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ABSTRACT 1 

The ingestion of foods and food-derived substances that may mediate the immune 2 

system is widely studied. Evidence suggests cereal arabinoxylans (AXs) have 3 

immunomodulatory activities that may impart health benefits in terms of immune 4 

enhancement. This study extracted AXs from corn bran using alkali and developed a 5 

modification process using three endoxylanases to obtain fractions of lower molecular 6 

weight ranges. In vitro studies showed extracted and modified AXs significantly (P < 7 

0.05) elevated nitric oxide (NO) synthesis by the human U937 monocytic cell line 8 

(ranging from 53.7±1.1 to 62.9±1.2 µM per million viable cells) at all concentrations 9 

tested (5-1000 g/ml), indicative of immune enhancement compared to an untreated 10 

control (43.7±1.9 µM per million viable cells). The study suggested the dose range and 11 

Mw distribution of AXs are key determinants of immune-modulatory activity. AXs in 12 

the low Mw range (0.1KDa-10KDa) were the most effective at inducing NO secretion 13 

by U937 macrophages at low AX concentration ranges (5-50 g/ml) with NO 14 

production peaking at 62.9±1.2 µM per million viable cells with 5 g/ml of AX (P = 15 

0.0009). In contrast, AXs in the high Mw range (100-794KDa) were most effective at 16 

inducing NO at high AX concentration ranges (500-1000 g/ml) with NO production 17 

reaching a maximum of 62.7±1.3 µM per million viable cells at 1000 g/ml of AX (P 18 

= 0.0011). The findings suggest that dietary AXs from corn bran may heighten innate 19 

immune responses in the absence of infection or disease.      20 

 21 
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INTRODUCTION 25 

The immune system plays a pivotal role in the protection and maintenance of human health 1. Several 26 

factors including malnutrition and unhealthy lifestyles (e.g. poor diet) can disturb human immune functions 27 

2-4. Consequently, the ingestion of foods and food-derived substances that may enhance the immune system 28 

is widely studied. Dietary intervention is considered an efficient way of preventing a decline in immune 29 

functions and reducing the risk of infection or cancer 5,6. Some dietary fiber-derived food substances (such as 30 

β-1,3-glucan, β-1,6-glucan and α-1,6-mannan) have been discovered that show immune stimulation activity 31 

7,8. Arabinoxylan (AX), an important hemicellulose found in the outer-layer and endosperm cell walls of 32 

cereals, is a dietary fiber. In vivo studies have reported that cereal AXs can modulate both the innate (typical 33 

of natural killer cells and monocytes/macrophages) and adaptive (typical of T and B cells) immune activities 34 

after oral administration in mice and chicken 9. For example, dietary supplementation of AXs (at 100-200 35 

mg/kg body weight each day for 15 days) has been shown to induce murine macrophage activation and 36 

phagocytosis 10, 11. 37 

Although the exact mechanism of how dietary fibers, including AXs, modulate the immune response is 38 

not well understood, several studies have shown that dietary fibers can be taken up by microfold cells, 39 

macrophages and dendritic cells in the intestines and transported to lymph nodes, thus providing a mechanism 40 

for the distribution of AXs in the body. Moreover, direct interaction of fibers with colonic epithelial cells or 41 

innate immune cells (such as macrophages) can mediate cytokine production leading to inflammatory and 42 
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anti-tumor effects 8, 12, 13. Macrophages are present in high numbers in the intestine and are frequently in close 43 

proximity with epithelium cells 14. A previous study demonstrated that rice-derived and wheat-derived AXs 44 

are dietary fibers that are taken up by gastrointestinal macrophages and transported to the spleen, lymph 45 

nodes and bone marrow 12. Furthermore, these studies also showed that dietary AXs can interact with murine 46 

intestinal macrophages and stimulate immune responses in vivo 12, 14. Once transported to tissues such as the 47 

spleen, lymph tissues and bone marrow dietary-derived AXs can modulate inflammatory responses in non-48 

intestinal, peripheral tissues by interacting with resident inflammatory cells (including tissue macrophages) 49 

or with bone marrow-derived leukocytes (e.g. monocytes) that may be subsequently recruited from 50 

circulation to sites of infection, injury or disease. Indeed, a human study involving 80 human participants 51 

showed that oral consumption of AX (3 g daily for 8 weeks) as a dietary supplement significantly increased 52 

interferon gamma (IFN-γ) production in circulating leukocytes of healthy adults 15, thus confirming non-53 

intestinal inflammatory effects of AXs on peripheral blood mononuclear cells in vivo.  54 

The structural properties of AXs are affected by the plant source, extraction processes, modification and 55 

purification methods. This results in AX extracts with varying molecular size and degree of branching 16. 56 

Intestinal innate immune cells, such as macrophages, can interact with an array of AXs with differing 57 

structural properties typically found in the diet 12. Thus, it is essential to investigate the relationship between 58 

structural details and biological activity. Recent in vivo and in vitro studies suggest the immunological 59 

properties of wheat AXs might be influenced by structural features including molecular characterization, 60 
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degree of branching and monosaccharide compositions 10. However, there has been no clear consensus as to 61 

which structural properties of AXs modulate immune function. Thus, the precise structure-activity 62 

relationship of AXs remains to be elucidated. Corn bran is a by-product of corn starch processing, which has 63 

been identified to be a cost effective source of AXs (25-30% by content) for which extraction methods have 64 

been developed 17-19. However, very little data exists on immunomodulatory properties of corn-derived AXs. 65 

Endoxylanases and cellulase are commonly used to extract and degrade AXs from cereal cell wall tissue 16. 66 

Endo-β-1,4-xylanases (EC 3.2.1.8) cleave the β-glycosidic bond between two β-(1,4) D-xylopyranosyl units 67 

20, 21. Endo-β-xylanases are mainly classified into two glycoside hydrolase (GH) families, namely GH 10 and 68 

GH 11. Endoxylanases from the GH11 family are commonly used to hydrolyze AXs because of their higher 69 

substrate specificity compared to GH 10 endoxylanases 21, 22. Three GH 11 endoxylanases from Thermomyces 70 

lanuginosus, Neocallimastix patriciarum and Penicillium funiculosum have been characterized and used in 71 

different studies for isolation and modification of cereal hemicellulose 23. However, the effects of these three 72 

enzyme modification processes on the molecular structures of corn bran AXs have not been well documented. 73 

Thus, this investigation used chemical extraction and enzyme modification processes for modifying the 74 

chemical structures of AXs extracted from corn bran. Subsequently, corn-derived AXs were assessed for their 75 

immune-modulating effects on human macrophages in a monocytic (U937) cell line by measuring nitric 76 

oxide (NO) levels. NO mediates inflammation and host defenses by regulating signaling pathways and 77 

transcription factors, vascular responses, leukocyte adhesion and transmigration, cytokine expression as well 78 
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as proliferation and apoptosis 24. The U937 cell line is frequently used to model human macrophages instead 79 

of using non-human (animal) macrophage cell lines such as RAW264.7 and has been previously used to 80 

investigate the effects of cereal AXs (at concentrations ranging from 1 to 500 g/ml) on several immune 81 

activities in vitro, including NO production 25. 82 

  83 

MATERIALS AND METHODS 84 

Chemicals. The sample of dried corn bran (moisture content 4.5%) was kindly provided from the 85 

Chinese Academy of Agricultural Sciences (Beijing, China). There were three endo-1,4-β-xylanase products 86 

(EC 3.1.2.8) used in the modification of AXs, which were Pentopan Mono BG (P-BG, 2500 U/g) from 87 

Thermomyces lanuginosus (Novozyme, Bagsvaerd, Denmark), E-XYLNP (1000-1500 U/mg) from 88 

Neocallimastix patriciarum (Megazyme, Bray, Wicklow Ireland) and Optimash VR (O-VR, 3150 U/g) from 89 

Penicillium funiculosum (Genencor, Leiden, Netherland). The 1,4-α-D-glucan glucanohydrolase (-Amylase 90 

heat stable, ≥500 U/ml) from Bacillus licheniformis and proteinase (≥500 U/ml) from Aspergillus melleus 91 

were purchased from Sigma-Aldrich, Gillingham, United Kingdom. D-(+)-xylose (≥ 99%) for AX extraction 92 

yield determination was purchased from Acros Organics (Loughborough, UK). Eight pullulan (without side 93 

chains) standards of varying molecular weights (5–800KDa) were purchased from Shodex (Shanghai, China). 94 

D-glucose (≥ 99.5%), D-xylose (≥ 99%), L-arabinose (≥ 99%), and D-galactose (≥ 99%) were purchased from 95 

Sigma–Aldrich (Gillingham, UK). U937 cells were purchased from the Public Health England Culture 96 
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Collections 26. Lipopolysaccharide (LPS)  (E. coli serotype O111:B4, 25mg) was purchased from Sigma 97 

Aldrich, UK. RPMI-1640 cell culture medium with L-Glutamine was purchased from Lonza (Verviers, 98 

Belgium). Foetal bovine serum (impurities ≤ 10 EU/mL endotoxin) and penicillin-streptomycin (10,000 99 

units penicillin and 10mg streptomycin/ml) were purchased from Sigma-Aldrich (Gillingham, USA).  100 

Extraction and purification process of AXs from corn bran. The alkaline extraction of AXs from 101 

corn bran was based on Doner, et al. 19. Milled corn bran (300g) was mixed in 2000g of distilled water (1.5:10, 102 

w/w) using a hand blender (800W, WSB800U) for 45s. The mixture was adjusted to pH 7.0 before adding 103 

780µl Termamyl α-amylase and placing in a 90°C shaking (100 rpm) water bath for 1h. The mixture was 104 

then boiled for 15 min to inactivate the enzyme. Following subsequent centrifugation of the mixture (6000 x 105 

g, 20min), the residue was recovered and oven-dried overnight at 45°C to obtain de-starched corn bran. De-106 

starched corn bran samples were mixed in distilled water (1:10, w/w). Appropriate amounts of NaOH were 107 

added to make up 1%, 2%, 4% and 8% w/w NaOH concentrations. The mixtures were boiled for 1h with 108 

stirring, followed by centrifugation (6000 x g, 20min). The supernatants were recovered and weighed for 109 

further precipitation. The ethanol precipitation method was used from Li, et al. 27. Briefly, 600ml AXs-110 

containing supernatant was mixed with 400µl proteinase at 60°C for 1h to remove protein. The solution was 111 

then placed in boiling water bath for 15min to inactivate the proteinase followed by centrifugation (6000 x g, 112 

20min). The supernatant was collected and mixed with 1.4L of 70% (v/v) ethanol. The mixture was kept at 113 

4°C overnight followed by centrifugation (6000 x g, 20min). After centrifugation, the precipitate was washed 114 
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twice with 20ml aliquots of ethanol and re-suspended in 20ml acetone and washed for 1min. After washing, 115 

the precipitate was dried in an oven overnight at 45°C to obtain the alkaline extracted AX samples (AEAXs). 116 

The AEAXs were milled using an analytical mill (IKA A11 Basic, Guangzhou, China, 50/60Hz, 160W).   117 

Modification process. A 1/25 (w/w) solution of AEAX was prepared by adding 3g AEAX (8% NaOH 118 

extracted) to 72g distilled water. Three different endo-1,4-β-xylanase products (E-XYLNP, P-BG, O-VR) 119 

were used to modify the AEAX sample (subsequently referred to as E-AEAX) using two different incubation 120 

times of 24h and 48h. Briefly, to each AEAX solution, 0.03g of enzyme (corresponding to 400 ppm) was 121 

added and mixed well. The optimum pH and temperature of each enzyme was provided according to studies 122 

of Malunga and Beta 28 and Li, et al. 27, together with the manufacturer instructions. The conditions of each 123 

enzyme treatment were set as pH 6.0, 50°C and 24h/48h for E-XYLNP treatment; pH 4.5, 50°C and 24h/48h 124 

for P-BG treatment; and pH 4.0, 50°C and 24h/48h for O-VR treatment. After 24h/48h of enzymatic treatment, 125 

the mixture was placed in a boiling water bath for 15min to inactivate the enzyme. The water content of the 126 

E-AEAX sample was then removed by rotary vacuum evaporation followed by drying overnight in a 45°C 127 

oven to form a dried residue that was milled with an analytical mill. Chemical reagents containing nitrate or 128 

nitrite were avoided in the alkaline extraction or the enzyme modification process in order to prevent 129 

contamination in the subsequent in vitro NO stimulation assay.   130 

Analysis of AX extraction yields. A standard curve of xylose was constructed using the method 131 

described by Douglas 29 for determination of the xylose content of corn bran and extraction supernatants. In 132 
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turn, these measurements were used to calculate the content of AX in supernatants based on their A/X ratio 133 

as tested in monosaccharide composition analysis. A coefficient of 0.88 was used to correct for hydration 134 

water 30 in the equation AX% = Xylose% × (1+A/X) × 0.88. The AX content in the extraction supernatant 135 

was then used to calculate the extraction yield of AX from raw material based on the weight of the supernatant 136 

and raw material according to the equation: AX extraction yield (%) = AX% × weight of supernatant(g) ÷ 137 

weight of raw material(g) × 100.  138 

Analysis of AX sugar compositions. The monosaccharide compositions of AX samples were analyzed 139 

by following a method developed from Li, et al. 31 whereby 1ml of H2SO4 (1M) was added to 20mg dried 140 

AX sample. The mixture was hydrolyzed for 2h at 100°C in a glycerin bath followed by a 20-fold dilution 141 

(1mg/ml) in HPLC grade water. The pH of the diluted solution was adjusted to 6.5-7.2 with 1M NaOH. The 142 

solution was then filtered through a 0.45μm nylon membrane for high-pressure liquid chromatography 143 

(HPLC) analysis. Isocratic elution using HPLC water as the mobile phase was conducted on a JASCO RI-144 

2031 Refractive Index (RI) detector and Phenomenex ThermaSphere TS-130 column. Temperature of 145 

treatment was 85°C in all cases.  146 

Analysis of AX molecular weight distributions. Size exclusion HPLC (SE-HPLC) test was used to 147 

determine the molecular weights and size distribution of dried AXs samples, according to the methods 148 

described by Li, et al. 31 and Stoklosa and Hodge 32. The average degree of polymerization (avDP) was 149 

calculated by dividing the apparent peak molecular mass by the molecular mass of anhydropentose sugars 150 
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(Mw=132Da) 33. Mobile phase was prepared by dissolving 17g NaNO3 and 0.65g NaN3 in 2L of HPLC grade 151 

water. Eight pullulan standards with molecular weights in the range 5,000-800,000Da were used to construct 152 

a standard curve. The standard and dried AX samples were dissolved in the mobile phase to form 0.5 153 

and 2 mg/ml solutions, respectively, and gently stirred overnight prior to filtering through a 0.45μm nylon 154 

membrane for SE-HPLC analysis. Isocratic elution was conducted on a JASCO RI-2031 refractive index (RI) 155 

detector (Jasco Corporation, Tokyo, Japan) together with BioSep-SEC-S 4000 and BioSep-SEC-S 3000 156 

columns (Phenomenex, Macclesfield, UK). Two continuous columns were connected in series (starting with 157 

BioSep-SEC-S 4000) to improve the peak shape of the AXs samples. Running time was 60min per sample 158 

and flow rate was 0.6 ml/min throughout.  159 

Human U937 Cell Culture. Complete cell culture medium was prepared from RPMI-1640 with L-160 

glutamine (Lonza, Belgium), 10% foetal bovine serum (FBS) and 2% penicillin-streptomycin (P/S). The 161 

human U937 macrophage cell line was grown in complete culture medium using sterile tissue culture flasks 162 

under sterile conditions in an incubator at 37°C with 5% CO2. The cells were sub-cultured every 2 days and 163 

only used for experiments if viability was ≥ 90%. 164 

Polysaccharide medium preparation. The 10mg AEAX sample from the alkaline extraction (NaOH 165 

8%) of corn bran, the 10mg E-AEAX sample from the enzymatic modification (O-VR 48h) and 1ml LPS 166 

(5mg/ml) were added to culture medium (RPMI-1640 with 5% FBS) to form a total volume of 10ml and 167 

solubilized for 24h at 37°C prior to filtration through a 0.45μm sterile filter. Solubilized samples were diluted 168 
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further in culture medium for subsequent cell culture treatments according to concentrations (5 μg/ml, 50 169 

μg/ml, 500 μg/ml, 1000 μg/ml) used in similar published studies 25, 27. 170 

Cell viability and growth analysis. Cell growth and viability of U937 cells following treatment with 171 

AX samples and LPS were assessed by cell count and trypan blue uptake method 34. U937 cells were 172 

centrifuged (1000g for 10min) and re-suspended in culture medium (RPMI-1640 with 10% FBS) such that 173 

the density of live (viable) cells was set at 1×106/ml. A 100 μl cell suspension was pipetted in each well of a 174 

96-well microplate. Sterile AX and LPS samples prepared in culture medium at three high concentrations 175 

(50, 500 and 1000 μg/ml) were pre-warmed to 37°C before adding 100μl to six appropriate wells containing 176 

U937 cells and mixed thoroughly. After 24h incubation (37°C, 5% CO2), 40μl of cell fluid was added to an 177 

equal volume of trypan blue (Sigma-Aldrich, UK). The number of trypan blue stained (non-viable) and non-178 

stained (viable) cells in each sample were counted using a TC10 automated cell counter (Bio-Rad, UK). The 179 

percentage (%) viability of cells was calculated as the number of viable cells divided by total (viable and 180 

non-viable) cells multiplied by 100.  181 

Nitric oxide (NO) stimulation assay. This assay was used to evaluate the ability of AX samples to 182 

induce NO production in the cell line U937 using Griess reagent. Griess reagent was freshly prepared 183 

immediately before use in the NO stimulation assay according to the method of Dawson and Dawson 35 and 184 

Griess 36. Griess reagent is made up by two components. Component A is 37.5mmol/L sulphanilamide with 185 

deionized water in 6.5mol/L HCl by 1:1 (v/v). Component B is N-1-napthylethylenediamine dihydrochloride 186 
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(NEED) in deionized water at 12.5mmol/L. Both NEED and sulphanilamide were purchased from Sigma 187 

Aldrich, UK. Various immune cell lines including macrophages have been shown to produce elevated levels 188 

of NO in response to immune-stimulants such as LPS and cytokines 37. Thus, LPS was used as an appropriate 189 

positive (polysaccharide) control in this study. A 50μl suspension of U937 cells was added to an equal volume 190 

(50μl) of sterile AX or LPS diluted  in culture medium to give  a series of increasing concentrations (5 191 

μg/ml, 50 μg/ml, 500 μg/ml, 1000 μg/ml) in wells of a 96-well microplate prior to 24h incubation (37°C, 5% 192 

CO2) as described previously 25, 27. Untreated controls were included on the microplate by adding 50μl culture 193 

medium (in place of AX/LPS) to appropriate wells containing 50μl of viable U937 cells. Background levels 194 

of nitrite and/or interference from nitrate present in AX samples were internally controlled for within the 195 

assay by taking in account the direct activity of AX samples in wells containing 50μl culture medium and an 196 

equal volume of diluted AX sample in the absence of U937 cells. All experimental samples were evaluated 197 

in triplicate with appropriate adjustments for background levels as indicated above. After 24h incubation, 198 

50μl of Component A was added to each well and mixed. The microplate was incubated at room temperature 199 

for 10 minutes before adding 50μl of Component B to each well and thoroughly mixing. The microplate was 200 

then incubated at 4°C for 20 minutes. The absorbance of each well was then measured at 540nm using a 201 

microplate reader (Synergy HTX Multi-Mode Reader, Biotek, UK). A nitrite standard reference curve was 202 

used to quantitatively determine the indicative concentration of NO in the experimental wells. Nitrite 203 

standards were prepared using sodium nitrite (Sigma Aldrich, UK) diluted in medium (RPMI-1640 with 10% 204 
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FBS) at a range of concentrations (0, 0.1, 1.0, 10, 25, 50, 80 and 100μM). 205 

Statistics. Experiments, unless otherwise stated, were performed in triplicate and analyzed by one-way 206 

ANOVA followed by a post-hoc Tukey test. A value of p<0.05 was considered statistical significance in all 207 

cases. Data were expressed as mean ± standard error of the mean (SEM) unless stated otherwise. 208 

RESULTS AND DISCUSSION 209 

Extraction and modification recovery yield of AXs. Alkaline extraction was used to investigate the 210 

effect of NaOH concentration on corn bran AX extraction yields. Compared to water extraction, alkaline 211 

extraction was highly efficient (Table 1). The AEAXs extraction yield increased from 2.58% up to 20.8% 212 

with increasing NaOH concentration from 1% to 8%. The total AX content was determined as 26.0% of corn 213 

bran (dry matter basis) using the method described by Douglas 29. Thus, the AX recovery rate reached about 214 

80% of the total AX using 8% NaOH. The increased AX yield achieved using alkaline treatment was likely 215 

due to the ability of alkali (OH-) to disrupt the hydrogen bonds between AXs and other components compared 216 

to water treatment. Alkali may also disrupt some covalent bonds, such as ester linkages, thus loosening up 217 

the cell wall matrix and solubilizing components including AXs from the cell wall of corn bran 38. Following 218 

extraction with 8% NaOH, the AEAX sample was modified with six types of endoxylanase treatments; 219 

including P-BG, E-XYLNP and O-VR from Thermomyces lanuginosus, Neocallimastix patriciarum and 220 

Penicillium funiculosum with 24h and 48h treatment time respectively. High recovery yields (≈88%) of AXs 221 

from the AEAX sample (dry matter basis) was achieved from enzyme treatments (Table 1).  222 
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Effects of enzyme treatments on monosaccharide composition of AXs. AEAX and E-AEAX samples 223 

were mainly composed of arabinose (38-41%), xylose (45-47%) and galactose (14-15%). The various 224 

endoxylanase treatments had no significant effect (p>0.05) on the proportion of monosaccharide and A/X 225 

ratio when comparing the monosaccharide composition of AEAX with E-AEAXs. The AEAX sample 226 

extracted from corn bran using 8% NaOH had an A/X ratio of 0.82 (Table 2), which is in concordance with 227 

the results from a previous study 19 that also reported the A/X ratio for alkaline extracted AXs of corn bran 228 

to be 0.82. During the modification process, GH11 endoxylanase treatments did not show obvious effects on 229 

the degree of substitution of AXs (0.82-0.89). In addition, the monosaccharide composition of E-AEAX and 230 

AEAX showed a similar proportion of galactose content and no glucose component. 231 

Effects of enzyme treatments on molecular weight (Mw) distributions of AXs. After 24h treatment 232 

with the three enzyme preparations, there was no difference between the Mw distribution of E-AEAXs 233 

compared with AEAX (Figure 1a). The Mw curve of E-AEAXs and AEAX following 24 hours of enzyme 234 

treatment contain a similar peak at large Mw (501KDa; log10Mw≈5.7; avDP≈3800). However, AEAXs 235 

subjected to longer enzymatic treatments (48h) demonstrated a change in Mw distribution (Figure 1b). The 236 

Mw distribution curve of the E-AEAXs following 48h of enzyme treatment contained two peaks, one in the 237 

large Mw range as found with 24h enzyme treatments and an additional peak in the small Mw range (3.98KDa; 238 

log10Mw≈3.6; avDP≈30). This longer exposure to enzymes reduced the proportion of large Mw AX in range 239 

1 (100KDa to 794KDa) by approximately 20-32% and increased the proportion of small Mw AX in ranges 240 
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3 and 4 (0.1KDa to 10KDa) by 17-30% (Table 2). When comparing the three different enzymes, the E-AEAX 241 

sample following O-VR treatment for 48 h (O-VR 48h) showed the largest increase in the proportion of AX 242 

with small Mw (ranges 3 and 4) compared to AEAX (Table 2). These findings suggest that the duration of 243 

enzyme treatment is a significant factor in the Mw modification of AEAX by endoxylanases. AXs have a 244 

tendency to form macrostructures in aqueous solutions through chain aggregation and physical entanglements 245 

39. The molecular size of AX is a key factor contributing to its behavior in solution. High Mw AXs can form 246 

aggregations more easily and exhibit weakly elastic properties in solution compared to low molecular weight 247 

fractions 40. The Mw of the AEAX fraction (Table 2) consists largely (>80%) of high molecular weight 248 

material (100KDa to 794KDa). Thus, some of AEAX may form macrostructures that inhibit the AX behavior 249 

in the aqueous solution. Family GH 11 endoxylanases have a β-jelly roll structure and are considered able to 250 

pass through the pores of the xylan network owing to their smaller molecular sizes 41. When the network of 251 

AEAX becomes more tightknit via physical entanglements, this would form a barrier to the endoxylanase, 252 

thus preventing hydrolysis of the xylan chain of the AXs. In this case, a longer treatment time (48h) would 253 

be necessary to degrade the molecules of entangled AXs. Thus, improving solubility and reducing the 254 

influence of AEAX aggregation should be considered when developing the modification process of AEAXs 255 

in future studies. In addition, Biely, et al. 42 reported that AXs with a low degree of branching are more 256 

susceptible to endoxylanase action. In the present study, the A/X ratio of AEAX was 0.82, which is a high 257 

degree of branching and may explain why the Mw modification process using enzyme treatments required a 258 
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long treatment time to demonstrate effect. Furthermore, comparison of the abilities of the three types of 259 

endoxylanases isolated from Thermomyces lanuginosus, Neocallimastix patriciarum and Penicillium 260 

funiculosum in modifying the Mw of AEAX from corn bran, showed that the most effective one to be O-VR 261 

from Penicillium funiculosum. From previous studies, it is important to note that due to the differences in 262 

substrate specificities, binding modules and enzyme production technology, different xylanases may have 263 

different activity in reducing the Mw of xylans 21, 43. In conclusion, enzyme modification processes altered 264 

the Mw distribution of the AX extracts obtained following 48h treatment but did not appreciably change the 265 

observed A/X ratio or individual monosaccharide composition. Thus, the Mw distribution was identified as 266 

the major factor that differed between alkaline extracted AX and enzymatic modified AX.   267 

Effect of AX treatments on growth and viability of U937 cells. Figures 2a and 2b demonstrate that 268 

the viable and total cell count of U937 cells treated with AEAX or E-AEAX (at concentrations of 50, 500, 269 

1000μg/ml) were not significantly different to those of the untreated negative control (p>0.05). The viability 270 

of macrophages following AX treatments was over 90% in all cases. Polysaccharides extracted from plants 271 

have received considerable attention due to their wide immune-modulatory activities and low toxicity 44. The 272 

present study indicated that AX samples have no significant detrimental effects on cell growth and viability 273 

of human U937 macrophages, even at a high AX concentration of 1000μg/ml. However, in direct contrast, 274 

cell viability and growth were significantly reduced after treatment with high concentrations (500 and 275 

1000μg/ml) of LPS compared to the untreated negative control (p<0.01). This finding is in agreement with 276 
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previous studies that have also shown that LPS inhibits macrophage proliferation and survival in a time- and 277 

dose-dependent manner 45, 46. Stimulation of inflammatory cells with LPS acts as a useful model to investigate 278 

immune activation following bacterial infection. Vadiveloo, et al. 47 found that bacterial-derived LPS impairs 279 

cell proliferation by inhibiting the expression of cyclin D1, an essential protein for cell proliferation in many 280 

cell types, including macrophages.  281 

Effect of AXs on NO production by U937 cells. AEAX and E-AEAX were assessed in terms of their 282 

ability to induce NO production by U937 cells. The relationship between structure and immunomodulation 283 

was investigated in U937 macrophages by assessing changes in NO secretion following treatment with a 284 

range of AX concentrations and Mw distributions. Treatment with AEAX, E-AEAX or LPS at all 285 

concentrations (5 to 1000μg/ml) tested significantly increased NO production (Table 3; Figure 3a and 3b) in 286 

U937 cells compared with the untreated control (p<0.05). This finding is consistent with previous studies 287 

that found AXs from other cereal sources were able to stimulate NO production in rat and human 288 

macrophages 48, 25. At high concentrations (500-1000μg/ml) of LPS, the raw levels of NO produced by the 289 

U937 cells significantly decreased (p<0.05) compared to levels generated by lower concentrations of LPS, 290 

mirroring the substantial inhibitory effect of LPS on cell growth and viability (Figure 2c) at high 291 

concentrations. Thus, when allowing for these changes in cell counts, LPS significantly increased NO 292 

production per million viable cells in a dose-dependent manner (Figure 3b). NO production was significantly 293 

(P<0.05) higher following E-AEAX treatment at low concentration ranges (5-50µg/ml) compared to AEAX 294 
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treatment at corresponding concentrations. NO production did not significantly increase in a dose-dependent 295 

manner following E-AEAX treatment, suggesting the optimal dose range for E-AEAX was already reached 296 

at the low AX concentration range (5-50µg/ml). In contrast, the AEAX treatment was most effective at 297 

inducing NO production at higher concentration ranges (500-1000µg/ml) with the optimum predicted at some 298 

value above 1000µg/ml by extrapolation of Figure 3a and 3b. The optimum dose ranges of AEAX and E-299 

AEAX were clearly different; AEAX induced significantly lower NO production compared to E-AEAX and 300 

LPS at concentrations below 50µg/ml (p<0.05). Thus, this study suggests that E-AEAX is more effective 301 

than AEAX as a stimulator of NO release at low (5-50g/ml) AX concentrations. In contrast, AEAX needs 302 

to be at high concentrations (>500µg/ml) to be more effective than E-AEAX at inducing NO production. 303 

NO production by U937 cells was influenced by the Mw distribution of AXs. Depending on the 304 

enzymatic modification process, AEAX and E-AEAX exhibited significantly different Mw distributions; 305 

33.1% of E-AEAX had Mw ranging from 158Da to 10KDa (avDP=30) whereas AEAX only contained 2.82% 306 

AX in this range. In addition, the branch degree (A/X) and monosaccharide composition of AEAX and E-307 

AEAX were similar.  The results suggest the dose range and Mw distribution of AXs are key determinants 308 

of immune-modulatory activity. Regardless of dose, corn bran AXs in both the low and high Mw range 309 

significantly induced NO production compared to untreated macrophages. AXs in the low Mw range 310 

(0.1KDa-10KDa) were the most effective at inducing NO secretion by U937 macrophages at low AX 311 

concentration ranges (5-50 g/ml) with NO production peaking at 62.9±1.2 µM per million viable cells with 312 
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5 g/ml of AX (P = 0.0009).  In contrast, AXs in the high Mw range (100-794KDa) were most effective at 313 

inducing NO at high AX concentration ranges (500-1000 g/ml) with NO production reaching a maximum 314 

of 62.7±1.3 µM per million viable cells at 1000 g/ml of AX (P = 0.0011). The molecular structure of AXs 315 

have already been reported to have an effect on some of their physicochemical properties in solution, 316 

including tertiary conformation of the AX chain in solution, viscosity of the solution and elastic properties 317 

of the solution 9, 49. Therefore, future work should investigate the effect of molecular weight combined with 318 

relative physicochemical properties on the immune-modulating activities of AXs. 319 

Rice bran AX has been shown to induce macrophage-derived nitric oxide (NO) production in vitro in a 320 

dose-dependent manner using both a murine macrophage cell line RAW264.7 and murine peritoneal 321 

macrophages 25. Cereal-derived AXs have also been shown to induce phagocytosis in a dose-dependent 322 

manner both in the human U937 macrophage cell line and in murine peritoneal macrophages 25, 50. The in 323 

vitro production of pro-inflammatory cytokines tumour necrosis factor alpha (TNF-) and interleukin 6 (IL-324 

6) are stimulated following treatment with rice bran AX in U937 human macrophages, RAW264.7 murine 325 

macrophages and murine peritoneal macrophages 25. This investigation in a U937 cell line supports these 326 

published findings by showing AXs from corn bran are capable of directly stimulating NO production in 327 

human macrophages at all concentrations investigated (5-1000 g/ml). Macrophage-derived NO can form a 328 

number of oxidation products such as NO2, NO2
- and N2O3 because of its highly reactive free radical structure 329 

51, and these products come into play during macrophage-mediated immune defense against numerous 330 
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pathogens following infection 52. Thus, this investigation indicates a potential nutritional/prophylactic benefit 331 

of dietary AXs to stimulate low (background) levels of innate immunity in the absence of infection or disease. 332 

An ongoing low level of immune activity generated through dietary intake of AXs may reduce the likelihood 333 

or severity of infection following subsequent exposure to pathogens. This is supported by the fact that oral 334 

administration of wheat AXs (at 2500 mg/kg, n = 10) induces anti-inflammatory effects in mice treated with 335 

bacterial LPS and reduces NO production in LPS-stimulated murine macrophages 50. NO production by 336 

macrophages is also reported to mediate T cell responses, suppress anti-inflammatory effects and regulate of 337 

leukocyte recruitment 53. Thus, dietary AXs may induce a wide range of immune system responses via NO 338 

pathways, thereby heightening natural immunity and maintaining human health at multiple levels.  339 

Further investigations are now required to determine the precise signaling mechanism through which 340 

AXs induce NO production. In addition, in vivo studies are essential to determine whether the effects of dose 341 

range and Mw distribution on AX-induced NO production demonstrated in this study are mirrored in the 342 

body.  343 

  344 

ABBREVIATIONS USED 345 

AXs, arabinoxylans; AEAXs, alkaline extracted AXs; A/X, ratio of arabinose to xylose; DP, degree of 346 

polymerization; E-AEAXs, enzyme-modified AEAX; E-XYLNP, Endo-1,4-β-xylanase of megazyme; GH, 347 

glycoside hydrolase; LPS, lipopolysaccharide; Mw, molecular weight; NO, nitric oxide; O-VR, 348 
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OPTIMASHTM VR enzyme; P-BG, pentopan mono BG enzyme.  349 
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Figure Captions/Legends 

 

Figure 1. The molecular weight distributions of E-AEAXs generated using three 

different enzyme (E-XYLNP, P-BG, O-VR) treatments for 24h and 48h treatment.  

 

Figure 2. Effects of AXs and LPS on the growth & viability of U937 cells. a-c: U937 

cells were treated with the LPS, AEAX and E-AEAX for 24hrs; The count of viable 

(live) and total (viable and non-viable) cells was confirmed using the trypan blue 

exclusion method. The solid line ‘—‘and the dotted line ‘---‘ indicate the viable and 

total cell count of the control (that lacks treatment with AX or LPS) respectively. The 

viable/total cell counts after treatment with AX or LPS were compared with the 

corresponding viable/total cell counts of the control using the Student’s t-test (*: p-

value < 0.01). Cell counts are presented as the mean ± SEM of six sample replicates. 

 

Figure 3. Effect of AEAX, E-AEAX and LPS treatments on NO production by U937 cells. Panel a 

shows the raw NO production measured following treatment with AX or LPS at increasing 

concentrations of 5-1000 g/ml. Panel b indicates the corresponding NO production per million 

viable cells. The symbol * indicates that the NO production following treatment with AX or LPS was 

significantly (P<0.05) greater to that of the untreated control. The symbol # indicates NO production 

significantly changed (p<0.05) from previous sample dosage. The symbol @ indicates NO production 

with E-AEAX treatment was significantly (p<0.05) different to the corresponding AEAX treatment at 

the same AX concentration. The symbol $ indicates NO production with AEAX or E-AEAX treatment 

was significantly (p<0.05) different to the corresponding treatment with LPS at the same concentration.   
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Table 1. AXs extract yields from corn bran and the recovery yield of modified AX 

using three types of endoxylanase  

Alkaline 

extraction 

yield (%) 

NaOH concentrations Control Total AX 

content a 1% 2% 4% 8% Water 

2.58±0.07 3.85±0.05 9.71±0.05 20.8±0.1 0.71±0.04 26.0±0.3 

Enzyme 

modification 

recovery yield 

(%) 

 Endoxylanases  

Treatment time  P-BG E-XYLNP O-VR 

24h 88.1±0.4 88.0±0.1 88.0±0.3 

48h 88.1±0.3 88.1±0.1 88.0±0.1 

a: Total AX content indicates original AX content in corn bran (dry base). The yields are presented as 

mean ± SD. All experiments were conducted in triplicate. 
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Table 2. The monosaccharide compositions and Mw distribution of AEAXs and E-AEAXs  

Samples  

Monosaccharide compositions a Mw distributions 
b
 

Ara (%) Xyl (%) Glc(%) Gal (%) A/X 
Range 1: 

1×105-105.9(Da) 

Range 2: 

1×104-105(Da) 

Range 3: 

1×103-104(Da) 

Range 4: 

1×102-103(Da) 

AEAX 
c
 38.3±0.5  47.0±0.6 /  14.7±0.4 0.82 83.5% 13.7% 2.82% / 

24 hour enzyme treatment (E-AEAXs 24h) 
d
 

E-XYLNP  39.1±1.7 47.1±1.0  / 14.5±1.0 0.83 78.1% 19.2% 2.73% / 

P-BG  40.0±1.0 45.6±0.9 / 14.5±0.3 0.88 79.7% 17.5% 2.80% / 

O-VR  39.2±2.1 47.1±1.6  / 14.0±0.5 0.83 79.7% 17.3% 2.95% / 

48 hour enzyme treatment (E-AEAXs 48h) 
d
 

E-XYLNP  41.2±1.3 45.3±0.7  / 14.5±1.0 0.89 63.7% 16.3% 17.8% 2.19% 

P-BG 39.9±0.8 45.2±0.8  / 14.9±0.1 0.88 54.8% 14.4% 23.4% 7.36% 

O-VR  38.8±2.3 47.3±1.6  / 13.9±0.9 0.82 51.2% 15.7% 24.5% 8.64% 

Monosaccharide compositions and molecular weight (Mw) distribution of AEAXs and E-AEAXs (all experiments conducted in triplicate). a: The proportion of each 

monosaccharide in AX samples presented as mean ± standard deviation (SD); b: The overall Mw distribution of AXs ranged from 0.1KDa to 794KDa and was divided into 

four molecular weight ranges. Percentage of AXs in different Mw ranges were analyzed using the LC Data Analysis (SHIMADZU Corporation). c: The AEAX sample indicates 

AXs extracted using 8% NaOH treatment; d: The enzyme treatments indicate modified AEAXs using one of three different enzymes (E-XYLNP, P-BG, O-VR) for 24 hours or 

48 hours. 
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Table 3. NO production by U937 cells after 24h treatment with AEAX, E-AEAX and LPS       

Sample  (a) Raw NO Production (µM) 

(b) NO Production (µM) Per Million Viable Cells 

 

Concentration of AX or LPS (μg/ml) 

0 5 50 500 1000 

 

LPS 

(a) 

(b) 

 

 

- 

- 

 

 

70.4±1.3 *  

65.6±0.9 * 

 

 

71.8±2.3 * 

65.7±1.6 * 

 

 

64.6±1.1 * # 

70.8±0.9 * # 

 

 

56.5±0.1 * # 

72.2±0.0 * # 

 

E-AEAX  

(a) 

(b) 

 

 

- 

- 

 

 

67.3±1.7 * @ 

62.9±1.2 * @ 

 

 

67.7±2.4 * @ 

62.2±1.7* @ 

 

 

64.8±2.5 * 

58.6±1.7* $ 

 

 

63.3±1.3 * $ 

59.0±0.9* $ 

 

AEAX 

 (a) 

 (b) 

 

Untreated 

Control 

(a)  

(b) 

- 

 

- 

- 

 

 

 

46.1±2.0 

43.7±1.9 

 

 

57.6±1.5 * $ 

53.7±1.1 * $ 

 

 

 

 

 

61.0±2.3 * $ 

55.9±1.6 * $ 

 

 

 

65.5±2.0 * # 

60.2±1.4 * # $ 

 

 

66.9±1.9 * # $ 

62.7±1.3 * # $ 

The NO2
- concentration (µM) (mean ± SEM) is an indication of NO production in U937 cells; The 

symbol * indicates NO production significantly increased (p<0.05) compared to the untreated control; 

The symbol # indicates NO production significantly changed (p<0.05) from previous sample dosage; 

The symbol @ indicates NO production with E-AEAX treatment was significantly different to the 

corresponding AEAX treatment at the same concentration (p<0.05); The symbol $ indicates NO 

production with AEAX or E-AEAX treatment was significantly different to the corresponding treatment 

with LPS at the same concentration (p<0.05). The p-values indicated are those provided by a post-hoc 

Tukey test following an overall significant (p<0.05) difference measured by one-way ANOVA using 

SPSS.19. In all cases, experiments were conducted in triplicate. 
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Fig 1. 
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Fig.2 
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Fig 3. 
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