

1	Regulation of Nitric Oxide Synthase Expression by Structure Modified
2	Arabinoxylans from Wheat Flour in Cultured Human Monocytes
3	Zhengxiao Zhang ¹ , Christopher Smith ² , Jason Ashworth ³ , Weili Li ² *
4	1. Department of Food and Tourism Management, Manchester Metropolitan University,
5	Manchester, M15 6BG, UK. 2. Institute of Food Science and Technology, University of
6	Chester, Chester, CH1 4BJ, UK. 3. School of Healthcare Science, Manchester Metropolitan
7	University, Manchester, M1 5GD, UK
8	* Corresponding author at: Institute of Food Science and Technology, University of Chester,
9	Chester, CH1 4BJ, UK
10	Tel: +44 1244511397; E-mail: w.li@chester.ac.uk
11	
12	Abstract
13	The immunomodulatory activity of arabinoxylans (AXs) extracts from cereal
14	sources have been reported to impart health benefits in terms of immune
15	enhancement. In this study, further to the various enzymatic extraction
16	conditions on extraction yield and structural modification of AXs from the wheat
17	flour, nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS)
18	expression induced by enzyme extracted AXs and water extracted AXs in a human
19	monocyte cell cultures U937 were compared. The results of <i>in vitro</i> testing indicate
20	that AXs treatments not only enhanced NO production, but also iNOS levels in
21	U937 cells ($P < 0.05$) compared to untreated cells. The increase in NO secretion
22	seems correspondingly related to iNOS concentration in cultured cells. Moreover,

23	the enzyme-treated AXs with a much higher proportion of low Mw AXs (1-10KDa)
24	and high A/X ratio (0.83) induced significantly higher ($P < 0.05$) iNOS expression
25	(132.2 ± 11.9 μ g/ml) than water-extracted AXs treatment (104.3 ± 4.6 μ g/ml). In
26	conclusion, an enzymatic method has been developed to efficiently extract AXs
27	with low Mw and high A/X and with a high yield (81.25%) of the molecular
28	structures which had a critical influence on the regulation of iNOS expression and
29	NO production in a cultured human monocytic cell line.
30	<i>Keywords</i> : Arabinoxylans; wheat flour; Molecular structures; Immunomodulatory
31	activity; Nitric oxide; Inducible nitric oxide synthase

1. Introduction

34	Arabinoxylans (AXs) are an important group of hemicelluloses found in the outer-
35	layer and endosperm cell walls of cereals (Izydorczyk & Biliaderis, 1995; Saeed et
36	al.,2011; Vries et al., 1999). Generally AXs are composed of a backbone of β -1, 4 linked
37	D-xylopyranosyl residues with L-arabinofuranose subunits. As a dietary fibre, AXs
38	have been shown to stimulate immune activities in a number of in vitro, in vivo and

39	clinical trials (Ghoneum and Matsuura 2004; Zhou et al., 2010; Li, et al., 2015) and
40	may reduce the risk of infection or cancer (Zhang et al., 2015). It has been proposed
41	that dietary fibres including AXs, exert their immunomodulation benefits possibly
42	through two mechanisms: (i) interaction with colonic epithelial cells and innate immune
43	cells (such as macrophages) which can mediate cytokine production leading to an
44	improved immune response, (ii) take up by microfold cells, macrophages and dendritic
45	cells from the intestines and transport to lymph nodes, thus distributingAXs around the
46	body (Mendis et al., 2016; Samuelsen et al., 2011). Several studies have suggested that
47	AXs may be considered a potential bioactive food supplement with immunity
48	improvement properties (Ghoneum and Matsuura 2004; Zhou et al., 2010; Li et al.,
49	2015). However, the role of AXs in certain specific immune responses such as the
50	expression of nitric oxide synthases in NO secretion path way still need further
51	investigation.
52	Nitric oxide (NO) is a versatile signalling molecule of the immune system
53	produced by various immunological cells, dendritic cell, NK cell, mast cells and
54	phagocytic cells. (Bogdan 2000; Forstermann and Sessa 2012). From previous studies,

55	the immune functions of NO have been found to involve antimicrobial and anti-tumour
56	activities in vitro and in vivo (Bogdan 2000; Lechner et al. 2005; Nathan 1992; Pervin
57	et al. 2001). Inducible NO synthases (iNOS) are critical in generating NO from L-
58	arginine. iNOS can be expressed in immune cells following stimulation by microbial
59	polysaccharides such as lipopolysaccharides (LPS) and immune cytokines (Bogdan,
60	2000). Interestingly, recent studies have shown that AXs enhance NO secretion in
61	murine and human macrophage cell lines (Ghoneum and Matsuura 2004; Li et al., 2015)
62	and also demonstrated that the molecular structure such as molecular weight (Mw) and
63	substitution degree (A/X) of cereal AXs may affect their immunomodulatory activities
64	(Li et al., 2015; Zhang et al., 2016). However, it remains unclear if AXs with different
65	structures have any function to induce the iNOS expression in NO pathways.
66	Therefore, the objectives of the current study included to develop an effective and
67	efficient extraction and modification processes capable of producing high yields of
68	structurally modified AXs from wheat flour. The sugar compositions and Mw of the
69	extracted and modified AXs were determined using high performance liquid
70	chromatography (HPLC). Subsequently, the relationship between molecular structures

and NO production and iNOS expression in cultured human macrophages wereinvestigated.

73 **2. Materials and Methods**

74 **2.1 Materials**

75 The sample of dried pentosan fraction (moisture content 5.9%) was kindly 76 provided by Henan Lianhua Monosodium Glutamate Group Co., Ltd (Xiangchen, 77 Henan, China). Pentopan Mono BG (2500 U/g), an endoxylanase product (EC 78 3.1.2.8, family 11 of glycosyl hydrolases) from *Thermomyces lanuginosus* 79 (donor)/Aspergillus oryzae (host) was kindly supplied by Novozyme (Bagsvaerd, 80 Denmark). 1,4- α -D-Glucan-glucanohydrolase (α -Amylase heat stable, \geq 500 U/ml) 81 from *Bacillus licheniformis* and Proteinase (≥500 U/ml) from *Aspergillus melleus* 82 were purchased from Sigma-Aldrich (Gillingham, UK). D-(+)-xylose for AXs 83 determination was purchased from Acros Organics (Loughborough, UK). D-84 glucose, D-xylose, D-arabinose, and D-galactose for determination of 85 monosaccharide composition were purchased from Sigma-Aldrich (Gillingham, UK). 86

87	U937 cell line was purchased from the Public Health England Culture
88	Collections. LPS (Lipopolysaccharides of <i>E. coli</i> serotype 0111:B4,) used as a
89	positive control in the <i>in vitro</i> experiments was purchased from Sigma-Aldrich,
90	(Gillingham, UK). The medium of RPMI-1640 with L-Glutamine was purchased
91	from Lonza (Verviers, Belgium). Foetal bovine serum and penicillin-streptomycin
92	(10,000 units penicillin and 10mg streptomycin/ml) were purchased from Sigma-
93	Aldrich (St. Louis, MO, USA). Human iNOS enzyme (116µg/ml, Code: TP311819)
94	was purchased from Cambridge Bioscience, UK. Primary antibody, monoclonal
95	iNOS Antibody (4E5) was purchased from Novus Biologicals (Cambridge, UK).
96	Secondary antibody, the Rabbit anti-mouse Immunoglobulins/HRP (code: P0260)
97	was purchased from Dako (Glostrup, Denmark).
98	Other chemicals including analytical grade acids, alkaline and organic solvents
99	were purchased from Sigma Aldrich (Gillingham, UK)
100	2.2 Methods

2.2.1 Extraction of AXs

102 The AX extraction process was developed from the method of Li et al. (2013).

103	The Pentosan fraction of wheat flour was ground to a 0.5mm particle size using an
104	Ultra Centrifugal Mill ZM 200 (RETSCH Ltd. United Kingdom). 30g of milled
105	pentosan sample was mixed with 200g of distilled water using a hand blender
106	(800W, WSB800U) for 45s. For the water extraction process, the pentosan-water
107	mixture was incubated in a shaking water bath at 40° C for 2h followed by
108	centrifugation (6000g, 20min), and the supernatant (containing extracted AX) was
109	recovered for ethanol precipitation. In the enzymatic extraction process, the
110	effects of three individual extraction conditions: concentration of endoxylanase
111	(50, 100, 200, 300, 400ppm w/w), extraction time (2h, 3h, 4h) and temperature
112	(20°C, 30°C and 40°C) on AX extraction yield and structures were studied.
113	The AXs extraction process was developed from the method of Li et al.
114	(2015). The 150ml extraction supernatant was added to 300 μl Termamyl $\alpha \text{-}$
115	Amylase at 90°C to allow starch hydrolysis to occur. After 1h, the solution was
116	cooled rapidly and adjusted to pH 7. Then, 100 μ l proteinase (1mg/ml, ≥3units/mg)
117	was added to the solution and the mixture incubated at 60°C for 1h to remove
118	protein from the supernatant and thenhe solution was placed in a boiling water

119	bath for 10min to deactivate the enzymes and cooled to the room temperature.
120	After centrifugation at 6000g for 20min, the supernatant was collected and
121	ethanol was added into the supernatant to a ratio of 70% of ethanol/supernatant
122	(v/v) The mixture was kept in the fridge overnight at 4° C. Then the mixture was
123	centrifuged at 600g for 20min. After centrifugation, the residue was collected and
124	washed with 20ml ethanol twice Then, the residue was placed in 20ml acetone
125	and washed for 1min. After that, the residue was dried in an oven at 45°C overnight.
126	The dried residue (dried AXs sample) was milled using an analytical mill (IKA A11
127	Basic, Guangzhou, China, 50/60Hz, 160W).

128 **2.2.2 Determination of AXs extraction yields**

A standard curve for the determination of xylose was constructed using the method described by Douglas (1980). This curve was used for the determination of xylose content of raw material and extracted AX supernatants. The xylose content was then used to calculate the AX content of samples based on their A/X ratio as determined by mono-sugar composition analysis. The specific AX content is defined as the sum of the monosaccharide content, arabinose and xylose, times

135 0.88 to correct for hydration water (Swennen, Courtin, Lindemans, et al., 2006).
136 Thus, the equation was: AX%=Xylose%×(1+A/X)×0.88. AX extraction
137 yield=AX%×weight of supernatant (g)÷weight of raw material(g)×100.

138 **2.2.3 Determination of monosaccharide compositions of isolated AXs**

139 The monosaccharide compositions of AX samples were analysed using a 140 method developed from that of Li et al. (2015). 1 ml of H₂SO₄ (1M) was added to 141 20mg of dried AX sample, which was hydrolysed at 100°C for 2h in a glycerin 142 bath. The hydrolysed samples were transferred to a volumetric flask and diluted 143 20 fold (1mg/ml) using HPLC grade water. The pH of diluted solution was adjusted 144 to 6.5-7.2 with 1M NaOH. The solution was then filtered through a 0.45µm nylon 145 membrane and transferred to a 1ml glass shell vial for HPLC analysis. In the HPLC 146 analysis, the mobile phase was HPLC grade water at isocratic elution which wasachieved using a Shimadzu LC-10ADvp Pump. Samples were analysed on 147 148 SUPELCOGEL Pb (5cm×4.6mm) and Phenomenex ThermaSphere TS-130 columns 149 combined with a JASCO RI-2031 Refractive index (RI) Detector. All analyses were 150 conducted in triplicate.

2.2.4 Molecular structure characterisation of extracted AXs

152	Size exclusion high-pressure liquid chromatography (SE-HPLC) with a
153	refractive index (RI) detector was used to determine the molecular weights and
154	size distribution of extracted AXs samples using methods as described by Li et al.
155	(2013). The average degree of polymerisation (avDP) was calculated by dividing
156	the apparent peak molecular mass by the molecular mass of anhydropentose
157	sugars (Courtin et al., 2008).
158	The determination of the molecular weight of AX samples was carried out
159	using SE-HPLC. Mobile phase (Buffer) consisted of $17g NaNO_3$ and $0.65g NaN_3$,
160	dissolved in 2L HPLC grade water. Eight pullulan standards (Shodex, Shanghai,
161	China) with molecular weights in the range of 5,000-800,000Da were used to
162	construct a standard curve. The AXs samples were dissolved in buffer to make
163	2mg/ml solutions and left overnight under gentle stirring. Then, they were filtered
164	through a 0.45 μ m nylon membrane and transferred to SE-HPLC analysis.
165	Mw distribution of the AXs were analysed by columns of BioSep-SEC-S 4000
166	and BioSep-SEC-S 3000 (Phenomenex, Macclesfield, UK) combined with JASCO RI-

167	2031 RI Detector (Jasco Corporation, Tokyo, Japan). The two columns were
168	connected in series (BioSep-SEC-S 4000 first) were used to improve the peak
169	shape of AXs samples. Running time was 60min for each sample and the flow rate
170	was 0.6 ml/min. All analyses were conducted in duplicate.

171 **2.2.5** *in vitro testing*

172 **2.2.5.1 Cell culture**

173	The complete cell culture medium was prepared using RPMI-1640 with L-
174	glutamine (Lonza, Belgium) to which was added 10% foetal bovine serum (FBS)
175	and 2% penicillin-streptomycin (P/S). The Human U937 macrophage cell line was
176	grown in the complete culture medium in sterile tissue culture flasks in an
177	incubator at 37° C with 5% CO $_2$ in air atmosphere and subcultured every 2 days.
178	2.2.5.2 Polysaccharides medium preparation
179	The extracted AX samples and LPS were dissolved in the RPMI-1640 medium
180	with 5% FBS overnight at room temperature to allow the sample fully hydrated.

181 Then, they were sterilised using 0.45µm sterile filters and were diluted into a

series of concentrations (1, 5, 10, 50, 500 and 1000µg/ml) for cell culture testing.

183 The samples were stored at 4°C in sterile Falcon tubes (Fisher Scientific, UK).

184 **2.2.5.3 Cell viability and growth analysis**

The growth and viability of U937 cells with and without treatment of AX 185 186 samples and LPS were assessed by cell count and trypan blue uptake. The U937 187 cells (viability ≥90%) were centrifuged at 1000g for 10min and suspended in 188 RPMI-1640 medium with 10% FBS such that the density of live cells was set at 189 1×10^{6} /ml. 100µl cell suspension was pipetted into each well of a 96-well 190 microplate. The AXs and LPS mediums prepared with three concentrations (50, 191 500 and $1000\mu g/ml$) were pre-warmed to 37°C and then 100µl of medium, AXs 192 medium and LPS medium was added to six wells of containing cells and mixed 193 thoroughly. After 24h incubation, 40µl of cell fluid was pipetted from each well into a tube, and 40µl of trypan blue (Sigma-Aldrich, UK) was added. The number of 194 195 cells stained (nonviable cells) and unstained (viable cells) with trypan blue were 196 counted using a TC10 automated cell counter (Bio-Rad, UK). The viability of cells 197 was calculated as a percentage by dividing the number of viable cells against to 198 total number cells (total number of viable and nonviable cells).

2.2.5.4 NO assay

200	Griess' reagent was freshly prepared for the NO assay according to the
201	methods of Dawson and Dawson (1995) and Griess (1879). Griess' reagent is
202	made up by two components. Component A is 37.5mmol/L sulphanilamide with
203	deionized water in 6.5mol/L HCl by 1:1 (v/v). Component B is N-1-
204	napthylethylenediamine dihydrochloride (NEED) in deionized water at
205	12.5mmol/L.
206	$50\mu l$ of culture medium of U937 cells was pipetted into each well of a 96-well
207	microplate and $50\mu l$ of each AX and LPS sample was added into appropriate wells
208	and it was mixed thoroughly. The 50 μl RPMI-1640 with 5% FBS medium was
209	added to wells containing $50\mu l$ live cells as an untreated control. The microplates
210	were incubated (37°C, 5% CO ₂) for 24 hours. Then, 50 μ l of Component A of Griess'
211	reagent was added to each well for 10 minutes at room temperature. $50 \mu l$ of
212	Component B of Griess' reagent was then added to each well. After mixing, it was
213	incubated at 4°C for 20 minutes. The absorbance of each well was measured at
214	540nm using a microplate reader (Synergy HTX Multi-Mode Reader, Biotek, UK).

A nitrite standard reference curve was used to determine the concentration of nitrite in each experimental wells, which were constructed using sodium nitrite (Sigma Aldrich, UK) diluted in RPMI-1640 medium at a range of concentrations (0,

218 0.1, 1.0, 10, 25, 50, 80 and 100μM).

219 2.2.5.5 iNOS expression analysis-Dot blot assay

220 The dot blot method was used to determine the concentration of iNOS 221 expressed by the cell lysates (Bloch et al., 1999). U937 cells were treated respectively with the AXs and LPS samples (50µg/ml) for 24h. Then, 5µl of treated 222 223 cell samples were individually added to 500µl lysis buffer samples (1:100 dilution). 224 Human iNOS enzyme was diluted in iNOS protein standard buffer to give 1:2, 1:4, 225 1:6, 1:8 and 1:10 standards. The cell lysis samples and standards were set out as 226 5µl drops on the nitrocellulose membrane (NC 45 nitrocellulose membrane, Serva 227 Electrophoresis GmbH, Heidelberg, Germany) with 5µl of BSA (1mg/ml BSA in 228 deionized water) used as a negative control (no iNOS protein) in the dot blot. The 229 membrane was transferred to a solution of the primary antibody. The blot was 230 shacked at 60rpm at 4°C overnight (≤20h).shaking.

231	Following incubation the primary antibody solution was decanted and the
232	membrane was washed using TBS buffer. Secondary antibody solution was added
233	to the blot and the membrane was shaken at 60rpm at room temperature for 1h.
234	The secondary antibody solution was removed and the membrane was washed
235	using TBS buffer. Then, the chemiluminescent detection agent was added
236	(Biological Industries (BI), Lichfield, UK). Then, the membrane was placed in a
237	G:Box (Chemi HR16, Syngene, Cambridge, UK) for the images of membrane to be
238	captured and processed. The Image J software (National Institute of Health, USA)
239	was used to quantitatively determine the levels of iNOS. The dot blot assay of iNOS
240	was repeated three times in separate experiments.
241	2.2.6 Statistics
242	The assays, unless otherwise stated, were performed in triplicate and the

243 means were compared using one-way ANOVA. A value of $p \le 0.05$ was chosen as the

244 criterion of statistical significance. The data were expressed as means ± standard

245 error.

3. Results and Discussions

3.1 AXs extraction from pentosan fraction of wheat flour

248	In the present study, the AX content of pentosan fraction, which was separated
249	from wheat flour through high pressure disintegrated process was determined as
250	15.79 \pm 0.46% (dry basis). As table 1 shows, compared with water extraction, the
251	AXs yield significantly increased from 7.54% to 12.83% (p<0.05) with increasing
252	endoxylanase (P-BG) concentration, 0 to 400 ppm. Particularly, in the
253	concentrations range of 50 ppm and 200 ppm, the significant increases in
254	extraction yield is positively corresponding to the increase of endoxylanse
255	concentration (p<0.05). Higher concentrations from 200ppm to 400ppm did not
256	change the yield significantly further (P>0.05), indicating that the optimum
257	combination for practical use in the extraction process could be based on a
258	concentration range from 200ppm to 400ppm. In addition, the temperature of
259	30°C-40°C showed a higher AX extraction yield using associated conditions of
260	200ppm endoxylanase, 2h and pH 4.5 than other temperatures used in this study.
261	Moreover, under the conditions:400 ppm endoxylanse, at 40°C for 2h, AXs

262 extraction from the pentosan fraction reached the highest recovery, which is 81.25%263 of the total AXs content.

264 major reason for the increased yield achieved The using the endoxylansetreatment is that this enzyme is able to attack the xylan backbone, 265 266 cleaving internal β -(1,4)-linkages and a portion of water un-extractable AXs 267 (WUAXs) will be rendered soluble and extractable (Andersson et al., 2003; Li et al., 268 2013; Swennen, Courtin, & Delcour, 2006). This means that some WUAXs of 269 cell wall in pentosan fraction was released into solution, which resulted in an 270 increase in AXs extraction yield. According to the theory of enzyme kinetics, with 271 a certain substrate concentration, the enzyme is merely a catalyst which given 272 sufficient time could convert the substrate to the maximum extent (Berg et al., 273 2002). However, considering the efficiency of the AX extraction process, the 274 extraction time selected in this experiment was 2h as this would be appropriate 275 for use in an industrial production system. The results indicated extraction temperature and endoxylanase concentration demonstrated significant effects on 276 277 AX extraction yield.

3.2 Structural characterisation of AXs

3.2.1 Monosaccharide compositions and branch degree analysis of AXs

280	Table 2 shows that the enzyme extracted AXs samples (E-WEAXs) have a
281	higher A/X ratio than water extracted AXs (WEAXs), and the increase of A/X ratio
282	of E-WEAXs linearly associated with the concentration of endoxylanase from
283	0ppm to 400ppm (R^2 =0.958). In fact, the A/X ratio represents the degree of
284	branching of AXs, which is an indicator of the relative proportions of the
285	substituted residues in xylan chains (Izydorczyk & Biliaderis, 2007). Therefore,
286	the results indicate that AXs extracted from the pentosan fraction using the
287	enzymatic treatments contain more substituted xylose residues.

3.2.2 Molecular characterisation of AXs

294	contains two main peaks: the major one, Mw of 12.22KDa ($log_{10}Mw \approx 4.1$), and the
295	lesser, Mw of 3.72KDa (log ₁₀ Mw \approx 3.6), for which the average degree of polymer
296	(avDP) are 93 and 28 respectively. However, the WEAX sample comprises mainly
297	one peak, 501.19KDa (log ₁₀ Mw \approx 5.7), for which the avDP is 3797. In addition, Table
298	2 shows that as the concentration of endoxylanase increased from 50ppm to
299	400ppm, the proportion of the E-WEAX in the small Mw ranges 3 and 4 (0.16KDa
300	to 10KDa) increased from 39.19% to 54.36%, meanwhile the graph of Mw
301	distribution (Fig. 1) shows that the Mw peak at around 3.72KDa (log ₁₀ Mw \approx 3.6) as
302	progressing enlarged with the concentration increase of endoxylanse According
303	the previous studies, endoxylanase attacked the β -1, 4 linked D-xylopyranosyl
304	backbone and break down xylan chains, thus, reducing the molecular weight of
305	AXs during enzymatic extraction (Courtin & Delcour, 2001; Izydorczyk & Biliaderis,
306	2007). Zhang et al. (2014) indicated that the Mw of AXs varies depending on the
307	extraction and treatment methods used. Endoxylanase treatment appears to be
308	one of the most effective methods for modifying AXs with a relatively low Mw
309	distribution.

310 **3.3** *Immunomodulatory activity of AXs with various molecular structures*

In order to further investigate the possible relationship between immunomodulatory activity and molecular structure, WEAX and E-WEAX (400ppm) with significantly different Mw distributions and monosaccharide compositions were selected for the *in vitro* studies.

315 **3.3.1** Effects of AXs on growth and viability of U937 cells

316 As shown in Table 3, the total cell counts of U937 macrophages treated with 317 AXs (50, 500, 1000µg/ml) are not significantly different compared to control 318 (untreated cells) (p>0.05). Therefore, WEAX and E-WEAX did not present a 319 stimulatory effect on the growth of U937 cells over the period of 24h. In addition, 320 the viability of cells with AX treatments was typically 90%, which is similar to the 321 control cells, suggesting that AX samples also have no significant effect on U937 322 cell survival over the test period of 24h. However, the total counts of U937 cells were reduced significantly after 323 324 treatment with 500 and 1000µg/ml LPS compared with untreated control cultures 325 (p<0.05), showng inhibitory effect on cell growth, but it did not appear at

326	relatively low concentrations (50 μ g/ml) of LPS treatments. In addition, the
327	viability of cells with LPS treatments did not show a significant difference
328	compared with control cells (p>0.05), suggesting that LPS (50-1000 μ g/ml) has no
329	effect on U937 cell survival over 24h. This suggests that high concentrations of LPS
330	may have an inhibitory effect on U937 cell growth. Previous studies have indicated
331	that LPS inhibits and blocks macrophage proliferation and it depended on the
332	incubation time and dosage (Muller-Decker et al., 2005; Vadiveloo et al., 1996;
333	Vairo et al., 1992). The inhibitory effect of LPS on cell proliferation was proposed
334	to be tightly regulated through a complex network of cytokines. For example,
335	Vadiveloo et al. (2001) found that bacterial LPS had an inhibitory effect on cell
336	proliferation in mouse marrow-derived macrophages. They found LPS inhibited
337	the expression of cyclin D1, which is an essential protein for proliferation in many
338	cell types.
339	Botanical polysaccharides extracted from plants have received considerable
340	attention in bioscience due to their wide immunomodulatory activities and low
341	toxicity (Schepetkin & Quinn, 2006). Compared with LPS, the present study

342 indicated that the AX extracts have no inhibitory effects on the viability and cell

343 growth of the human U937 macrophage, even at 1000μ g/ml.

344 **3.3.2** *Effects of AXs on NO production by U937 cells*

345	Table 4 shows the NO production by U937 cells after treatment with WEAX, E-
346	WEAX and LPS over the concentration range from 1 to $500\mu g/ml$. both AXs
347	extracts significantly elevated NO production by U937 cells after 24h incubation
348	period compared with the untreated control ($p<0.05$). Furthermore, the amount
349	of NO production significantly increased with the treatment of $10 \mu g/ml$ of E-
350	WEAX compared to with lower concentrations ($p<0.05$). The highest amount of
351	NO released by the E-WEAX treatment was $67.77\mu M$ at $50\mu g/ml$. However, there
352	was a significant decrease in NO secretion following E-WEAX treatment at
353	500µg/ml (p<0.05) compared to that at 50μ g/ml. Unlike E-WEAX treatment, NO
354	secretion increase by WEAX treatment appeared to be significant till the
355	concentration reached 500 μ g/ml (p<0.1), suggesting the peak amount of NO
356	released by the WEAX treatment may not have been reached. Hence, these results
357	indicate that there is a possibly optimal dose of E-WEAX for NO production in the

358 range 10-50µg/ml whilst WEAX has a significantly different optimum dose above 359 500µg/ml. In addition, in the concentration range from 10 to 50µg/ml, NO 360 response of WEAX is much more modest than that produced by similar 361 concentrations of E-WEAX (p<0.05). These comparisons show that there are 362 obvious differences between E-WEAX and WEAX treatments in relation to NO 363 stimulation, Again E-WEAX showed stronger immunomodulatory activity than 364 WEAX in the present assay. 365 Secondly, LPS, used as a positive control, significantly stimulated NO secretion 366 at concentrations of 1 to 50µg/ml (Table 4) compared to the untreated control, which is similar to E-WEAX. However, at 500µg/ml of LPS, the amount of NO 367 368 produced by the U937 cells significantly decreased (p<0.05) compared to lower 369 concentrations of LPS, reflecting the substantial inhibitory effect on cell growth 370 and viability at this concentration (Table 3). Compared with AXs, the NO produced 371 following LPS treatment is consistently higher at the concentration range of 1 to $50\mu g/ml$. 372

373 It is obvious that there is a relationship between Mw and structure of AXs and

374	their immunomodulatory activity. As shown, the main structural differences
375	between these two AX samples was in the low Mw range of 1-10KDa. The E-WEAX
376	contains a higher AX portion of AX with lower avDP in this small Mw range
377	compared with WEAX. In addition, E-WEAX presented a higher A/X ratio (0.83)
378	compared to WEAX (0.48). This means that the xylan chains of E-WEAX have more
379	arabinose substitutes. Thus, the large difference in NO stimulatory activity
380	between the two AX samples may be associated with the difference in the low 1-
381	10kDa Mw fraction and the higher A/X ratio.
382	3.3.3 Effects of AX treatments on iNOS expression by U937 cells
383	In order to obtain a better understanding of AX modulation of NO production,
384	the effect of WEAX and E-WEAX on iNOS levels was determined using in vitro
385	testing. As shown in Fig. 2A, the effect of AXs treatment on iNOS expression of
386	U937 cells was detected by using dot blot. WEAX and E-WEAX significantly
387	elevated the level of iNOS expression by U937 cells after a 24h incubation period
388	compared with the control (p<0.05). From the result of the densitometry analysis

389 shown in Fig. 2B, E-WEAX and WEAX resulted in a 2.6 and 2.1 fold increase in iNOS

390 concentration from U937 cell lysates respectively compared with the control. In

addition, the amount of iNOS following treatment with E-WEAX was significantly
higher than with WEAX (p<0.05). LPS was used as a positive control producing a
significant increase in iNOS expression compared to control (p<0.05).

394 It is obvious that the stimulatory effect of AXs on iNOS induction is highly correlated with their stimulatory activity on NO production. Therefore, the 395 396 increased NO production by AXs treatment was possibly due to induced levels of 397 iNOS by U937 cells. The LPS (positive control) also showed a high stimulatory 398 activity on iNOS levels in U937 cell lysates in the testing. This is in agreement with 399 the previous reports that the expression of iNOS in macrophage is induced by cytokines (such as IFN- γ and TNF- α) and microbial polysaccharides (such as LPS), 400 which affect the conversion of L-arginine to citrulline by cationic amino acid 401 402 transporters and the expression of both iNOS mRNA and protein (Bogdan, 2000). 403 More recently a study found that polysaccharides from D. officinale were able to increase iNOS expression and NO production in RAW 264.7 cells. They indicated 404 that the stimulatory ability of D. officinale polysaccharides on iNOS expression was 405

406	associated with the disruption of IkB α /NF-kB complexes, leading to the activation
407	of NF-κB (H. Cai et al., 2015; H. L. Cai et al., 2012). Based on these previous reports,
408	it is reasonable to propose that AXs may stimulate NO production in U937 cells
409	through the iNOS pathway. Moreover, the dot blot experiment showed that E-
410	WEAX (50 μ g/ml) had a higher stimulatory effect on iNOS levels in U937 cell
411	lysates compared to the effect of WEAX at the same concentration. The difference
412	in stimulatory effect of E-WEAX and WEAX on iNOS induction overlaps with their
413	significantly different stimulatory activity on NO production. Hence, AXs with
414	different Mw distributions and branch degree may result in different stimulatory
415	effects on the iNOS expression pathway in U937 cells and thus affecting theon NO
416	production.

4. Conclusions

In this study, an enzymatic method has been developed to efficiently extract
high yields of AXs with a high proportion of low MW material and a high degree of
branching from wheat flour pentosan. The analysis of the relationship between the
molecular structures and the immunomodulatory activity of AX samples in *in vitro*

422 t	esting suggests differences in the stimulatory effect on NO secretion are closely
423 a	associated with the enzyme modified AXs which have a much higher proportion of
424 le	ower Mw AXs and higher A/X ratio than the non-enzyme treated AXs.
425 F	Furthermore, the effects of AXs on iNOS levels of human macrophage cells
426 p	positively related to the increase in NO secretion, which suggest a pathway by
427 v	which AXs modulate NO production in human macrophage cells. This is an exciting
428 a	area for future research, the findings of which may elucidate the precise
429 n	nechanism through which AXs modulate immune responses.

5. Acknowledgements

The authors are grateful for funding support from Department of Food, Nutrition
and Hospitality of Manchester Metropolitan University (L-30073). We also would
like to thank the technician team, Phil Evans, Roya Yazdanian, Glenn Ferris and a
PhD candidate, Nicola Hall for their supports in the experimental work.

435 **References**

- Andersson, R., Eliasson, C., Selenare, M., Kamal-Eldin, A., & Aman, P. (2003). Effect
 of endo-xylanase-containing enzyme preparations and laccase on the
 solubility of rye bran arabinoxylan. *Journal of the Science of Food and Agriculture, 83*, 617-623.
- Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). The Michaelis-Menten Model
 Accounts for the Kinetic Properties of Many Enzymes *Biochemistry*. New
 York: W H Freeman.
- Bloch , W., Fleischmann , B. K., Lorke , D. E., Andressen , C., Hops , B., Hescheler , J.,
 & K., A. (1999). Nitric oxide synthase expression and role during
 cardiomyogenesis. *Cardiovascular Research* 43(675-684).
- Bogdan, C. (2000). The function of nitric oxide in the immune system. In B. Mayer
 (Ed.), *Handbook of Experimental Pharmacology* (Vol. Nitric Oxide pp. 443–
 448 492). Heidelberg: Springer.
- Cai, H., Huang, X., Nie, S., Xie, M., Phillips, G. O., & W., C. S. (2015). Study on
 Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part III–
 Immunomodulatory activity in vitro. *Bioactive Carbohydrates and Dietary Fibre*, 5(2), 99–105.
- 453 Cai, H. L., Huang, X. J., Nie, S. P., Tian, F., Xie, M. Y., & Cui, S. W. (2012). Effects of
 454 polysaccharides from Dendrobium officinale on the production of TNF-α by
 455 RAW264.7 cells. *Chinese Pharmacological Bulletin, 28*, 1553–1556.
- 456 Courtin, C. M., & Delcour, J. A. (2001). Relative activity of endoxylanases towards
 457 water-extractable and water-unextractable arabinoxylan. *Journal of Cereal*458 *Science*, *33*, 301-312.
- 459 Courtin, C. M., Swennen, K., Broekaert, W. F., Swennen, Q., & Buyse, J. (2008). Effects
 460 of dietary inclusion of xylooligo-saccharides, arabinoxylooligosaccha-rides
 461 and soluble arabinoxylan on the microbial composition of caecal contents
 462 of chickens. J. Sci. Food Agric., 88, 2517-2522.
- 463
- 464 Dawson, T. M., & Dawson, V. L. (1995). Nitric oxide: Actions and pathological roles.

- 465 *The Neuroscientist*, 7-18.
- 466 Douglas, S. G. (1980). A rapid method for the determination of pentosans in wheat
 467 flour. *Food Chemistry* 7, 139-145.
- 468 Forstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: regulation and
 469 function. *Eur Heart J, 33*(7), 829-837, 837a-837d. doi:
 470 10.1093/eurheartj/ehr304
- 471 Griess, P. (1879). Bemerkungen zu der abhandlung der H.H. Weselsky und
 472 Benedikt "Ueber einige azoverbindungen". *Chem. Ber., 12*, 426-428.
- 473 Izydorczyk, M. S., & Biliaderis, C. G. (1995). Cereal arabinoxylans: advances in
 474 structure and physicochemical properties. *Carbohydrate Polymers, 28*(1),
 475 33-38.
- Izydorczyk, M. S., & Biliaderis, C. G. (2007). Arabinoxylans: Technologically and
 nutritionally functional plant polysaccharides. In C. G. Biliaderis & M. S.
 Izydorczyk (Eds.), *Functional Food Carbohydrates* (pp. 249–290). Boca
 Raton: CRC Press.
- Lechner, M., Lirk, P., & Rieder, J. (2005). Inducible nitric oxide synthase (iNOS) in
 tumor biology: the two sides of the same coin. *Semin Cancer Biol*, 15(4),
 277-289. doi: 10.1016/j.semcancer.2005.04.004
- Li, W., Hu, H., Wang, Q., & Brennan, C. S. (2013). Molecular Features of Wheat
 Endosperm Arabinoxylan Inclusion in Functional Bread. *Foods*, *2*(2), 225237.
- Li, W., Zhang, S., & Smith, C. (2015). The molecular structure features-immune
 stimulatory activity of arabinoxylans derived from the pentosan faction of
 wheat flour. *Journal of Cereal Science* doi: doi: 10.1016/j.jcs.2014.12.002.
- Maes, C., Vangeneugden, B., & Delcour, J. A. (2004). Relative activity of two
 endoxylanases towards water-unextractable arabinoxylans in wheat bran. *Journal of Cereal Science*, 39(181-186).
- 492 Mendis, M.; Leclerc, E.; Simsek, S. Arabinoxylans, gut microbiota and immunity.
 493 *Carbohydr. Polym.* 2016, 139, 159-66.
- Muller-Decker, K., Manegold, G., Butz, H., Hinz, D. E., Huttner, D., Richter, K. H.,
 Tremmel, M., Weissflog, R., & Marks, F. (2005). Inhibition of cell
 proliferation by bacterial lipopolysaccharides in TLR4-positive epithelial
 cells: independence of nitric oxide and cytokine release. *J Invest Dermatol*,

- 498 *124*(3), 553-561. doi: 10.1111/j.0022-202X.2004.23598.x
- Nathan, C. (1992). Nitric oxide as a secretory product of mammalian cells. *FASEB J*, 6(12), 3051-3064.
- Pervin, S., Singh, R., & Chaudhuri, G. (2001). Nitric oxide-induced cytostasis and
 cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential
 role of cyclin D1. *Proc Natl Acad Sci U S A, 98*(6), 3583-3588. doi:
 10.1073/pnas.041603998
- Saeed, F., Pasha, I., Anjum, F. M., & Sultan, M. T. (2011). Arabinoxylans and
 arabinogalactans: a comprehensive treatise. *Crit Rev Food Sci Nutr, 51*(5),
 467-476. doi: 10.1080/10408391003681418

508 Samuelsen, A. B.; Rieder, A.; Grimmer, S.; Michaelsen, T. E.; Knutsen, S. H.

- 509 Immunomodulatory activity of dietary fiber: arabinoxylan and
- 510 mixed-linked beta-glucan isolated from barley show modest activities in
 511 vitro. *Int. J. Mol. Sci.* 2011, *12* (1), 570-87.
- 512 Schepetkin, I. A., & Quinn, M. T. (2006). Botanical polysaccharides: macrophage
 513 immunomodulation and therapeutic potential. *Int Immunopharmacol*, 6(3),
 514 317-333. doi: 10.1016/j.intimp.2005.10.005
- Swennen, K., Courtin, C. M., Lindemans, G. C. J. E., & Delcour, J. A. (2006). Largescale production and characterisation of wheat bran
 arabinoxylooligosaccharides. *Journal of the Science of Food and Agriculture*86, 1722-1731.
- Vadiveloo, P. K., Keramidaris, E., Morrison, W. A., & Stewart, A. G. (2001).
 Lipopolysaccharide-induced cell cycle arrest in macrophages occurs
 independently of nitric oxide synthase II induction. *Biochim Biophys Acta*, 1539(1-2), 140-146.
- Vadiveloo, P. K., Vairo, G., Novak, U., Royston, A. K., Whitty, G., Filonzi, E. L., Cragoe,
 E. J., Jr., & Hamilton, J. A. (1996). Differential regulation of cell cycle
 machinery by various antiproliferative agents is linked to macrophage
 arrest at distinct G1 checkpoints. *Oncogene*, *13*(3), 599-608.
- Vairo, G., Royston, A. K., & Hamilton, J. A. (1992). Biochemical events accompanying
 macrophage activation and the inhibition of colony-stimulating factor-1induced macrophage proliferation by tumor necrosis factor-alpha,
 interferon-gamma, and lipopolysaccharide. *J Cell Physiol*, 151(3), 630-641.

531

doi: 10.1002/jcp.1041510324

- 532 Vries, D. J. W., Prosky, L., Li, B., & Cho, S. (1999). A historical perspective on defining
 533 dietary fiber. *Cereal Foods World*, 44, 367-369.
- Zhang, S., Li, W., Smith, C. J., & Musa, H. (2015). Cereal-derived arabinoxylans as
 biological response modifiers: extraction, molecular features, and immunestimulating properties. *Crit Rev Food Sci Nutr, 55*(8), 1033-1050. doi:
 10.1080/10408398.2012.705188
- Zhang, X., Zhou, S., & Wang, S. (2008). Optimizing enzymatic hydrolysis conditions
 of arabinoxylan in wheat bran through quadratic orthogonal rotation
 combination design. *Food Science*, *28*, 141-145.
- 541 Zhang, Z., Smith, C., & Li, W. (2014). Extraction and modification technology of
 542 arabinoxylans from cereal by-products: A critical review. *Food Research*543 *International*, 65, 423-436.
- Zhang, Z., Smith, C. J., Li, W., & Ashworth, J. (2016) Characterization of Nitric Oxide
 Modulatory Activities of Alkaline-Extracted and Enzymatic-Modified
 Arabinoxylans from Corn Bran in Cultured Human Monocytes. *Journal of Agricultural and Food Chemistry*, 64 (43), pp 8128–8137.
- Zhou, S., Liu, X., Guo, Y., Wang, Q., Peng, D., & Cao, L. (2010). Comparison of the
 immunological activities of arabinoxylans from wheat bran with alkali and
 xylanase-aided extraction. *Carbohydrate Polymers*, *81*, 784–789.
- 551
- 552

553 List of Tables

- **Table 1.** The AXs extraction yield (dry basis) under different conditions ofenzymatic treatment
- **Table 2.** The molecular structures of AX samples under different conditions of
- 557 enzyme treatments
- **Table 3.** Effects of AXs and LPS on the growth and viability of U937 cells
- **Table 4.** NO production by U937 cell under the treatment of WEAX, E-WEAX and
- 560 LPS
- 561 List of Figures
- **Figure 1.** The molecular weight distribution of E-WEAXs with enzyme treatment
- 563 of various concentrations
- **Figure 2.** Effects of AXs and LPS on iNOS expression by U937 cells detected by dot
- 565 blot assay

5							
Treatme	nt conditions	Extraction yields of AXs	AX content of				
			Raw material				
Treatment	20°C	11.12±0.39% ª					
Temperature	30°C	12.97±0.34% ^b					
	40°C	12.73±0.53% ^b					
Treatment	2 h	12.72±0.54% ^b	_				
Time	3 h	12.21±0.34% ^b					
	4 h	12.44±0.34% ^b					
Endoxylanase	50ppm	10.31±0.26% ª	- 15.79±0.40%				
Concentration	100ppm	10.71±0.55% ª					
	200ppm	12.70±0.55% ^b					
	300ppm	12.75±0.40% ^b					
	400ppm	12.83±0.35% ^b					
Control	Water extraction	7.54±0.47% ^c	_				

Table 1. The AXs extraction yield (dry basis) under different conditions ofenzymatic treatment

568 (20 \degree -40 \degree) means extracted AXs using the different enzyme treatment temperatures and other 569 extraction conditions were set up as same (pH4.5, 2h, 200ppm endoxylanase); (2h-4h) means extracted 570 AXs using the different enzyme treatment time and other extraction conditions were set up as same 571 (pH4.5, 40 ℃, 200ppm endoxylanase); (50-400ppm) means extracted AXs using enzymatic treatment at 572 various concentrations at pH 4.5, 40 ℃ for 2h. The control indicates water extractable AX (WEAX) 573 without enzymatic treatment. The extraction yields are presented as mean + SD and experiments were 574 conducted in triplicate. The mean values with different letters (a, b and c) indicate significant differences 575 (p<0.05) in AX extraction yield for each sample amongst all the treatments. The p-values were calculated 576 by Student's t-test using Excel.

Treatment co	nditions		Monosacchar	ides compos	itions of AXs ^a			Mw distribu	itions of AXs ^c	
		Ara(%)	Xyl(%)	Glu(%)	Gal(%)	A/X b	Range 1:	Range 2:	Range 3:	Range 4:
							1×10 ⁵ -10 ^{5.9} Da	1×10 ⁴ -10 ⁵ Da	1×10 ³ -10 ⁴ Da	1×10 ^{2.2} -10 ³ Da
Control	Water extraction	26.13±1.01	53.96 ±1.49	10.62±2.04	9.29 ±1.26	0.48	46.46%	32.06%	19.11%	2.37%
Enzyme	50ppm	28.15±1.34	49.65±1.22	11.92±0.95	10.28±1.32	0.57	15.27%	45.54%	35.42%	3.77%
Concentration	100ppm	29.93±0.69	47.92±2.02	11.42±0.83	10.74±1.23	0.62	9.26%	40.29%	46.72%	3.72%
	200ppm	26.77±1.23	37.13±0.76	20.3±0.86	15.81±0.32	0.72	7.17%	40.62%	46.82%	5.39%
	300ppm	27.11±0.76	35.37±2.92	21.32±1.03	16.2±1.43	0.77	6.47%	40.09%	48.88%	4.56%
	400ppm	28.74±1.77	34.51±0.34	21.85±2.22	14.9±2.32	0.83	5.75%	39.89%	49.51%	4.85%
Treatment	2h	26.88±0.83	37.21±0.48	20.3±0.63	15.61±0.78	0.72	7.33%	40.18%	47.38%	5.11%
Time	3h	27.52±0.34	38.22±1.32	19.84±0.63	14.42±0.79	0.72	7.48%	40.30%	47.04%	5.18%
	4h	26.72±0.54	37.81±0.86	20.01±0.89	15.46±1.46	0.71	7.13%	40.45%	46.93%	5.49%
Treatment	20°C	27.11±1.82	39.04±1.64	18.47±1.33	15.38±0.49	0.70	7.15%	40.52%	46.87%	5.46%
Temperature	30°C	28.15±1.67	39.19±0.76	18.01±2.55	14.65±0.64	0.72	7.05%	40.69%	46.79%	5.47%
	40°C	26.67±1.05	37.22±0.35	20.34±0.50	15.77±0.44	0.72	7.23%	40.45%	46.75%	5.57%

577 **Table 2.** The molecular structures of AX samples under different conditions of enzyme treatments

578 a: The proportion of each monosaccharide in AX sample is presented as mean + SD and all experiments were conducted in triplicate. b: A/X means the composition ratio of

579 arabinose to xylose. c: The proportion of Mw in different range were analysed using the LC Data Analysis (SHIMADZU Corporation).

Sample		Concen	tration of AX	s and LPS	(µg/ml)	Untreated Control		
	50		500		1000		-	
	Total count	Viability	Total count	Viability	Total count	Viability	Total count	Viability
LPS	1.18±0.029	92.63%	0.98±0.03*	92.33%	0.91±0.024*	88.15%	1.17±0.022	90.90%
E-	1.21±0.021	90.60%	1.22±0.046	90.09%	1.23±0.032	90.70%		
WEAX								
WEAX	1.25±0.026 90.72%		1.23±0.016	1.23±0.016 90.48%		1.24±0.037 89.60%		

Table 3. Effects of AXs and LPS on the growth and viability of U937 cells

581 The total count (\times 10⁶) indicated the count of total (viable and unviable) U937 cells after various

treatments for 24h; the viability was calculated by viable cell count/total cell account; the total cell count

583 and viability after AXs and LPS treatments were compared with the control (untreated by AXs or LPS)

using the one way ANOVA; The symbol * indicated the p-value < 0.05; The total cell counts are presented

585 as mean + SEM of six copies samples from experiment.

Samples	Concentration of AXs and LPS (µg/ml)					Untreated
	1	5	10	50	500	Control
LPS	72.87±2.40	73.00±1.44	73.07±5.50	71.79±5.43	59.05±2.82	45.72
	*	*	*	*	* #	±0.47
E-WEAX	48.71±3.73	56.00±0.39	64.54±2.69	67.77±2.94	56.65±1.62	
	* \$	* \$	* # @	* @	* #	
WEAX	54.34±1.04	54.00±2.72	53.71±3.62	59.83±2.98	61.84±2.97	
	* \$	* \$	* \$	* \$	*	

586 **Table 4.** NO production by U937 cell under the treatment of WEAX, E-WEAX and LPS

587 The NO₂⁻ concentration (units: μ M) described as mean + SEM is an indication of NO production in U937 588 cells. The symbol * indicates NO secretion significantly increased (p<0.05) compared to the untreated 589 control; The symbol # indicates NO secretion significantly changed (p<0.05) as the sample dosage 590 progressively increased; The symbol @ indicates NO secretion with E-WEAX treatment was significantly 591 different than with WEAX at that specific concentration (p-<0.05); The symbol \$ indicates NO secretion 592 with E-WEAX or WEAX treatment was significantly different than with LPS treatment at that specific 593 concentration (p<0.05). The p-values were calculated by one-way ANOVA using SPSS.19 and experiments 594 were conducted in triplicate.