automatic incrementation control scheme (the size of time 

increments is automatically adjusted according to convergence) embedded in Abaqus [5]. The initial 

size of time increment is set to 0.1 (the total time is 1) because of the highly geometric nonlinearity. 

Results obtained by some other plane quadrilateral models, as listed below, are also given for 

comparison. 

Plane quadrilateral element models for geometrically nonlinear analysis: 

 CPS4/CPE4 (Q4): the 4-node isoparametric elements in Abaqus, with full 22 integration 

scheme, and for plane stress and strain states, respectively [5]. 

 CPS4R/CPE4R: the 4-node isoparametric elements in Abaqus, with reduced 11 integration 

scheme and enhanced hourglass control approach, for plane stress and strain states, 

respectively [5]. 

 CPS4I/CPE4I: the 4-node nonconforming isoparametric elements in Abaqus, with enhanced 

assumed strain, and for plane stress and strain states, respectively [5].  

 CPS8/CPE8: the 8-node isoparametric elements in Abaqus, with full 33 integration scheme, 

and for plane stress and strain states, respectively [5]. 

 HW14-S: the mixed 4-node Hu–Washizu element based on skew coordinates proposed by 

Wisniewski et al. [39]. 

 HW18-SS: the mixed/enhanced 4-node Hu–Washizu element based on skew coordinates 

proposed by Wisniewski et al. [39]. 

 PFR4: the 4-node plane quadrilateral element with rotational degrees of freedom proposed by 

Zouari et al. [41]. 

 PFR4I: the 4-node nonconforming plane quadrilateral element with rotational degrees of 

freedom proposed by Zouari et al. [41]. 

 QM6: the nonlinear 4-node nonconforming plane quadrilateral element proposed by Battini 

[47], which was extended from the linear element QM6 proposed by Taylor et al. [4]. 

 Qnew: the nonlinear 4-node plane quadrilateral element proposed by Battini [47], which was 

extended from the linear element proposed by Fredriksson et al. [48]. 
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4.1 Cantilever beam subjected to end shear force 

As shown in Figure 5, a slender elastic cantilever beam is subjected to a resultant shear force P at its 

free end. The reference results of the tip vertical and horizontal displacements have been reported by 

Sze et al. in [49]. Two mesh cases, 1×10 elements with regular rectangle and distorted (isosceles 

trapezoid) shapes, are considered. The material (Young’s modulus E and Poisson’s ratio μ) and the 

geometry parameters are also given in Figure 5. 

Figure 6 plots the deformed shapes obtained by elements US-ATFQ4, CPE4, CPE4I, CPE4R and 

CPE8. And the resulting load-displacement curves of US-ATFQ4 compared with CPE4, CPE4I and 

CPE8 are given in Figure 7. Table I lists the total number of increments NINC and iterations NITER 

required for obtaining the converged ultimate solutions using two mesh cases. As described in the 

beginning of section 4, during the whole computation process, the time increment is automatically 

adjusted according to the convergence. Here, a fixed time increment case is also tested. Table II gives 

the results of the vertical and horizontal tip displacements obtained by a fixed time increment size 0.1 

(i.e., NINC=10). 

For the regular mesh (distortion parameter =0 ), it can be observed that the results of the present 

element US-ATFQ4 agree very well with the reference curves. Element US-ATFQ4 is found to be 

more accurate than the Abaqus nonconforming model CPE4I and CPE4R, while CPE4 shows a very 

poor precision. For distorted mesh ( =0.05 ), the proposed element US-ATFQ4 still keeps high 

accuracy. However, element CPE4I and CPE4R only provide very poor results similar to those 

obtained by CPE4. Furthermore, although the degrees of freedom of element US-ATFQ4 are much 

fewer than those of 8-node element CPE8, the results obtained by US-ATFQ4 are found to be better 

than those given by CPE8 for both two mesh cases. From Table II, it can be seen that the proposed 

element US-ATFQ4 can also produce excellent results when the fixed time increment 0.1 is used. 

Besides, this example is redone with a non-zero Poisson’s ratio, μ=0.3, under plane stress 

conditions. The reference results of the tip vertical and horizontal displacements are obtained by 

using CPS8 with a fine mesh (2×200 rectangular elements). The resulting load-displacement curves 

of US-ATFQ4 compared with CPS4, CPS4I and CPS8 are given in Figure 8. The same conclusions as 

discussed above can be drawn. 

Another similar example proposed by Wisniewski et al. [39] is also taken into consideration. The 
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only differences come from material and geometry parameters: E=10
6
, μ=0.3, L=100, b=1, h=1 and 

the resultant shear force P = 200. The final rotation of this cantilever’s tip is close to 90°. The 

reference results of the tip vertical and horizontal displacements are also obtained by using CPS8 with 

a fine mesh (2×200 rectangular elements). The resulting load-displacement curves of US-ATFQ4 

(with 1×20 rectangular elements) compared with HW14-S and HW18-SS (both with 1×100 

rectangular elements) are given in Figure 9. It can be seen that the proposed element US-ATFQ4 can 

produce excellent results with coarse mesh. 

 

4.2 Cantilever beam subjected to end moment 

As shown in Figure 10, a slender cantilever beam is subjected to a resultant moment M at its free end. 

All material and geometry parameters are also given in Figure 10. The analytical solution for this 

problem is R=EI/M [49], where I is the section moment of inertia, and R is the radius of a circular 

which the cantilever beam forms. Hence, when the end resultant moment M is taken to be 2πEI/L, the 

cantilever beam will bend to be a circle. The analytical solutions of the end moment against tip 

deflections have been given in reference [49]. 

Two mesh cases, 1×10 regular rectangle elements and 1×20 distorted (isosceles trapezoid) elements, 

are considered. The deformed shapes obtained by US-ATFQ4, CPE4, CPE4I, CPE4R and CPE8 are 

plotted in Figure 11. In addition, the load-displacement curves of US-ATFQ4 compared with CPE4, 

CPE4I and CPE8 are shown in Figure 12. Table III lists the total number of increments NINC and 

iterations NITER required for obtaining the converged ultimate solutions. And Table IV lists the 

vertical and horizontal tip displacements obtained by a fixed time increment 0.01 (i.e. NINC=100). 

For the regular mesh with 1×10 rectangular elements ( =0 ), elements CPE4, CPE4I, CPE4R and 

even CPE8 cannot provide good results. On the contrary, under the same mesh, the results obtained by 

the present element US-ATFQ4 exhibit high accuracy. For the mesh with 1×20 distorted elements 

( =0.03 ), the results of CPE4I and CPE4R are much worse than those obtained by using the 1×10 

regular mesh. But it can be seen that the solutions of US-ATFQ4 can still keep high accuracy. Similar 

to the previous example, although the degrees of freedom of CPE8 are much more than those of 

US-ATFQ4, US-ATFQ4 still performs better than CPE8 under both regular and distorted meshes. 

Besides, this example is redone with a non-zero Poisson’s ratio, μ=0.3, under plane stress 
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conditions. The reference results of the tip vertical and horizontal displacements are obtained by 

using CPS8 with a fine mesh (2×200 rectangular elements). The resulting load-displacement curves 

of US-ATFQ4 compared with CPS4, CPS4I and CPS8 are given in Figure 13. The same conclusions 

as discussed above can be drawn. 

 

4.3 Angle frame 

As shown in Figure 14, an angle frame structure, which is assumed to be under plane stress state, is 

clamped at left end and subjected to a uniformly distributed horizontal force F at right end. The 

material and geometry parameters are also given in Figure 14. The reference results are obtained by 

using CPS8 with a fine mesh (304 rectangular elements). Two mesh cases, (i) regular mesh with seven 

rectangular elements suggested by Zouari et al. in [41] and (ii) distorted mesh with nineteen distorted 

(isosceles trapezoid) elements suggested by Battini in [47], are considered. The deformed shape 

obtained by US-ATFQ4, CPS4, CPS4I compared with the reference deformed configuration are 

plotted in Figure 15. And the load-displacement curves of US-ATFQ4 compared with CPS4, CPS4I, 

PFR4 [41], PFR4I [41], QM6 [47] and Qnew [47] obtained by two meshes are shown in Figure 16. 

Table V lists the total number of increments NINC and iterations NITER required for obtaining the 

converged ultimate solutions. 

For the regular mesh, elements US-ATFQ4, PFR4I and CPS4I all can agree well with the reference 

configuration obtained by CPS8 with fine mesh. And for the distorted mesh, US-ATFQ4 can still keep 

high accuracy, while CPS4I, QM6 and Qnew lose their precision greatly. 

 

4.4 Lee’s frame buckling problem 

The Lee’s frame buckling problem is one of the NAFEMS (National Agency for Finite Element 

Methods and Standards) proposed benchmarks [50]. As shown in Figure 17, two mesh cases with 

twenty-five regular rectangle elements and twenty-five distorted (isosceles trapezoid) elements are 

considered. In order to study the post-bucking nonlinear behavior of the frame at point A, the 

modified Riks method [5, 45] is employed here. In such Riks method, the load magnitude is taken as 

an additional unknown, and the loads and the displacements are solved simultaneously. Unlike the 

normal incremental-iterative solution strategy under load control, the Riks method augments the 
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n-dimensional space of unknown displacements to an (n+1)-dimensional space of unknowns. So, 

another quantity, arc length l, must be used to measure the progress of solution along the static 

equilibrium path in load-displacement space, i.e. a path-following constraint should be added. More 

details about the Riks method were explained in [45]. 

Similar to previous examples, the automatic incrementation control scheme is chosen, and the 

initial increment size in arc length along the static equilibrium path inl , the maximum arc length 

increment maxl , and the maximum value of the load proportionality factor end  are set to 0.1, 1, 

30, respectively. The reference results are obtained by using a fine mesh containing sixty B22 

elements (B22 is the 3-node quadratic beam element of Abaqus [5]). The load-displacement curves 

of US-ATFQ4 compared with CPS4, CPS4I are plotted in Figure 18.  

Similar to the previous examples, the results obtained by CPS4I agree well with the reference 

solutions only for the regular mesh. But the present element US-ATFQ4 performs very well for both 

regular and distorted meshes. So, it is clear that the present new formulations also exhibit excellent 

performance in predicting the snapback instability of the Lee’s frame by employing the modified 

Riks method. Four deformed states of the frame corresponding to states I, II, III and IV in Figure 18 

obtained by US-ATFQ4 with twenty-five distorted elements are shown in Figure 19. 

Besides, this example is redone with a non-zero Poisson’s ratio, μ=0.3. The resulting 

load-displacement curves of US-ATFQ4 compared with CPS4, CPS4I are given in Figure 20. The 

situation is the same as that with zero Poisson’s ratio. 

 

5. CONCLUTIONS REMARKS 

An approach to develop a 4-node, 8-DOF plane quadrilateral finite element model with high 

precision and high distortion tolerance, for both linear and nonlinear problems, has been attracting 

many researchers for a long time. Unfortunately, due to some inherent defects, it is almost an 

impossible mission, just like the contradiction defined by MacNeal’s theorem [28, 29].  

Recently, a breakthrough was achieved for linear elastic problems. A series of 2D and 3D 

unsymmetric finite element models with analytical trial functions were successfully constructed [30, 

51, 52]. These elements contain the analytical solutions for homogeneous control equations of linear 
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elasticity, and exhibit excellent precision for both regular and severely distorted meshes. Especially, 

the 4-node, 8-DOF plane quadrilateral element US-ATFQ4 [30] and the 8-node, 24-DOF 3D 

hexahedral element US-ATFH8 [52] can completely break through the limitation given by MacNeal’s 

theorem. However, it is should be noted that these successes must depend on the general solutions of 

linear elasticity. Once there are no such solutions, for example, nonlinear problems, could anyone find 

an effective way to keep the same performance? Therefore, how to modify original formulations into 

incremental forms for nonlinear applications and design an appropriate updated algorithm become 

the key of the whole job. 

In this paper, the unsymmetric 4-node, 8-DOF plane element US-ATFQ4 [30] is extended to 

geometric nonlinear analysis. First, the analytical trial functions should be updated at each iterative 

step in the framework of updated Lagrangian (UL) formulation that takes the current configuration, 

i.e. the configurations at the beginning of an incremental step, as the reference configuration during 

that step. Second, an appropriate stress update algorithm in which the Cauchy stresses are updated by 

the Hughes-Winget method [34] is adopted to estimate current stress field. Numerical examples 

show that the new nonlinear element US-ATFQ4 also possesses amazing performance for geometric 

nonlinear analysis, no matter regular or distorted meshes are used. It again demonstrates the 

advantages of the unsymmetric finite element method with analytical trial functions, although these 

functions only come from linear elasticity. 

This is the first attempt to generalize the finite element model with the analytical trial functions of 

linear elasticity to nonlinear application, and only the small strain with large displacement/rotation 

problems are concerned. Since a rate form of updating algorithm is adopted, the formulations can be 

straightforward extended to large deformation problems. This topic will be discussed in another 

paper in the near future. 
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APPENDIX A. THE SECOND FORM OF QUADRILATERAL AREA 

COORDINATES (QACM-II) [24] 

As shown in Figure A, Mi (i=1,2,3,4) are the mid-side points of element edges 23 , 34 , 41  and 

12 , respectively. Then, the position of an arbitrary point P within the quadrilateral element 1234  can 

be uniquely specified by the area coordinates S and T (QACM-II), which are defined as: 

1 24 , 4S T
A A

 
  ,                                   (A.1) 

where A is the area of the quadrilateral element; 1 and 2 are the generalized areas of PM2M4 and 

PM3M1, respectively. The values of generalized areas 1 and 2 can be both positive and negative: 

for PM2M4 (or PM3M1), if the permutation order of points P, M2 and M4 (or P, M3 and M1) is 

anticlockwise, a positive 1 (or 2) should be taken; otherwise, 1 (or 2) should be negative.  

Two shape parameters 1g  and 2g  are defined here as: 

Δ123 Δ124
1

Δ234 Δ123 Δ124 Δ123
2

A A
g

A

A A A A A
g

A A





    



,                      (A.2) 

in which A123, A124 and A234 are the areas of 123, 124 and 234, respectively. Different values of 

these shape parameters mean different shapes of a quadrangle. Thus, the local coordinates of the corner 

nodes and mid-side points can be written as:  

1 1 2 1 2 2 2 1

3 3 2 1 4 4 2 1

1 2

3 4

node1: ( , ) ( 1 , 1 ); node 2 : ( , ) (1 ,1 );

node3: ( , ) (1 ,1 ); node 4 : ( , ) ( 1 , 1 );

M : (1, 0); M : (0,1);

M : ( 1, 0); M : (0, 1).

S T g g S T g g

S T g g S T g g

       

       

 

         (A.3) 

Above coordinate values are only small modifications for isoparametric coordinates: 

2

1

S g

T g

 

 

 


 
.                                        (A.4) 

And the relationship between QACM-II and the Cartesian coordinates is 
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 

 

3 1 3 1 3 1 1 1 1 1 1

4 2 4 2 4 2 2 2 2 2 2

1 1
( ) ( ) ( )

1 1
( ) ( ) ( )

S a a b b x c c y g a b x c y g
A A

T a a b b x c c y g a b x c y g
A A


            


             

,       (A.5) 

where  

1 3 1 1 3 1 1 3 1

2 4 2 2 4 2 2 4 2

, , ,

, , ,

a a a b b b c c c

a a a b b b c c c

      


     
                             (A.6) 

, , ,

( 1,2,3,4; 2,3,4,1; 3,4,1,2)

i j k k j i j k i k ja x y x y b y y c x x

i j k

     

  
                          (A.7) 

in which (xi, yi) (i=1, 2, 3, 4) are the Cartesian coordinates of the four corner nodes.  

 

 

APPENDIX B. THE EXPRESSIONS OF ˆt 
 

N  IN EQUATION (14) 

7

tU , 7

tV , 8

tU  and 8

tU  in equation (11) are the linear displacement solutions or plane pure bending 

in arbitrary direction and referred to configuration C1. For isotropic case, they can be written as [29] 

2 2 2 ' 2 2 2 2 2
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16
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[ 2 ( 4 16 ) ]

16

t t t t t
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U b f S b f S T c c A c b f b b f b A T
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
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
      


        


,   (B.2) 

where tS  and 
tT  are the quadrilateral area coordinates at time t.  

And ˆt 
 

N  in equation (14) can be rewritten as [29]: 

 
1

ˆ ˆt t


   
   

N P d ,                                       (B.3) 

where 
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, (B.3) 

in which    , ,t t t t

I I I Ix y S T，  are, respectively, the Cartesian coordinates and quadrilateral area 

coordinates (QACM-II) of the four corner nodes  1,2,3,4I  at time t; and  P has been given by 

equation (11). 
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Table I. The number of increments NINC and iterations NITER required to obtain the converged ultimate 

solutions for the slender cantilever beam subjected to an end resultant shear force problem (Figure 5). 

(a) 1×10 regular mesh 

Mesh (a) CPE4 CPE4I CPE4R CPE8 US-ATFQ4 

NINC 6 9 11 10 10 

NITER 7 43 52 51 50 

(b) 1×10 distorted mesh 

Mesh (b) CPE4 CPE4I CPE4R CPE8 US-ATFQ4 

NINC 6 6 6 9 10 

NITER 7 7 7 42 55 
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Table II. Results of vertical and horizontal tip displacements for the slender cantilever beam subjected to an 

end resultant shear force (Figure 5), fixed time increment 0.1. 

(a) 1×10 regular mesh 

(b) 1×10 distorted mesh 

 

  

Mesh (a) VTip UTip 

Total 

time 

CPE4I CPE8 US-ATFQ4 Reference   

[49] 

CPE4I CPE8 US-ATFQ4 Reference   

[49] 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 1.2985 1.2976 1.3069 1.3086 0.1018 0.1016 0.1029 0.1033 

0.2 2.4558 2.4562 2.4907 2.4926 0.3704 0.3701 0.3799 0.3808 

0.3 3.4101 3.4132 3.4874 3.4879 0.7316 0.7308 0.7616 0.7626 

0.4 4.1701 4.1755 4.2937 4.2919 1.1234 1.1208 1.1838 1.1840 

0.5 4.7732 4.7778 4.9371 4.9325 1.5113 1.5038 1.6055 1.6040 

0.6 5.2517 5.2567 5.4507 5.4436 1.8759 1.8633 2.0054 2.0020 

0.7 5.6361 5.6422 5.8646 5.8550 2.2117 2.1937 2.3753 2.3696 

0.8 5.9490 5.9570 6.2016 6.1903 2.5176 2.4947 2.7128 2.7050 

0.9 6.2071 6.2175 6.4829 6.4670 2.7952 2.7680 3.0232 3.0098 

1.0 6.4227 6.4362 6.7146 6.6984 3.0471 3.0162 3.3005 3.2863 

Mesh (b) VTip UTip 

Total 

time 

CPE4I CPE8 US-ATFQ4 Reference   

[49] 

CPE4I CPE8 US-ATFQ4 Reference   

[49] 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.0136 1.1990 1.3198 1.3086 0.0000 0.0868 0.1048 0.1033 

0.2 0.0272 2.2886 2.5279 2.4926 0.0000 0.3206 0.3906 0.3808 

0.3 0.0407 3.2091 3.5556 3.4879 0.0001 0.6428 0.7902 0.7626 

0.4 0.0541 3.9579 4.3932 4.2919 0.0002 0.9996 1.2376 1.1840 

0.5 0.0675 4.5597 5.0643 4.9325 0.0002 1.3571 1.6883 1.6040 

0.6 0.0808 5.0448 5.6010 5.4436 0.0003 1.6979 2.1182 2.0020 

0.7 0.0941 5.4393 6.0338 5.8550 0.0005 2.0151 2.5176 2.3696 

0.8 0.1073 5.7640 6.3855 6.1903 0.0006 2.3069 2.8821 2.7050 

0.9 0.1204 6.0303 6.6761 6.4670 0.0007 2.5691 3.2144 3.0098 

1.0 0.1335 6.2617 6.9209 6.6984 0.0009 2.8169 3.5190 3.2863 
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Table III. The number of increments NINC and iterations NITER required to obtain the converged ultimate 

solutions for the slender cantilever beam subjected to an end resultant moment (Figure 10). 

(a) 1×10 regular mesh 

Mesh (a) CPE4 CPE4I CPE4R CPE8 US-ATFQ4 

NINC 6 44 39 36 34 

NITER 8 264 222 220 203 

(b) 1×20 distorted mesh 

Mesh (b) CPE4 CPE4I CPE4R CPE8 US-ATFQ4 

NINC 6 6 6 49 41 

NITER 8 13 12 313 223 
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Table IV. Vertical and horizontal tip displacements for the slender cantilever beam subjected to an end 

resultant moment (Figure 10), fixed time increment 0.01.  

(a) 1×10 regular mesh 

(b) 1×20 distorted mesh 

 

  

Mesh (a) VTip UTip 

Total time CPE4I CPE8 US-ATF

Q4 

Reference   

[49] 

CPE4I CPE8 US-ATF

Q4 

Reference   

[49] 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 3.6124 3.5855 3.6499 3.6480 0.7599 0.7466 0.7730 0.7740 

0.2 6.4381 6.2884 6.6136 6.5980 2.7802 2.5894 2.9235 2.9180 

0.3 8.0804 7.8849 8.3626 8.3330 5.5003 4.8229 5.9843 5.9450 

0.4 8.4920 8.5854 8.6499 8.6370 8.3130 6.9802 9.2977 9.1940 

0.5 7.8923 8.6725 7.5698 7.6390 10.7363 8.8636 12.1711 12.0000 

0.6 6.6380 8.3712 5.5375 5.7580 12.4912 10.4223 14.0474 13.8710 

0.7 5.1014 7.8383 3.1869 3.5710 13.5012 11.6679 14.6504 14.5950 

0.8 3.5882 7.1785 1.2019 1.6500 13.8405 12.6349 14.0673 14.2700 

0.9 2.3019 6.4606 0.1167 0.4050 13.6666 13.3628 12.7371 13.2470 

1.0 1.3454 5.7298 0.1346 0.0000 13.1618 13.8897 11.3299 12.0000 

Mesh (b) VTip UTip 

Total time CPE4I CPE8 US-ATF

Q4 

Reference   

[49] 

CPE4I CPE8 US-ATF

Q4 

Reference   

[49] 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.1 0.1379 3.6050 3.6518 3.6480 0.0010 0.7549 0.7754 0.7740 

0.2 0.2746 6.5185 6.6171 6.5980 0.0038 2.8274 2.9349 2.9180 

0.3 0.4101 8.2617 8.3607 8.3330 0.0086 5.7143 6.0119 5.9450 

0.4 0.5447 8.6870 8.6274 8.6370 0.0151 8.7768 9.3436 9.1940 

0.5 0.6784 7.9684 7.5067 7.6390 0.0236 11.4502 12.2242 12.0000 

0.6 0.8113 6.4825 5.4198 5.7580 0.0338 13.3680 14.0777 13.8710 

0.7 0.9437 4.6721 3.0234 3.5710 0.0460 14.3997 14.6113 14.5950 

0.8 1.0751 2.9233 1.0432 1.6500 0.0600 14.6201 13.9134 14.2700 

0.9 1.2064 1.5037 0.0618 0.4050 0.0759 14.2284 12.4629 13.2470 

1.0 1.3367 0.5466 0.3028 0.0000 0.0937 13.4710 11.0282 12.0000 
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Table V. The number of increments NINC and iterations NITER required to obtain the converged ultimate 

solutions for the angle frame problem (Figure 14). 

(a) Regular mesh with 7 rectangular elements 

Mesh (a) CPS4 CPS4I US-ATFQ4 

NINC 6 6 8 

NITER 12 26 31 

(b) Distorted meh with 19 distorted elements 

Mesh (b) CPS4 CPS4I US-ATFQ4 

NINC 6 7 7 

NITER 18 27 27 
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Figure 1. Large displacement motion of a body in Cartesian coordinate system. 
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Figure 2. A 4-node plane quadrilateral element. 
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Figure 3. The incremental-iterative Newton-Raphson scheme in Abaqus/Standard. 
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Figure 4. The computation flowchart of the nonlinear formulations of element US-ATFQ4. 
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Figure 5. A slender cantilever beam subjected to end resultant shear force and two mesh cases. 

(a) Regular mesh; (b) Distorted mesh. 
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(a) Results obtained by 1×10 regular rectangle elements; 

(b) Results obtained by 1×10 distorted elements. 

Figure 6. The deformed shapes of slender cantilever beam subjected to end resultant shear force. 
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Figure 7. Load-displacement curves for a slender cantilever beam subjected to an end 

resultant shear force with μ=0 (Example 4.1). 

(a) End shear force versus vertical displacement curves, 

110 regular and distorted mesh; 

(b) End shear force versus horizontal displacement curves, 

 110 regular and distorted mesh. 
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Figure 8. Load-displacement curves for a slender cantilever beam subjected to an end 

resultant shear force with μ=0.3 (Example 4.1). 

(a) End shear force versus vertical displacement curves, 110 regular and distorted mesh; 

(b) End shear force versus horizontal displacement curves, 110 regular and distorted mesh. 
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Figure 9. Load-displacement curves for a slender cantilever beam subjected to 

an end resultant shear force [39]. 
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Figure 10. A slender cantilever beam subjected to end moment and two mesh cases. 

 (a) Regular mesh; (b) Distorted mesh. 
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(a) Results obtained by regular mesh; 

(b) Results obtained by distorted mesh. 

Figure 11. The deformed shapes of slender cantilever beam subjected to end resultant 

moment. 
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Figure 12. Load-displacement curves for a slender cantilever beam subjected to an end resultant 

moment with μ=0 (Example 4.2). 

(a) End moment versus vertical displacement 

curves, 110 regular mesh; 

(b) End moment versus horizontal 

displacement curves, 110 regular mesh; 

(c) End moment versus vertical displacement 

curves, 120 distorted mesh; 

(d) End moment versus horizontal 

displacement curves, 120 distorted mesh. 
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Figure 13. Load-displacement curves for a slender cantilever beam subjected to an end resultant 

moment with μ=0.3 (Example 4.2). 

(c) End moment versus vertical displacement 

curves, 120 distorted mesh; 

(d) End moment versus horizontal 

displacement curves, 120 distorted mesh. 

(a) End moment versus vertical displacement 

curves, 110 regular mesh; 

(b) End moment versus horizontal 

displacement curves, 110 regular mesh; 
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Figure 14. An angle frame structure and two mesh cases.  

(a) Regular mesh with 7 rectangular elements; (b) Distorted mesh with 19 elements. 
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Figure 15. The deformed shapes of the angle frame structure. 

(b) Results obtained by mesh with 19 distorted elements. 

(a) Results obtained by regular mesh with 7 rectangular elements; 
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Figure 16. Load versus horizontal displacement curves for the angle frame 

problem (Example 4.3). 

(a) 7 regular rectangle elements; 

(b) 19 distorted elements. 
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Figure 17. A Lee’s frame structure and two mesh divisions. 
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Figure 18. Load versus vertical displacement curves for the Lee’s frame buckling 

problem with μ=0 (Example 4.4). 

I 

II 

III 

IV 
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Figure 19. Four deformed states (state I, II, III and IV are given in Figure 18) of the Lee’s frame 

structure obtained by twenty-five distorted US-ATFQ4 elements. 
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Figure 20. Load versus vertical displacement curves for the Lee’s frame 

buckling problem with μ=0.3 (Example 4.4). 
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Figure A. Definition of the quadrilateral area coordinates S and T of QACM-II [24] 


