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ABSTRACT 

  2’,3’,5’–Tri–O–acetyl–6,8–dithioguanosine (taDTGuo) is a modified nucleoside of 

drug 6–thioguanine and further developed as a potential photochemotherapeutic agent 

due to its desirable properties of photosensitivity to UVA light and singlet molecular 

oxygen generation. The photochemical characteristics of taDTGuo under biological 

conditions (namely in aqueous solution) were intensively investigated by the steady–state 

absorption and emission, time–resolved near–infrared emission measurements, and 

quantum chemical calculations. taDTGuo was found to be held in sequential acid 

dissociation equilibria within pH 3.79–11.93. With the global fitting analysis of the 

absorption spectra at various pHs, two pKa values of the equilibria were determined to be 

7.02 ± 0.01 and 9.79 ± 0.01. Quantum chemical calculations suggested that its mono– and 

di–anionic species in the ground state should be 1–imide anionic form (N1–taDTGuo–) 

and 1,7–di–imide anionic form (taDTGuo2–) respectively. taDTGuo generates singlet 

molecular oxygen effectively and has pH–dependent quantum yields. In conclusion, 

taDTGuo would be most useful as a potent agent for photochemotherapy under certain 

carcinomatous pH conditions.  
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1. INTRODUCTION 

  6–Thioguanine (6TG) is the pharmacologically active molecule derived from drugs 

azathioprine and mercaptopurine that have been widely prescribed for the treatment of 

cancers, leukemia, and autoimmune disease among others. 1–12 6TG can be converted into 

its nucleoside, 6–thioguanosine [2–amino–9–(β–D–ribofuranosyl) purine–6–thiol] 

(6TGuo), through cellular metabolism. 6TG localizing in tumor cell was reported to 

generate reactive oxygen species (ROS) when exposed to UVA light, thus inducing 

cellular apoptosis.12 These findings indicate that 6TG and 6TGuo could be explore as an 

effective medical tool for cancer treatment due to their unique properties as 

photochemotherapeutic drugs like 4–thiothymidine,13,14 including a photoactivatable 

genotoxic agent and a photosensitizer for photodynamic therapy (PDT), in addition to the 

hitherto known use as an anticancer medicine. 

  The photochemical characteristics of 6TG and 6TGuo have been studied by many 

investigators.15–20 It has been reported that 6TGuo could generate 1O2
* effectively through 

the photosensitization reaction due to its dominant relaxation pathway of intersystem 

crossing from singlet excited state to triplet manifold, having a substantially long lifetime 

(above 1 µs).15,16 Recently, to extend our understanding of the phototherapeutic ability of 

6TG and 6TGuo, we designed and explored their tri–acetyl–protected thioguanosine 

derivatives, 2’,3’,5’–tri–O–acetyl–6–thioguanosine (ta6TGuo) and 2’,3’,5’–tri–O–

acetyl–6,8–dithioguanosine (taDTGuo) (for chemical structures, see Scheme 1).21 The 

solubilities of the acetylated derivatives in dehydrated organic solvents are much larger 

than the un–acetylated ones,21,22 thus they are easier for handling because of their 

sufficient solubility in both aqueous and organic solvents, and they are still stable under 

physiological conditions. taDTGuo is of particular interest since it has the longest 

wavelength for absorption maximum and the highest value in terms of molar absorption 

coefficient among all thio–nucleobases and thio–nucleosides reported,15–21,23–27 

suggesting that taDTGuo would be much sensitive to the light penetrating into the human 

skin. In addition, taDTGuo as well as ta6TGuo can generate singlet molecular oxygen 

(1O2
*) effectively through a photosensitizing reaction. These results suggest that taDTGuo 

can be further developed as a potential agent for light–induced therapies.  

The photochemical characteristics of taDTGuo under biological conditions (i.e. in 

aqueous solution) should be intensively investigated in order to develop taDTGuo as a 

photochemotherapeutic agent. In aqueous solution, native guanine (G), guanosine (Guo), 

6TG, and 6TGuo were reported to be held in an acid dissociation equilibrium at 1–imide 

proton of the purine ring. The pKa value at the 1–imide proton of guanosine was reported 

to be 9.2528 whereas that of 6TGuo to be 8.35 ± 0.05,29 indicating that the neutral and/or 
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anionic form should exist and be dependent on the surrounding pH condition. Certain 

microenvironments (e.g. pH condition) of tumor cells have been noted to be different 

from those of health cells.30 To take advantage of these microenvironments, it is important 

to examine photophysical/photochemical processes for each species of these 

phototherapeutically useful thionucleosides. 

  In this article, firstly, we determine the pKa values of taDTGuo (using the steady–state 

absorption spectra under various pH conditions) and assign the mono–anionic species of 

taDTGuo (from the Gibbs energy difference with aid of quantum chemical calculations). 

Secondly, we report its ∅∆ values at various pHs (using time–resolved near–infrared 

emission measurement). We also discuss how these pKa and pH–dependent ∅∆ values 

could be used to help the thionucleoside be more effective for photochemotherapies. 

 

2. EXPERIMENTAL METHODS 

 

2.1 Chemicals and Steady–State Measurements. 

  Tri–acetyl–protected derivatives of taDTGuo, ta6TGuo, and taGuo were prepared as 

described in the previous report.21 The structures of all synthesized products were 

characterized by 1H NMR and their purities were estimated to be above 97% with a minor 

amount of impurity being H2O. Phosphate buffer solution (pH 7.0) was used as a solvent. 

HCl(aq) and NaOH(aq) were used to adjust the pH value of the solvents, and the pH 

values were measured by a pH meter (TOA, HM–30G). The UV−vis absorption and 

emission spectra were recorded at room temperature with a spectrophotometer (JASCO, 

Ubest V–550) and a spectrofluorometer (JASCO, FP–6500), respectively. 

 

2.2 Time–Resolved Near–Infrared Emission Spectroscopy. 

  Time–resolved near–infrared emission measurement was carried out with a 

thermoelectric cooled near–infrared photomultiplier tube (Hamamatsu Photonics, 

H10330–45; InP/InGaAsP, spectral response 950 to 1400 nm) combined with a longpass 

filter (Thorlabs, FEL1250; cut–on wavelength 1250 nm) and a bandpass filter (Edmund, 

Hard–coated bandpass filter; 1275 ± 50 nm). A XeCl excimer laser (COMPex 102; 308 

nm, 120 mJ/pulse, 20 ns pulse duration, repetition rate 10 Hz) was used as an excitation 

light source. The sample solution flowed in a cell (Tosoh Quartz T514M−ES−10; 10 mm 

optical pass length) to avoid the contamination of photoproducts.  

 

2.3 Quantum Chemical Calculations. 

  Ground− and excited−state calculations for corresponding purine bases [G (guanine), 
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6TG (6–thioguanine), DTG (6,8–dithioguanine) and their anionic species] were 

performed using the Gaussian 09W program package.31 Ground−state geometries of the 

purine bases were optimized by the density functional theory (DFT) at the 

B3LYP/6−311+G(d,p) level. Vertical excitation energies were estimated by the 

time−dependent DFT (TD−DFT) at the TD−B3LYP/6−311+G(d,p) level. Solvent effects 

were modeled with the polarizable continuum model (PCM) for the ground− and 

excited−states. S1→S0 fluorescence spectra were simulated using the TD−DFT with the 

inclusions of Duschinsky and Herzberg−Teller contributions to the electronic transition 

dipole moments.32 

 

3. RESULTS AND DISCUSSION 

 

3.1 pH Dependence of Absorption Spectra in Aqueous Buffer Solution.  

Absorption spectra of taDTGuo under various pH conditions are shown in Figure 1a. 

Spectral changes in the taDTGuo solutions were clearly observed along with the changing 

pH values, and the spectra of taDTGuo at higher pH value were found to exhibit 

blue−shifted absorption band. Figure 1a also shows several isosbestic points, of which 

two isosbestic points (at 356 nm and 350 nm) are most interesting as they are pH–

dependent. The point at 356 nm was observed at pH 3.79~8.02 whereas the other at 350 

nm was observed at pH 8.02~11.93. This reveals that three chemical species should be 

held in sequential equilibria due to two kinds of acid dissociations. The spectrum of 

taDTGuo at pH 3.79 agreed with that in acetonitrile solution,21 indicating that the neutral 

form mainly exists under such an acidic condition whereas mono− and di−anionic species 

are under more basic conditions. Further discussion will be presented below. 

The absorption spectra of taGuo and ta6TGuo in various pH aqueous solutions are 

shown in Figure 1b and 1c, respectively. pH–dependent spectral changes were also 

observed. In the case of taGuo, the characteristic absorption band with a maximum at 253 

nm and a shoulder at around 275 nm were observed under a neutral condition, 

corresponding to its spectrum in acetonitrile solution. 21 The 253 nm band disappeared 

and a new band arose at around 270 nm along with the increasing pH values. The 

isosbestic point was observed at 278 nm. On the other hand, the spectra of ta6TGuo 

exhibited an isosbestic point at 327 nm and significantly blue−shifted absorption maxima 

from 342 nm to 319 nm by increasing the pH value of the solution, namely being more 

basic. No more spectral change in taGuo and ta6TGuo solutions was observed in the range 

of pH 4.0−7.42. Both species of taGuo and ta6TGuo exhibited a respective isosbestic 

point, suggesting that two chemical species were held in equilibrium due to acid 
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dissociation. This is consistent with the documented acid−base equilibrium for Guo and 

6TGuo.28,29 Thus, each of taGuo and ta6TGuo will have a single stable mono–anionic 

species whereas taDTGuo has two kinds of stable anionic species in the pH range 

examined. 

 

3.2 Determination of pKa. 

  As shown above, each of taGuo and ta6TGuo has a single equilibrium due to acid 

dissociation under the pH conditions examined. Then we determined the pKa values of 

taGuo and ta6TGuo in their aqueous solutions from UV absorption spectra. The pKa can 

be written down as follows: 

 

p𝐾𝑎 =  −pH + log10
(𝐷𝐻𝐴−𝐷)

(𝐷−𝐷𝐴−
)
  (1) 

 

where 𝐷 is the absorbance of the solution containing the mixture of the neutral species 

and the anionic species, 𝐷𝐻𝐴 and 𝐷𝐴−
are the absorbances of the neutral and the anionic 

species at the same concentration, respectively.33,34 The plots of log10
(𝐷𝐻𝐴−𝐷)

(𝐷−𝐷𝐴−
)
 against 

the pH value were analyzed by using eq.1 (see Figure S1 in support information), and the 

pKa values were estimated to be 9.53 ± 0.02 for taGuo and 8.41 ± 0.02 for ta6TGuo. These 

values well agreed with the reported ones for the 1–imide anion group (9.25 for Guo and 

8.35 ± 0.05 for 6TGuo),28,29 implying that there is no significant influence on acid 

dissociation at the 1−imide anion group by tri−acetyl protected ribose component. These 

results also confirm that the substitution of the carbonyl oxygen by a sulfur atom leads 

higher acid dissociation constant (Ka) at the 1−imide group. 

  Three chemical species should be held in equilibria due to sequential acid dissociations 

in taDTGuo aqueous solution. The pKa1 and pKa2 can be written as follows: 

 

p𝐾𝑎1 = − log10
[HA−][H+]

[H2A]
  (2) 

p𝐾𝑎2 = − log10
[A2−][H+]

[HA−]
  (3) 

 

where, [H2A], [HA−], [A2−] and [H+] denote the concentrations of neutral, mono−anionic, 

di−anionic species, and protons, respectively. The total concentration of solutes, C0, is 

written as follows. 
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𝐶0 =  [H2A] + [HA−] + [A2−]  (4) 

 

From eqs. (2), (3), and (4), the concentrations for each species are written down. 

 

[H2A] =
𝐶0

1+
10−p𝐾𝑎1

[H+]
+

10−(p𝐾𝑎1+p𝐾𝑎2)

[H+]
2

  (5) 

[HA−] =
𝐶0

1+
[H+]

10−p𝐾𝑎1
+

10−p𝐾𝑎2

[H+]

  (6) 

[A2−] =
𝐶0

1+
[H+]

10−p𝐾𝑎2
+

[H+]
2

10−(p𝐾𝑎1+p𝐾𝑎2)

  (7) 

 

The observed absorbance of the solution, D, is written down as: 

 

𝐷 = 𝜀H2A[H2A] + 𝜀HA−
[HA−] + 𝜀A2−

[A2−] (8) 

 

where ε denotes the molar absorption coefficient. The ε is regarded as a function of 

wavelength, which can be described by linear combination of some gauss functions. Thus, 

a fitting function was written down as follows. 

 

𝐷(𝜆) = [H2A] [∑ 𝑎𝑖𝑒𝑥𝑝 {− (
𝜆−𝜆𝑖

∆𝑖
)

2

}𝑖 ] + [HA−] [∑ 𝑎𝑗𝑒𝑥𝑝 {− (
𝜆−𝜆𝑗

∆𝑗
)

2

}𝑗 ] +

                    [A2−] [∑ 𝑎𝑘𝑒𝑥𝑝 {− (
𝜆−𝜆𝑘

∆𝑘
)

2

}𝑘 ] (9) 

 

The gauss function component of first and third terms on the right−hand side were known 

from the absorption spectra at pH 3.79 and pH 11.93 where only one species, either 

neutral or di−anionic species, exists. Using Eqs. (5), (6), (7), and (9) with pKa1, pKa2, aj, 

λj and Δj as fitting parameters, global fitting analysis was carried out against the absorption 

spectra of taDTGuo at various pHs. Figure 2 shows the results of the global fitting 

analysis in the wavelength region from 310 to 420 nm (lower) and the residues of the 

analytic function (upper). Fitting curves well reproduced the absorption spectra, and the 

pKa1 and pKa2 were successfully determined to be 7.02 ± 0.01 and 9.79 ± 0.01, 

respectively. Figure 3 shows the absorption spectra of neutral, mono− and di−anionic 

species, obtained by the analysis. 
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3.3 Assignment of Anionic Species in Ground State. 

taDTGuo was found to have three chemical species due to two stepwise dissociation 

equilibria. The deprotonation of taDTGuo can occur at the imide proton of 1− and/or 

7−positions. It was reported that the deprotonation of 8−oxoguanosine, having two 

carbonyl groups at 6− and 8−positions of the purine ring, occurred firstly at the 

pyrimidine nitrogen (1−position) and secondly at the imidazole nitrogen (7−position) as 

the pH increased.35–37 To identify structures of the deprotonated anionic species of 

taDTGuo, quantum chemical calculations were performed. 

  Optimized ground state geometries of 6,8−dithioguanine (DTG), 1−imide anionic form 

(N1−DTG−), 7−imide anionic form (N7−DTG−), and 1,7−diimide anionic form (DTG2−) 

are shown in Figure S2 (see supporting information). The bond lengths and the angles at 

the purine ring moiety were found to be comparable to each other. Almost all atoms of 

DTG lie in a plane of the purine ring except the amino protons (H12 and H13) (for the atom 

labeling, see Scheme 1). The amino protons of anionic forms are largely out of the 

molecular plane. The N1C2N11H12 dihedral angle is 8.5° for DTG, 20.7° for N1−DTG−, 

22.8° for N7−DTG−, and 23.9° for DTG2−. Similarly, the N1C2N11H13 dihedral angle is 

174.7° for DTG, 160.3° for N1−DTG−, 167.5° for N7−DTG−, and 157.2° for DTG2−. 

Similar results were also observed on the 1−imide anionic form of G (G−) and 6TG 

(6TG−) (Figure S3). The N1C2N11H12 and the N1C2N11H13 dihedral angles of G− and 6TG− 

are out of the molecular plane by about 20°. 

  The polarizable continuum model (PCM) enables us to compute the Gibbs energy in 

implicit solvent, and Gibbs energy difference (∆𝐺) in solution can be estimated by  

 

∆𝐺 = (𝐺𝐴− + 𝐺𝐻+) − 𝐺𝐻𝐴  (10) 

 

where the 𝐺𝐻𝐴 , 𝐺𝐴− , and 𝐺𝐻+  denote the Gibbs energy of neutral species, anionic 

species, and the proton in the aqueous solution, respectively.38 The results calculated at 

PCM/6−311+G(d,p) are summarized in Table 1. The value of Gibbs energy difference in 

the ground state (∆𝐺𝑔 ) of N1−DTG− was clearly smaller than that of N7−DTG− (i.e. 

∆𝐺𝑔
N1−DTG−

< ∆𝐺𝑔
N7−DTG−

), indicating that the former is readier for acid dissociation. 

Furthermore, in the S1 state N7−DTG− was found to be more stable than N1−DTG− (i.e. 

∆𝐺𝑒
N1−DTG−

> ∆𝐺𝑒
N7−DTG−

). Therefore the stable mono−anionic species generated by 

deprotonation of taDTGuo in the ground state should be 1−imide anionic form 

(N1−taDTGuo−).  

  The ∆𝐺𝑔  value was also estimated by the acid dissociation constant obtained 

experimentally with the following equation, 



9 

 

 

∆𝐺𝑔 =  −𝑅𝑇𝑙𝑛𝐾𝑎  (11) 

 

where Ka, R, and T denote the dissociation equilibrium constant, the gas constant, and the 

absolute temperature, respectively. The ∆𝐺𝑔  values estimated from the Ka values are 

summarized in Table 1. The ∆𝐺𝑔  values of taGuo and ta6TGuo were close to their 

respective ∆𝐺𝑔 values estimated with the computational calculation of G and 6TG. The 

∆𝐺𝑔 value of taDTGuo for the first step of deprotonation was close to the value estimated 

with the computational calculation of N1−DTG− in comparison with N7−DTG−. Thus, the 

stable mono−anionic species of taDTGuo in the ground state should be assigned to 

N1−taDTGuo−. 

  The absorption spectra of neutral, mono− and di−anionic species of taDTGuo, obtained 

by global fitting analysis, are shown in Figure 3a−3c. The calculated vertical transition 

energies and oscillator strengths of DTG, N1−DTG−, N7−DTG−, and DTG2− are shown in 

Figure 3d. Computational results of DTG and DTG2− well reproduced the absorption 

spectra of taDTGuo and di−anionic species, respectively. Thus, the di−anionic species of 

taDTGuo can be assigned to the 1,7−di−imide anion (taDTGuo2−). The calculated vertical 

transition energies and oscillator strengths of N1−DTG− (but not of N7−DTG−) well 

reproduced the absorption spectrum of first step deprotonated species, further confirming 

that the most stable structure of mono−anionic species of taDTGuo at ground state is 

N1−taDTGuo−.  

The absorption spectra of taGuo, ta6TGuo and their anionic species, and the calculated 

vertical transition energies and oscillator strengths of G, G−, 6TG, and 6TG− are shown 

in Figure S4. Computational results of G, G−, 6TG, and 6TG– also well reproduced the 

absorption spectra of their corresponding tri−acetyl protected nucleosides. Thus, the 

mono−anionic species of taGuo and ta6TGuo should be assigned to 1−imide anionic form 

of them, taGuo− and ta6TGuo−, respectively. 

Spectroscopic properties for singlet excited states of taDTGuo, taGuo, ta6TGuo, and 

their anionic species and computational values were listed in Table S1. The absorption 

maxima of the longest wavelength for taDTGuo, N1−taDTGuo− and taDTGuo2− were 

assigned to the S1←S0 transition with ππ* character. 

  The dissociation equilibria of taGuo, ta6TGuo, and taDTGuo in the ground state is 

described in Scheme 2. The first deprotonation of taDTGuo should occur at the 1–imide 

group (pKa1 = 7.02 ± 0.01), followed by the second deprotonation at the 7–imide group 

(pKa2 = 9.79 ± 0.01). The pKa value for 1–imide group of taDTGuo (i.e 7.02 ± 0.01) was 

found to be smaller than that of ta6TGuo (i.e. 8.41). This reduced pKa value can be 
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ascribed to the electron−withdrawing effect of the 8−thiocarbonyl group of taDTGuo. 

 

3.4 Steady−State Emission Measurement and Franck−Condon Simulation. 

  Steady−state emission and excitation spectra of taDTGuo at pH 7.7 and 11.93 are 

shown in Figure 4a. The emission maxima were observed at 445 and 409 nm in the neutral 

(pH 7.7) and the most basic (pH 11.93) aqueous solution, respectively. Since the 

excitation spectrum at pH 11.93 (yellow broken line in Figure 4a) well corresponds to the 

absorption spectrum of taDTGuo2− (see Figure 3c), the luminescent species at pH 11.93 

can be attributed to be taDTGuo2−. The excitation spectrum at pH 7.7 does not correspond 

to the absorption spectrum of N1−taGuo−, but it is similar to that of neutral taDTGuo. 

However, the emission intensity decreased as the solution became more acidic, and no 

emission was detected at pH 3.79. These results suggest that the luminescent species at 

pH 7.7 is not neutral taDTGuo. 

  To identify the luminescent species under neutral condition, S1←S0 fluorescence 

spectra of neutral DTG, N1−DTG−, N7−DTG, and DTG2− were simulated with the 

quantum chemical calculation (Figure 4b). The simulated spectrum of DTG2− well 

reproduced the observed fluorescence spectrum at pH 11.93. The experimental emission 

spectrum at pH 7.7 has the accordance with the computational spectrum of N7−DTG−. 

However, N7−taDTGuo would not be populated in the ground state, as discussed above. 

This indicates that N7−taDTGuo is generated from neutral taDTGuo due to acid 

dissociation in the excited state, followed by yielding fluorescence, as described in 

Scheme 3. Computational ∆𝐺 value for singlet excited state of N7–taDTGuo– was found 

to be smaller than that for N1–taDTGuo– (as listed in Table 1), suggesting to the generation 

of N7–taDTGuo– by excitation of neutral taDTGuo at around pH 7.0. It is interesting to 

discuss on the isotope effect on the equilibria in both ground and excited states, especially 

on the excited state dynamics. Thus, nano- and femto-second spectroscopies on the 

excited states are under way. 

  Generally, thio−analogues of nucleobases and nucleosides are known to be 

non−fluorescent due to their dominant relaxation pathway to the triplet manifold (i.e. 

intersystem crossing).15,16,23–27 This is the first report that an anionic species of thio–

analogues, such as taDTGuo, can be luminescent and that the excited state characteristics 

of the anionic species can be quite different from its neutral species, implying the ability 

for generating singlet molecular oxygen (1O2
*) would be individual for each species. 

 

3.5 Quantum Yields of Singlet Oxygen Generation of Thio−substituted Guanosines 

in Aqueous Buffer Solutions. 
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  To obtain the ∅∆
𝑜𝑏𝑠  values for taDTGuo at various pHs, the time−resolved 

near−infrared emission measurements were carried out. In these measurements, both 

neutral and anionic species of taDTGuo were excited simultaneously at excitation laser 

wavelength (308 nm) in aqueous solutions. Figure 5a shows the time–profile of singlet 

molecular oxygen phosphorescence produced through photosensitization by taDTGuo in 

oxygen−saturated aqueous solutions at various pHs. The decaying signals were fitted with 

a single−exponential function and their lifetimes were determined to be about 3.5 

microsecond, which well agrees with the lifetime of 1O2
* in H2O.39 The spike–like 

emission immediately after laser irradiation are due to the scattered laser light or 

fluorescence of the solutions. 

  The quantum yields of 1O2
* generation by taDTGuo at various pHs were determined in 

O2 saturated aqueous solutions relative to optically matched methylene blue (MB) 

solution (∅∆ = 0.39 at pH 7.4).40 Individual longer−lived phosphorescence traces in the 

time domain after 2.5 μs were fitted by using a single–exponential function to estimate 

the emission intensity maxima immediately after laser irradiation (IS
0). The IS

0 value was 

plotted against the laser fluence (IL) (Figure 5b), showing a good linear relationship 

between IS
0 and IL. The values of the slope obtained from these plots (IS

0
 / IL) were plotted 

against the ground state absorptance at excitation wavelength (1–10–A), as shown in 

Figure 5c. These plots also show good linear relationships. By comparing the slopes of 

taDTGuo at various pHs with that of MB at pH 7.4, ∅∆
𝑜𝑏𝑠 values were determined. 

  Table 2 lists the results and figure 6a shows the plots of ∅∆
𝑜𝑏𝑠 value against pH value 

of the solution. The ∅∆
𝑜𝑏𝑠  value clearly depends on the pH of the solution, and the 

distribution of the ∅∆
𝑜𝑏𝑠 is also clearly correlated with the concentration ratio of neutral 

taDTGuo, N1−taDTGuo− and taDTGuo2− as shown in Figure 6b. The quantum yield of 
1O2

* generation of neutral taDTGuo (0.32 ± 0.01) is found to be larger than that of 

taDTGuo2− (0.25 ± 0.01) (see Table 3). Figure 6a also shows that ∅∆
𝑜𝑏𝑠  value was 

minimized at pH 8.4, indicating that quantum yield of singlet oxygen generation by 

N1−taDTGuo− (the main species at pH 8.4) should be the smallest. As ∅∆
𝑜𝑏𝑠  can be 

described with linear−combination of the product of quantum yields of each species and 

the absorbance, 

 

∅∆
𝑜𝑏𝑠 =  

1

𝐴𝑒𝑥
(𝜀𝑒𝑥

H2A
∙ [H2A] ∙ ∅∆

H2A
+ 𝜀𝑒𝑥

HA−
∙ [HA−] ∙ ∅∆

HA−
+  𝜀𝑒𝑥

A2−
∙ [A2−] ∙ ∅∆

A2−
 )  (12) 

 

where 𝐴𝑒𝑥, 𝜀𝑒𝑥 denote the absorbance and a molar absorption coefficient at excitation 

wavelength (308 nm) respectively, so we tried to estimate the quantum yield of 1O2
* 
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generation by N1−taDTGuo− with eq. (12). The analysis curve well represented the 

distribution curve of the ∅∆
𝑜𝑏𝑠  plots, and the quantum yield of 1O2

* generation for 

N1−taDTGuo−, ∅∆
HA−

, was successfully determined to be 0.17 ± 0.02. 

  According to the analysis curve in Figure 6a, the ∅∆
𝑜𝑏𝑠  will sharply decline at pH 

greater than around 6 and become minimal at pH 8.6. The microenvironment of tumor 

cells is known to be slightly acidic than that of normal cells, and pH values are reported 

to be around 6−7 for some of tumor cells and above 7.0 for normal cells.30 Thus, the pH 

sensitivity of taDTGuo should be considered when using as a phototherapeutic sensitizer 

for the treatment of tumor cells. 

The ∅∆  values for ta6TGuo and ta6TGuo– were also determined. However, the 

difference in the value for ta6TGuo and ta6TGuo– was small, indicating their excited state 

dynamics would be similar to each other. In taGuo and taGuo– solutions, no near–infrared 

emission was detected. This is because the dominant relaxation pathway from excited 

singlet state of un–thiolated (native) guanine is known to be ultrafast internal conversion 

to the ground state,41 resulting few generation of 1O2
*. 

  The ∅∆ values of neutral taDTGuo, N1−taDTGuo− and taDTGuo2− are different, as 

listed in Table 3. 1O2
* is considered to generate through energy transfer from the T1 state 

of a donor molecule to an oxygen molecule (X3Σg
–) as an energy acceptor by collision, 

thus the ∅∆  value should depend on the following factors: the intersystem crossing 

quantum yield, the triplet lifetime of the sensitizer, and the SΔ value (a fraction of the 

triplet states quenched by dissolved oxygen which gives rise to singlet oxygen formation). 

Generally, a triplet state having ππ* character has been reported to give a SΔ value within 

the range of 0.7–1.0, whereas it is ~0.3 for an nπ* triplet state.42 Each of the T1 state of 

neutral taDTGuo, N1−taDTGuo− and taDTGuo2− can be assigned to the ππ* state by the 

TD–DFT calculation. The T1 state energies were estimated from the vertical transition 

energies to the T1 state, as listed in Table 3. The T1 state energies of all species are large 

enough to surpass vertical transition energy of oxygen molecules (0.97 eV; a1Δg ← 

X3Σg
–).40 Therefore, the differences in ∅∆ will result from the triplet lifetime of each 

species and/or quantum yield of intersystem crossing to triplet manifolds. The lifetimes 

of taDTGuo and taDTGuo2– have been initially estimated to be several microseconds, ten 

times longer than that of N1–taDTGuo–. These details would be very valuable when 

developing and optimizing thionucleosides (including taDTGuo) as phototherapeutic 

agents. On the other hand, triplet lifetime was largely affected by the concentration of the 

parent molecule (self–quenching), and the quenching rate constant of the triplet by 

oxygen molecule has not been obtained yet. So, to gain the more detailed information on 

the triplet state for each species, time–resolved absorption spectroscopy would be an ideal 
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approach and is now under way. 

 

 

 

 

4. CONCLUSION 

  taDTGuo is a modified nucleoside of pharmacological active drug 6–thioguanine. The 

steady–state absorption measurements were carried out to clarify its absorption 

characteristics and to determine its pKa values. The absorption spectra were found to be 

pH–dependent. taDTGuo was also noted to be held in sequential equilibria and its pKa1 

and pKa2 were determined to be 7.02 ± 0.01 and 9.79 ± 0.01 respectively by global fitting 

analysis for the absorption spectra. First– and second–deprotonated species of taDTGuo 

were attributed to 1–imide anionic form (N1–taDTGuo–) and di–imide anionic form 

(taDTGuo2–) respectively by comparing each of the absorption spectra with its 

corresponding oscillator strengths, vertical transition energies, and Gibbs energy 

differences obtained from quantum chemical calculations. Steady–state emission 

measurements revealed that N7–taDTGuo–, being less stability than N1–taDTGuo– at 

ground states, was only generated at singlet excited state of neutral taDTGuo under near 

neutral aqueous solution. Time–resolved near–infrared emission measurements were used 

to determine the ∅∆ of taDTGuo and found that the ∅∆ value was also pH–dependent 

due to the concentration ratio in sequential equilibria of neutral taDTGuo, N1–taDTGuo– 

and taDTGuo2–, thus taDTGuo could be used as a pH–sensitive phototherapeutic 

sensitizer to treat tumor cells. Each ∅∆ was successfully determined to be 0.32 ± 0.01 

for neutral taDTGuo, 0.17 ± 0.02 for N1–taDTGuo– and 0.25 ± 0.01 for taDTGuo2–. These 

different values in ∅∆ result from the triplet lifetime of each species and/or quantum 

yield of intersystem crossing to triplet manifolds. The pH–dependent ∅∆ values and the 

pKa values, reported here, should provide useful information regarding which species of 

the thionucleoside would be most effective for photochemotherapies. 
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Table 1. Acidity Constants and Experimental and Computational Dissociation 

Energies. 

 
Experimental  Theoretical 

pKa 
a Ka 

b ΔGg c / kcal mol−1  Species d ΔGg 
e / kcal mol−1 ΔGe 

f / kcal mol−1 

taDTGuo 7.02 ± 0.01 9.55 × 10−8 9.58  N1−DTG− 11.81 16.36 

     N7−DTG− 14.54 10.57 

 9.79 ± 0.01 1.62 × 10−10 22.9  DTG2− 33.36 38.29 

        

taGuo 
9.53 ± 0.02 

(9.25)g 

2.95 × 10−10 13.0 

 

G− 19.88  

      

        

ta6TGuo 
8.41 ± 0.02 

(8.35 ± 0.05)h 

3.89 × 10−9 11.5 

 

6TG− 14.80  

      

a Determined by fitting analysis using eqs. (1), (5), (6), (7) and (9). b Acid dissociation constant. c Dissociation energy 

estimated by using eq. (11). d Corresponding anionic species of nucleobases, 1–imide anionic form of 6,8–dithioguanine 

(N1−DTG−), 7–imide anionic form of 6,8–dithioguanine (N7−DTG−), 1,7−diimide anionic form of 6,8−dithioguanine 

(DTG2−), 1−imide anionic form of guanine (G−) and 1−imide anionic form of 6−thioguanine (6TG). e Gibbs energy 

difference for anionic species from neutral form in the ground state and f that in the singlet excited state estimated by 

using eq. (10). Gibbs energies of each species and proton were calculated at the PCM/B3LYP/6–311+G(d,p) or the 

PCM/TD–B3LYP/6–311+G(d,p) level, and obtained from reported value (–270.01 kcal mol–1)38, respectively. g 

Reported value in the ref 28. h Reported value in the ref 29. 
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Table 2. Apparent Quantum Yield of Singlet Oxygen Generation for taDTGuo at 

Various pHs. 

pH ∅∆
𝑜𝑏𝑠 

4.0 0.32 ± 0.01 

6.4 0.31 ± 0.01 

7.4 0.21 ± 0.01 

8.4 0.18 ± 0.01 

10.0 0.21 ± 0.01 

12.0 0.25 ± 0.01 

 

Table 3. Quantum Yield of Singlet Oxygen Generation and Triplet Energies for 

taDTGuo, ta6TGuo and Their Anionic Species. 

 ∅∆
a ET b / eV 

taDTGuo 0.32 ± 0.01 2.44 

N1−taDTGuo− 0.17 ± 0.02 2.81 

taDTGuo2− 0.25 ± 0.01 2.79 

ta6TGuo 0.34 ± 0.01 2.71 

ta6TGuo− 0.30 ± 0.01 2.98 

a Extracted quantum yields of singlet oxygen generation for taDTGuo, ta6TGuo and their anionic species. b Triplet state 

energy calculated at the PCM/TD–B3LYP/6–311+G(d,p) level. 
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Scheme 1. Structures of guanine, thioguanines, and their nucleosides. 

 

 

 

Scheme 2. Major dissociation equilibria and site–specific pKa of taGuo, ta6TGuo, and 

taDTGuo. 
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Scheme 3. Projection of radiative process from singlet excited state of taDTGuo under a 

nearly neutral pH condition. 

  



22 

 

FIGURE CAPTIONS 

 

Figure 1. Absorption spectra of (a) taDTGuo (9.31 µM), (b) taGuo (32.0 µM), and (c) 

ta6TGuo (10.0 µM) in phosphate buffer solutions at various pHs. 

 

Figure 2. The absorption spectra of taDTGuo at pH (colored broken lines), the analysis 

curve of best global fitting (black lines), and residues of the analytic function (upper in 

the figure). The resultant fitting curves are almost identical to the experimental spectra. 

 

Figure 3. (a) Absorption spectrum of neutral taDTGuo. (b) Absorption spectrum of 

mono–anionic species of taDTGuo obtained by global fitting analysis. (c) Absorption 

spectrum of di–anionic species. (d) Calculated vertical transition energies and oscillator 

strength of neutral 6,8–dithioguanine (DTG) (red bars), 1–imide anionic form of 6,8–

dithioguanine (N1−DTG−) (blue bars), 7–imide anionic form of 6,8–dithioguanine 

(N7−DTG−) (yellow bars), and 1,7–diimide anionic form of 6,8–dithioguanine (DTG2−) 

(green bars) at PCM/TD–B3LYP/6–311+G(d,p) level. 

 

Figure 4. (a) Steady–state emission spectra after excitation at 270 nm of taDTGuo at pH 

7.7 (yellow solid line) and 11.93 (green solid line), and excitation spectra recorded using 

λem = 480 nm at pH 7.7 (yellow broken line) and λem = 450 nm at pH 11.93 (green broken 

line). (b) Franck–Condon simulation for fluorescence spectrum of DTG (red solid line), 

N1–DTG– (blue solid line), N7–DTG– (yellow solid line) and DTG2– (green solid line) 

resulted by S1→S0 transitions. 

 

Figure 5. (a) Decay profiles of singlet oxygen phosphorescence measured at around 1275 

nm of taDTGuo and MB at various pHs. Signals are corrected for absorptance at 

excitation wavelength (308 nm) and incident laser power. (b) Plots of the emission 

intensity maxima (IS
0) immediately after laser irradiation in taDTGuo solutions at pH 4.0 

against incident laser power (IL), and (c) plots of the IS
0/IL value of taDTGuo and MB 

against the absorptance (1–10–A) at excitation wavelength (308 nm). 

 

Figure 6. (a) The plots of ∅∆
𝑜𝑏𝑠  as a function of proton concentration in taDTGuo 

solution and analysis curve. (b) The pH–dependent abundance ratio of taDTGuo (red), 

N1–taDTGuo– (blue) and taDTGuo2– (green). 
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