
University of Huddersfield Repository

Niu, Z, Gao, Nan, Zhang, Zonghua, Gao, Feng and Jiang, Xiang

3D shape measurement of discontinuous specular objects based on advanced PMD with bi­
telecentric lens

Original Citation

Niu, Z, Gao, Nan, Zhang, Zonghua, Gao, Feng and Jiang, Xiang (2018) 3D shape measurement of 
discontinuous specular objects based on advanced PMD with bi­telecentric lens. Optics Express, 26 
(2). pp. 1615­1632. ISSN 1094­4087 

This version is available at http://eprints.hud.ac.uk/id/eprint/34372/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not­for­profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



3D shape measurement of discontinuous 
specular objects based on advanced PMD with 
bi-telecentric lens 
ZHENQI NIU,1 NAN GAO,1 ZONGHUA ZHANG,1,2,3,* FENG GAO,2 XIANGQIAN 
newJIANG2 
1School of Mechanical Engineering, Heibei University of Technology, Tianjin, 300130, China 
2Centre for Precision Technologies, University of Huddersfield, HD1 3DH, UK 
3zhzhang@hebut.edu.cn 
*zhzhangtju@hotmail.com 

Abstract: This paper presents an advanced phase measuring deflectometry (PMD) method 
based on a novel mathematical model to obtain three dimensional (3D) shape of 
discontinuous specular object using a bi-telecentric lens. The proposed method uses an LCD 
screen, a flat beam splitter, a camera with a bi-telecentric lens, and a translating stage. The 
LCD screen is used to display sinusoidal fringe patterns and can be moved by the stage to two 
different positions along the normal direction of a reference plane. The camera captures the 
deformed fringe patterns reflected by the measured specular surface. The splitter realizes the 
fringe patterns displaying and imaging from the same direction. Using the proposed advanced 
PMD method, the depth data can be directly calculated from absolute phase, instead of 
integrating gradient data. In order to calibrate the relative orientation of the LCD screen and 
the camera, an auxiliary plane mirror is used to reflect the pattern on the LCD screen three 
times. After the geometric calibration, 3D shape data of the measured specular objects are 
calculated from the phase differences between the reference plane and the reflected surface. 
The experimental results show that 3D shape of discontinuous specular object can be 
effectively and accurately measured from absolute phase data by the proposed advanced PMD 
method. 
Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further 
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, 
and DOI. 

OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (120.6650) Surface measurements, figure; 
(120.5700) Reflection; (120.5050) Phase measurement; (150.1488) Calibration; (150.6910) Three-dimensional 
sensing. 
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1. Introduction 
Specular free-form surfaces are recently widely used in many fields, such as optics, car 
industry, aerospace, and micro-electro mechanical systems (MEMS). The research of three 
dimensional (3D) shape measurement for these objects is still in the early stage. The 
traditional fringe projection techniques [1–4] can only measure diffused surfaces. In order to 
measure specular objects by using fringe projection, the surface characteristics need to be 
changed in advance, for example, coating the surface by powder. This operation will slow the 
measurement speed and reduce the measurement accuracy. 

Phase measuring deflectometry (PMD) [5–8], which is aimed at measuring specular free-
form surfaces, has been widely studied in recent years, because of its advantages of large 
dynamic range, non-contact operation, full-field measurement, fast acquisition, high precision 
and automatic data processing. PMD has been applied to measure aspheric mirror [9] and 
dynamic specular surface [10]. Phase information of the deformed fringe patterns is 
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demodulated to obtain the slope of the measured specular surface and then 3D shape of the 
measured specular surface can be reconstructed by integrating the gradients. Each point of a 
reconstructed shape depends on the gradients of surrounding points because of the integration 
procedure, and the regularity of the surface must be carefully considered [11–13]. Because 
the slope data calculation and the integration procedure are sensitive to the system errors, the 
obtained 3D shape data are inaccurate. The other drawback is that discontinuous specular 
objects cannot be measured because of the integration procedure. In order to measure 
discontinuous specular objects, some researchers have proposed several improved PMD 
methods. Guo et al [14] presented a measurement method with one camera and one LCD 
plane that is moved into two or more positions to complete specular measurement by special 
geometrical structure. However, the accuracy of measurement depends on the precisions of 
the system parameters and the speed is limited due to the horizontal and vertical fringe 
patterns projected in the LCD screen. It is difficult to accurately calibrate the measurement 
system and establish the system structure [15]. Knauer et al [16] proposed a stereo 
deflectometry to obtain the height and gradient information simultaneously. The system 
consists of two cameras and one LCD screen. However, the measurement accuracy depends 
on the process of an iterated algorithm and the precision of the geometric relationship 
between the cameras and LCD screen. 

 

Fig. 1. Schematic diagram of the relationship between a pinhole camera and an LCD screen. 

There are two problems in the existing PMD methods. One is a limited depth of field 
(DOF) of the camera lens because the specular surface under test and the virtual image of the 
screen have different distances to the camera. The captured fringe pattern image is blurred 
because of the limited DOF [14, 17], so that it is difficult to accurately calibrate the system 
parameters and measure specular object with a large depth. The other problem is system 
calibration of PMD. It is an important and basic step to obtain the accurate measurement 
results, especially to calibrate the relative orientation between the camera and LCD screen 
[14, 18–20]. However, this is a difficult and challenging problem because the camera cannot 
directly see the LCD screen [21–23], as illustrated in Fig. 1. Generally, there are two kinds of 
geometric calibration method. One is to use a plane mirror with markers on the surface to 
calibrate the relative orientation between the camera and LCD screen. The known separations 
between markers determine the position of the mirror [19, 20]. Obviously, it is troublesome 
and inconvenient to accurately determine the position of these markers. The other is to utilize 
a plane mirror without any markers. The mirror reflects the pattern displayed on the LCD 
screen several times to determine the relative relationship between the camera and the LCD 
screen [21–23]. All these calibration methods aim at the pinhole camera, without considering 
the lens distortion. According to the principle of photogrammetry, lens distortion has great 
effect on high-precision 3D measurement. A bi-telecentric lens has negligible distortion, so 
that it can be used to improve the measurement system. However, there is not an available 
method to calibrate the relative orientation between the LCD screen and camera with a bi-
telecentric imaging lens. . 
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By using a bi-telecentric lens, this paper proposes a new advanced PMD method having 
unlimited imaging DOF. A novel mathematical model is established for measuring 3D shape 
of discontinuous specular objects by directly establishing the relationship between absolute 
phase and depth. The camera captures the deformed fringe patterns reflected by the measured 
specular surface from the same viewpoint of the displayed LCD screens. An auxiliary plane 
mirror is used to calibrate the measuring system by reflecting the pattern displayed on the 
LCD screen three times. Three specular objects have been measured to verify the accuracy 
and evaluate the performance of the proposed 3D measuring method. 

The rest of the paper is organized as follows. In Section 2, the principle of measurement 
and calibration are demonstrated. Section 3 shows the system calibration and the 3D 
measurement results of specular objects by using simulation data. In Section 4, the actual 
experiments on several specular objects are carried out and a quantitative evaluation of the 
measurement system is given. Finally, Section 5 concludes the paper. 

2. Principle 
The proposed measurement method displays sinusoidal fringe patterns onto an LCD screen, 
which is moved to two different positions along normal direction of a reference plane. A 
camera captures the deformed fringe patterns reflected by the measured specular surface from 
the same viewpoint of the screens through a flat beam splitter. A four-step phase shift 
algorithm and an optimum multiple-fringe numbers selection method [24, 25] are used to 
calculate the wrapped and unwrapped phase data pixel by pixel from the captured sinusoidal 
fringe patterns. According to the established mathematical model, 3D shape of discontinuous 
specular surface can be directly reconstructed from the calculated absolute phase map. 

2.1. Measurement method 

 

Fig. 2. Schematic diagram of the measurement principle. 

Figure 2 shows the measurement principle used to obtain 3D shape of discontinuous specular 
objects. It consists of an LCD screen, a camera with a bi-telecentric lens, a flat beam splitter, 
and a reference specular plane. The LCD screen is used as the diffusive structured light 
source, which can be moved by a translating stage. In order to directly obtain 3D shape of 
specular objects from the deformed fringe patterns, the sinusoidal fringe patterns need to be 
displayed on the LCD screen located at two known positions of P1 and P2. The beam splitter 
is used to change the light path of the camera, so that the optical axis of lens is vertical to the 
LCD screen. Because of the characteristics of bi-telecentric lens, only the light rays that are 
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approximately parallel to the optical axis of the lens can form the image, as illustrated in Fig. 
2. Two light rays are displayed from LCD screens and reflected into the camera by the 
measured specular object surface and the reference specular plane. 

The LCD screen remains parallel to the reference specular plane that is vertical to the 
optical axis of camera. ∆d is the translating distance of the screen by the stage and d is the 
distance between the reference specular plane and the LCD screen located at P1. The two 
incident rays correspond to the same reflection light. The phases of the two incident rays are 

1rϕ  and 2rϕ  on the reference plane and 1mϕ  and 2mϕ  on the measured free-form surface. 

Because normal vector of the reference plane is parallel to the optical axis of camera, the 
incident ray coincides with the reflected ray through the reference plane. α  is the angle 
between the other incident ray and the reflected ray through the measured object surface. The 
period of the displayed fringe pattern is q. Parameter h stands for height of the measured 
specular surface with respect to the reference plane. 

According to the geometric relationship in Fig. 2, the following equations can be deduced. 

 ( )1 1 tan
2

m r q d h
ϕ ϕ α

π
−

= −  (1) 

 ( )2 2 tan
2

m r q d d h
ϕ ϕ α

π
−

= Δ + −  (2) 

From Eqs. (1) and (2), height of the measured specular surface is 

 
( )

( ) ( )
1 1

2 2 1 1

m r

m r m r

d
h d

ϕ ϕ
ϕ ϕ ϕ ϕ

Δ −
= −

− − −
 (3) 

Because d is a constant, it can be moved to the left part. Depth information can be defined 
as H = d-h, which is the distance between the measured specular surface and the LCD screen 
located at P1. H can be directly calculated from phase data. It clearly shows that depth H can 
be directly calculated from the captured fringe patterns only if the parameter ∆d and phase 
information on the reference plane mirror are determined beforehand. Because the optimum 
three-fringe numbers selection method will be used to independently calculate the absolute 
phase pixel by pixel, discontinuous specular objects surfaces can be measured by the 
proposed method. However, when normal of the measured specular point is vertical to the 
LCD screen, the reference phase equals to the phase of the corresponding point on the 
measured specular surface. In this case, denominator of Eq. (3) is zero, so that the points 
whose normal is vertical to the LCD screen on specular objects cannot be measured 
effectively. 

2.2. Camera model with bi-telecentric lens 

A bi-telecentric lens has the property of purely orthographic projections of scene points and 
maintains a constant magnification over a specific range of object distances [26–28]. In a bi-
telecentric system, only the light rays that are approximately parallel to the optical axis of the 
lens pass the aperture stop and form the image. The bi-telecentric lens accurately reproduces 
dimensional relationships within its telecentric depth, and it is robust to small differences in 
the distance between the lens and the camera’s sensor. The bi-telecentric lens shows a very 
low distortion and offers a large DOF. A pinhole model of wide angle cameras is not 
applicable for the bi-telecentric imaging system. The camera model with a bi-telecentric lens 
is demonstrated in Fig. 3 [29]. The bi-telecentric lens simply performs a magnification in both 
X and Y directions, while it is not sensitive to the depth in Z direction. 

Assuming a 3D point and the corresponding 2D point are denoted [ ]T

W W WP X Y Z  and 

[ ]T
p u v= , respectively. By carrying out ray transfer matrix analysis for such an optical 
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system, the projection of an arbitrary point P to computer image coordinate in pixels is 
expressed as Eq. (4) [30]. 

 

Fig. 3. Model of bi-telecentric camera imaging. 
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0 / 0
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            

 

 (4) 

where m is the effective magnification of the bi-telecentric lens; ijr  is the element of rotation 

matrix R and ,x yt t are elements of the translation matrix T; ud and vd  are the sizes of a pixel 

in the x and y directions, respectively. It is obvious that there is not a principal point 0 0u v  for 

the telecentric lens from Eq. (4), because the bi-telecentric lens performs parallel projection 
and there is not a projection center [27, 28]. 
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δ
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
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    

= +     
     

 (5) 

where ( ),u ux y  are the image coordinates if a perfect orthographic projection model is used; 

( ),d dx y are the actual image coordinates on the image plane; ( )1 1 2 1 2, , , ,k h h s s are the 

distortion coefficients. 

2.3. Geometric calibration 

2.3.1. Bi-telecentric imaging model by a plane mirror 

Through a plane mirror, the imaging geometric relationship between the camera and mirrored 
LCD screen is illustrated in Fig. 4. 

Markers with known separation in between are generated by software and displayed on 
the LCD screen. The screen is reflected by the plane mirror placed at three different positions 

( )1, 2,3j jπ =  [23] and the virtual image of the markers is captured by the CCD camera. 
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Assuming ( )0,1, 2, ,X ip i k= L  denotes the position of the marker points in the world 

coordinate system {X}. These positions are modeled as located at 

 C i X iP R P T= +  (6) 

in the camera coordinate system {C} with a rotation matrix R and a translation vector T. 
According to the law of reflection, the reference point C ip  is mirrored by jπ  as C i

mjp  in 

{C}. Each mirror jπ  is defined by its normal vector C
jn  and its distance jd  from C. 

 

Fig. 4. Schematic diagram of bi-telecentric imaging model by a plane mirror. 

The relationship between C ip  and its reflection C i
mjp  by mirror jπ  is known as 

Householder transformation. However, the bi-telecentric lens is not sensitive to depth in Z 
direction. Therefore, the third element zt  of the translation vector T cannot be calibrated. The 

real 3D reflection points cannot be estimated. Moreover, the ideal imaging model cannot be 
used to calibrate posture of the camera with the bi-telecentric lens. In order to address the 
problem, a new measurement model is described in the following subsection. 
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2.3.2. Measurement model 

Assuming [ ]0 0 0T = , a new imaging model can be obtained where original point 0C p  of 

the LCD screen and the corresponding original point 0C
jp  are located in the original point of 

the camera, as illustrated in Fig. 5. In the new model, the law of reflection is still effective. 
The LCD screen is reflected by the plane mirror located at three different positions 

( )1, 2,3j jπ =  and the markers on the screen are captured. The reflection of the reference 

point C ip  mirrored by jπ  appears as C i
jp  in {C}. 

 

Fig. 5. Measurement model. 

Distance i
jt  from the mirror jπ  to C i

jp  is equal to the distance from the mirror jπ  to 
C ip  according to the law of reflection. The relationship is expressed by 

 2C i i C C i
j j jP t n P= ⋅ +  (7) 

where i
jt  can be represented as 

 ( )0i C T C C i
j j j jt n P P= ⋅ −  (8) 

Removing i
jt  from the two equations can obtain 

 ( )( )02C i C T C C i C C i
j j j j jP n P P n P= ⋅ − ⋅ +  (9) 

Considering the reference 3D point C ip  is unique, its two mirrored 3D points C i
jp  and 

( )' 'C i
jp j j≠  reflected by two different mirror positions jπ  and 'jπ , respectively, are all 

applicable to the Eq. (9). 
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From Eq. (9), it concludes that not only can 3D position of the ith reference point C ip  be 

estimated from each of three mirrors jπ  and the corresponding mirrored position C i
jp , but 

the estimated 3D positions from different mirrors should be equal to each other, which can be 
represented 

 
( )( )
( )( )

0

0
' ' ' ' '

2

2

C i C T C C i C C i
j j j j j

C T C C i C C i
j j j j j

P n P P n P

n P P n P

= ⋅ ⋅ − ⋅ +

= ⋅ ⋅ − ⋅ +
 (10) 

2.3.3. Solution of rotation matrix R 

Assuming ' 'jj j jm n n= ×  denotes the axis vector which lies along the intersection of the two 

mirror planes, the axis vector 'jjm  is perpendicular to both mirror plane normal vector jn  and 

'jn . 

 '

' '

0

0

C T
j jj

C T
j jj

n m

n m

 ⋅ =
 ⋅ =

 (11) 

Multiplying 'jjm  on the right side of Eq. (10) obtains 

 
( )

' ' '

' '

C iT C i T
j jj j jj

TC i C i
j j jj

P m P m

P P m

⋅ = ⋅

⇔ − ⋅
  (12) 

By applying the orthogonality constraint for the mirrored positions of reference points 

( )0,1, 2, ,C ip i k= L , the following equation holds 

 

( )
( )

( )

1 1
'

2 2
'

' ' '

'

0

TC C
j j

TC C
j j

jj jj jj

TC i C i
j j

P P

P P
m Q m

P P

 −
 
 −  ⋅ = ⋅ =
 
 
 − 

M
 (13) 

Multiplying '
T
jjQ  on the left side of Eq. (13), 

 ' ' ' ' ' 0.T T
jj jj jj jj jjQ Q m M m= ⋅ =  (14) 

Since 'jjM  is a 3 × 3 positive semidefinite matrix, 'jjM  can be calculated as the 

eigenvector corresponding to the smallest eigenvalue of 'jjM . 

The axis vectors 12m , 23m  and 31m  are obtained as the eigenvectors corresponding to the 

smallest eigenvalues of 12M , 23M  and 31M , respectively. Using these axis vectors can 

compute the normal vector of the mirrors by the following equation. 
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After removing C ip  from Eqs. (6) and (9), a large system of linear equations can be 

derived 

 AZ B=  (16) 

where 
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Without loss of generality, ( ) ( ), ,0 1
TX i

i ip x y i k= ≤ ≤  is used in these equations. 1r  and 

2r  are the first and second column vectors of R, that is, ( )1 2 3R r r r= . 

The least-squares solution for Z can be computed by *Z A B= ⋅ , where *A  is the Moore-
Penrose pseudo-inverse of A. The third column vector of rotation matrix 3r  can be computed 

as follows [30]. 

 
( )1 2

3
1 2

r r
r

r r

×
=

⋅
 (17) 

Through the above procedure, the rotation matrix R between LCD screen and camera can 
be calculated. Therefore, the parallel relationship between them can be guaranteed by 
adjusting the LCD screen according to the calculated rotation matrix R. 

3. Simulation 
The simulated experiments were carried out to evaluate the proposed measurement method. 
To generate the simulated data, the following default values were used. The original distance 
from the camera to mirrors was 340 mm. The normal vectors ( )1,2,3C

jn j =  of mirror jπ  

were set to (sinθz·sinθx + cosθx·cosθz·sinθy, sinθx·cosθz + cosθx·sinθz·sinθy, cosθx·cosθy), where 

( ), ,k k x y zθ =  was the angle with respect to each axis, and drawn randomly within the 

ranges of (−20≤θx≤20, −20≤θy≤20, −20≤θz≤20). The rotation matrix and translation vector 
from the world coordinate system of LCD screen to the camera coordinate system were set to 

3I  and [ ]300,100,160
T

, respectively. The world coordinates of reference 3D points were 

defined as [0, f, g]T, (f = 0, 20, …, 60, g = 0, 20, …, 60). Gaussian noise with zero-mean and 
standard deviation σ = 0, 0.2, 0.4, …, 3 was added to the synthesized reference 3D points. 
Using the simulated data, the system was calibrated and then a simulated specular plane and a 
simulated specular sphere were measured. 
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3.1. Geometric calibration 

The normal vectors C
jn  and rotation matrix R could be estimated by Eqs. (15)-(17). By using 

the preset value and the estimated results, the errors of R and C
jn  were quantitatively 

evaluated. Er is defined as the error by using Riemannian distance [31] between the estimated 
R and the ground truth value gR  

 ( )1
log

2
T

r g
F

E R R= ⋅  (18) 

 ( )
'

' '

0 0
log

0
2sin

T
R

R R

θ
θ θ

θ

=
=  − ≠

  
 (19) 

where 1 ' 1
cos

2

trRθ − −= . 

The physical meaning of Riemannian distance reflects appropriately the distance between 
two poses in a dynamic sense [32]. The Riemannian distance Er defines the minimal absolute 
value of the angle by which the coordinate system R must be rotated around an arbitrary axis 
in order to align it with the coordinate system gR  [33]. 

Error of C
jn  is defined as the estimated angle against the ground truth ,g jn  

 ( )3 1
,1

1
cos

3
C T

n j g jj
E n n−

=
= ⋅  (20) 

 

Fig. 6. Calibration errors. (a) Different noise, and (b) different mirror postures. 

Figure 6(a) shows the error against different noise. The mirror normal vectors 

are [ ] [ ] [ ]0.493,0.057,0.868 , 0.485,0.585, 0.651 , 0.396, 0.330,0.857
T T T− − . Figure 6(b) shows 

the error against different mirror angles. The mirror postures were changed up to ± 20 
degrees. When the angle is greater than 15 degrees, the errors of En and Er are not 
sufficiently obvious. The simulated data were added Gaussian noise with zero-mean and 
standard deviation σ = 2. These results quantitatively prove that the proposed method is 
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insensitive to a certain noise level and the estimation accuracy increases with increasing the 
mirror rotation angle. 

3.2. Measurement results 

 

Fig. 7. Three sets of original fringe patterns having the optimum fringe numbers. (a) 64, (b) 63, 
and (c) 56. 

Distance dΔ  between the two LCD screens is 30mm and distance d between LCD screen at 
P1 and the reference specular plane is 100mm. The LCD screen has a resolution of 
2048× 1536 pixels and a pixel size of 15 um× 15 um. The effective magnification of the bi-
telecentric lens is 0.057. The camera has a pixel size of 3.45 um× 3.45 um. Twelve vertical 
fringe patterns having the optimum fringe numbers of 64, 63, and 56 were generated with 5% 
random noise by software, as shown in Fig. 7. A specular plane with size of 100 mm× 100 
mm and a specular sphere with radium of 67.434 mm were simulated. 3D shape data of the 
two simulated specular objects were measured by using the proposed method, as shown in 
Fig. 8(a) and Fig. 9(a). 

To verify the measurement accuracy, the mean squared errors is defined as 

 
( )( )2

0

m

c r
i

H H
MSE

m
=

−
=


 (21) 

where cH  is the calculated depth value, rH is the preset value, and m is number of the 

measured points on the specular surface. 

 

Fig. 8. Simulated results of a specular plane. (a) Simulated specular plane, and (b) absolute 
error. 
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Fig. 9. Simulated results of a specular sphere. (a) Simulated specular sphere, and (b) absolute 
error. 

Figure 8(b) and 9(b) illustrate absolute error of the reconstructed plane and the 
reconstructed sphere between the ground truth and the calculated height. Their mean squared 
errors are 0.011mm and 0.015mm. Figure 9(b) clearly shows that the absolute error is 
increasing at the region of smooth surface. The main reason is that the measurement method 
is limited to measure the specular surface that is unparalleled to the LCD screen, as stated in 
Section 2.1. Only vertical fringe patterns (as shown in Fig. 7) on the LCD screen were used to 
calculate the absolute phase on the specular surface, so that the phase along the middle 
column had the same value as that on the reference plane. Therefore, depth data along the 
middle column was calculated inaccurately. In actual measurement, the problem of inaccurate 
data can be improved by changing the specular surface with respect to the reference plane, 
and then the measured data from different positions are merged together. 

3.3. Influence of parallelism 

 

Fig. 10. Relation between a and mean squared error. 

When the reference plane is not parallel to the LCD screen, the angle a between the reference 
plane and the LCD screen is varied from 0 degrees to 1.5 degrees in increments of 0.5 
degrees. Using the simulated measurement system, the relationship between angle a and the 
mean squared error of the above reconstructed plane is obtained as shown in Fig. 10. 
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Figure 10 shows that with angle a increasing, the mean squared error of the measurement 
results increases gradually. The main reason for this trend is that with the angle a increasing, 
the deviations of the measured parameter d and the reference phase increase along x direction, 
which causing the error of measurement. Therefore, the deviation of angle a should be 
guaranteed in actual measurements. 

4. Experiments and results 
A full-field 3D shape measurement system for specular objects has been setup to test the 
proposed method. Three separate plat mirrors, a concave mirror and an artificial specular step 
have been measured to show the feasibility of directly measuring depth information from the 
calculated absolute phase data. 

4.1. Hardware system 

The developed hardware system consists of a computer, a camera with a bi-telecentric lens, 
an LCD screen, a flat beam splitter and a translating stage, as illustrated in Fig. 11. The 
camera is a SVS-Vistek camera with the model number of ceo655CVGE from Germany. It 
had a CS-mount lens interface, a resolution of 2448× 2050 pixels, a frame rate of 10 fps at 
full resolution, and a GigE interface. The bi-telecentric lens has the model number of 
GCO230105 with magnification 0.057, which has a C-mount interface. Because of CS-mount 
of the camera, a 5-mm tube is added between the lens and the camera. The LCD screen is 
model LP097QX2 from LG (Seoul, Korea) and has a resolution of 2048× 1536 pixels. The 
linear stage has a position accuracy of 1μm. After the system has been calibrated, parameter 

dΔ  is determined as 50 mm by the stage. Depth information of the reflected object surface 
could be measured by the developed system. 

 

Fig. 11. Experimental system. 

4.2. Process of measurement 

The measurement process mainly includes the following four steps, as shown in the following 
flow chart in Fig. 12. 

Step 1: Calibrate the intrinsic parameters of camera with the bi-telecentric lens to decrease 
the error of system calibration and 3D reconstruction. 

Step 2: Establish the measurement system. First, the position of the mirrored object 
reflected three times by a plane mirror is obtained in the coordination system of camera. 
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Second, the axis vector 'jjm  is calculated by Eq. (14). Third, each normal vector of mirrors 

located in three positions is estimated by Eq. (15). Fourth, the rotation matrix of the LCD 
screen is calculated by using Eqs. (16) and (17). The above four steps are repeated until the 
LCD screen is vertical to the optical axis of camera. Finally, the reference plane mirror is 
adjusted and the first three steps are repeated until the reference plane mirror is vertical to the 
optical axis of camera. 

Step 3: Obtain reference fringe patterns reflected by the reference plane mirror. In the 
whole measurement process, this step is performed once to obtain the reference absolute 
phase which is compared with the deformed absolute phase on the measured specular object. 

Step 4: Calculate the absolute phase from the captured deformed fringe patterns reflected 
by the measured specular object. 

Step 5: Calculate the 3D measurement data. Based on Eq. (3), the depth data of the 
measured object can be calculated using the phase difference and the parameter dΔ  that is 
determined by the translating stage. 

The steps 3-5 are detailed in the following chart, as shown in Fig. 13. 

4.3. Measurement results 

After calibrating the geometric parameters, three reflected objects were measured by the 
developed 3D system. They are three separate plat mirrors, a concave mirror from Micro-
nano Optical Corporation (Beijing, China) which has a radius of 400 mm, and an artificial 
specular step. 

 

Fig. 12. The flow chart of measuring process. 
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Fig. 13. Process of calculating the 3D measurement data. 

Twelve fringe patterns having the optimum fringe numbers of 64, 63, and 56 were 
generated by software and displayed sequentially on the LCD screens. The reflected fringe 
patterns by the specular surface are deformed and captured by the camera. Figure 14 shows 
one of the captured deformed fringe patterns on the specular objects. Because the optimum 
three-fringe number selection method was used to unwrap the wrapped phase [24], the 
absolute phase of each pixel is independently determined, as shown in Fig. 15. Figure 16 
illustrates the obtained depth information. The results show that the proposed method can 
directly measure discontinuous specular object surfaces. 

 

Fig. 14. Captured deformed fringe patterns on the specular objects. (a) Three flat mirrors, (b) 
concave mirror, and (c) artificial specular step. 

                                                                                                Vol. 26, No. 2 | 22 Jan 2018 | OPTICS EXPRESS 1630 



 

Fig. 15. Absolute phase map of the three measured objects. (a) three flat mirrors, (b) concave 
mirror, and (c) artificial specular step. 

 

Fig. 16. Depth information of the three measured objects. (a) Three plat mirrors, (b) concave 
mirror, and (c) artificial specular step. 

4.4. Performance analysis 

In order to quantitatively evaluate the accuracy of the proposed method, the radius of the 
measured concave mirror and the distance between neighboring steps of the artificial step 
were estimated. The radius of the concave mirror was 400.0318 mm calculated from the 
measured 3D shape data, so that the error was 31.8µm. In order to further verify the accuracy, 
the error of radius between the actual value and the estimated value was calculated as 38.7 
um. The distance between neighboring steps of the artificial step was measured by a 
coordinate measuring machine (CMM), as the first column shown in Table 1. All the points 
of one measured step surface were fitted onto a plane to calculate the distance between 
neighboring steps. The measured distance between neighboring steps was calculated using the 
average of the distance from all the points obtained on the other step surface to the fitted 
plane, as the second column shown in Table 1. The absolute error (absolute difference 
between the average measured distance and the actual distance) and the mean squared error 
are listed in the third and fourth columns in Table 1. The absolute error in the distance 
between neighboring steps and the mean squared error were below 25.3 um and 28.5 um, 
respectively. The experimental results demonstrate that the proposed method can directly 
reconstruct the 3D shape of specular objects with high precision and reliability. 

Table 1. Evaluation results for the artificial specular step (unit: mm) 

Actual distance Measured distance Absolute error Mean square error 
3.9868 3.9615 0.0253 0.0285 
7.0248 7.0481 0.0233 0.0272 
5.0062 4.9850 0.0212 0.0239 
6.0986 6.1212 0.0226 0.0260 
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5. Conclusion 
This paper presents a novel full-field 3D shape measurement method based on a bi-telecentric 
system for measuring discontinuous specular surfaces by building the direct relationship 
between absolute phase and depth data. An LCD screen is moved to two different positions 
by an accurate translating stage during the procedure of measurement. Fringe pattern sets are 
generated by software and displayed on the LCD screen. The reflected fringe patterns are 
deformed with respect to the shape and slope of the specular surfaces and captured by a CCD 
camera. The bi-telecentric lens gives a very low distortion and offers a large DOF. Therefore, 
the system can measure the specular surface with large depth change. In addition, a new 
posture calibration method of measurement system has been proposed. An auxiliary plane 
mirror without markers is introduced and implemented in the calibration procedure. Based on 
the law of reflection, the relationship between object and the corresponding mirrored object 
can be directly established. After the parameter of the system has been calibrated, depth 
information can be directly obtained from the obtained absolute phase. Because depth directly 
relates to absolute phase without gradient integration, the proposed method can measure 
discontinuous specular objects. The experimental results show that the system effectively 
obtains full-field 3D shape information of discontinuous specular objects. 

The proposed method has the following advantages. 1). Simple: the system calibration can 
be completed by using a plane mirror without markers. 2). Accurate and flexible: the 
measurement system can be calibrated accurately and flexibly due to a very low distortion 
and a large DOF of the bi-telecentric lens. 3). Discontinuous: discontinuous specular surfaces 
can be measured because of usage of the optimum three-fringe number selection method and 
without gradient integration. 
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