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Abstract 

The past decade has seen a marked decline in malaria transmission and substantial progress 

towards malaria control in parts of Africa. A key tool in malaria control is the insecticide treated 

net (ITN). However, malaria remains a public health emergency in sub-Saharan Africa with 

children under five years of age bearing the greatest burden of the disease. In this thesis, I 

examine three sets of questions that are relevant to the changing epidemiology of malaria. 

a) I investigated trends in malaria cases in Kilifi County on the Kenyan Coast over 

geographical area and over time, age, and the effectiveness of ITN use in the community. 

I observed a decline in the proportion of admitted children who had malaria parasites 

detected by microscopy from 1998 to 2009 as previously observed in some countries of 

sub-Saharan African. However, there was a steady and marked increase in the proportion 

of children with malaria parasites after 2009 accompanied by a shift in burden of disease 

from younger age groups to older age groups. Community ITN use was highly effective 

in reducing the risk of malaria. As transmission fell, geographical heterogeneity became 

more marked. 

b) I undertook an analysis of data shared from 19 studies conducted between 1996 and 2015 

in 7 countries of sub-Saharan Africa to examine whether micro-geographical 

heterogeneity was generalizable. Hotspots were identified in all datasets, and were more 

marked at lower transmission intensity. Given the predictability with which hotspots 

occur as transmission intensity falls, malaria control programmes should have a low 

threshold for responding to apparent clustering of cases.  
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c) I then considered whether rapid diagnostic tests (RDTs) or PCR would alter detection of 

hotspots. Using cross-sectional studies of asymptomatic parasitaemia, I describe 

hotspots of malaria transmission in three sites on the Kenyan Coast using data from 8581 

study participants. Microscopy and RDT missed a larger proportion of infections in low 

transmission settings. PCR hotspots completely overlapped with microscopy hotspots at 

a moderate transmission, but not at two low transmission setting. From this work, I 

recommend that malaria control programmes consider PCR testing for targeted control 

when transmission intensity is low. 
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Chapter One 

1 Literature review 

1.1  The malaria parasite 

Malaria is a highly infectious disease caused by parasites of the genus Plasmodium and is 

transmitted to humans through bites from infected female mosquitoes of the genus Anopheles. 

Six parasitic species of Plasmodium cause human malaria; P. falciparum, P. vivax, P. malariae, 

P. ovale (split into two species: P.o. curtisi and P.o. wallikeri), (Carter and Mendis 2002, Singh 

et al. 2004, Sutherland et al. 2010) and P. knowlesi (Cox-Singh et al. 2008, White 2008, 

Sabbatani et al. 2010). 

P. falciparum and P. vivax are the most commonly researched parasite species because of their 

wide geographical coverage, high morbidity and mortality. P. falciparum is highly pathogenic, 

associated with the highest number of deaths and accounts for >95% of malaria infections in 

sub-Saharan Africa. This malaria parasite is characterized by cyclic patterns of fever and chills 

that in some instances leads to severe forms of malaria (i.e. severe malaria anaemia common in 

children and cerebral malaria common in older children) that are associated with high case 

fatality. Outside Africa, P. vivax accounts for the highest burden of malaria (>50% of all malaria 

(Mendis et al. 2001)), but it is less common (<10% of all malaria cases) in sub-Saharan Africa 

partly due to the absence of the Duffy bood-group-antigen (Howes et al. 2011, Gething et al. 

2012) that the parasite requires to invade red blood cells (Miller et al. 1976). However, emerging 

evidence show that P. vivax can infect and cause disease in some Duffy negative individual 

(Menard et al. 2010, Mendes et al. 2011) suggesting a possible interaction with other biological 

processes or a possibility of other receptors aiding cell invasion. 
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Infections with P. vivax are characterized by relapses arising from persistent liver stages of the 

parasite, and lower parasite densities compared to P. falciparum. Whilst P. ovale and P. 

malariae have historically been perceived to be less prevalent, recent reports show that they 

could be more prevalent in sub-Saharan Africa than previously predicted and are often 

undetected by light microscopy (Doderer-Lang et al. 2014). Nevertheless, disease due to these 

species are relatively mild and easily treated by commonly used anti-malaria drugs (Mueller et 

al. 2007). In terms of survival, P. ovale and P. vivax are best adapted to long-term survival in 

the human host due to their latent erythrocytic forms. Recent evidence shows that P. falciparum 

(Ashley and White 2014) and P. malariae (Collins and Jeffery 2007)  can also persist 

asymptomatically for decades.  

P. knowlesi is mainly found among South-Asian primates (long tailed and pig-tailed macaques), 

and infects humans more frequently than previously thought. Morphologically, P. knowlesi 

resembles P. malariae making it difficult to distinguish by microscopy, and is potentially life-

threatening given its short blood stage cycle (24 hour cycles) accompanied by high parasitaemia 

and fever (Singh et al. 2004, Cox-Singh et al. 2008). Research into the epidemiology of P. 

knowlesi malaria increased recently when it was observed that the species could infect humans. 

Human infection with P. knowlesi appears to have resulted from continued human encroachment 

into non-human primate habitats, who are the natural hosts. P. knowlesi is likely to pose a 

challenge during elimination stages of malaria as humans continue to encroach on primate 

habitats in South East Asia. 

However, P. knowlesi transmission has not been reported in Africa, and this may partly be 

associated with the absence of the reservoir host (long tailed and pig-tailed macaques) (Moyes 

et al. 2014), and the high prevalence of the Duffy negative genotypes among the African 
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population (Miller et al. 1975). Although there is a possibility that human to human transmission 

may occur in areas with high density P. knowlesi zoonosis, there is currently no evidence to 

firmly establish that such transmission takes place (Ramasamy 2014). 

This thesis hereafter focuses on the epidemiology of P. falciparum in sub-Saharan Africa except 

chapter five that examines the prevalence and geographical distribution of other malaria species 

on the Kenyan coast. 

1.2 Life cycle  

P. falciparum, the most lethal form of malaria, has a sophisticated life cycle making it difficult 

to control. The parasite undergoes several developmental stages in both the mosquito and the 

human hosts (Figure 1.1).  
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Figure 1.1: P. falciparum malaria lifecycle showing the asexual phase in the human host and 

the sexual stage in the female Anopheles mosquitoes. 

(Wirth 2002) 

The cycle begins when a female infected Anopheline mosquito injects sporozoites into the 

human host when feeding from a blood meal. The sporozoites are then transported to the liver 

via the bloodstream and invade the hepatocytes. Within the hepatocyte, the sporozoites undergo 

proliferation and differentiation culminating in the liberation of merozoites. Several rounds of 

asexual multiplication give rise to tens of thousands of haploid merozoites over a period of 6–

16 days. Merozoites are then released into the bloodstream and invade erythrocytes. Once the 

erythrocytes have been invaded, merozoites undergo a process of growth and asexual 

multiplication to produce daughter merozoites over a period of 48 hours through ring stages 
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(trophozoite) to form schizonts which consist of many mature newly formed merozoites. 

Infected red blood cells (RBC) then lyse and liberate the merozoites which immediately invade 

new erythrocytes to begin a new erythrocytic cycle. This blood stage infection is responsible for 

the clinical symptoms of malaria, especially fever. Not all the ring trophozoites mature into 

schizonts. A small proportion undergo morphological changes and sexual differentiation to 

become male and female gametocytes. The gametocytes mature after about 10 days and are 

ready to be taken up by a blood meal seeking mosquito for the vector phase. 

Following an infected blood meal, the anopheline mosquito ingests both male and female 

immature gametes circulating in an infected human’s bloodstream. Under suitable 

environmental conditions (i.e. temperature), the male and female microgametes differentiates 

into macrogametes and fuse to form a zygote which undergoes a series of differentiation and 

growth stages that result in the production of infective sporozoites in the salivary glands of the 

mosquito, thus completing the cycle (Beier 1998, Garcia et al. 2006).  

1.3 Malaria disease burden 

The global burden of malaria has markedly declined over the past 15 years (Figure 1.2) in 

association with improving access to first-line anti malaria treatment and vector control (Murray 

et al. 2012, WHO 2012c, Noor et al. 2014, Bhatt et al. 2015a). During this period, malaria 

related mortality declined by ~60% globally. On the global scale, the World Health Organization 

(WHO) estimates ~262 (95% confidence interval[CI] 205-316) million cases, with ~839,000 

(95%CI 653,000 – 1.1 million) malaria related mortality in 2000 (WHO 2015b); and ~214 

(95%CI 149-303) million cases, with ~ 438,000 (95%CI 236,000 – 635,000) malaria related 

mortality in 2015 (WHO 2015b). 
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Figure 1.2: Changes in infection prevalence in Africa 2000-2015. 

Panel a, shows PfPR2-10 for the year 2000 predicted at 5×5 km resolution and panel b, shows 

PfPR2-10 for the year 2015 predicted at 5×5 km resolution (Bhatt et al. 2015a).   

Most deaths occurred in sub-Saharan Africa (90%) followed by South-East Asia (7%) and 

Eastern Mediterranean region (2%) (WHO 2015b). The high burden of malaria in Africa has 

largely been attributed to the existence of an effective vector species that include; Anopheles 

(An.) arabiensis, An. funestus and An. gambiae (Figure 1.3) (Sinka et al. 2012). An. gambiae, 

the most important vector in Africa, preferentially feeds on humans hence transmitting malaria 

from an infectious human host to susceptible individuals. This species has a documented long 

lifespan that consequently increases the likelihood of transmitting the parasite (Beier 1998). The 

humid, temperate and stable weather conditions in Africa enable the vector to thrive and the 

parasites to complete its lifecycle. In addition, social and economic factors (poverty) play an 

important role  in sustaining malaria transmission in Africa (Greenwood and Mutabingwa 

2002).  
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Figure 1.3: A global map of dominant malaria vector species (Sinka et al. 2012). 

Besides the WHO, there are other groups that have characterized malaria transmission intensity, 

mortality attributable to malaria and effect of malaria control intervention in sub-Saharan Africa 

(Gething et al. 2011, Murray et al. 2012, Noor et al. 2014, Bhatt et al. 2015a, Gething et al. 

2016). Overall, there is a consensus on the marked spatial and temporal heterogeneity of malaria 

transmission intensity in Africa. However, the magnitude of reported estimates varies 

considerably requiring careful interpretation (Nkumama et al. 2017). For instance, Bhatt et al 

predict that nearly all sub-Saharan African counties experienced marked decline in pfPR2-10 

transmission intensity (Bhatt et al. 2015a). This is consistent with some studies in individual 

countries (for instance Kenya (O'Meara et al. 2008, Snow et al. 2015), Tanzania (Mmbando et 

al. 2010) and the Gambia (Ceesay et al. 2008)) but studies conducted in Burkina Faso and 

Uganda show little evidence of declining transmission and in some instances, depict an 
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increasing trend (Okiro et al. 2011, WHO 2015b). The inconsistencies in the global estimates of 

morbidity and mortality arise from the inherent challenges in the sparsity of data collection and 

modelling assumptions commonly undertaken. Model-based geostatistical methods rely on 

borrowing information to estimate areas where data are unavailable (Noor et al. 2014). This 

concept is anchored on Waldo Tobler’s first law of geography that states “Everything is related 

to everything else, but near things are more related than distant ones”(Tobler 1970). However, 

heterogeneity of transmission is seen at a range of scales (Bejon et al. 2014) and therefore 

assessing the true burden of malaria in Africa is hampered by a lack of data that results from 

incomplete or limited medical records on malaria cases, limited laboratory testing given that 

most malaria cases and deaths occur outside health-care facilities and are thus inaccessible for 

recording (Snow et al. 1999, Greenwood and Mutabingwa 2002, WHO 2012c).  

Health monitoring and evaluation of malaria attributable deaths, within Africa, frequently relies 

on verbal autopsy (VA) to derive cause of death (Murray et al. 2012, Gething et al. 2016). VA 

tools and procedures are not standardized, and vary substantially among sites (Soleman et al. 

2006) and their accuracy is notably lower than medical certification of causes of death (Murray 

et al. 2014). 

In addition to the measurable global morbidity and mortality associated with malaria, there is 

evidence that malaria is associated with reduced birthweight, premature births, still births, 

cognitive impairment and social economic effects. Infants born premature or with low 

birthweight are more susceptible to infectious diseases and are at an increased risk of death 

compared to term babies with normal birthweight (Katz et al. 2013, Bousema et al. 2014, Chen 

et al. 2016, Lawn et al. 2016).  



23 | P a g e  
 

1.4 Malaria pathophysiology and immunity 

When a susceptible individual is inoculated with malaria parasites, a sequence of manifestations 

follows as shown in figure 1.4 below. However, progression depends on: 1) anti-disease 

immunity, 2) host factors, 3) efficacy and timing of antimalaria drugs, and coinfection. 

 

Figure 1.4: Malaria pathophysiology 

 

1.4.1 Clinical malaria 

The typical clinical symptoms of malaria are cycles of fever and chills and occur among semi-

immune or non-immune individuals. In malaria-endemic areas, clinical malaria is a rare feature 

during infancy (Murungi et al. 2017). This is because passively acquired maternal IgG 

antibodies are thought to confer protection against malaria during the first few months of life 

(Edozien et al. , Murungi et al. 2017). However, maternal immunity against malaria is short 

lived (~6 months) subsequently predisposing children to infection later in life (Murungi et al. 

2017).  

Severe malaria manifests in three overlapping syndromes: 1) severe malaria anaemia, 2) 

impaired consciousness and 3) respiratory distress (Figure 1.5) (Marsh et al. 1995).  
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Figure 1.5: Prevalence, overlap, and mortality for major clinical subgroups of severe 

malaria. 

Total numbers are given in parentheses, and mortality is given as a percentage (Marsh et al. 

1995). 

In high transmission areas, severe malaria anaemia is predominant and affects mainly younger 

children, while in low transmission areas cerebral malaria is more common in older children 

and is associated with high case fatality (Snow et al. 1994). Children in malaria endemic zones 

acquire immunity to clinical malaria rapidly following repeated infections, and hence, there is 

an inverse relationship between transmission intensity and age of susceptibility to clinical 

malaria (Snow et al. 1997, Okiro et al. 2009). However, anti-parasite immunity develops slowly 

and is incompletely acquired even among adults living in endemic areas. Some have argued that 
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immunity may suppress infection but is never sterilizing (Doolan et al. 2009). Furthermore, 

there is evidence to show that immigrant adults, from endemic areas, living in malaria free 

regions lose their protective immunity and become susceptible again (Marsh and Kinyanjui 

2006). In addition, malaria coinfection with some diseases may alter the development of 

immunity and enhance development of malarial symptoms. For instance, coinfection with HIV-

1 has been associated with increased rate of malarial fevers (French et al. 2001), higher 

parasitaemia, more complications and a higher case fatality rate (Hendriksen et al. 2012). 

Similarly, Mendelian randomization studies using Sickle Cell trait as an instrumental variable 

have shown that malaria increases susceptibility to non-typhoidal salmonella infection (Scott et 

al. 2011), confirming prior epidemiological observations (Mabey et al. 1987, Mackenzie et al. 

2010).  The mechanism appears to be related to haemazoin production by the parasite interacting 

with host immunity (Cunnington et al. 2012).   

1.4.2 Asymptomatic parasitaemia 

Asymptomatic parasitaemia is defined as the presence of parasitaemia in the absence of fever 

or other acute symptoms (Lindblade et al. 2013). Continued exposure to malaria parasites in 

endemic areas often results in the development of anti-disease immunity (Marsh and Kinyanjui 

2006). However, this kind of immunity does not protect against re-infection but controls 

parasitaemia to levels where the infection cannot cause disease. Whilst individuals with clinical 

malaria develop symptoms and typically seek medication, individuals with asymptomatic 

parasitaemia do not and hence maintain a reservoir for onward transmission in the community 

(Bousema et al. 2014, Chen et al. 2016).  
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1.5 Malaria diagnostic tools 

Presumptive diagnosis of febrile cases as malaria was common in sub-Saharan Africa when 

diagnostic tools were not widely available (Nankabirwa et al. 2009). However, many infectious 

diseases cause fever leading to a substantial proportion of febrile cases presenting to under-

resourced health facilities or retail outlets being treated presumptively for malaria in the absence 

of diagnostic testing (Amexo et al. 2004, Nankabirwa et al. 2009). In addition to misuse of anti-

malarials, over-diagnosis also diverts attention from other causes of severe illness and may lead 

to adverse clinical outcomes (Reyburn et al. 2004).  

WHO recommends that malaria case management be based on parasitological diagnosis (WHO 

2012b). Rapid diagnostic tests (RDTs) and microscopy are the primary diagnostic tools for 

confirmation of suspected clinical malaria in most resource limited settings (WHO 2013a). 

Clinical malaria is usually accompanied by fever and readily detectable parasitaemia. On the 

other hand, nucleic acid amplification-based diagnostic tools are recommended for the detection 

of asymptomatic parasitaemia in areas of low transmission intensity where submicroscopic 

infections are more common (Okell et al. 2009, Okell et al. 2012, WHO 2013a).  

Light microscopy examination of stained blood smears remains the gold standard for laboratory 

diagnosis of malaria. Although microscopy is relatively inexpensive compared to molecular 

diagnostics, it is not accessible and affordable in smaller health facilities in Africa. Microscopy 

can be highly sensitive and specific when conducted by well-trained laboratory personnel in 

high transmission settings, but suffers from detection limits, particularly in low transmission 

settings where clinical illness may be associated with lower parasitaemias (Okell et al. 2012). 

Moreover, there are challenges with quality assurance and standardization across sites or across 

independent laboratories. The advent of RDTs has greatly expanded diagnostic coverage due to 
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their simplicity, cost effectiveness and availability when compared to microscopy and molecular 

based diagnostics. RDTs are currently widely used in endemic areas and have been shown to be 

highly sensitive and specific compared to light microscopy (Hendriksen et al. 2011). RDTs 

measure the presence of P. falciparum histidine-rich protein 2 (HRP2) and/or lactate 

dehydrogenase (LDH) (Moody 2002) with important limitations. That is, HRP2 antigen can 

circulate in blood for weeks after treatment leading to false positives, and some parasites do not 

express the HRP2 protein rendering the tool less sensitive (Cheng et al. 2014). LDH on the other 

hand, persists less than HRP2 leading to fewer false positives (Hopkins et al. 2007, Murray et 

al. 2008, Houze et al. 2009). These caveats aside, HRP2 based RDTs have well documented 

lower detection limits in the range of 100 to 200 parasites per microliter (WHO 2012b). In 

addition, poor transport and storage of RDTs with sustained exposure to high temperature can 

potentially  affects their diagnostic performance (Cheng et al. 2014).  

Recent advances in molecular techniques have led to increased sensitivity in the detection of 

malaria parasites. A set of PCR techniques for malaria diagnosis are currently available and 

include single step, nested, multiplex and quantitative PCR. Although these techniques are 

highly sensitive, they are expensive and requires highly trained personnel to operate, and are 

thus primarily used for research purposes. Other nucleic acid amplification technology currently 

in use include the loop-mediated isothermal amplification (LAMP) and nucleic acid sequence-

based amplification (NASBA) that do not need thermocyclers to operate (Erdman and Kain 

2008). These techniques are faster, relatively cheap and easy to operate compared to PCR but 

with equal sensitivity and can potentially be used in rural settings outside the research 

environment.  
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1.6 Effective case management 

Early diagnosis and prompt effective treatment is one of the key strategies for malaria control. 

Uncomplicated P. falciparum malaria is defined as confirmed parasitaemia (by microscopy or 

RDT) and fever but without signs of severe illness or vital organ dysfunction. WHO 

recommends a three days regimen of artemisinin-based combination therapies (ACT) for 

treatment of uncomplicated malaria in both children and adults except pregnant women in 

their first trimester (WHO 2015a). Both artesunate plus amodiaquine (ASAQ) and artemether-

lumefantrine (AL) and Atovaquone-proguanil (AP), have been shown to be efficacious in the 

treatment of uncomplicated malaria (Martensson et al. 2005). In low transmission settings, 

efforts to reduce transmissibility of treated P. falciparum infections to mosquitoes may be 

boosted by an additional single dose of primaquine in combination with ACT (WHO 2015a). 

Although there are concerns regarding resistance in South East Asia (Ashley et al. 2014), ACT 

for treatment of uncomplicated malaria remains highly effective in Africa, but coverage is 

substantially heterogeneous and remains unacceptably low in some areas. Approximately 

80.3% of children with uncomplicated malaria did not have access to ACT in 2015 (Bennett et 

al. 2017). 

Adults and children with severe malaria (defined as confirmed parasitaemia by microscopy or 

RDT with one or more of the following: impaired consciousness, prostration, multiple 

convulsions, acidosis, jaundice, hypoglycaemia, severe malarial anaemia, renal impairment, 

among other signs) should be treated with intravenous or intramuscular artesunate for at least 

24 hours of parenteral therapy followed by 3 days of ACT once oral therapy can be tolerated 

(WHO 2015a). Artesunate is superior to quinine in averting mortality due to severe malaria 

(Dondorp et al. 2005, Dondorp et al. 2010). 
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1.7 Malaria control activities 

1.7.1 Historical malaria control activities.  

The history of malaria control is well documented in literature and dates to the 20th century. 

Early malaria control methods mainly relied on vector control through insecticide residual 

spraying with dichlorodiphenyltrichloroethane (DDT) and drug administration using 

chloroquine (Killeen et al. 2002). Laviciding has been credited in controlling malaria in the 

northeast coast of Brazil where the accidental introduction of An. gambiae was reversed by its 

elimination from an area of approximately 54 000 km2 (Soper and Wilson 1943). Similar claims 

were made in the Nile Valley of Egypt (1942-1945) where An. gambiae had moved northwards 

from Sudan and this was reversed by larviciding (Shousha 1948). Though the Brazil campaign 

against malaria is arguably the most effective in history, its replication in sub-Saharan Africa is 

doubtful given the ecological differences between Brazil and sub-Saharan Africa. Furthermore, 

the ability of An. gambiae to exploit diverse breeding environments makes the implementation 

of laviciding programs difficult (Minakawa et al. 2005). WHO recommends the use of larval 

control in settings where mosquito breeding sites are few, fixed and easily identifiable (WHO 

2012c). The Global malaria eradication campaign launched in 1955 with the support from the 

WHO and the World Bank (Cohen et al. 2010) mainly relied on chloroquine for treatment of 

blood stream infection to reduce clinical illness and the reservoir of human infection and indoor 

residual spraying (IRS) with the insecticide DDT under the eaves of houses to interrupt 

transmission by killing the anopheline vectors (Pambana 1963, Najera et al. 2011). This 

campaign was adversely impacted by the evolution of resistance to both DDT and chloroquine. 

While the aim of this campaign was to eradicate malaria, the Garki project (Molineaux 1980) 

launched in the early 1970s, aimed at studying the feasibility of mass drug administration and/or 
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the use of DDT to interrupt transmission. The results revealed that indoor residual spraying with 

DDT was effective at reducing the ability of the vectors to transmit malaria though was not 

enough to interrupt transmission in the Sudan savannah of northern Nigeria (Molineaux 1980). 

1.7.2 Contemporary malaria control activities.  

Recent decades have seen a substantial increase in the resources channeled towards malaria 

research and control (Roberts and Enserink 2007) with the aim of reducing malaria related 

morbidity and mortality and eventual elimination. These resources have been made available by 

private foundations (such as the Malaria Foundation, Gates Foundation, Medicines for Malaria 

Venture, the Wellcome Trust and the Burroughs-Wellcome Fund) (McCoy et al. 2009), 

international programs and agencies (including the Global Fund, Roll-Back Malaria, the World 

Bank and the World Health Organization) and national programs such as the Medical Research 

Council in the UK, the National Institute of Health (NIH), the Centers for Disease Control and 

Prevention (CDC) and the President’s Malaria Initiative (PMI) in the US (Ceesay et al. 2012). 

Global financing for malaria control programmes increased from an estimated US$ 960 million 

in 2005 to US$ 2.5 billion in 2014 (Figure 1.6). Of the total invested in 2014, international 

funding accounted for 78% (WHO 2015b).  
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Figure 1.6: Investments in malaria control activities by funding source, 2005–2014. 

AMFm, Affordable Medicine Facility-malaria; Global Fund, Global Fund to Fight AIDS, 

Tuberculosis and Malaria; NMCP, national malaria control programme; UK, United Kingdom; 

USA, United States of America (WHO 2015b). 

The malaria control mechanisms to which these resources have been directed include: (i) 

Injectable artesunate and Artemsinin-combination therapies (ACTs) for the treatment of persons 

with severe and symptomatic uncomplicated malaria infections respectively, (ii) interruption of 

human-vector contact through Insecticide-treated bed Nets (ITNs) to reduce the frequency of 

malaria transmission from the anopheline vector to humans, (iii) Intermittent Preventive 
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Treatment with pyrimentamine + sulfadoxine (Fansidar) during pregnancy (IPTp) and infancy 

(IPTi), and (iv) insecticide residual spraying (IRS) with DDT (WHO 2012c). 

Multicenter trials and observational studies have shown that the use of insecticide-treated nets 

(ITNs) or curtains are effective in reducing childhood malaria-related morbidity and mortality 

(Alonso et al. 1991, Alonso et al. 1993, Cheng et al. 1995, D'Alessandro et al. 1995, Binka et 

al. 1996, Nevill et al. 1996, Fegan et al. 2007). For instance, during the first year of the Gambian 

National Bednet Program the reduction in all-cause mortality among children 1 - 9 years old 

was reported as ~25% (D'Alessandro et al. 1995). Similarly, all course mortality on the Kenya 

coast declined by ~33%  while hospital admissions for severe malaria declined by ~44% 

following ITN use (Nevill et al. 1996). ITN use not only provides personal protection against 

malaria (Howard et al. 2000, Lengeler 2000) but also provide communitywide protection by 

killing infectious mosquitoes that could otherwise cause infections (Hawley et al. 2003). 

However there have been concerns of pyrethroid insecticide resistance in the recent past (Ceesay 

et al. 2010).  

IRS targeting endophilic vectors, involves careful controlled spraying of insecticides along the 

inside walls of a home/house. In 2006, WHO recommended the scale-up of IRS using DDT 

(WHO 2006a, Kolaczinski et al. 2007). Although DDT may be highly effective in reducing 

malaria prevalence than pyrethroids and other insecticides (Kim et al. 2012), it has been 

associated with environmental pollution (Roberts et al. 2000). In addition, although reviews 

report that DDT is safe (Curtis 2002, Beard 2006), toxicity data from animal studies suggest 

likely long-term negative health effects upon exposure to DDT (Ben et al. 2001). There are 11 

other chemicals currently recommended by WHO for use in IRS, including malathion, 

bendiocarb, lambda-cyhalothrin, and alphacypermethrin (WHO 2006a).  
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Between the year 2000 and 2015; ITNs, ACTs and IRS accounted for an estimated 68%, 19% 

and 13% reductions in the prevalence of malaria respectively (Figure 1.7) (Bhatt et al. 2015b). 

 

Figure 1.7: Changing endemicity and effect of interventions 2000–2015. 

Panel a shows the predicted time series of population-weighted mean PfPR2-10 across endemic 

Africa. The red line shows the actual prediction and the black line a ‘counterfactual’ prediction 

in a scenario without coverage by ITNs, ACTs, or IRS. The coloured regions indicate the relative 

contribution of each intervention in reducing PfPR2-10 throughout the period. Panel b shows the 

predicted cumulative number of clinical cases averted by interventions at the end of each year, 

with the specific contribution of each intervention distinguished (Bhatt et al. 2015b). 

IPTp-SP is recommended for all pregnant women in malaria endemic countries starting as early 

as possible after 1st trimester of pregnancy and given at least one month apart until child birth 

to improve pregnancy outcomes (Kayentao et al. 2013, WHO 2013c). IPTp-SP has been shown 

to reduce the frequency of placental malaria and its consequence for the newborn (Schultz et al. 

1994). Although IPTi administered at the time of routine infant immunization was shown to 

substantially reduce the incidence of malaria and anaemia (Manzi et al. 2009, Willey et al. 2011), 

it has not been adopted as policy for malaria control in East Africa partly due to the shifting 
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burden of malaria to older children as transmission intensity declines, and partly due to limited 

resources. 

Seasonal malaria chemoprevention (SMC), previously referred to as Intermittent Preventive 

Treatment in children (IPTc), targeting children less than five years of age has been investigated 

and recommended as a measure to control the burden of malaria in the Sahel and sub-Sahelian 

areas of Africa that is characterized by markedly seasonal malaria transmission (Greenwood 

2006). SMC involves intermittent administration of full treatment course of amodiaquine plus 

sulfadoxine/ pyrimethamine (AQ+SP) given to children at monthly intervals, beginning at the 

start of the transmission season, to a maximum of four doses during the malaria transmission 

season. The objective is to maintain therapeutic antimalarial drug concentrations in the blood 

throughout the period of greatest malarial risk to prevent infection. This intervention has been 

shown to be effective (prevents ~75% of all malaria including severe malaria episodes among 

treated children), cost-effective, safe, and feasible for the prevention of malaria among children 

less than 5 years of age in areas with highly seasonal malaria transmission (Aponte et al. 2009, 

Wilson 2011).  

Other control methods used in the past few decades include; improved access to treatment by 

training mothers on proper malaria treatment procedure - this method has been associated with 

substantial decline in mortality among Ethiopian children (Kidane and Morrow 2000), improved 

compliance with the treatment through packaging (Yeboah-Antwi et al. 2001) and training 

shopkeepers on the importance of selling a full course of treatment (Marsh et al. 1999).  

The possibility of an effective malaria vaccines is being explored (WHO 2006b). Despite 

decades of intense research and vaccine development effort, there is no commercially available 

malaria vaccine. Trials targeting the various stages of parasite development have been on the 
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increase with the hope of identifying a vaccine candidate that can lead to an effective vaccine 

against malaria. None of the vaccines examined in field trials have attained the vaccine efficacy 

target of 80% set by the world health organization malaria vaccine technology roadmap (WHO 

2006b). RTS,S/AS01 is the most advanced malaria vaccine candidate that has undergone phase 

3 evaluation across several sites in Africa. For the 48 months of follow-up, immunization with 

a fourth dose RTS,S/AS01 vaccine was associated with 36.3% efficacy against clinical malaria 

among children vaccinated at an older age (5 to 17 months of age) and 25.9% among infants 

aged between 5 to 12 weeks of age  (RTS 2015). The seven-year follow-up data on a three-dose 

regimen show a rebound suggesting that waning immunity due to vaccination predisposes 

vaccinated children to more clinical malaria (Olotu et al. 2016). In 2017, The WHO’s Strategic 

Advisory Group of Experts on Immunization and the Malaria Policy Advisory Committee 

jointly recommended pilot projects to understand how to best implement the malaria vaccine to 

children in malaria endemic areas (WHO 2017). Kenya, Malawi and Ghana will deploy the 

vaccine in selected moderate to high malaria transmission settings (WHO 2017). The objectives 

will be to: a) Evaluate the feasibility of deploying the 4-dose regimen of the RTS,S malaria 

vaccine through the routine immunization programme, b) consolidate the safety profile of the 

vaccine when routinely deployed, and c) estimate the impact of the routine delivery of the 

vaccine on all-cause mortality in children aged 5-48 months (WHO 2017). Given the short term 

protective effect conferred by the vaccine, the effect will likely be higher in moderate to high 

transmission settings where children experience multiple episodes of clinical disease per year. 

Other malaria vaccine candidates are being assessed at various stages of development in addition 

to other sophisticated malaria control methods that include the development of genetically 

modified mosquitoes (De Freece et al. 2014). 
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1.8 Challenges to malaria control programmes 

Some of the challenges associated with malaria control include: 1) inequitable distribution of 

malaria control interventions (Noor et al. 2007), 2) drug resistance as observed in chloroquine, 

sulphadoxine/ pyrimethamine (Fryauff et al. 1998) and now emerging resistance to artemisinin 

derivatives, 3) pyrethroid insecticides resistance (Chandre et al. 1999), 4) war and civil 

disturbance leading to increased malaria transmission among refugee populations (Pitt et al. 

1998), 5) environmental changes such as farming practices, construction of dams among others 

(Ghebreyesus et al. 1999), 6) climate change that may have contributed to the spread of malaria 

to areas that were previously free of malaria due to global warming and floods (Lindblade et al. 

1999), 7) travel from endemic areas leading to imported cases of malaria (Martens and Hall 

2000) and 8) the population increase leading to more people living in endemic areas of the world 

(Greenwood and Mutabingwa 2002, Noor et al. 2014).  

1.8.1 ITN distribution Systems efficiency 

Despite huge international investment on ITNs, the processes of delivering and distributing them 

to where they are most needed are inefficient (Bhatt et al. 2015b) and inequitable (Zegers de 

Beyl et al. 2016). This challenge is further compounded by limited information on the number 

of ITNs owned and used per household within each country. It is estimated that in 2013, only 

43% of people at risk of malaria slept under a net in sub-Saharan Africa. During this period 

~21% of new ITNs were allocated to households that already had enough and this inefficient 

allocation is predicted to have worsened overtime (Bhatt et al. 2015b). Furthermore, nets are 

much more rapidly lost from households than previously thought. Therefore, systems need to 

respond to emerging coverage gaps due to continuous nets loss from households resulting from 



37 | P a g e  
 

damage, repurposing, or movement away from target areas and over-allocation (Bhatt et al. 

2015b). 

Gains in ITN coverage have been impressive, currently at ~60% in sub-Saharan Africa, but there 

remains an enormous challenge towards achieving universal access. Taking measures aimed at 

more efficient targeting ITNs to households that need them could improve coverage levels to 

95% of the total population in need of ITNs (Bhatt et al. 2015b). In summary, the rate of net 

loss and the degree of over-allocation of new ITNs play a major role in determining how delivery 

will translate into household coverage levels. 

1.8.2 Factors influencing ITN use 

Key tentative findings from self-reported barriers to mosquito net use within households in sub-

Saharan Africa include discomfort primarily due to heat and perceived low mosquito density 

(Pulford et al. 2011). Indoor climate is uncomfortable in the hot-humid zone (von Seidlein and 

Knudsen 2016), furthermore, bednets have been shown to reduce airflow by about 60% (von 

Seidlein et al. 2012a). Therefore, to achieve and maintain high coverage on ITN use, houses 

should be well ventilated to allow unrestricted airflow. Community engagement and 

sensitization to integrate housing characteristics that improve ventilation while minimizing 

vector entry are recommended (von Seidlein and Knudsen 2016). Although this effort may take 

time to implement, it may ultimately expand ITN uptake and consequently improve coverage. 

1.8.3 Insecticide resistance  

The emergence and spread of insecticide resistance to all four classes of public health 

insecticides (pyrethroids, organochlorines, organophosphates, and carbamates) threatens the 

effectiveness of ITNs and indoor residual house spraying. Due to low mammalian toxicity, high 

speed of action, and high insecticidal activity, pyrethroids are the only insecticide class 
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recommended by the WHO for use in ITNs (WHO 2012a). Several malaria endemic countries 

using pyrethroid-based vector control (either impregnated into LLINs or sprayed onto walls) 

have reported declined effectiveness due to pyrethroid resistance. Nevertheless, in a systematic 

review and meta-analysis, pyrethroid impregnated ITNs were found to be more effective than 

untreated nets (UTNs) regardless of resistance (Strode et al. 2014). Further evidence shows that 

although resistant mosquitoes may not be killed upon exposure to the insecticide, their average 

life span is considerably decreased (Viana et al. 2016). Continued monitoring of effectiveness 

with standardized procedures is recommended to guide malaria control programmes (Strode et 

al. 2014). 

1.8.4 Anti-malarial drug resistance 

The prospects for malaria elimination are further threatened by the emergency of artemisinin 

resistance in P. falciparum parasites (Ashley et al. 2014, WHO 2016). WHO defines artemisinin 

resistance as delayed parasite clearance and the presence of PfKelch13 (K13) mutations. As of 

March 2017, artemisinin resistance had been confirmed in 5 countries of the Greater Mekong 

Subregion (WHO 2016). Fortunately, majority of the patients in the region still recover 

following treatment with ACTs (Ashley et al. 2014, WHO 2016). No evidence of wide spread 

artemisinin resistance has been reported, however, the spread or independent emergence of 

artemisinin resistance in other parts of the world would be disastrous for the global malaria 

control programmes given that no alternative antimalaria medicines are available at present with 

the same level of efficacy and tolerability as ACTs (WHO 2016). In Africa, non-synonymous 

K13 mutations are still rare and highly diverse, and do not appear to be linked to resistance 

(Figure 1.8) (Ashley et al. 2014). Resistance to artemisinin products may have resulted from a 

combination of factors that include: poor treatment practices, poor adherence of the complete 
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course of treatment, widespread availability of oral artemisinin-based monotherapies and 

substandard generic drugs in the market. 

 

Figure 1.8: Location of study sites and proportions of patients with artemisinin resistance. 

Artemisinin resistance was defined by a parasite clearance half-life longer than 5 hours, with 

some Plasmodium falciparum isolates having kelch13 polymorphisms (at or beyond amino acid 

position 441) (Ashley et al. 2014). 
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1.9 Malaria case detection methods 

Active case detection (ACD) involves detecting malaria infections by community health 

workers at the community or household level. Active case detection can be done for clinical 

malaria or for the acquisition of infection. The former involves regular fever screening of a 

longitudinal cohort followed by parasitological examination of all febrile patients for 

symptomatic malaria. The latter would involve giving anti-malarials to clear parasitaemia at 

baseline, followed by regular parasitological examination of the full cohort without prior fever 

screening (Sturrock et al. 2013). Passive case detection (PCD) on the other hand, entails 

screening febrile patients presenting to health care facilities for malaria parasites. PCD detect 

symptomatic malaria cases but also include other febrile illness with coincident malaria 

infection (Sturrock et al. 2013). This method misses asymptomatic parasitaemia cases present 

in the community who typically do not seek medical care. The sensitivity of detection for both 

ACD and PCD is limited to the diagnostic tool used (Okell et al. 2009, Okell et al. 2012). 

1.10 Interventions targeting asymptomatic reservoir  

Two common interventions targeting asymptomatic parasitaemia exist; 1) mass drug 

administration (MDA) and 2) mass screen and treat (MSAT).  

The most inclusive way to clear the asymptomatic reservoir of malaria infections is through 

mass drug administration (MDA) (Okell et al. 2011). MDA involves administering a full dose 

of anti-malaria chemotherapy to the population with no prior screening. Although this method 

is logistically demanding, its application ensures that submicroscopic infections are also 

targeted and is effective in low transmission settings (Bousema et al. 2012b, Sturrock et al. 

2013, Newby et al. 2015).  
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To achieve high local coverage, mass screening and treatment (MSAT) strategies are used. Anti-

malarial drugs that target both asexual parasites and gametocytes are recommended in addition 

to vector control. Giving antimalarial drugs specifically based on positive test results may be 

preferable to presumptive treatment (MDA) since such a strategy limits excess drug use that 

may drive antimalarial resistance. However, the insufficient sensitivity of existing field 

diagnostics commonly used to identify asymptomatic infections makes MDA justifiable. 

Furthermore, studies have shown that MSAT has limited effect in reducing transmission (Cook 

et al. 2015). 

1.11 Measuring transmission intensity 

With renewed interest in malaria elimination, detailed understanding of malaria transmission 

intensity in space and time is critical. Measuring malaria transmission intensity is a key element 

of monitoring changes in transmission and assessing the impact of anti-malaria interventions. 

Cost effective and accurate measurement of transmission intensity is required to provide helpful 

insights on when and where the greatest risks occur and thus guide the development and 

implementation of appropriate control strategies (Smith et al. 2005). In sub-Saharan Africa, 

malaria transmission intensity varies substantially, a feature associated with the vectorial 

capacity of the local mosquitoes, human acquired immunity and the malaria control 

interventions in place (Smith et al. 2010). Several ways of measuring transmission intensity are 

described in the literature. The commonly used metrics discussed here are: (1) Parasite rate in 

humans, (2) malaria positive fraction (MPF) or slide positive rate (SPR), (3) entomological 

inoculation rate, (4) force of infection and molecular force of infection, (5) multipliscity of 

infection, (6) seroconversion rate, (7) vectorial capacity and the basic reproduction number, and 

(8) net infectiousness of humans to mosquitoes. 
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1.11.1 Parasite prevalence in humans (PR)  

PR is defined as the proportion of individuals that are parasitaemic at a given point in time 

(Tusting et al. 2014). Although consistently referred to parasite rate in the literature to date, here 

I refer it to parasite prevalence and not parasite rate per se. PR is estimated in cross-sectional 

surveys using RDTs, microscopy or PCR (Wu et al. 2015). This metric may not be definitive 

when applied to asymptomatic individuals since parasite densities fluctuate above and below 

threshold of detection over the course of infection (O'Meara et al. 2007). Similarly, detection 

thresholds vary with method used (i.e. RDT, light microscopy or PCR) (Bejon et al. 2006, 

O'Meara et al. 2007). The suitability of using PR for quantifying transmission intensity has been 

criticized in literature since it is not a direct measure of transmission intensity and becomes 

saturated at high transmission intensities (Smith et al. 2005, O'Meara et al. 2007) due to 

heterogeneous biting, multiple infection and acquired immunity. The measure should also be 

age corrected for standardization across sites (Smith et al. 2007a). 

1.11.2 Malaria positive fraction (MPF)  

MPF is also referred to Slide positive rate (SPR) in the literature, and is defined as the 

proportion of children presenting with fever to a healthcare facility who test positive for malaria 

parasitaemia by either light microscopy or RDT. I will use MPF as my preferred term over SPR 

since the measure is a fraction and not a rate per se (Bejon et al. 2014). MPF is measured through 

passive or active case detection methods especially at health facilities where routine screening 

is done using RDTs and/or microscopy (Tusting et al. 2014) or through surveys in the 

community (Hawley et al. 2003). Though the accuracy of MPF is not well established, it has 

previously been used to characterize transmission intensity in Sub-Saharan Africa (Ceesay et 

al. 2010) and used to explain variations in incidence of malaria (Bi et al. 2012). MPF is useful 
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as a rapid indicator of trends and is thus recommended by the WHO when measuring changes 

in transmission intensity (WHO 2010). In addition, MPF has been shown to have a positive 

association with malaria incidence in some studies (Bi et al. 2012). When data are collected 

through active case detection the incidence rates can be computed with minimal biases. 

However, when data are collected through passive case detection, incidence rates are prone to 

biases due to, for instance, accessibility to hospital (Tusting et al. 2014). For this reason, MPF 

is preferred as it is less prone to bias due to distance from hospital (Bejon et al. 2014). That is, 

access to hospital equally affects the slide positive and slide negative children residing in the 

same locality hence normalizing the effect of access to care (Bejon et al. 2014). 

1.11.3 Entomological inoculation rate (EIR) 

 EIR is a metric that estimates the number of bites per person per unit time (mostly in years) and 

is therefore a measure of exposure to infectious mosquitoes (Ceesay et al. 2010, Kilama et al. 

2014, Tusting et al. 2014). It is estimated by catching mosquitoes and then dissecting them to 

estimate the sporozoite rate (Birley and Charlewood 1987). Human biting rates (Ma) are 

estimated by catching and counting the number of mosquitoes that attempt to feed on a human 

while sporozoite rate (SR) is found by examining those mosquitoes for the presence of 

sporozoites (Smith et al. 2005, Kilama et al. 2014). Standard methods proposed for measuring 

Ma include human landing catches, pyrethroid spray catches, exit traps and CDC light traps 

(WHO 2013b, Kilama et al. 2014). This metric has several limitations; 1) most EIR studies 

provide little or no explanation on the rationale behind the choice of locations, houses, or trap 

placements, information on the human collectors, time of day, or frequency of mosquito 

collections. 2) EIRs are often poorly reproducible in practice, very laborious to collect and 

results vary within methods (Kelly-Hope and McKenzie 2009). EIR values tend to be higher 
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than values of force of infection (FOI), because not all infectious mosquito bites result in an 

infection (Churcher et al. 2017). Additionally, sporozoite rates, and by extension EIRs, are 

affected by seasonal variations and lack sensitivity at low transmission settings (Kelly-Hope and 

McKenzie 2009). 

1.11.4 Force of infection (FOI) and molecular force of infection (mFOI) 

FOI is defined as the number of infections per person per unit time, and the mFOI is the number 

of new parasite clones acquired per unit time (Mueller et al. 2012). FOI can be measured through 

cohort studies (which may be naturally uninfected, artificially created cohorts) or repeated cross-

sectional surveys (Smith et al. 2010). The limitation resulting from previously acquired 

infections can also be mitigated by either assessing infant conversion rates which requires 

monitoring many infants over long period, or by using the mFOI (Mueller et al. 2012). This 

metric (mFOI) allows the measurement of transmission intensity without the need to clear 

previous infections in longitudinal studies (Mueller et al. 2012). Both FOI and mFOI suffer from 

accuracy that is as a result of parasite fluctuation within infected persons, especially when they 

fluctuate below the detection limit of the commonly used diagnostic tools (Koepfli et al. 2011). 

The estimates of mFOI is also affected by seasonality, age and some malaria control methods 

(Mueller et al. 2012). Compared to FOI, mFOI has greater sensitivity and specificity and has a 

relatively high precision and accuracy in low transmission areas, and continues to show 

variation when FOI has saturated (Tusting et al. 2014). 

1.11.5 Multiplicity of infection (MOI) 

MOI is the number of concurrent parasite clones per P. falciparum-positive host (Tusting et al. 

2014). MOI is determined by genotyping parasites using polymorphic markers such as the 

merozoite surface protein-1 (MSP-1) (Atroosh et al. 2011) or merozoite surface protein-2 (MSP-
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2) (Mueller et al. 2012) amongst others (Tusting et al. 2014). The capacity of MOI to accurately 

reflect transmission intensity may depend on both the diversity of the parasite clones and the 

frequency of sampling (Koepfli et al. 2011). It has been demonstrated that in areas where 

parasite populations are less diverse, transmission intensity may be underestimated as parasite 

clones may not be distinguishable by molecular markers (Mueller et al. 2012). However, higher 

numbers of P. falciparum concurrent infections (mean = 5) have been detected in highly 

endemic areas of sub-Saharan Africa (Beck et al. 1997) while low MOI ranging between 1.5 to 

1.7 detected in Papua New Guinea, an area that is relatively a low transmission zone (Koepfli et 

al. 2011). 

1.11.6 Seroconversion rate (SCR)  

Anti-malarial antibodies are biological markers of previous infection that can explain spatial-

temporal trends in transmission intensity (Drakeley et al. 2005, Bousema et al. 2010b). Since 

antibodies are raised by the host in response to infection, serology is thought to be a good 

indicator of exposure to malaria. Serological tools are potentially more sensitive and robust than 

parasite prevalence or EIR given that antibodies last longer than patent parasitaemia and longer 

than the lifespan of infective mosquitoes. In the past, serological tools have been used to 

examine the impact of interventions that reduce malaria exposure (Cornille-Brogger et al. 

1978). Some commonly targeted malaria antigens used in serological studies include a) 

circumsporozoite protein (CSP), b) merozoite surface protein-119 (MSP-119) and c) apical 

membrane antigen-1 (AMA-1). CSP responses are not rapidly acquired, and are therefore not 

suitable for estimating transmission intensity in low transmission settings. MSP-119 is 

moderately immunogenic and can be used to estimate changes in transmission intensity over a 

range of transmission intensities. AMA-1 on the other hand is highly immunogenic and can 
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elicit long-lived immune responses that can lead to saturation at moderate transmission 

intensities (Drakeley et al. 2005). Serological measures of malaria infection have been proposed 

for diagnosis and determination of community level transmission in the pre-elimination and 

elimination phases of malaria control (malERA 2011). Seroconversion to malaria is the 

development of detectable anti malaria antibodies against the parasite antigen in the blood 

(Drakeley et al. 2005). The incidence of seroconversion can be calculated by fitting a reverse 

catalytic model to age-specific malarial seroprevalence data (Drakeley et al. 2005). SCR 

estimates analogous to force of infection can also be computed (Drakeley et al. 2005, Corran et 

al. 2007). A further advantage of using SCR as a measure of transmission intensity is its ability 

to account for malaria exposure over time, hence allowing temporal patterns in transmission 

intensity to be studied (Corran et al. 2007). This metric has recently gained popularity as a tool 

for monitoring variations in malaria transmission intensity in Africa (Corran et al. 2007, Stewart 

et al. 2009), Asia (Lim et al. 2005) and the Pacific (Cook et al. 2010) where studies have shown 

close correlation between independent metrics of malaria transmission intensity and SCR. 

Although this metric has been associated with high precision and accuracy, SCR may not be 

sensitive to short-term changes in transmission given that antibodies can persist for years after 

the exposure period (Corran et al. 2007), however, this weakness can be mitigated by assessing 

seroconversion among children under five years of age (Ceesay et al. 2010). 

1.11.7 Vectorial capacity (C) and the basic reproduction number (Ro) 

 C is defined as the expected number of infectious bites that could eventually arise from all the 

mosquitoes that bite a single human on a single day assuming non immunity and 100% 

efficiency in transmission (Garrett-Jones 1964). It is mathematically denoted as 
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𝐶 =
M𝑎2𝑝𝑛

−𝑙𝑛 p
, 

where 𝑀 is the density of adult mosquitoes, 𝑎 is their feeding frequency on humans, 𝑝 is their 

daily survival rate and 𝑛 is the duration of parasite development in humans. 

The malaria basic case reproduction number 𝑅0 is the expected number of hosts who would be 

infected after one generation of the parasite by a single infectious person who had been 

introduced into an otherwise naive population. It is defined as the product of vectorial capacity, 

the net efficiency of transmission and the duration of the infection (Johnston et al. 2013). The 

estimation of C from the individual components is normally difficult and prone to compounded 

error that result from the errors introduced by individual terms (Dye and Hasibeder 1986). To 

sustain transmission a minimum value ( 𝑅0 = 1 ) must be attained. Though 𝑅0 remains a gold 

standard for measuring transmission intensity, it is difficult to measure accurately in the field 

(Tusting et al. 2014). 

1.11.8 Net infectiousness of humans to mosquitoes (k)  

At the population level, k is defined as the fraction of mosquitoes that would become infected 

after blood feeding on any human. The determination of k is normally influenced by processes 

acting in both humans and mosquitoes and includes: fluctuations in gametocyte density, 

naturally acquired transmission-blocking immunity (Tusting et al. 2014), the efficiency with 

which the gametocytes are taken up by mosquitoes in a blood meal relative to their measured 

density, the effective contact of the vectors with humans and factors influencing the 

susceptibility of mosquitoes to malaria infection such as the mosquito innate immunity (Trape 

et al. 1987, Smith et al. 2004), midgut natural microbiota (Cirimotich et al. 2011) among others. 

In practice, it is impossible to directly measure this metric in a natural mosquito population. 
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However, the metric can be estimated using; (1)  direct skin feeding assays (SFAs) where 

laboratory-reared mosquitoes are directly fed on infected humans to determine the proportion 

that become infected (Killeen et al. 2006), (2) using standard membrane-feeding assays (MFA) 

(Bousema et al. 2012a) and (3) infection rates in the natural vector population (Burkot et al. 

1990). Though k has been shown to correlate well with EIR at low transmission areas, it has 

been criticized for its low precision and accuracy (Tusting et al. 2014). To measure the effect of 

sexual-stage transmission-blocking vaccine, accurate measurement of k is needed before and 

after vaccination. 

1.12 Spatial and temporal heterogeneity of malaria 

Plasmodium falciparum transmission is the process by which a malaria parasite completes its 

life cycle from human to human via a mosquito vector (Tusting et al. 2014), and the intensity of 

transmission refers to the frequency of new human infections (Smith et al. 2012). Transmission 

intensity for most infectious agents (including Plasmodium falciparum malaria parasites) is 

heterogeneous as has long been recognized empirically and explored using mathematical 

models. For many infectious diseases, ~20% of the human population account for ~80% of the 

infectious burden (Woolhouse et al. 1997b). The processes leading to malaria transmission 

depend on the ecology and biting behavior of mosquitoes which in turn is determined by climate 

(rainfall, temperature and humidity), hydrology and soil composition (Packard and Gadehla 

1997, SHILILU et al. 2003, Olson et al. 2010, Stefani et al. 2013, Weiss et al. 2014), the 

distribution of human residence and behaviors (urbanization and housing) (Hay et al. 2005, 

Omumbo et al. 2005), control interventions (Bhatt et al. 2015a) altitude (Brooker et al. 2004, 

Ernst et al. 2006, Baidjoe et al. 2016), proximity to dense vegetation (Ernst et al. 2006, Kreuels 
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et al. 2008), wind direction (Midega et al. 2012), and host genetic factors (Mackinnon et al. 

2005).  

Rainfall combined with suitable temperatures (between 25oC and 30oC) provides optimal 

breeding environment for the vector mosquitoes while humidity is associated with vector 

longevity (Dutta and Dutt 1978). High temperatures of (>34oC) are associated with high larval 

and adult mosquito mortalities (Kirby and Lindsay 2004) while temperatures below 16oC are 

unable to produce viable adults (Bayoh and Lindsay 2003, Bayoh and Lindsay 2004). Irrigation 

schemes, dams and swampy areas provide suitable breeding ground for mosquitoes to oviposit 

(Ijumba and Lindsay 2001) thus increasing mosquito abundance. On the other hand, aridity 

negatively affect the vector development and survival (Shililu et al. 2004). Limited availability 

of water bodies reduces the number of suitable sites for oviposition and also reduces the 

mosquito survival rate at all stages of development (Gray and Bradley 2005).  

Social economic status and housing characteristics are key determinants of malaria transmission 

intensity (Ernst et al. 2006, Tusting et al. 2013, Tusting et al. 2015, von Seidlein and Knudsen 

2016). Improvements to housing contributes significantly to malaria control and elimination by 

decreasing house entry by malaria infected mosquitoes and thus exposure to biting. Housing 

quality is an important risk factor for malaria infection across the spectrum of malaria 

endemicity in sub-Saharan Africa (Tusting et al. 2015, Tusting et al. 2017). Similarly, lower 

economic and/or education levels are associated with increased risk of malaria transmission 

(Baragatti et al. 2009, Tusting et al. 2013).  

Urban areas have lower malaria incidence compared to rural areas of sub-Saharan Africa, this 

is partly due to limited availability of optimum environmental conditions for the development 

of the vector mosquitoes thus resulting in low vector densities and low transmission intensity 

(Trape et al. 1987). In addition, accessibility to anti-malarial drugs and modern housing in urban 
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settings provide a plausible explanation for the spatial variation observed between rural and 

urban settings. Inequitable distribution of malaria control programs in rural settings has been 

documented (Noor et al. 2007). Malaria control programs tend to distribute control interventions 

to areas that are more accessible hence leaving out areas that need the nets most. 

 The temporal variations of malaria transmission witnessed in sub-Saharan Africa have also 

been attributed to climate change (Afrane et al. 2012) (for instance, the highlands of Kenya have 

experienced increasing malaria transmission), increased urbanization resulting from increasing 

population density, scaled up malaria control interventions, increased irrigation schemes among 

others. These factors act at various spatial scales and may explain why some households, 

villages, regions, countries and continents experience higher risk of malaria while others remain 

free or experience fewer episodes of the disease. 

 

Figure 1.9: Predicted 1 × 1 km spatial resolution Plasmodium falciparum parasite rate 

endemicity class maps of Africa prevalence in (A) 2000 and (B) 2010. 
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The dark grey, light grey, and white areas are malaria free and the limits of unstable and stable 

transmission, respectively, for each year. PfPR2–10 predictions were made to areas within the 

stable limits of transmission. PfPR2–10=community Plasmodium falciparum parasite rate 

standardised to the age group 2–10 years (Noor et al. 2014). 

Just as there are variations in the determinants of malaria transmission at various spatial scale, 

malaria heterogeneity is apparent at a global scale (Noor et al. 2014), Figure 1.8, with some 

continents (for instance Africa) experiencing high transmission while others experience very 

low to no transmission. Similarly there are variations within continents - where transmission 

ranges  from holo-endemic to meso-endemic or even no transmission (Noor et al. 2014), and 

further variations have been observed within countries, for instance, Mali (Gaudart et al. 2006), 

Ghana (Kreuels et al. 2008), Ethiopia (Yeshiwondim et al. 2009), Kenya (Brooker et al. 2004, 

Bejon et al. 2010) and Tanzania (Bousema et al. 2010a) and between homesteads within the 

same village(Bejon et al. 2014). 

1.13 Remote sensing   

Modelling malaria transmission is often challenging. The identification of all the natural factors 

(such as seasonality, rainfall, temperature, humidity, surface water and vegetation) and 

anthropogenic elements (such as agriculture, irrigation, deforestation, urbanization and 

movement of populations) that likely correlate with transmission intensity is logistically difficult 

and expensive (Stefani et al. 2013). The ultimate aim is usually to determine malaria incidences 

without clinical surveillance and thus enhance the identification of potential at risk areas at 

various spatial scales (Bannister-Tyrrell et al. 2017). Data collection techniques that monitor 

environmental changes relevant to the epidemiology of infectious diseases have gained 

popularity in the recent past (Tatem et al. 2004). For instance, remote sensing (RS) (i.e., the 

process of acquiring information about an object area or feature from a distance) (Hay 2000) 
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has been used extensively to study environmental differences such as land cover, altitude and 

climatic conditions (Kulkarni et al. 2010). The use of RS to provide new insights for malaria 

studies has been reviewed extensively (Rogers et al. 2002, Herbreteau et al. 2007). From the 

review by Herbreteau et al. (Herbreteau et al. 2007), RS is often, and increasingly, used to study 

parasitic diseases (59% of studies) including malaria (16% of studies). The distribution of 

malaria has been shown to depend on static geographical factors as well as environmental 

alterations over time (Stefani et al. 2013). Ecosystem changes resulting from natural features or 

human interventions, on a local or global scale, can alter the ecological balance and context in 

which vectors and their parasites develop and transmit disease (Patz et al. 2000). The mosquito 

population processes and malaria incubation periods in vectors have been shown to vary with 

temperature and moisture conditions (Kulkarni et al. 2010). Similarly, human interventions such 

as forest clearance and pollution have been associated with changing malaria transmission rates 

(Conn et al. 2002, Patz and Olson 2006, Olson et al. 2010). Curran et al. (Curran et al. 2000) 

propose the linking of malaria incidence with land cover (LC) and/or land use (LU) 

characteristics while Ostfeld et al. (Ostfeld et al. 2005) propose the use of more explicit 

landscape approaches to study eco-epidemiological systems that may improve the 

understanding and prediction of the malaria risk.  

1.14 Hotspots  

1.14.1 Defining a hotspot of malaria transmission 

WHO defines a focus of malaria transmission as a defined and circumscribed locality situated 

in a currently or formerly malarious area containing the continuous or intermittent 

epidemiological factors necessary for malaria transmission (WHO 2007). A hotspot of malaria 

transmission is defined as a geographical part of a focus of malaria transmission where 
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transmission intensity exceeds the average level. Therefore, several hotspots of malaria 

transmission may be present in a single focus of transmission.  

1.14.2 Importance of studying hotspots of malaria transmission 

Hotspots fuel transmission within transmission foci, whereas the foci form independent 

malarious areas with minimal or no transmission between them, and may themselves contain 

hotspots. Two main reasons why hotspots are relevant for malaria control have been proposed 

(Woolhouse et al. 1997b, Smith et al. 2007b). Firstly, on theoretical grounds, if interventions are 

untargeted, hotspots are likely to be the areas where residual malaria transmission will persist. 

This hypothesis is supported by observations made in the field (Bautista et al. 2006, Ernst et al. 

2006). Hotspots of malaria transmission can thereby form a major stumbling block in efforts to 

eliminate malaria (Moonen et al. 2010). Secondly, hotspots of malaria transmission are likely 

to play a catalyzing role in areas of stable transmission (Bousema et al. 2010a). Interventions 

targeted at transmission hotspots have the potential to reduce community-wide malaria 

transmission intensity (Bousema et al. 2010a). Thirdly, if resources are limited then they should 

be directed on those most at risk. 

1.14.3 Potential for targeted control 

Malaria hotspots maintain malaria transmission during the  low transmission seasons and thus 

may provide the parasite reservoir during the high transmission season (Bousema et al. 2012b). 

Elimination strategies may need to focus reactive screening and treatment of households in 

endemic zones (Moonen et al. 2010). The procedure can be enhanced through proactive case 

detection, where people living within hotspots are screened for parasitaemia and treated at 

regular intervals (Moonen et al. 2010). Targeted control would mean that the most diseased 

households are prioritized (Moonen et al. 2010, Stresman et al. 2010, Bousema et al. 2012b), 
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thus reducing the transmission intensity to the whole population. Detecting hotspots involves 

mapping asymptomatic carriers through cross sectional surveys, hospital surveillance for 

symptomatic parasitaemia, or using serological tools (Moonen et al. 2010). Targeting 

households within a hotspot is likely to be logistically feasible, much more efficient, and may 

allow for more complicated interventions than if hotspots were untargeted.   

1.14.4 Challenges with hotspot targeted control 

The topic of targeting hotspots of malaria transmission has gained interest in the recent past 

(Bannister-Tyrrell et al. 2017). In a cluster, randomized trials targeting hotspots in western 

Kenya, modest results were achieved inside the hotspots but no lasting results were observed 

outside the hotspots (Bousema et al. 2016). Important implementation questions remain; 1) to 

what extent are hotspots of transmission stable and generalizable? (Bejon et al. 2010) 2) at what 

level of transmission intensity should hotspots be targeted to achieve interruption? 3) are 

hotspots detected by different diagnostic tools consistent? 4) How do we define hotspots 

boundaries, and sample size? (Stresman et al. 2017) These parameters need to be well 

understood to aid the design of an effective targeted intervention programme. 

1.15 Scope 

The proposed scope of this work comprise a study of febrile malaria children admitted to the 

Kilifi county referral hospital over a 25-year period (1990 - 2014). Two cohorts of children 

within the KHDSS area followed actively for febrile malaria was used to validate the use of 

malaria positive fraction at KCH as a proxy measure of community incidence rate. Politically 

defined geographical areas (locations) linked to clinical data allowed a 25-year analyses of age, 

spatial and temporal variations of admissions with malaria from the KHDSS area, whereas the 

more comprehensive KHDSS data collection from the year 2003 allowed a more detailed 
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analysis of homestead level variations using the geographical coordinates system. From the year 

2009, yearly data collection on ITN use for all residents of the KHDSS and remote sensing data 

downloaded from the year 2000 to 2014 allowed detailed analysis of the effectiveness of 

personal and community ITN use, and the effect of soil moisture on the probability of admission 

with malaria. Work on the multicenter micro-epidemiological analyses was an important 

extension following earlier observations that heterogeneity becomes more apparent as 

transmission intensity declines. The collated datasets from studies conducted in areas 

experiencing variable transmission intensities in sub-Saharan Africa allowed for a detailed 

secondary analysis of various micro-epidemiological parameters and their association with 

overall transmission intensity. Whereas studies of febrile malaria may be less affected by the 

diagnostic tool used given the accompanying high parasite biomass, studies of asymptomatic 

parasitaemia are likely to be more sensitive to the diagnostic tools used especially in areas of 

low transmission intensity. Work on the detection of asymptomatic malaria hotspots by 

diagnostic tool (PCR, microscopy and RDT), allowed an assessment of the degree with which 

hotspots detected by microscopy and RDT overlap with those detected by PCR, and a further 

comparison of the stability of hotspots among diagnostic tools. 

1.16 Composition of the thesis 

I will introduce the specific datasets and their contextualization in the specific chapters 

describing the results. Chapter 2 will focus on the statistical methodology common to all 

chapters. Thereafter the main data chapters are: 

Chapter 3. An analysis of the age, spatial and temporal variations in admissions with malaria to 

Kilifi county hospital and the assessment of the factors predicting admissions with malaria 

parasites. 
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Chapter 4. A descriptive analysis of micro-epidemiology of malaria transmission intensity using 

multicenter datasets assembled from sub-Saharan Africa. 

Chapter 5. A comparison of malaria hotspots detected by Microscopy, RDT and Polymerase 

Chain Reaction  

Each chapter contains a brief introduction, data description, additional analysis specific to that 

chapter, results and discussion. Chapter six contains the overall discussion of the findings, 

further areas of research and conclusions. 
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Chapter Two 

2 Material and Methods 

2.1 Spatial analysis 

Identification of disease clusters is essential for public health surveillance and potential 

targeting. Spatial analyses to describe clustering have been extensively applied in malaria 

epidemiology (Pullan et al. 2012). For instance, Kulldorff’s spatial scan statistic and the 

Moran’s I statistic have been used in malaria epidemiology to describe spatial heterogeneity 

(Brooker et al. 2004, Ernst et al. 2006, Bejon et al. 2010, Bousema et al. 2010a, Bejon et al. 

2014). The K function has been applied to investigate spatial clustering of households with 

seropositive children during evaluation of targeted screening strategies to detect Trypanasoma 

cruzi infection (Levy et al. 2007) and the identification of malaria clustering and hotspots in an 

endemic area in western Kenya (Wanjala et al. 2011), among other applications. The scan 

statistic identifies hotspots that would potentially benefit from targeted intervention (Bousema 

et al. 2016), while the Moran’s I and the Variogram are used to examine spatial auto-correlation 

in certain continuous features of malaria transmission. 

Methods for local cluster detection include; the Geographical Analysis machine (GAM) also 

referred to Openshaw (Openshaw et al. 1987), Anselin’s local indicator of spatial association 

(LISA) (Anselin 1995), the Besag-Newell test (Besag and Newell 1991), the spatial scan statistic 

among others. I used the Kulldorff’s spatial scan statistic to detect local clustering because it 

adjusts for multiple testing, heterogeneous population density distributions and potential 

confounders. 

Kulldorff’s spatial scan statistic (Kulldorff 1997), estimated in SaTScanTM software 

(http://www.satscan.org), was used to detect hotspots of symptomatic malaria and 

http://www.satscan.org/
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asymptomatic parasitaemia. SaTScan imposes a circular scanning window that moves across 

geographical space with radius varying from zero to a maximum radius enclosing at most 30% 

(pre-specified by the user) of the population in the sampling frame. For each location and size 

of the window, the number of observed cases are counted and the expected cases computed by 

assuming a uniform distribution of cases across the population. The scan statistic compared the 

count within each circle and that outside to derive a log likelihood statistic. The testing 

procedure for the null hypothesis of complete spatial randomness, is based on the Monte Carlo 

simulations where for each simulation run, the observed cases across the entire set of data 

locations are randomly permuted in space according to the data locations and population size. 

The expected log likelihood under random simulations is then computed. The observed log 

likelihood is then compared with the simulated log likelihoods to determine statistical 

significance. 

An elliptic window shape can be used as an alternative to the circular window, in which case a 

set of ellipses with different shapes and angles are used as the scanning window. This may 

provide higher power for true clusters that are elliptical in shape, but lower power for circular 

and other very compact clusters, and comes with extra computational cost. 

I restrict my analysis below to using circular windows to detect hotspots.  This may not be 

realistic in some settings, for instance where hotspots follow a river and could well be elliptical. 

Circular hotspots on the other hand are the most commonly used in practice (Bannister-Tyrrell 

et al. 2017), they are computationally efficient and it is easier to determine hotspots properties 

that are of interest (Radius, Risk Ratio and significance). 
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2.2 Spatial functions 

Several techniques for examining disease clustering have been described in literature 

(Auchincloss et al. 2012) including: the kernel intensity function (Kelsall and Diggle 1995), 

Cuzick and Edwards’ method (Cuzick and Edwards 1990), the Knox test (Kulldorff and 

Hjalmars 1999) and the K-function (Ripley 1977). A disadvantage with the kernel intensity ratio 

is the preselection of a bandwidth that can lead to variation in results depending on the selected 

bandwidth (Wheeler 2007). Similarly, Cuzick and Edwards’ method requires pre-selection of 

the number of nearest neighbours (Wheeler 2007), while the knox test requires a prior choice of 

critical distances to determine which pairs of cases are close in space and time (Kulldorff and 

Hjalmars 1999). These preselected parameter choices are mostly subjective and at best 

dependent on prior knowledge and may thus influence statistical inference. The K-function was 

preferred for the analysis of binary data because it corrects for edge effects, does not require 

prior specification of parameters that may influence statistical inference and allows for a range 

of spatial and temporal scales. Other spatial functions commonly used in spatial point pattern 

analysis for continuous data include the Variograms and Moran’s I (Pullan et al. 2012). Here, 

the Moran’s I and the K functions were used to examine global spatial dependence in malaria 

transmission.  

Ripley’s K-function for a distance d, K(d), is a second-order analysis of point patterns in two-

dimensional space and is defined as the expected number of other points of the process within 

a distance d of a typical point of the process divided by the intensity. This quantity can be 

estimated as 

𝐾̂(𝑑) =
1

𝜆̂𝑁
∑

𝜋𝑑2

𝐴𝑖𝑑

𝑁
𝑖=1 ∑ 𝑐(𝑖, 𝑗, 𝑑)𝑁

𝑗=1,𝑖≠𝑗 , 
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Where N is the total sample size, 𝑐(𝑖, 𝑗, 𝑑) is an indicator function equal to 1 if the distance 

between points i and j is at most d, 0 otherwise. The quantity 
𝜋𝑑2

𝐴𝑖𝑑
 is Besag’s edge effect 

correction, 𝐴𝑖𝑑 is the part of the area of the circle of radius d centered on the point i located 

inside the domain. Other edge correction methods include Ripley’s correction, Ward and 

Ferrandino’s correction among others and their limitations have been discussed elsewhere 

(Marcon 2009). 

The K-function (Ripley 1977) was used to test consistency with or departure from spatial 

randomness within each site. The spatial point pattern data consisted of homesteads level 

geographical co-ordinates with slide positive cases and slide negative controls. The underlying 

heterogeneity in the population density distribution was controlled for by assessing the 

difference between the K-function summarizing the degree of clustering of 

locations/homesteads with cases and controls was calculated. Under the null hypothesis of no 

spatial dependence, the K-function for cases (Kcase(d)) and for the controls (Kcont(d)) are identical 

through the distance (d). A difference in K-function ((Kcase(d)) - (Kcont(d))) (Diggle and 

Chetwynd 1991), also referred to the D-function, greater than zero suggests spatial clustering. 

The 95% critical regions of the observed D-functions for the various spatial scales examined 

were constructed using repeated simulations. Edge effects were corrected as described 

elsewhere (Ripley 1976). The package spatstat in R was used to compute the D-function and the 

simulated envelops for statistical significance testing. 

The Moran’s I test evaluates local clustering or spatial autocorrelation. The Moran’s I statistic 

is interpreted under the null hypothesis that there is random distribution of the mean age of 

symptomatic malaria cases. The alternative hypothesis states that spatial autocorrelation exist 

and can either be positive or negative. The Moran’s I statistic range between -1 and 1. A positive 



61 | P a g e  
 

significant Moran’s I statistic indicates a tendency towards spatial clustering, on the other hand, 

a negative significant Moran’s I statistic indicates a tendency towards regularity (dispersion). 

The Moran’s I statistic of 0 indicates a random distribution of events. In epidemiological studies, 

the Moran’s I statistic is used to assess geographical similarity in continuous metrics of a disease 

(Pullan et al. 2012). 

Statistical inferences on the degree of clustering can be drawn from both the Moran I and the K 

functions. However, these spatial functions cannot identify the position of clusters. The scan 

statistic on the other hand, identifies the position of local clusters but cannot be used to describe 

the structure of clustering and the degree of geographical auto-correlation in the same way that 

spatial functions do.  

2.3 Statistical modelling 

Fine-scale spatio-temporal variations in malaria risk has been associated with environmental 

and human factors (Bannister-Tyrrell et al. 2017). The objective of any statistical modelling 

framework is to determine a minimal set of covariates that sufficiently describe specific features 

of a given dataset (Sauerbrei et al. 2007). Selecting few predictors from among a set predictors 

is usually a challenge and can easily become arbitrary. However, covariates should be included 

in the model if they significantly improve model fit (Sauerbrei et al. 2007). 

2.3.1 The linear regression model  

The multiple linear regression model was used to assess linear relationships between a 

dependent continuous variable and a set of independent variables. Let y be a dependent variable 

consisting of n observations (y1, …, yn) and p independent variables (X1, …, Xp). The multiple 

linear regression model is given by 
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  𝐲𝑖 = 𝛽0 + ∑ 𝛽𝑗𝐗𝑖,𝑗

𝑝

𝑗=1
+ 𝜀𝑖                                                                              

where, X - represents the p covariates in the model, the quantities 𝛽0, … 𝛽𝑝 are unknown 

regression coefficients/parameters; the random errors terms  𝜀𝑖|𝑿~𝑁 (0, 𝜎2) . 

The above specified model makes key assumptions a priori that needs to be assessed to 

determine their conformity. 1) linearity, 2) independent and normally distributed error terms 

𝜀𝑖|𝑿~𝑁 (0, 𝜎2) and 3) Constancy of residual variance. However, these assumptions are not 

usually realistic and in most cases violated. Variable transformation to linearize nonlinear 

relationship between the response and covariate(s) are recommended and these would include 

polynomials and the cubic splines just to mention a few.  

Coefficient of determination (R2) 

R2 is the ratio of the total empiric variance explained by the model to the total empiric variance 

of the response variable. The adjusted R-squared coefficient (𝑅𝑎
2) is defined to be: 

𝑅𝑎
2 = 1 −

𝑁−1

𝑁−𝑝−1
(1 − 𝑅2)                                                                                      

where p denotes the number of independent variable included in the model. The component 

(
𝑁−1

𝑁−𝑝−1
) penalizes for the model complexity. 

2.3.2 The logistic regression model 

The logistic regression model was used to assess the heterogeneity in trends by comparing a 

model with and without space-time interaction effects using the likelihood ratio test statistic. 

The model was formulated as follows: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = ln (
𝑝𝑖

1−𝑝𝑖
) = 𝛽0 + ∑ 𝛽𝑗𝐗𝑖,𝑗

𝑚

𝑗=1
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where 𝑝𝑖 is the probability of a slide positive for patient i, 𝐗, represents the covariates (time and 

the dummy variables generated from location and location-time interaction) while 𝛽0, … , 𝛽𝑚 are 

the regression coefficients indicating the relative effect of the explanatory variable on the 

outcome (m is the number of continuous and dummy variables generated from the categorical 

covariates in the model). 

The relationship between the binary response variable and the covariates was assessed using 

multiple logistic regression model. To select a parsimonious final model, covariates were added 

to the model in a forward stepwise fashion and the Likelihood Ratio Test (LRT) used to compare 

nested models. This procedure identified a set of covariates which resulted in a significant 

reduction in −2𝐿𝑜𝑔𝐿̂ at 5% significance level. 

The likelihood ratio test statistic was computed as follows: 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 (𝐷) = (−2𝑙𝑛
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 𝑚𝑜𝑑𝑒𝑙
), 

The degrees of freedom are equivalent to the difference between the number of parameter 

estimates between the more complex model and the reduced model. 

Potential multicollinearity was assessed by examining correlations between continuous 

predictor variables and formally by using the variance inflation factor. The effect of collinearity 

was mitigated by selecting covariates that were most significant in the model. The variability 

accounted by the model in the logistic regression analysis was measures using the psedo-R2.  

Pseudo-R2 

In linear regression models, the coefficient of multiple determination (R2) measures the amount 

of variation in the outcome variable explained by the covariates. Generalizing R2 to logistic 
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regression models has proved difficult. Various measures have been proposed in literature and 

their limitations discussed (Mittlböck and Schemper 1996). The Pseudo-R2 also referred to the 

McFadden’s likelihood ratio index is defined as: 

𝑅𝑀𝑐𝐹𝑎𝑑𝑑𝑒𝑛 = 1 −
𝑙𝑐

𝑙𝑛𝑢𝑙𝑙
 

where 𝑙𝑐  and  𝑙𝑛𝑢𝑙𝑙 are the maximized log-likelihood of the complex model and the null model 

respectively. A criticism to McFadden’s index is that when applied to linear regression model, 

it is not equivalent to the coefficient of multiple determination thus creating an interpretation 

challenge as a measure of explained variation in logistic models. However, despite the 

drawbacks, McFadden’s index can be used to give some sense of how much variation in the 

outcome is being explained by the predictors, and is the most widely accepted measure for 

logistic regression.  

Presence of clusters within the study population should be accounted for during statistical 

analysis. Ignoring clustering may result to inflated significance, that is, smaller p-values and 

narrower confidence intervals than would be expected if clusters were absent (Altman and Bland 

1997). Robust standard errors for predictors of malaria in Kilifi County were sort when 

clustering was suspected using models accounting for clusters. Sources of clustering of malaria 

transmission could result from unmeasured predictors that could range from genetic factors at 

homestead level, quality of housing, proximity to water bodies among others.   

2.3.3 Model-based geostatistics 

Geostatistical modelling is an extension of standard regression modelling to account for 

spatial/temporal autocorrelation. Geostatistical models are frequently used in malaria 

epidemiology to generate disease maps that can subsequently be used to guide interventions 
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strategies. These models take advantage of spatial and temporal autocorrelation (“borrow 

strength” from neighboring homesteads/villages) to interpolate missing data and hence 

producing smooth maps (Giardina et al. 2012). The models are reliable when spatial 

autocorrelation is evident and covariate information do not fully account for spatial patterns in 

the dataset and thus the need to incorporate spatial dependencies in the modeling framework. 

Health monitoring and evaluation teams have utilized these models to produce malaria risk maps 

in Africa (Noor et al. 2014), Senegal (Giardina et al. 2012), Zambia (Riedel et al. 2010), 

Zimbabwe (Mabaso et al. 2006), Ghana (Kasasa et al. 2013), Kenya (Stresman et al. 2017) just 

to mention a few, and in parasitic infections (Soares Magalhaes et al. 2011, Karagiannis-Voules 

et al. 2013, Scholte et al. 2014) and other diseases (Wimberly et al. 2013). The models were 

however not applied in this thesis, because my objectives were to describe and examine hotspots 

in directly measured datasets rather than to impute data that was not directly measured.  

2.4 Multiple fractional polynomial (MFP) transformations 

The multiple fractional polynomial algorithm was used as previously described (Sauerbrei and 

Royston 1999, Sauerbrei et al. 2006). MFP model selection begins with a model of predefined 

complexity and uses a backward elimination procedure to simplify it. This procedure preserves 

the familywise error rate.  

To illustrate the procedure a model with a single continuous covariate (x) is used for simplicity. 

The linear model is defined by 𝛽0 + 𝛽1𝑥 and in some instances, provides an adequate description 

of the response-covariate relationship. However, in most instances the assumption of linearity 

if often violated and thus nonlinear models need to be investigated to improve the model fit. The 

fractional polynomial transformation is a feasible choice. The first-degree fractional polynomial 

(FP1) function is formulated as follows: 𝛽0 + 𝛽1𝑥𝑝. The power “p” is an element of a restricted 
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set S = (−2, −1, −0.5, 0, 0.5, 1, 2, 3), where 𝑥0 denotes a log transformation. FP1 functions can 

be extended to the more complex and flexible two-term FP2 functions with powers (p1, p2) 

defined as 𝛽0 + 𝛽1𝑥𝑝1 + 𝛽1𝑥𝑝2 with p1 and p2 taken from the set S. If p1 = p2, the proposed 

equation is 𝛽0 + 𝛽1𝑥𝑝1 + 𝛽1𝑥𝑝1 ∗ log x , referred to as the repeated-powers FP2 model. Given 

the restricted set of powers for “S”, there are fundamentally 8 FP1 transformations, (8
2
) = 28 

FP2 transformations with distinct powers, and 8 FP2 transformations with equal powers (p1 = 

p2) (Sauerbrei et al. 2007).  

 To enhance parsimony and the stability of the model during function selection a sensible default 

function is required. In this case a linear function is a natural choice. It follows that unless the 

data supports a more complex FP function, a straight line is preferred. The suitable model is 

selected in 3 steps: 1) a comparison between the best FP2 model with the null model is made 

based on a likelihood ratio test, 2) If significant, FP2 model is tested against a straight-line 

model, 3) if also significant, a final step compares the best FP2 and FP1 models as described in 

detail elsewhere (Royston and Sauerbrei 2003). MFP transformations were used to allow for 

nonlinear effects of the covariates in the regression models.  

2.5 Meta-analysis 

Meta-analysis is a quantitative statistical analysis tool that combines findings from several 

similar but independent studies or trials to test statistical significance for a pooled estimate. The 

aim is to increase power and precision of the estimates (Mulrow 1994). This method, 

implemented in the Stata package metan (Harris et al. 2008), was used to pool correlations from 

multiple studies conducted within sub-Saharan Africa. Individual estimates and the pooled 

estimate were graphically presented using forest plots (Harris et al. 2008). Heterogeneity was 
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assessed by visual inspection of the forest plots to detect overlapping CI and statistically by 

using an I2 test statistic in which values circa 50% indicate moderate heterogeneity. Fixed effect 

meta-analysis was used except when the I2>50%, in which a random effect meta-analysis was 

applied. Stata’s user-written function (metaninf) (Steichen 2001) was used to conduct sensitivity 

analyses to examine the influence of each study site on the pooled correlation estimate. This 

was examined by omitting one study at a time and then assessing the influence of the omitted 

site, that is, a site was considered influential if the pooled correlation estimate without that site 

was not within the 95%CIs of the overall pooled correlation.  

Funnel plots (Sterne et al. 2001), which are plots of effect estimates against sample size were 

used to assess publication bias. The funnel plot is built on the premise that the precision of the 

effect size increases with increasing sample size. In the absence of bias, the plot resembles a 

symmetrical inverted funnel. Otherwise, skewed asymmetrical funnel plots indicates bias 

(Egger et al. 1997). Stata function metafunnel was used to graph funnel plots for assessing 

reporting bias in meta-analyses.  

2.6 Multiple imputation. 

Missing data occur in most epidemiological and clinical research and is mostly unavoidable due 

to nonresponse and subject attrition (Rubin 2004). For instance, mortality before taking 

measurement at a hospital setting or completing follow-ups introduces missing data that 

inherently reduce the power with which parameters are estimated thus potentially undermining 

the validity of research conclusions. Interest towards addressing missingness during data 

analysis has been on the increase. Multiple imputation can potentially reduce bias, increase 

efficiency (reduce standard errors) and is now available in standard statistical softwares (Horton 

and Lipsitz 2001). Unlike the classical complete case analysis, where only complete data points 
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are included in the analysis, multiple imputation ensures that data points that are missing are 

filled and a full dataset can be used for the final analysis.  

In the presence of missing data, the validity of multiple imputation analysis depends on the type 

of missingness and the variables included in the imputation model (Sterne et al. 2009). There 

are three types of missingness: 1) missing completely at random (MCAR)- in this case there is 

no systematic differences between the missing data and the observed ones, 2) missing at random 

(MAR) occurs when systematic differences between missing values and the observed ones can 

be explained by differences in the observed data, and 3) missing not at random (MNAR) occurs 

when systematic differences between missing values and the observed ones are not fully 

explained by differences in the observed data (White et al. 2011). Complete case analysis is 

valid if the likelihood of being a complete case given the covariates in the model, is independent 

of the outcome. Multiple imputation approaches are valid under the assumption of MAR. 

However, when factors associated with both the outcome and missingness are not included in 

the imputation model (MNAR), multiple imputation will not fully remove bias. To detect the 

mechanism of missingness, careful preliminary analysis to identify the scope for multiple 

imputation and to provide guidance for building the imputation model is required (Sterne et al. 

2009). 

In epidemiological settings, it is possible for missing values to occur in more than one variable. 

Multiple imputation with chained equations (MICE) allows a set of multiple imputation models, 

one for each variable with missing data to be applied concurrently (White et al. 2011). MICE 

can handle different variable types including; continuous, binary, ordered and unordered 

categorical variables. Three to five imputed datasets are theoretically sufficient (Allison 2000), 

however, in practice more imputed datasets are recommended (Horton and Lipsitz 2001, 

Graham et al. 2007). Analysis of each imputed dataset is done separately and the parameter 
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estimates combined using Rubin’s rules (Rubin 2004). That is, suppose 𝜃𝑗  is the regression 

coefficient of interest from a regression model obtained from the j-th imputed dataset. The 

respective post-imputation combined estimate is the average of individual estimates: 

𝜃̅ = ∑ 𝜃𝑗/𝑘

𝑘

𝑗=1

 

where 𝜃𝑗  is the estimate of 𝜃 using the j-th imputed dataset and k is the number of imputed 

datasets. The associated standard error is a combination of the within and between-imputation 

variances (White et al. 2011) formulated as follows:   

𝑆𝐸(𝜃̅) = √
∑ 𝑣𝑎𝑟(𝜃𝑗)𝑘

𝑗=1

𝑘
+ (

𝑘 + 1

𝑘
) ∗

∑ (𝜃𝑗 − 𝜃̅)
2𝑘

𝑗=1

𝑘 − 1
 

For a sufficiently large number of imputed datasets, the combined estimate follows an 

approximate Gaussian distribution. 

Preliminary analysis to assess the mechanism of missingness was done prior to multiple 

imputation. This involved assessing the association between missing data with covariates and 

the outcome. MICE was conducted in STATA software as indicated in chapter 3. 50 imputed 

datasets were used to impute missing data on personal ITN use. In the imputation model, the 

outcome variable and the covariates were included as previously recommended (Sterne et al. 

2009). Standard errors were calculated using Rubin’s rules accounting for variability in results 

among imputed datasets. Results from complete case analysis and multiple imputation were 

reported and compared. 

The above statistical methods were used in the analyses presented in chapter 3, 4 and 5. 

Hereafter I will mention the methods used without giving details but with reference to this 
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chapter. Any additional statistical methodology specific to any given chapter will be discussed 

in the relevant chapter.  
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Chapter Three 

3 Age, spatial and temporal variations in hospital admissions with malaria 

in Kilifi county 

3.1 Introduction 

Marked declines in malaria transmission intensity and related mortality has been witnessed in 

parts of sub-Saharan Africa (Ceesay et al. 2010, O'Meara et al. 2010, Noor et al. 2014). It is 

known that children acquire immunity to malaria following repeated exposure and there is an 

inverse relationship between the intensity of malaria transmission and age of susceptibility to 

malaria (Snow et al. 1997, Woolhouse 1998). The shift in age of susceptibility to malaria 

following implementation of malaria control interventions has been reported in both field 

conditions (Okiro et al. 2009, Trape et al. 2011, Karema et al. 2012) and predicted by simulation 

studies incorporating acquired immunity (Pemberton-Ross et al. 2015).  

3.2 Rationale 

In areas of high transmission intensity, younger children present to hospital with severe anaemia 

as the main complication of P. falciparum infection. In areas with less intense transmission, 

cerebral malaria predominates slightly older children with relatively higher mortality rate. It is 

therefore essential to monitor outcomes following initial reductions in malaria transmission.  

In this chapter, I present data from a 25-year longitudinal surveillance of hospital admission 

with malaria to Kilifi county hospital on the Kenyan coast. 

3.3 Study objectives 

1. Describe trends of malaria admissions by age group over the 25-year period 

2. Assess the spatial and temporal heterogeneity of malaria transmission in Kilifi county 
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3. Assess the effectiveness of personal and community ITN use 

4. Examine the effect of EVI on malaria transmission as a proxy for soil moisture content 

which may correlate with the presence of mosquito breeding sites. 

3.4 Methods 

3.4.1 Kilifi county and population  

Kilifi County is located along the Kenyan coast and to the north of Mombasa. The county has a 

population of approximately 1.11 million people (KNBS 2009) and covers an area of 

approximately 12,245.90 km2. The region is predominantly rural, with less than 15% of the 

population living in the urban area of Kilifi town (Scott et al. 2012). This region has been 

endemic for malaria transmission, though in the recent past declining transmission has been 

witnessed (O'Meara et al. 2008, Noor et al. 2009a). Kilifi District Hospital (KDH) recently 

renamed Kilifi County Hospital (KCH) and the Kilifi Health and Demographic Surveillance 

System (KHDSS) are part of Kilifi County (Figure 3.1) and play a major role in providing 

healthcare services. Similarly, the Kenya Medical Research Institute (KEMRI) and KEMRI-

Wellcome Trust Research Programme is based at the hospital and primarily conduct research 

on malaria and other diseases (Scott et al. 2012). The population around Kilifi mainly depends 

on subsistence farming, tourism and fishing as the major economic activities. 
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Figure 3.1: Map of Kilifi county indicating the hospital and the KHDSS area 

The main crops are maize and tree crops such as coconuts and cashew nuts. Low soil fertility 

coupled with low unreliable rainfall over the years has led to persistent poor crop yield making 

the county one of the poorest in Kenya. The long rains are expected between April and July and 

the short rains between November and December, but considerable year to year variation in the 

amount of rainfall has been witnessed.  

3.4.2 The KHDSS  

The study area and population characteristics have been described in detail elsewhere (Scott et 

al. 2012). Briefly, the KHDSS (http://www.kemri-wellcome.org/khdss) was established in the 

year 2000, to provide a platform upon which hospital and community based studies conducted 

at the site recruit and locates study participants. The area has been mapped using global 

positioning system (GPS) and digital maps produced. Field work personnel conduct re-

enumeration and vital status registration to update the population register by visiting every 

homestead three times a year. KHDSS covers an area of about 891km2 and has a residence 

http://www.kemri-wellcome.org/khdss
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population of about 260,000 (March 2011). Mapping and census are done and recorded into a 

population register linked to inpatient records through an integrated data management system. 

The KHDSS population register is constantly updated for births, deaths and in- and out-

migration events every 4 months. Approximately 70% of the children presenting for admission 

at the Kilifi County Hospital are linked to their residence information using the system while 

the rest are mostly non DSS residents. 

3.4.3 Malaria control in the KHDSS area  

The Kilifi Health and Demographic Surveillance (KHDSS) area has seen several malaria control 

programs even before its inception in 2000. For instance, the first ITN study was conducted 

between July 1993 and July 1995 in the northern part of Kilifi and demonstrated that ITN use 

provides personal protection against malaria (Nevill et al. 1996). In 2002, Population Service 

International (PSI) launched a retail campaign for ITN distribution (Noor et al. 2006). This 

campaign was boosted by the delivery of highly subsidized ITNs through Maternal and Child 

Health (MCH) clinics towards the end of 2004 (Okiro et al. 2007). In September 2006, the 

Ministry of Health launched a campaign of free distribution of ITNs to children under the age 

of five years (Noor et al. 2007). This campaign was repeated later in 2013 with the motive of 

increasing ITN coverage. Besides the various campaigns on ITN use, other control measures 

have been rolled out that include the government policy changes on 1st line drug treatment of 

malaria in government clinics. That is, before the year 2000, chloroquine was used as the 1st line 

treatment against malaria (Shretta et al. 2000) despite reports of drug resistance and increased 

human to vector transmission (Hogh et al. 1998). It was due to the overwhelming evidence 

against chloroquine that a policy changeover to sulphadoxine-pyrimethamine (SP) was effected 

in mid-2000 lasting to around April 2006 when another policy changeover was effected to 
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artemether-lumefathrine (AL) (Shretta et al. 2000). Another control method seen in this study 

area involved training shopkeepers on treatment compliance in Chonyi area. These control 

methods may have contributed in suppressing the incidence of clinical malaria in some parts of 

the study area (Marsh et al. 1999). The trend in malaria parasite prevalence on the Kenyan coast 

and the combination of factors which may explain the changes observed between 1974 and 2014 

is summarized in Figure 3.2 below. 

 

Figure 3.2 Prevalence of malaria on the Kenyan coast and the combination of factors which 

may explain the changes since 1974. 

Extracted monthly GAM fitted median PfPR2-10 (red line) shown in relation to annual and long 

rains (March-June) percentage anomalies in precipitation (dark and light grey bars 

respectively); cumulative "effective" mid-year ITN distribution data (dark green likely 

efficacious, light green <50% efficacious); estimated day 7 anti-malarial drug failures to clear 

parasitaemia based on information provided in text (blue triangles); and malaria policy 

milestones for standard treatment guidelines and mass ITN distribution dates (FMD), including 

reported ITN use among all age groups(Snow et al. 2015). 
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3.4.4 Kilifi county hospital surveillance system 

KCH provides primary care services and acts as the only referral facility within the KHDSS 

area. Upon admission, KHDSS residents received a unique personal identifier that links them to 

their demographic details. Between 1989 and 2002, admitted patient’s residence were known to 

sublocation level after which homestead level GPS coordinates were available. Laboratory 

records and standard clinical data for all admissions were linked to demographic records for the 

residents of KHDSS area using personal identifiers. For most residents of the KHDSS, KCH is 

the nearest facility offering inpatient care, however, two more facilities offering similar inpatient 

service are the Malindi District Hospital and the Coast Provincial General Hospital that are 

within 20 kilometers to the North and South of the KHDSS respectively.  

Screening for malaria parasites at the KCH paediatric admission wards has been continuous 

since the establishment of a pediatric admission ward surveillance system in 1989. These 

assessments are conducted on all emergency admissions, irrespective of presumptive diagnosis, 

except for those admitted for elective surgery. 

3.4.5 Ethical consideration 

Approval for human participation in the hospital surveillance and the cohorts was given by the 

KEMRI Scientific Steering Committee and the Ethical Review Committee of KEMRI. The 

studies were conducted per the principles of the declaration of Helsinki. 

3.4.6 Data collection 

The study was conducted at KCH situated at the center of the KHDSS area as described above. 

Children <13 years of age were admitted to the pediatric service, where demographic details 

and clinical history were recorded and blood samples were collected and examined for malaria 

parasites by microscopy. Children with signs of severe disease such as impaired consciousness 
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or deep breathing were assigned to the high dependency unit, whilst children without such signs 

were admitted to the pediatric ward. Research clinicians provided 24-hour clinical cover of both 

the high dependency unit and the general pediatric ward.   

Thick and thin blood smears were stained with 10% Giemsa and examined at x1000 

magnification for P. falciparum malaria parasites. One hundred microscopy fields were 

examined before slides could be considered negative. Microscopy standards were monitored 

through a quality assurance scheme including training on induction and at regular intervals for 

microscopists and the use of external quality control slides. 

3.4.7 Data analysis 

The analysis included children admitted between 1990 and 2014 to KCH, aged between 3 

months and 13 years, and residing within the KHDSS area. Key metrics were the Malaria 

Positive Fraction (MPF) and the mean age of the children admitted with positive malaria slides 

(i.e. without applying a threshold parasitaemia). The MPF describes the fraction of acute 

admissions to hospital with positive blood films compared with all admissions and is also known 

as the “Slide Positive Rate” (Jensen et al. 2009). MPFs from passive surveillance at the hospital 

were compared with incidence data from active surveillance of 2 cohorts in the community, 

conducted as previously described (Mwangi et al. 2005, Bejon et al. 2007). Unpaired t-test were 

used to test the difference in means when variables were normally distributed, otherwise the 

Wilcoxon rank-sum test was used to compare average/median age between groups. Multiple 

fractional polynomials (MFPs) were used to assess nonlinear associations in regression models. 

A sensitivity analysis was carried out with a “malaria case” defined using a cut-off parasitaemia 

of >2,500 parasites per µl. 
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3.4.8 Spatio-temporal models 

The spatio-temporal heterogeneity of malaria transmission in Kilifi County was assessed using 

a multivariable logistic regression model (refer to chapter 2 for details on the methodology) with 

the presence or absence of malaria parasites by microscopy among medical admissions 

(excluding trauma and elective surgery) as the outcome variable, time (continuous variable to 

capture the secular trends), year (categorical to capture year-to-year variability), region 

(referring to North vs South of the creek), location (referring to administrative areas within 

region) and space-time interactions as the independent covariates. I used the Pseudo R2 to assess 

the contribution of the various components of the model. As a measure for the background 

community prevalence of parasitaemia, age-standardized parasite prevalence estimates among 

trauma cases were determined using standard methods (Smith et al. 2007a), but only when 

children were afebrile on admission and clinical assessment did not reveal any other acute cause 

for admission. 

3.4.9 Predictor variables 

Enhanced Vegetation Index (EVI) data between 2000 and 2014 were used as a proxy for soil 

moisture(Midekisa et al. 2012). EVI data were downloaded at a 250x250m2 pixel resolution for 

16 day intervals. I extracted the EVI bands using ArcGIS and saved them in the georeferenced 

tagged image file format (GeoTIFF). The GeoTIFF files were then processed into data using 

QGIS batch processing functionality and scaled to between 0 and 1. The EVI dataset was 

aggregated to a year.  

Data on ITN use were obtained from yearly KHDSS surveys targeting all residents between 

2009 and 2014. I used data from responses to the question “did you sleep under an ITN last 

night?” or “did your child sleep under an ITN last night?” 
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Regular geographical grids were imposed on the study area and concentric circles were 

generated around each admitted child’s residence using longitude and latitude coordinates. The 

prevalence of ITN use within each concentric circle and the mean EVI within each grid space 

was used in multivariable models. Model parsimony from the resulting sets of EVI and ITN 

covariates created was determined using a forward stepwise selection criterion and the 

likelihood ratio testing done to formally compare models. The superiority of non-linear models 

over linear models was assessed visually by plotting residuals against covariates, and 

statistically by testing the significance of multiple fractional polynomials over linear fits where 

asymmetrical distributions of residuals were identified as described in chapter 3. Observations 

with missing locations, age and slide result were excluded prior to the analysis. Multiple 

imputation with 50 imputed datasets was used to impute missing data on personal ITN use. The 

variables community ITN use, malaria positivity, EVI, and age were used in the imputation 

model. The imputed datasets were combined as per Rubin’s rules described in chapter 2. Age 

standardized parasite prevalence was computed in R (version 3.0.2) and all other analysis were 

done using Stata 12.0 (Stata Corp., College Station, TX, USA). 
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3.5 Results 

Over 25 years, there were 107,218 pediatric admissions recorded, of whom 87,909 were known 

residents of the KHDSS and 71,438 were ≥3 months or <13 years of age. Malaria slide data 

were missing for 2,334 leaving 69,104 for our analysis (Figure 3.3). The characteristic of the 

study population is presented in Table 3.1.  

 

Figure 3.3: Flow diagram of participant numbers. Participant numbers and reasons for 

exclusion at each stage are shown. 
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Table 3.1: Characteristic of the study population 

Period in which 

data was 

available 

Analysis 

Type Characteristics 

Malaria Slide 

Positive 

Malaria Slide 

Negative 

1990 to 2014 

Descriptive 

Analysis 

Admissions N(%) 26883(38.9) 42221(61.1) 

Age (months) 

median(IQR) 25.9(13.2-44.9) 19.2(9.7-42.7) 

Male, No. (%) 14,217(53.0) 23,862(56.6) 

Locations    
Chonyi          No. (%) 2,774 (10.3) 3,955 (9.4) 

Gede             No. (%) 695 (2.6) 1,856 (4.4) 

 Jaribuni         No. (%) 2,018 (7.5) 2,383 (5.7) 

  Junju              No. (%) 2,018 (7.5) 3,038 (7.2) 

  Mtwapa         No. (%) 1,182 (4.4) 3,160 (7.5) 

  Ngerenya       No. (%) 1,246 (4.6) 1,941 (4.6) 

  Roka                No. (%) 1,964 (7.3) 2,960 (7.0) 

  Sokoke            No. (%) 1,470 (5.5) 1,861 (4.4) 

  Takaungu        No. (%) 5,071 (18.9) 4,590 (10.9) 

  Tezo                 No. (%) 8,404 (31.3) 16,437 (39.0) 

2009 to 2014 

Logistic 

regression 

Model 

  

Admissions N (%) 1294 (17.2) 6,211(82.8) 

 

Age (months)  

median(IQR) 48.1 (30.1- 73.1) 24.2 (11.8-54.3) 

  Missing Personal ITN 

use N(%) 47(3.6) 103(1.7) 

 
 

Missing data on ITN 

during Community 

Surveys N(%) 190,417 (12.8%)  

 

3.5.1 Access to care 

I first tested for evidence of a bias in MPF by access to care.  In order to assess the effect of 

access to care, I examined the data for trends in MPF over the euclidean distance between 

children’s residence and the hospital (Figure 3.4A). Best-fit lines showed greater heterogeneity 

in MPF over distance than linear trend in MPF over distance (a non-significant gradient of -

0.003 per km, 95%CI -0.006 to 0.0003, p=0.08), suggesting that geographical heterogeneity had 

a greater effect than any bias that may be introduced by distance from the hospital. Furthermore, 

I found that the incidence of malaria on active case detection from 2 cohorts monitored over 10 
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years (Mwangi et al. 2005, Bejon et al. 2007) correlated closely with MPF measured at the 

hospital (r=0.84, p<0.001, Figure 3.4B). 

 

Figure 3.4: Association between MPF, distance from hospital and malaria incidence. 

Panel A shows the association of Malaria Positive Fraction with Distance from Hospital (km), 

the green line presents the predicted linear regression line, the red line presents the predicted 

line from the multiple fractional polynomial model and the blue line presents the fitted lowess 

function. Panel B shows an association between malaria incidence from active case detection 

in Junju and Ngerenya with the MPF among patients admitted in hospital from these sites. 

3.5.2 Geographical distribution and trends in malaria positive fraction  

The fraction of acute admissions that were positive for malaria (i.e. the “Malaria Positive 

Fraction” or MPF) for the full dataset was 0.389 (95%CI 0.385 to 0.393). MPF was subject to 

marked spatial and temporal heterogeneity (Figure 3.5A). There was a decline in MPF over the 

years with the lowest MPF (i.e. 0.07 (198/2858)) being recorded in 2009, and a subsequent 

increase in MPF (up to 0.24 (511/2169)) in 2014 (Figure 3.5A). I therefore refer to the 1990-

2002, 2003-2008 and 2009-2014 as “pre-decline”, “decline” and “post-decline” periods, 

respectively. 
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The average age of children admitted with malaria positive slides and acute illness increased 

gradually from 20.2 months (95%CI 18.9 to 21.6) in 1990 to 45.3 months (95%CI 42.5 to 48.3) 

in 2014 (p<0.001). During the same period the mean age for children with malaria negative 

slides and acute illness increased only slightly from 19.8 months (95%CI 18.6 to 21.1) in 1990 

to 26.1 months (95%CI 24.9 to 27.5) p<0.001 in 2014 (Figure 3.5B). Furthermore, the mean age 

of children with asymptomatic parasitaemia among trauma admissions did not increase 

significantly ranging from a geometric mean of 52.1 months (95%CI 49.5 to54.9) in the 1990-

2002 pre-decline period to 64.6 months of age, 95%CI 49.5 to 84.2 in the 2009-2014 post-

decline period, p= 0.0543 (the latter wide confidence interval reflecting the reduced prevalence 

of asymptomatic infection). 
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Figure 3.5: Temporal trends of malaria positive fraction, age of slide positive and mortality 

among acute admissions. 

Panel A shows the temporal trend of Malaria Positive Fraction (MPF). Panel B shows the trends 

of mean age over time for the slide positive and slide negative admissions. Panel C shows the 

temporal trends of absolute number of deaths and Panel D shows case fatality rates. 

The absolute number of malaria slide positive deaths recorded in the hospital surveillance fell 

over time, although the absolute number of malaria slide negative deaths did not show a clear 

trend (Figure 3.5C). The case fatality rate (i.e. the proportion of children admitted who died) 

among malaria slide positive children was static, although among slide negative children the 

case fatality rate showed a gradual decline (Figure 3.5D). 

Models accounted for variation in MPF poorly in the pre-decline period, however the decline 

period was dominated by temporal variation, and the post-decline period was dominated by 

spatial variation (Figures 3.6A, 3.6B and 3.6C, respectively). 
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Figure 3.6: Geographical distribution of malaria positive fraction and age of slide positive 

acute admissions over time. 

Panels A, B and C show spatial distributions of MPF for the Pre-decline, Decline and Post-

decline periods respectively, and their associated pie charts show the proportion of the 

variability in MPF explained by the predictors; Region (i.e. North vs South), Location, Time 

trend (i.e. as a continuous variable), an interaction between time and location, year to year 

variation (i.e. year as a stratified variable) and the unexplained variations. Panels D, E and F 

show spatial distributions of age in months for the slide positive admissions during the Pre-

decline, Decline and Post-decline periods. 

There was an inverse relationship between MPF and average age of children with positive slides 

when averaged by location: areas with higher average age of malaria tended to have lower MPF 

and vice versa (Figure 3.6A compared to 3.6D, 3.6B compared to 3.6E and 3.6C compared to 

3.6F). This was statistically significant before the decline (r= -0.36, p<0.001), but not after (r= 

-0.05, p=0.66). There was a shift in the burden of disease from younger age groups to older age 

groups after the decline (Figure 3.7). 
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Figure 3.7: Trends of malaria positive fraction by age group (years). 

The graph show the trend of malaria positive fraction in each age category <1 (less one year 

old), 1-3 (1 to 3-year-old), 3-5 (3 to 4-year-old), 5-7 (5 to 7-year-old), 7-10 (7 to 10-year-old), 

>10 (children over 10-year-old).  

3.5.3 Is the post-decline increase in malaria due to falling immunity? 

In order to disentangle the effects of loss of immunity from transmission intensity, I 

hypothesized that MPF for children <1 year old (MPF<1yr) would indicate transmission intensity 

without the offsetting of acquired immunity (as has been done previously (Snow et al. 1996, 

Bejon et al. 2014)). I examined the trends in MPF<1yr by region (i.e. using the Creek in the center 

of the County as the point of division into Northern vs Southern regions) in view of the 

significant effect of region on variability of MPF (Figure 3.6C). MPF<1yr showed a clear decline 

from the mid-1990s down to almost zero in the Northern region by 2008 and to low levels in 

the Southern region from 2008 onwards, with a very slight increase after 2009 in the North and 

a slightly more marked but variable increase in the South after 2009 (Figure 3.8A). In contrast, 
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MPF>1yr showed a greater increase in both regions in the post-decline period, which was 

particularly marked in the South (Figure 3.8B). Within geographical locations, malaria 

positivity showed substantial variability from year to year (Figure 3.8C).  

I also examined the age-corrected parasite prevalence (PfPR2-10) among the (3,971/69,104) 5.8% 

trauma admissions (excluding trauma cases with fever) as a proxy of community parasite 

prevalence (Figure 3.8D). PfPR2-10 which declined from (30/72) 43% and (35/62) 56% in the 

Northern and Southern regions, respectively in 1999, to <1% (i.e 0/151 in the North and 1/100 

in the South) in both regions in 2009, but subsequently rose, reaching (2/102) 2% and (3/83) 4% 

in the Northern and Southern regions, respectively, in 2014.  

 

Figure 3.8: Temporal trends of malaria positive fraction by age and parasite prevalence. 

Panels A and B show the temporal trends of MPF in admitted children aged<=1-year-old and 

children aged>1-year-old respectively, red line represents the Southern region while the blue 

line represents the Northern region of the hospital. Panel C shows all age MPF for randomly 
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selected locations from the Southern and Northern regions. Panel D shows the age standardized 

parasite prevalence (PfPR2-10) among the trauma cases.  

3.5.4 Factors predicting malaria positive slides among admissions 

Over the full monitoring period from 1990-2014 there was significant variation in MPF over 

space and time, and the spatial variation was most marked in the post-decline period (Figure 

3.6C). The variation accounted for by an interaction between space and time was also more 

marked during this period, suggesting substantial temporal instability of the sub-regional spatial 

pattern during this period (Figure 3.8D). The interaction between space and time was strongly 

significant (p<0.0001) but accounted for only ~1% of the variability in MPF. However, the 

regional differences (i.e. with lower MPFs North versus South of the creek) remained temporally 

consistent despite the sub-regional instability. 

The prevalence of ITN use among residents in the Northern region was estimated at 32%, 16% 

and 26% in the years 2000, 2003 and 2005, respectively (malaria indicator surveys, Table 2) 

and then 55.9% (95%CI 55.7 to 56.1) in 2009 rising to a high of 82.6% (95%CI 82.5 to 82.8) in 

2013 during the mass ITN distribution campaign (Figure 3.9).  
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Figure 3.9: Trends in ITN use by age group (years) over time for the period (2009 -2014). 
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Table 3.2: Data from Malaria indicator surveys conducted in the Northern region of 

Kilifi Demographic Surveillance Area 

Clusterid Year population size ITN use (N) 

157 2000 19 10 

159 2000 11 11 

160 2000 11 2 

161 2000 11 0 

162 2000 16 5 

163 2000 16 4 

164 2000 10 0 

165 2000 13 1 

166 2000 7 2 

167 2000 13 2 

168 2000 7 4 

170 2000 8 0 

172 2000 14 4 

173 2000 11 9 

174 2000 16 1 

177 2000 17 3 

179 2000 10 5 

180 2000 12 7 

1230 2000 12 4 

2 2003 87 39 

48 2003 118 0 

86 2003 113 3 

99 2003 54 27 

279 2003 99 5 

280 2003 129 15 

286 2003 66 22 

291 2003 43 7 

317 2003 114 21 

336 2003 112 22 

349 2003 73 31 

359 2003 99 0 

362 2003 156 11 

163 2005 33 22 

167 2005 28 7 

171 2005 53 7 

176 2005 51 14 

180 2005 68 4 

259 2005 95 16 

265 2005 81 6 

271 2005 59 29 

1418 2005 37 17 

1478 2005 29 11 

1482 2005 21 12 
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Detailed spatial data was available between 2009 and 2014 including Enhanced Vegetation 

Index data (EVI, a proxy for soil moisture) and ITN use for each of the 250,000 residents in the 

study area (Figure 3.10 and Figure 3.11).  

 

Figure 3.10: Finer-scale geographical distribution of malaria positive fraction (row I), 

insecticide-treated net use (row II) and enhanced vegetation index (row III) over time and the 

average admissions per year (row IVa) and population density (row IVb). 

Panels IVc, IVd and IVe are the legends for row I, row II and row III respectively. 
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Figure 3.11: Trends in insecticide-treated net use, enhanced vegetation index. 

Panel A shows the trends of EVI from year 2000 through to 2014. Panel B shows the trend of 

ITN use for a six-year period 2009 -2014. 

I identified four independent predictors of malaria slide positivity; a) ITN coverage in the 2km 

radius around the child’s residence, b) age of the child c) EVI in the 0.25x0.25 km square around 

the child (i.e. the finest resolution at which EVI was available) and d) time (Figure 3.12B, Table 

3.3). These predictors explained ~ 23% of the variability on the outcome variable leaving about 

77% unexplained variability in the response variable. 
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Figure 3.12: Regression model prediction and variability explained by the predictors of the 

model. 

Panel A shows the predicted probability of a positive slide result (y axis) against the prevalence 

of ITN use in a 2km radius around each admitted child’s residence. Panel B shows the pseudo 

R2 of the various variables assessed in the extended model (ITN use around a child’s residence, 

EVI, Age, Age-time interaction, Time, Region and Location).  

 Personal ITN use was a predictor in univariable analysis (OR=0.73, 95%CI 0.65 to 0.83, 

p=<0.001), but not after adjusting for ITN use in the 2km radius around the admitted children’s 

residences (Table 3.3).  
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Table 3.3: Multiple logistic regression model of malaria on personal ITN use, ITN use prevalence around the child’s residence age 

and EVI for both complete case analysis and multiple imputation. 

 Complete case analysis Imputed data analysis 

Covariates  Covariates from Multiple 
Fractional Polynomial model 

Odds 
Ratio P-value (95% CI) 

Odds 
Ratio P-value (95% CI) 

Personal ITN use Personal ITN use  0.925 0.307 (0.797   1.075)  0.937 0.37 (0.814   1.087)  

Community level 
ITN use (2km 
radius) 

ITN1=ITN_2km^2-
0.3908547648   0.159 <0.001 (0.104   0.242)  0.154 <0.001 (0.102   0.233) 

ITN2=ITN_2km^2*ln(ITN_2km) 
+0.1835882418 2.3E-4 <0.001 (1.1E-5   5.0E-3) 4.9E-4 <0.001 (3.0E-5   8.4E-3) 

Age in Years Age1=(Age/10)^0.5-
0.5888197049 3.0E+07 <0.001 (4.6E+6   1.9E+8) 1.3E+07 <0.001 (2.6E+6   6.6E+7) 

Age2=(Age/10)-0.3467086449 6.1E-06 <0.001 (1.5E-6   2.5E-5) 2.8E-05 <0.001 (8.9E-6   8.6E-5) 

EVI (0.25x0.25 km) EVI  23.43 <0.001 (4.40    124.17) 12.26 0.001 (2.73   55.00) 

Time=(year-2008) T1=ln(time)-1.142973262  2.11 <0.001 (1.77   2.43) 1.30 <0.001 (1.24   1.36) 

Age-Time 
interaction 

Age1*T1 4.2E-3 0.002 (1.3E-4  0.14) 0.32 0.01 (0.14  0.76) 

Age2*T1 120.56 <0.001 (8.3  1.8E+3) 2.44 0.003 (1.35  4.40) 
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There were no marked differences in characteristics of missing ITN data compared to non-

missing data by age, EVI, gender and location of residence (Table 3.4). Results from multiple 

imputation were not significantly different from complete case analysis (Table 3.3).  

Table 3.4: Characteristic of individuals with missing ITN data during community ITN 

use surveys. 

 Characteristics  Missing data Complete data 

Overall    No. (%) 190,411 (12.81) 1,296,346 (87.19) 

Age (years) median (iqr) 19 (8 - 31) 15 (7 - 32) 

EVI median (iqr) 0.366 (0.326-0.393) 0.370 (0.336-0.397) 

Male        No. (%) 75,823 (48.16) 501,641 (46.70) 

Missing by locations     

Chonyi                No. (%) 28,178 (14.80) 215,829 (16.65) 

Gede                   No. (%) 14,649 (7.69) 108,598 (8.38) 

Jaribuni              No.  (%) 7,904 (4.15) 70,616 (5.45) 

Junju                   No.  (%) 23,470 (12.33) 150,654 (11.62) 

Mtwapa             No.  (%) 9,870 (5.18) 63,074 (4.87) 

Ngerenya           No. (%) 9,834 (5.16) 79,737 (6.15) 

Roka                    No. (%) 11,714 (6.15) 87,215 (6.73) 

Sokoke                No. (%) 5,251 (2.76) 44,089 (3.40) 

Takaungu           No. (%) 16,751 (8.80) 137,710 (10.62) 

Tezo                    No. (%) 62,790 (32.98) 338,822 (26.14) 

 

There was strongly significant (p<0.0001) non-linear relationship between community ITN use 

in the 2km radius area around a child’s residence and a slide positive result such that MPF 

reduced substantially with increasing ITN use (Figure 3.12A). The probability of presenting for 

admission with clinical malaria increased with higher values of EVI around the child’s residence 

and with later years of admission. However, the probability of clinical malaria increased to a 

peak at ~5-years of age at admission and decreased again (Figure 3.13). Similar results were 

obtained using a model that included clustering at the 250 square meters (Table 3.5) except that 

the confidence intervals were slightly wider (Figure 3.13).  
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Table 3.5: Multiple logistic regression model of malaria on personal ITN use, ITN use 

prevalence around the child’s residence and EVI (allowing clustering at 250 square 

meters) 

Covariates  Covariates from multiple 

fractional polynomial model 

Odds 

ratio P-value (95% CI) 

Personal ITN use Personal ITN use  0.925 0.355 (0.78   1.09)  

Community level 

ITN use (2km 

radius) 

ITN1=ITN_2km^2-

0.3908547648   0.159 <0.001 (0.097   0.259) 

ITN2=ITN_2km^2*ln(ITN_2k

m) +0.1835882418 2.3E-4 <0.001 (6.6E-6   0.008) 

Age in Years Age1=(Age/10)^0.5-

0.5888197049 3.0E+07 <0.001 (4.0E+6   2.3E+8) 

Age2=(Age/10)-0.3467086449 6.1E-06 <0.001 (1.3E-6   2.9E-5) 

EVI (0.25x0.25 km) EVI  23.4 <0.003 (2.86    190.7) 

Time=(year-2008) T1=ln(time)-1.142973262  2.1 <0.001 (1.76   2.44) 

Age-Time 

interaction 

Age1*T1 4.2E-3 0.004 (1.0E-4   0.17) 

Age2*T1 120.56 0.001 (7.1    2.0E+3) 

 Pseudo R2 =0.144 
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Figure 3.13: MFP regression model prediction of all predictors. 

Row A (without accounting for clustering) and B (accounting for clustering) shows the predicted 

probability of a positive slide result (y axis) against the predictors included in the model. 

Variables assessed in the extended model are ITN use 2km radius around a child’s residence, 

the enhanced vegetation index (EVI), age in years and time (year of presentation to hospital for 

admission).  

3.5.5 Sensitivity Analysis 

It has previously been shown that applying a parasite threshold to the definition of malaria 

enhances the specificity of the endpoint, as lower parasite densities are more likely to reflect 

coincident chronic asymptomatic parasitaemia and a non-malarial clinical illness such as 

pneumonia. I therefore repeated the analysis using a cut-off >2,500 parasites per µl. The same 

patterns were seen: i.e. a post-decline increase in MPF among older children (Figure 3.14), and 
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inverse relationship between MPF and age of malaria (r=-0.63, p<0.001), and of protection by 

community-level ITN use (Figure 3.15). These patterns remained statistically significant.   

 

Figure 3.14: Trends of malaria positive fraction, over time and region using a case 

definition for malaria of >2,500 parasites/µl. 

Panels A and B show the temporal trends of MPF in admitted children aged<=1-year-old and 

children aged>1-year-old respectively, red line represents the Southern region while the blue 

line represents the Northern region of the hospital.  
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Figure 3.15: Regression model prediction using a case definition for malaria of >2,500 

parasites/µl. 

The figure shows the predicted probability of a positive slide result (y axis) against the 

prevalence of ITN use in a 2km radius around each admitted child’s residence.  
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3.6 Discussion 

The proportion of acutely unwell children admitted to hospital with malaria positive slides (i.e. 

the MPF) declined from 2002 until 2009 (as reported previously (O'Meara et al. 2008)). 

However, after 2009 there was an increase in MPF that continued through to 2014. This increase 

was mostly seen in older children: there were relatively modest increases among children less 

than 1 year of age (MPF<1yr), but much greater increases among children above 1 year of age 

(MPF>1yr). This combination of findings suggests that the increase in malaria is due to increasing 

susceptibility to disease among older children, exacerbated by a slight increase in underlying 

transmission intensity since 2009. Additional evidence for increasing transmission after 2009 

can be seen in the increasing prevalence of asymptomatic parasitaemia (PfPR) among children 

admitted for trauma, and work showing increasing parasite prevalence throughout the Kenyan 

Coast (Snow et al. 2015).  

It has been shown previously that at high transmission intensities children acquire immunity 

rapidly, and so are not susceptible to disease when they are older (Okiro et al. 2009). On the 

other hand, at low transmission intensity there is less disease among younger children, and 

consequently older children acquire less immunity and remain susceptible (Okiro et al. 2009). 

Therefore, the lowest malaria rates will likely occur just after a recent reduction in transmission: 

at this point current exposure is low, but older children are immune because of their previous 

exposure when transmission was high. As time goes by after a reduction in transmission, a 

cohort of older children will emerge who are susceptible to the disease, and the rates of malaria 

will increase again. 

Taking together these finding of a) trends of increasing age of children admitted with positive 

malaria slides in parallel with falling PfPR2-10 in the community and falling MPF<1 among 
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hospital admissions b) a geographical association where areas with high MPF have low average 

age of children admitted with malaria c) previous analyses (Reyburn et al. 2005) and 

geographical analyses (Snow et al. 1997) showing the importance of the relationship between 

prior exposure and immunity to malaria, the most likely conclusion is that reduced exposure led 

to increasing susceptibility among older children and hence the subsequent increase in MPF.   

Other potential explanations for increasing malaria admissions among older children could 

include increased prevalence of preferential ITN use among younger children rather than loss 

of immunity. However, multivariable models that accounted for personal ITN use showed that 

age, and the interaction between age and year, were independent predictors of malaria, 

indicating that the increasing MPF among older children was independent of variation in ITN 

use by age (Table 3.3 and Table 3.5). Furthermore, the difference in ITN use by age was modest 

(87% of children less than 1 year of age used ITNs compared with 78% of children between 1 

and 5 years of age). Other interventions to prevent malaria targeted at younger children that 

increased over time could produce a similar pattern, but there are no such interventions reported 

in the area. An increasing prevalence of outdoor biting might also preferentially affect older 

children. However, this would not explain the clear inverse correlations seen between MPF and 

average age over time and by geographical region, which suggests that immunity is an important 

component of the variation in MPF. In the absence of host immunity older children may be at 

higher risk than younger children since mosquito biting may be proportional to surface area 

(Smith et al. 2004). However, MPFs do not necessarily reflect incidence. For instance, the risk 

of non-malarial fever falls as children get older which would lead to an apparent increase in 

MPF. 
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The scale-up in ITN use occurred in 2006, and therefore is not related to the reductions in 

transmission seen from 2000 onwards: changing anti-malarial drug use and rainfall may be 

relevant (Snow et al. 2015). Regardless of the cause of the prior decline, I found clear evidence 

of ITN efficacy during the period in which they were used. Personal ITN use was associated 

with reduced MPF among children admitted to hospital. However, when multivariable models 

were examined it was the prevalence of ITN use in the 2km radius area around a child that 

independently reduced the probability of a malaria positive slide, regardless of personal use. 

Hence it is likely that the resurgence in malaria seen since 2009 would have been even more 

marked in the absence of ITNs.  

The WHO and Kenyan national policy recommend universal ITN coverage to control malaria. 

However, operational constraints often do not allow this and so instead many distribution 

programmes target younger children and pregnant women as high risk groups. Our data suggest 

that universal coverage should be a high priority since a) older children are increasingly in need 

of protection as transmission falls and b) the mass-protective effect would achieve substantial 

gains in malaria control above those achieved by personal ITN use.  

ITN use was lowest among adolescents and young adults (Figure 3.9). The low ITN use among 

10-15-year-old adolescent girls is a cause of concern as they transition to young mothers 

(primigravidae). Primigravidae are at a particular risk of severe malaria and are at a higher risk 

of stillbirth, miscarriage, preterm delivery low birthweight and increased infant mortality when 

exposed to malaria (Brabin 1983, Guyatt and Snow 2001, Conroy et al. 2012). First pregnancies 

(primigravidae) are at the highest risk of infection and adverse pregnancy outcomes because of 

lack immunity to 'pregnancy-specific' variants of Plasmodium falciparum that selectively 

accumulate in the placental intervillous space leading to placental and occult placental malaria 
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that may not always be associated with detectable blood-stage infection (Conroy et al. 2012). 

Community engagement and sensitization targeting this age groups should be conducted to 

enhance coverage. 

Fortunately, there was no strong evidence of an increasing case fatality rate as transmission fell 

(Figure 3.5D). The risk of mortality from severe malaria increases in older age-groups across 

the range from children to adults (Dondorp et al. 2008) but this increase may be less evident 

within the age range of children below 10 years of age (Marsh et al. 1995, von Seidlein et al. 

2012b). Furthermore, many other factors influence mortality over time, including variation in 

hospital acceptance over time, access to care (due to improved road network), better care 

(Dondorp et al. 2010, Maitland et al. 2011) and socioeconomic conditions. My data do not 

suggest that increasing mortality is an immediate concern of the post-decline period despite the 

increasing rates of malaria in older children. 

Study limitations include the use of MPF among acute admissions which may be biased by 

varying access to care. In support of the use of MPF, there was a close correlation between 

location-matched MPFs with the incidence rates from active case detection data from two cohort 

studies conducted within the same study area. Furthermore, geographic heterogeneity was larger 

than any consistent bias in MPF with distance to the hospital (Figure 3.4), agreeing with 

previous work (Bejon et al. 2014).  

The analyses were based on the proportion of children with positive malaria slides. This case 

definition includes children with chronic asymptomatic parasitaemia and coincident fever. To 

exclude a bias resulting from including these children I repeated the analysis after applying a 

threshold of >2,500 parasites per µl, which excludes the majority of children with asymptomatic 

parasitaemia (Bejon et al. 2007) (Figure 3.14 and 3.15). 
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The ITN use surveys were conducted annually and based on reported rather than observed use.  

The potential misclassification of this approach could lead to an underestimate of the protective 

effect of ITNs. During the study period, there were no other widespread interventions such as 

anti-malarial prophylaxis or presumptive treatment that were targeted at younger children. ITN 

use has not been randomly assigned and therefore confounding could be present. If present, this 

would most likely dilute the effect size (i.e. ITN use would be better taken up in areas of higher 

malaria risk). Furthermore, observational studies of ITN use have consistently shown similar 

findings to randomized controlled Trials (RCTs) suggesting that within specific communities 

confounding is not pronounced (Lim et al. 2011). 

Our data were taken from a single geographical setting. However, there is evidence that 

immunity to malaria is dependent on exposure in a wide range of geographical settings (Okiro 

et al. 2009) and therefore our findings may be relevant more widely across Africa in settings 

where transmission is falling (O'Meara et al. 2010).  

In conclusion, I show that despite substantial reductions in malaria transmission in Kilifi, 

residual malaria transmission has continued and older children are increasingly vulnerable to 

disease. As countries and regions make progress in malaria control (Noor et al. 2014), 

maintaining control measures will be essential: in fact, further progress will be required to offset 

the increasing rates of malaria in older children. Achieving ITN coverage close to 100% shows 

promise as a strategy, but will require novel strategies, particularly among groups that seem less 

keen to use ITNs such as adolescent males and young adults (Noor et al. 2009b). 
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Chapter Four 

4 Effect of transmission intensity on hotspots and micro-epidemiology of 

malaria in sub-Saharan Africa 

4.1 Introduction 

In chapter 3 above I demonstrated that heterogeneity of malaria transmission increases with 

decreasing transmission intensity. This concept has been previously derived using mathematical 

models but little empirical evidence is available.  

Here I sought to provide further empirical evidence on the trends in micro-heterogeneity of 

malaria transmission using a large assembled set of data from studies conducted in sub-Saharan 

Africa on a) acute symptomatic malaria (detected through active and/or passive case detection 

or cross-sectional surveys) and b) prevalence of parasitaemia detected through cross-sectional 

surveys (Mogeni et al. 2017a).  

4.2 Objectives 

I used data drawn from 19 different study sites across 7 sub-Saharan African countries, 

representing a range of transmission intensities from intense transmission in Burkina Faso 

(Tiono et al. 2013) to low transmission in The Gambia and the Northern part of Kilifi, Kenya 

(Mogeni et al. 2016) to :-  

1. Describe trends in parameters describing local clustering (or hotspots) and in global 

measures of spatial autocorrelation of malaria cases at varying transmission intensities. 

2. Compare temporal stability of malaria hotspots 

3. Examine the association between micro-variations in mean age of symptomatic malaria 

(as a proxy for exposure/acquired immunity) and the MPF across the sites. 
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4.3 Methods 

4.3.1 Multisite data collation from centers in sub-Saharan Africa 

A group of researchers interested in malaria hotspots work were approached to participate in 

forming a group (The Hotspot Group) and make available homestead level geocoded datasets 

with the aim of assessing the properties of malaria hotspots in sub-Saharan Africa. An email 

invitation was sent to the Hotspots Group members inviting them to make available data on 

asymptomatic parasitaemia or febrile malaria surveillance or both and including age of study 

participants and homestead level GPS co-ordinates for any length of monitoring. All the 

investigators contributing data were assured of being listed in any resulting manuscript(s) and 

their contribution acknowledged. 

 To identify studies assessing microepidemiology of malaria transmission, a search was 

conducted in PubMed on the geographical heterogeneity of malaria transmission, variability of 

malaria risk by age and stability of hotspots using MeSH terms “Childhood” “Malaria” 

(“Heterogeneity” OR “Heterogeneous” OR “Variability” OR “Variation” OR “Hotspots”) and 

“Age”. Several previous studies assessed the properties of hotspots of malaria transmission in 

single sites. Few studies examined stability of hotspots and only one study investigated the 

efficacy of targeting control interventions on hotspots of malaria transmission. There were no 

previous studies examining the properties of hotspots across multiple sites. 

Studies that used microscopy for detection of malaria parasites, performed clinical assessments 

for presence or absence of fever, reported homestead level geospatial coordinates and age of 

study participants were included in the analyses. For cluster-randomised or individual-

randomised controlled trials, data from intervention and control arms were analysed separately. 

Datasets were then further subdivided by year before analysis for spatial clustering. Only studies 
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where Ethical approval and consent for human participation had been granted by authorities of 

the participating countries were reported. In the Kilifi sites, approval for human participation in 

cross-sectional surveys, cohorts and hospital surveillance was given by the Kenya Medical 

Research Institute Ethics Research Committee. Prior to any study procedure, written informed 

consent was obtained from all individuals participating in the surveys or, where appropriate, 

their parents or guardians. The studies were conducted per the principles of the declaration of 

Helsinki. 

 

4.3.2 Data  

Data were assembled from studies conducted in sub-Saharan Africa (Figure 4.1, Table 4.1) with 

homestead-level geospatial records linked to malaria surveillance at sites with varying 

transmission intensities. Data were shared with no personal identifiers except geospatial 

coordinates. 
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Figure 4.1: Map of sub-Saharan Africa showing countries and their respective number of 

studies included in the analysis 

4.3.3 Malaria case definition 

Symptomatic malaria and asymptomatic parasitaemia were classified per the definitions shown 

in Table 4.1. The key metrics were P. falciparum parasite prevalence (i.e. the proportion of 

asymptomatic parasite carriage from community cross-sectional surveys), malaria positive 

fraction (MPF; defined as the fraction of symptomatic malaria) and mean age of children 

presenting with symptomatic malaria.  
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Table 4.1: Study characteristics 

 

 

Location Study description 

 

 

Sample 

size (N) 

 

Malaria case definition 

(symptomatic malaria) 

 

 

MPF 

 

Asymptomatic 

parasitaemia 

assessed? 

 

Parasite 

Prevalence 

(%) 

Kilifi Kenya 

(Bejon et al. 

2014) 

Ngerenya Dispensary Surveillance; 

monitoring was conducted from 1st April 

2014 to 31st December 2015 

 

1998 

Any presentation with 

parasitaemia 

 

0.048 No 

 

 

Not applicable 

Kilifi Kenya 

(Bejon et al. 

2010) 

Junju cohort, monitored between 1st January 

2005 and 31st December 2015 

 

4534 Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

0.376 No 

 

 

Not applicable 

Kilifi Kenya 

(Bejon et al. 

2010) 

Ngerenya cohort, monitored between 1st 

January 2003 and 31st December 2015 

 

3659 Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

0.043 No 

 

 

Not applicable 

Kilifi Kenya 

(Kangoye et 

al. 2016) 

Ganze RTSS cross-sectional surveys of 

asymptomatic parasitaemia and a study 

cohort monitored for clinical episodes in 

2012 and 2013 

 

2532 

1518* 

 

Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

 

0.053 Yes 

 

 

 

1.25 

Kilifi Kenya 

(Bejon et al. 

2014) 

Pingilikani Dispensary Surveillance; 

monitoring was conducted from 1st January 

2009 to 31st December 2014. Each year’s 

data were analysed separately to capture 

temporal trend in transmission intensity 

 

 

22595 

 

Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

 

0.243 

 

No 

 

 

 

 

Not applicable 

Kilifi Kenya 

(Mogeni et 

al. 2016) 

Kilifi County Hospital Surveillance; 

monitoring conducted from 1st January 

2009 to 31st December 2014. Each year’s 

data were analysed separately to capture 

temporal trends in transmission intensity 

 

 

8707 

 

 

Any slide positive test 

result among acute 

admissions 

 

 

0.171 
No 

 

 

 

 

 

Not applicable 
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Kilifi, 

Kenya 

(Bejon et al. 

2007) 

Junju cross-sectional bleeds between 2011 

and 2015, each year’s data were analysed 

separately to capture temporal trends in 

transmission intensity 

 

1925 

 

Not applicable 

 

_ Yes 

 

 

 

16.05 

Nandi, 

Western 

Kenya 

(Brooker et 

al. 2004) 

10-week active case surveillance study 

undertaken in three schools in Nandi 

District, Western Kenya during a malaria 

outbreak May to July 2002 

 

520 

 

Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

 

0.242 

No 

 

 

 

Not applicable 

Western 

Kenya 

(Ernst et al. 

2006) 

Hospital surveillance study conducted 

between 2001 - 2004.  

 

599 Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

0.084 

No 

 

 

Not applicable 

Asembo, 

Western 

Kenya 

(Lindblade 

et al. 2004) 

 

 

In late 1996, villages in Asembo were 

randomized into intervention and control 

villages. Cross-sectional surveys were 

conducted between 1996 and 2001. Data 

from symptomatic and asymptomatic 

individuals were analysed separately and by 

year of enrollment.  

 

3614 

3047* 

 

Measured axillary 

temperature >37.5 oC 

and parasitaemia 

>2500/µL 

 

0.659 Yes 

 

 

 

 

 

 

61.9 

Rural 

Afigya-

Sekyere, 

Ghana 

(Kreuels et 

al. 2008) 

Cohort of infants monitored by monthly 

active case detection and passive case 

detection. Enrolled at 3 months (±4 weeks) 

of age between January 2003 and 

September 2005. Treatment and placebo 

arms were analyzed separately.  

 

 

2721 

 

 

Temperature >37.5 oC 

and parasitaemia 

>500/µL 

 

 

0.413 

 

 

No 

 

 

 

 

 

 

Not applicable 
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Mulanda, 

Eastern 

Uganda 

(Pullan et 

al. 2010) 

Cross -sectional study conducted in four 

contiguous villages in Mulanda, sub-county 

in Tororo, Eastern Uganda between July 

and December 2008. age 

985 Not applicable _ 

 

Yes 

 

 

53.7 

Uganda 

(Kamya et 

al. 2015) 

Cohort study of three Uganda sub-counties 

(Nagongera, Walukuba and Kihihi) 

between 2011 and 2014 

3239 Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

0.331 No 

 

 

Not applicable 

The Gambia 

(Hennig et 

al. 2015) 

Cohort study of four Gambian villages 

(Keneba, Manduar, Jali and Kantong 

Kunda) between 2009 and 2012 

 

3117 

Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

0.024 No 

 

 

Not applicable 

Mali 

(Sissoko et 

al. 2015) 

Cross-sectional surveys were conducted 

during the wet and dry seasons and passive 

case detection in two villages in Mali were 

conducted between May (Kolle) or July 

(Sotuba) and December 2009 

 

1867 

1128* 

 

Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

 

0.424 Yes 

 

 

 

 

15.61 

Mali 

(Crompton 

et al. 2008) 

Longitudinal study conducted between May 

and December 2006. Analysis was 

restricted to children aged 2-15 years 

 

 

695 

695* 

Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

0.51 

Yes 

 

 

 

 21.75 

Tanzania 

(Mosha et 

al. 2013) 

Cross sectional survey conducted between 

August and November 2010 in northern 

Tanzania. Analysis was restricted to 

children <15 years 

 

328 

 

Not applicable 

 

- Yes 

 

 

 

52.23 
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Northern 

Tanzania 

(Gosling et 

al. 2009) 

The study was conducted between July 

2004 and July 2007. Infants aged 2-4 

months randomized to treatment regimens. 

Treatment and placebo arms were analyzed 

separately. 

 

2300 

Temperature >37.5oC 

and parasitaemia 

>2500/µL 

 

0.161 No 

 

 

 

 

Not applicable 

Saponé 

district, 

Burkina 

Faso (Tiono 

et al. 2013) 

Cluster-randomized study with treatment 

and control arms. Four cross-sectional 

surveys were conducted between January 

2011 and January 2012: a) before 

randomization, b) 1 month, c) 2 months and 

d) 12 months. Monitoring for symptomatic 

malaria was conducted passively at local 

health care facilities during the same study 

Period. Treatment and placebo arms were 

analyzed separately. 

 

4045  

11932* 

 

 

Temperature >37.5 oC 

and parasitaemia 

>2500/µL 

 

0.707 Yes 

 

 

 

 

 

 

 

 

 

31.32 

* Shows sample size for asymptomatic parasitaemia studies when both symptomatic and asymptomatic datasets were available 

for analysis 
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4.3.4 Statistical methods 

Data from each site were used to quantify spatial clustering of malaria (described in detail 

above). The various metrics from each site were pooled together to examine systematic variation 

in metrics of spatial clustering over transmission intensity using site as the unit of analysis. 

Observations with missing geo-coordinates, age and malaria slide results in any of the requested 

datasets were excluded prior to the analysis. No data imputation was done at any analysis stage. 

4.3.5 Local cluster detection 

The spatial scan statistic (details are discussed in chapter 2) was used to detect local spatial 

clusters of asymptomatic carriers and/or symptomatic malaria cases using a Bernoulli model. 

Cases were individuals with malaria and controls were individuals without malaria. I assessed 

variation in the number of hotspots per study site, the risk ratio (RR) of the most likely (primary) 

hotspot (i.e. the ratio of the risk of malaria within the hotspot divided by the risk outside the 

hotspot) and the p-value of the primary hotspot over transmission intensity.  

4.3.6 Global spatial pattern analysis 

Ripley’s K-function was used to analyse binary data and Moran’s I for the analysis of the age 

of children with clinical malaria as a measure of acquired clinical immunity. The K-function 

and the Moran’s I methodology have been described in detail in chapter 2. Key parameters of 

interest from this analysis were the estimate of the D-function, the spatial autocorrelation 

coefficients and measures of significance. Sensitivity analysis was conducted at various 

predefined distances. 

Symptomatic malaria cases and asymptomatic parasitaemia were examined separately. For each 

dataset, parameters from the local cluster detection and from the D-function analyses were 
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assessed against the overall transmission intensity measured by the MPF for datasets on 

symptomatic malaria or parasite prevalence for datasets on asymptomatic parasitaemia. 

Multiple fractional polynomials to assess nonlinear fits of MPF or parasite prevalence on the 

hotspots parameters (i.e. number of hotspots, risk ratios, and p-values) in the regression models 

adjusted for potential confounders (i.e. study design, sample size and overall mean age of study 

participants included in each study).  

4.3.7 Temporal stability of hotspots analysis 

There were few datasets with repeated sampling of overlapping homesteads, and therefore 

stability of spatial heterogeneity could only be tested in 4 datasets from western Kenya (Hawley 

et al. 2003), Ghana (Kreuels et al. 2008), Burkina Faso (Tiono et al. 2013) and Uganda (Kamya 

et al. 2015). MPFs and/or parasite prevalence were computed by grids (2x2km square) and by 

year (or time points for cross-sectional surveys). I assessed stability of the spatial heterogeneity 

by examining correlation between MPFs or parasite prevalence within grids separated in time. 

4.3.8 Correlation between age of clinical malaria and transmission intensity 

The average age of children with malaria was computed as the geometric mean age of children 

presenting with symptomatic malaria. The correlation between the average age of symptomatic 

malaria and MPF at predefined square grid sizes (i.e. 1km2, 2km2 and 4km2) were calculated 

using the Spearman’s rank correlation coefficient. Variable grid sizes were used for sensitivity 

analysis and were calculated using longitude and latitude coordinates. Pooled correlations for 

the predefined grid size were estimated in a fixed effect meta-analysis, however if heterogeneity 

(I2) between studies was large (>50%), a random-effect meta-analysis was conducted (details 

on meta-analyses are discussed in chapter 2). Global spatial autocorrelation for age of 
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symptomatic malaria at homestead level within sites was assessed using Moran’s I statistic and 

the significance determined using Monte Carlo simulations. 

SaTscan was executed from R using rsatscan package which allows SaTscan to be executed in 

the background from R’s command line. The K-function and the Moran’s I statistics were 

executed in R version 3.3.1, and graphs, meta-analyses, multiple fractional polynomial 

procedure and other analyses were conducted in Stata version 12 (StataCorp, Texas). 
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4.4 Results 

4.4.1 Malaria morbidity in the study sites 

Nineteen studies conducted between 1996 and 2015 in seven countries were examined (Figure 

4.1). The characteristics of each study population are presented in Table 4.1 with references to 

previously published work. 

4.4.2 Hotspots of malaria cases 

Data from cross-sectional surveys in Asembo western Kenya, were analysed from 79 villages 

randomized to receive insecticide-treated bednets. In this high transmission site (overall, 

MPF=0.66 and parasite prevalence=61.9%), hotspots of malaria transmission were identified in 

both asymptomatic and symptomatic datasets, but the significance was borderline and the risk 

ratio slightly higher than 1. Figure 4.2 and Figure 4.3 illustrates hotspots of febrile malaria and 

hotspots of asymptomatic parasitaemia respectively for homesteads in the control group. 
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Figure 4.2: Hotspots of asymptomatic parasitaemia cases (control arm) in Asembo western 

Kenya. 

Black and green circle represent statistically significant primary and secondary hotspots 

respectively with their relative risk (RR) and p value displayed beside the circles. 
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Figure 4.3: Hotspots of clinical malaria cases (control arm) in Asembo western Kenya. 

Black and green circles represent statistically significant primary and secondary hotspots 

respectively with their relative risk (RR) and p value displayed beside the circles. 

Data from Sapone, Burkina Faso were analyzed from 1550 homesteads in 18 villages. Overall 

there were 6,848 (56.8%) episodes of febrile malaria recorded during the 12-month passive 

surveillance and 8,346 (25.7%) episodes of microscopically confirmed asymptomatic infections 

recorded during the four survey time points over the 12-month period. Hotspots of malaria 

transmission were identified in both asymptomatic and symptomatic datasets for both the 

treatment and control group. However, the significance (as illustrated by the p-values) ranged 

between borderline to no significance and the risk ratio were close to 1. Figure 4.4 below 

illustrates hotspots of febrile malaria during the months coinciding with the 4-asymptomatic 

malaria survey time points. 
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Figure 4.4: Hotspots of clinical malaria cases (control arm) in Burkina Faso. 

Each black circle represents a statistically significant hotspot with its relative risk (RR) and p 

value displayed beside the circle. 

In the low transmission settings in Kilifi and The Gambia, significant hotspots were observed 

in Ganze Kilifi county (overall MPF=0.05) but not in The Gambian villages (overall 

MPF=0.024). In contrast with the high transmission settings in Asembo and Burkina Faso 

(Figure 4.2 - Figure 4.4), the risk ratios were markedly different from 1 (Figure 4.5 and Figure 

4.6). 
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Figure 4.5: Hotspots of clinical malaria cases by village in The Gambia. 

 Each black circle represents a statistically significant hotspot with its relative risk (RR) and p 

value displayed beside the circle. 
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Figure 4.6: Hotspots of clinical malaria cases in Ganze Kilifi County. 

Each blue circle represents a statistically significant hotspot with its relative risk (RR) and p 

value displayed beside the circle (Kangoye et al. 2016). 

4.4.3 Trends in parameters describing hotspots and clustering of malaria cases 

The median number of significant hotspots for the datasets was 1 and there was no clear trend 

over transmission intensity (Figure 4.7A). However, the risk ratios for primary hotspots were 

highest at low MPFs (Figure 4.7B) and decreased with increasing MPF. The statistical 

significance of hotspots was lower at very low MPFs, then increased with increasing MPF to a 

peak at an MPF of ~0.3, and then gradually decreased with increasing MPF after MPF >0.3 

(Figure 4.7C).  
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Figure 4.7: Hotspots of symptomatic parasitaemia. 

Panel A displays a scatter plot of the number of significant hotspots per study area against 

malaria positive fraction, panel B shows the Log risk ratios of malaria within the primary 

hotspot against the malaria positive fraction and panel C shows the –Log (P-values) of the 

primary hotspots against malaria positive fraction. The blue line in A, B and C show the fitted 

multiple fractional polynomial model predictions after adjusting for study design and the overall 

age of study participants. Shaded areas in panels A, B and C represent 95% CIs. 

Although the average age of children in the dataset was significantly associated with the RR and 

p-values (Figure 4.8), analyses adjusted for average age of children in the dataset (Figure 4.7A, 

4.7B and 4.7C) and analyses stratified by study design (i.e. passive vs active case detection) 

showed a similar trend in variation of RR over transmission intensity (Figure 4.9).  
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Figure 4.8: Trends in parameters of primary hotspots over mean age of study participants. 

Panel A shows a scatter plot of log transformed risk ratios against overall mean age. Panel B 

shows a scatter plot of log transformed P-values against overall mean age. The green line 

presents multiple fractional polynomial fits of age on MPF adjusted for the study design. Shaded 

areas in panels A, B and C represent 95% CIs. 

 

Figure 4.9: Summary of malaria hotspots from symptomatic parasitemia among passive 

(blue) and active (red) surveillance studies. 

Panel A shows a scatter plot of the no of significant hotspots against malaria positive fraction, 

panel B presents the Log risk ratios of malaria within the primary hotspot against the malaria 

positive fraction and panel C presents the –log P-values of the primary hotspots against malaria 

positive fraction. The blue and red lines in panels A, B and C show the fitted multiple fractional 

polynomial model predictions for passive and active case detection studies respectively. Shaded 

areas in panels A, B and C represent 95% CIs. 
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While there were fewer studies that included data on asymptomatic parasitaemia, a similar trend 

for risk ratios with increasing parasite prevalence was observed, but without a clear trend for p-

values (Figure 4.10). Fractional polynomial transformations significantly improved model fits 

(Table 4.2). 

Table 4.2 : Comparison between linear and the multiple fractional polynomial model fit. 

The P-value shown are derived from the log-likelihood ratio test for a nested model with a 

fractional polynomial over the linear fit model. 

Hotspots 

Parameter Figure 

Best fit fractional polynomial 

transformations 

Deviance 

difference 

P-

value Adjusted R2 

Number of 

hotspots Fig 2A MPF__1 = MPF^3 - 0.02058 9.181 0.04 0.1589 

Log risk Ratio Fig 2B 

MPF__1 = MPF - 0.27406 

MPF__2 = MPF^2 - 0.07511 17.486 0.001 0.7382 

- log P-value Fig 2C 

MPF__1 =MPF^0.5 - 0.5235 

MPF__2 = MPF- 0.27406 11.667 0.015 0.2792 

*MPF refers to Malaria Positive Fraction and MPF__1 and MPF__2 are the fractional polynomial 

transformations for MPF. 

 

 

Figure 4.10: Hotspots of asymptomatic parasitaemia. 

Panel A displays a scatter plot of the number of significant hotspots in each study dataset against 

parasite prevalence, panel B presents the Log risk ratios of malaria within the primary hotspot 

against the parasite prevalence and panel C displays the –Log (P-values) of the primary 

hotspots against parasite prevalence. The blue lines in panels A, B and C show the fitted multiple 

fractional polynomial model predictions. Shaded areas in panels A, B and C represent 95% CIs. 
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Using the modelled relationship between PfPR and the reproduction number (R0) reported by 

Smith et al (Smith et al. 2006), I determined the ratios of R0 inside and outside hotspots, and 

plotted these against PfPR (Figure 4.11). The ratio of R0 inside to R0 outside rose steeply below 

a parasite prevalence of 10%.  

 

Figure 4.11: Scatter plot of the ratio of log transformed R0 inside to outside the hotspot plotted 

against parasite prevalence. 

The blue line shows the fitted multiple fractional polynomial model predictions and the shaded 

areas represents 95% CIs. 

4.4.4 Spatial autocorrelation 

Ripley’s difference in k-function (i.e. the D-function) indicated significant spatial structure in 

many but not all sites (Figure 4.12). As seen with hotspots, the proportion of sites that had 

significant spatial structure increased from the lowest MPFs to a peak at MPFs of 0.15 - 0.45, 

and then declined at higher MPFs. This trend was consistent at the various spatial scales 

examined (Figure 4.12). The magnitude of the D function decreased with increasing MPF and 

was consistent at various spatial scales (Figure 4.13). 
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Figure 4.12: Clustering of malaria transmission. 

Panels A, B, C, D, E, F, G, and H shows the proportion of datasets with significant clustering 

at homestead level, 0·5, 1, 1·5, 2, 3, 4, and 5-kilometer level respectively, against malaria 

positive fraction. 
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Figure 4.13: Difference in K-functions for cases and controls (D-function) against malaria 

positive fraction. 

Panels A, B, C, D, E, F, G, and H show the D-function at homestead level, 0·5, 1, 1·5, 2, 3, 4 

and 5 kilometer distances for each dataset. The blue dots represent symptomatic parasitaemia 

datasets while red represents asymptomatic parasitaemia datasets.  

4.4.5 Temporal trends 

Overall, the spatial distribution of asymptomatic parasitaemia showed modest temporal stability 

in the Asembo and Burkina Faso sites (Table 4.3). On the other hand, the spatial distribution of 

febrile malaria was predictive of febrile malaria over one and two years in Uganda, but not in 

the other sites.  
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Table 4.3: Association between distribution of MPF within grids (size= 2x2 km2) over time 

interval  

 (Asembo Bay, Kenya (Hawley et al. 2003), sub-counties of Uganda (Kamya et al. 2015) and 

Afigya-Sekyere Ghana (Kreuels et al. 2008)) in years and over consecutive cross-sectional 

surveys conducted over a span of one year (Saponé district, Burkina Faso (Tiono et al. 2013)). 
 

Study 

Site 

Interval between 

cluster (year) 

Febrile Malaria  Asymptomatic Parasitaemia 

Correlation 

(95%CI) P-value 

Correlation 

(95%CI) P-value 

Asembo 

Bay 

  

1 -0.09 (-0.26 - 0.09) 0.3072 0.23 (0.08 - 0.36) 0.003 

2 0.14 (-0.04 - 0.31) 0.1245 0.16 (0.01 - 0.31) 0.0433 

3 0.16 (-0.08 - 0.38) 0.1873 0.02(-0.18 - 0.22) 0.8512 

4 0.45 (0.11 - 0.70) 0.0124 0.21 (-0.12 - 0.49) 0.2041 

5 0.06 (-0.32 - 0.43) 0.7726 0.45 (-0.13 - 0.80) 0.1226 

  

Burkina 

Faso 

  

Interval between 

cluster (Survey)         

1 -0.07 (-0.21 - 0.08) 0.3667 0.24 (0.10 - 0.36) <0.001 

2 0.06 (-0.13 - 0.24) 0.5359 -0.09 (-0.25 - 0.08) 0.293 

3 0.27 (0.01 - 0.50) 0.0457 0.34 (0.11 - 0.53) 0.0043 

 

Uganda 

 

Interval between 

cluster (year)         

1 0.39 (0.27 - 0.50) <0.001 _ _ 

2 0.29 (0.13 - 0.44) 0.001 _ _ 

3 0.19 (-0.06 - 0.41) 0.1332 _ _ 

Ghana  

 

Interval between 

cluster (year)         

1 0.26 (-0.03 - 0.51) 0.0756 _ _ 

2 0.30 (-0.14 - 0.64) 0.1757 _ _ 

      
 

4.4.6 Average age of symptomatic malaria episodes and correlations with MPF 

Spearman’s rank correlation coefficients of MPF against average age of symptomatic children 

with malaria at various spatial scales (i.e. 1km2, 2km2 and 4km2 grids) were negative in most 

study datasets. This suggests that patches of greater exposure to malaria (i.e. high MPF) were 

associated with younger children presenting with malaria parasites in their blood and vice versa 
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(Figure 4.14, Figure 4.15 and Figure 4.16). The pooled estimates increased with increasing grid 

size agreeing with previous findings (Bejon et al. 2014). 

 

Figure 4.14: Forest plot showing the correlation (Rho) between MPF and age of symptomatic 

malaria at a 1x1 km grid size. 

The pooled estimate from the random-effects meta-analysis is labeled “Overall”. 
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Figure 4.15: Forest plot showing the correlation (Rho) between MPF and age of symptomatic 

malaria at a 2x2 km grid size. 

The pooled estimate from the random-effects meta-analysis is labeled “Overall”. 
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Figure 4.16: Forest plot showing the correlation (Rho) between MPF and age of symptomatic 

malaria at a 4x4 km grid size. 

The pooled estimate from the random-effects meta-analysis is labeled “Overall”. 

Significant moderate heterogeneity was observed between studies at the 1x1 and 2x2 Km square 

spatial grid but not at a 4x4 grid size. The funnel plot resembled a symmetric funnel for the 1x1 

km grid (Figure 4.17 A) but not for the 2x2 and 4x4 km grid sizes (Figure 4.17 B and C). 

However, it should be noted that some datasets included in Figure 4.17 A, could not be included 

in Figure 4.17 B and C due to the size of the study area not permitting >10 grid sizes that could 

enable the computation of correlations when lager grids were used. 
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Figure 4.17: Funnel plot with pseudo 95% confidence limits. 

Panels A, B and C show the funnel plots of individual study standard errors plotted against the 

correlation between the mean age of clinical malaria and MPF at prespecified spatial grids. 

 

These negative associations tended to be more marked where the average MPF at the site was 

low, and this trend was statistically significant when the correlations were measured using 2km2 

grids (i.e. p=0.04) but not at 1km2 or 4km2 grids (Figure 4.18 A, B and C). The pooled 

correlation between MPF and slide positive age for 1x1, 2x2 and 4x4 kilometer spatial resolution 

was -0.07 (95% CI -0.14 to 0.00), -0.21 (95% CI -0.31 to -0.11) and -0.27 (95% CI -0.37 to -

0.18) respectively and were in the same direction. The test of heterogeneity between studies was 

I2=55.9%, p=0.002; I2=53.5%, p=0.005; and I2=31.6%, p=0.104 respectively. 
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Figure 4.18: Fine-scale geographical correlation of mean age (months) against malaria 

positive fraction (MPF) for each study dataset plotted against overall study MPFs (as a proxy 

for transmission intensity). 

Panels A, B and C show 1x1, 2x2, and 4x4 km2 grid respectively. The test of heterogeneity 

between studies was I2=55·9%, p=0·002; I2=53·5%, p=0·005 and I2=31·6%, p=0·104 

respectively. 

Furthermore, I observed significant spatial autocorrelation for the age of symptomatic malaria 

episodes at most sites (Figure 4.19), suggesting that there are focal areas where older individuals 

tend to be seen with symptomatic malaria, and conversely focal areas where younger individuals 

tend to be seen with symptomatic malaria. 
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Figure 4.19: Homestead level spatial autocorrelation of age in months for symptomatic 

individuals for the various studies. 

Red dots show significant autocorrelation while blue dots show non-significant spatial 

autocorrelation. 
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4.5 Discussion 

This chapter describes fine-scale spatial heterogeneity of P. falciparum malaria cases from 

studies conducted at 19 different sites experiencing varying transmission intensities in seven 

sub-Saharan African countries (Figure 4.1). The RR of the primary hotspots increased with 

falling MPF. The strength of evidence (as measured by p-values) increased from low MPFs to 

moderate MPFs and then declined towards high MPFs. Taking these findings on variation in 

degree of heterogeneity and on statistical significance of heterogeneity together, I conclude that 

spatial heterogeneity becomes gradually more marked as transmission intensity falls, albeit with 

statistical significance becoming weaker at very low transmission intensity because of reduced 

power due to small numbers of malaria cases. It may therefore be appropriate for malaria control 

programmes to target hotspots at low transmission intensity despite apparently modest statistical 

significance. The decline in the degree of spatial heterogeneity towards high MPF may be due 

to either more even distribution of transmission intensity per se, or to saturation in the metric 

used to quantify malaria exposure (i.e. the MPF). 

Similar findings were seen for generalized measures of spatial autocorrelation where the degree 

of spatial autocorrelation (D-functions) is shown to increase as MPF falls (Figure 4.13) with 

significance testing showing a peak when MPF is within 0.15-0.45 range (Figure 4.12). 

Hotspots of stable asymptomatic parasitaemia have previously been described in Kilifi, Kenya 

(Bejon et al. 2010). I could quantify the temporal stability of the spatial distribution in 4 datasets 

outside Kilifi (where these studies have previously been conducted (Hawley et al. 2003, Kreuels 

et al. 2008, Tiono et al. 2013)). This showed temporal instability, however, with 4 datasets I 

was unable to examine trends in stability across sites. An indirect approach to examining 

temporal stability is to look for evidence of spatial variation in clinical immunity. Micro-
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variation of malaria transmission is likely to lead to variations in the rate and degree of 

acquisition of clinical immunity if the micro-variation is sufficiently stable. Children acquire 

immunity against symptomatic malaria following repeated exposure. At high transmission 

intensity, children acquire immunity rapidly due to intense exposure when they are young and 

hence do not present with symptomatic malaria when they are older. On the other hand, at low 

transmission, children acquire immunity slowly and are more likely to present with symptomatic 

malaria when they are older (Snow et al. 1997). As might therefore be predicted, I observed a 

negative correlation between MPF and age of symptomatic malaria keeping with previously 

reported findings (Bejon et al. 2014, Mogeni et al. 2016), and is taken to imply that immunity 

is acquired more rapidly with greater exposure to malaria, leading to a lower average age of 

symptomatic malaria episodes. Furthermore, there were positive autocorrelations (i.e. 

significant values of Moran’s I) in the age of children with symptomatic malaria, again 

suggesting that micro-variation of transmission intensity may have led to variation in the degree 

of acquisition of clinical immunity. 

In the 4 datasets with longitudinal data, the temporal stability of the distribution of clinical 

malaria was lower than that seen in previous analyses in Kilifi and the highlands of Western 

Kenya (Ernst et al. 2006, Bejon et al. 2010). Furthermore, I identified substantial heterogeneity 

in the correlations between MPF and age of symptomatic malaria. Taking these findings 

together, I conclude that temporal stability of hotspots is not a reproducible feature of malaria 

transmission. I did not identify a strong trend of greater spatial stability at any range of MPF 

(Figure 4.18). 

Mathematical models suggest that targeting control interventions on hotspots results in a more 

marked decline in malaria compared to untargeted interventions with an equal amount of 
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resources (Bousema et al. 2012b). To implement such a strategy requires the accurate 

identification of hotspots and our data suggest that hotspots may not be temporally stable, and 

may be more difficult to accurately identify at high transmission. A previous attempt at targeting 

hotspots of malaria transmission in Rachuonyo – an area of moderate transmission intensity in 

western Kenya - achieved modest reductions in transmission inside the targeted hotspots, but no 

lasting reductions outside the targeted hotspots in a cluster-randomized control trial (Bousema 

et al. 2016). The authors suggested that the limited impact was at least partly explained by 

challenges in defining the geographical boundaries of transmission hotspots (Bousema et al. 

2016); our findings on temporal instability of hotspots would confirm difficulties in defining 

hotspots. 

Study limitations include the use of data collected using microscopy which is of limited 

sensitivity for parasitaemia. PCR has been shown to be more sensitive for parasitaemia, 

particularly in low transmission regions (Okell et al. 2012). This is unlikely to bias studies based 

on febrile malaria episodes since symptomatic malaria individuals usually have parasite 

densities well above the detection threshold for microscopy. However, submicroscopic 

infections among studies of asymptomatic parasitaemia may influence the stability of hotspots. 

Most studies included applied a threshold parasitaemia to define febrile malaria. The threshold 

reduces the likelihood that cases of asymptomatic parasitaemia with co-incident fever are non-

specifically included in febrile malaria cases (Mwangi et al. 2005, Bejon et al. 2007).  

The modifiable areal unit problem may lead to bias when an arbitrary grid size is used to 

aggregate data. I mitigated this problem by conducting a sensitivity analysis using grids with 

varying sizes (i.e. 1km, 2km and 4km squares). A further limitation is that detection of febrile 

malaria is influenced by study design, sample size and targeted age group, which was not 



 
 

138 | P a g e  

 

standardized across studies. However, I observed similar results even after adjusting for these 

potential confounders, and identified similar results for studies of febrile malaria and of 

asymptomatic parasitaemia.   

Most of the studies included were conducted in relatively high to moderate transmission settings 

or in low transmission settings following recent reductions in transmission. Areas that have 

historically experienced low transmission may be under-represented, and furthermore study 

sites were clustered within West and East Africa without representation of Central and Southern 

Africa. Only researchers interested in malaria hotspots were targeted to contribute data used in 

this study thus presenting a potential source of bias.    

 

4.6 Conclusions 

I found geographical micro-variation in malaria transmission within sites from across sub-

Saharan Africa at a variety of transmission intensities. Micro-variation was greater in low 

transmission settings, albeit with less statistical power to detect it where cases of malaria are 

few. The temporal instability of hotspots and the difficulties in defining hotspots (especially in 

higher transmission settings) will be a challenge to targeted control. However, given the 

predictability with which hotspots occur when transmission intensity is low (e.g. PfPR<10%), 

malaria control programmes should have a low threshold for responding to apparent clustering 

of cases. The ratio of R0 inside to R0 outside rose steeply below a parasite prevalence of 10%, 

suggesting that the potential to interrupt transmission by targeting hotspots increases below this 

prevalence. Many sub-Saharan African countries currently contend with high malaria 

transmission and based on recent evidence (Bousema et al. 2016), are unlikely to benefit 
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significantly from targeted control. However, some countries have witnessed substantial 

declines (such as, Zanzibar (Bhattarai et al. 2007), Swaziland (Kunene et al. 2011) among 

others) that warrant the implementation of targeted control to achieve elimination. Our data 

predicts that hotspots will be a marked feature of transmission in such settings. 
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Chapter Five 

5 Detecting malaria hotspots: a comparison of RDT, microscopy and 

polymerase chain reaction 

5.1 Introduction 

The efficacy of targeting hotspots of malaria transmission is likely to be higher if hotspots are 

detected accurately and their stability determined. I have shown in chapter 4 that the stability of 

hotspots may not be a generalizable property of malaria transmission. However, this potentially 

varies according to the diagnostic tools used to assess parasitaemia.  For instance, the lower 

densities detectable by PCR could lead to greater temporal stability of the heterogeneity 

detected. 

5.2 Objectives 

• To quantify the extent to which hotspots of malaria transmission detected by RDT and 

microscopy overlap geographically with those detected by PCR.  

• To examine the variability in temporal stability of hotspots identified by the three 

diagnostic tools.  

5.3 Method 

5.3.1 Ethics statement 

Approval for human participation in cross-sectional surveys was given by the Kenya Medical 

Research Institute Ethics Research Committee. Prior to any study procedure, written informed 

consent was obtained from all individuals participating in the surveys or, where appropriate, 

guardian/ parental consent was sought for children. The studies were conducted per the 

principles of the declaration of Helsinki. 
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5.3.2 Study sites 

I analysed data from annual cross-sectional surveys conducted within three separate cohort 

studies in Kilifi County on the Kenyan coast. The Junju cohort is located within the southern 

part of the Kilifi Health and Demographic Surveillance System (KHDSS) area (Figure 5.1) 

(Scott et al. 2012) and experiences perennially higher malaria transmission intensity (Mogeni et 

al. 2016) compared to the Ngerenya and Ganze cohorts which are located to the north.  

 

Figure 5.1: Map of Kilifi county showing the KHDSS area (shaded grey), and the homesteads 

where the studies were conducted. 

Annual surveillance of asymptomatic malaria in these cohorts has been described in detail 

elsewhere (Bejon et al. 2010, Kangoye et al. 2016). Briefly, in the Junju and Ngerenya cohorts, 

cross-sectional surveys were undertaken annually between 2007 and 2016 in Junju, and between 

2007 and 2014 in Ngerenya (Bejon et al. 2010). Surveys took place in April and May of each 
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year, just before the rainy season and all individuals recruited to the study cohorts were invited 

to participate by providing a blood sample for malaria diagnosis. In Ganze, two cross-sectional 

surveys were conducted, first, between July and September 2012, and second, between May and 

July 2013 (Kangoye et al. 2016). Global positioning system coordinates were linked to every 

homestead in each cohort.  

5.3.3 Laboratory procedures 

Presence of malaria parasites was examined using RDTs, microscopy and PCR by trained 

laboratory technicians and standardized across the sites. Blood samples were obtained from all 

children under 15 years of age whose consent to participate in the study had been obtained 

(Bejon et al. 2010, Kangoye et al. 2016). Children with fever (that is, axillary temperature 

>37.5oC) were referred for immediate assessment and treatment and not included in the survey 

data. Each sample collected was assessed for parasitaemia using RDT, microscopy and PCR in 

all sites. 

RDT analysis - The RDT used for the study is CareStart Malaria test manufactured by 

AccessBio Inc. RDTs detect the presence of P. falciparum histidine-rich protein 2 (HRP2) and 

P. falciparum lactate dehydrogenase (PLDH) in the blood. RDT stocks were stored in an air-

conditioned room with monitored temperature and humidity. Quality assurance for the stored 

test kits was conducted regularly before use by trained laboratory technicians. 

Microscopy analysis - Thick and thin blood smears were Giemsa stained and examined using 

light microscopy at 1,000x magnification for malaria parasites and malaria species respectively. 

Malaria infection and parasite counts by microscopy were determined independently by two 

readers and discordant readings resolved by a third reader. The number of parasites/200 white 

blood cells (WBCs) was counted and parasite density per microliter of blood calculated using 
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an average count of 8000 WBCs/µl of blood as described elsewhere (Mwangi et al. 2005) and 

reported by species (that is; P. falciparum, P. malariae and P. ovale).  

 PCR analysis - DNA was first extracted from 30 µl of whole blood using QIAxtractor machine 

(QIAGEN, Hilden, Germany). The DNA was eluted in 100 µl from which 5 µl of DNA was 

amplified by quantitative PCR. This was done using a TaqMan® assay for the P. falciparum 

multicopy 18S ribosomal RNA genes as described elsewhere (Hermsen et al. 2001), except that  

a modified probe (5′-FAM-AACAATTGGAGGGCAAG-NFQ-MGB-3′) as described 

elsewhere (Sheehy et al. 2012) was used. An Applied Biosystems 7500 Real-Time PCR System 

with quantification by Applied Biosystems 7500 software v2.0.6 was used. Samples were 

analysed in singlet wells. Three negative control wells and 7 serial dilutions of DNA extracted 

from in vitro parasite cultures were included as standards on each plate in triplicate (Ogwang et 

al. 2015). Plates failing quality control standards were repeated. The lower limit of accurate 

quantification of this method is 10 parasites/mL within the PCR elute, and by assessing 1/20th 

of 30 µl with a gene target present on 3 chromosomes have a theoretical limitation of 4.5 parasite 

per µl of whole blood, compared with a sensitivity of 50 parasites per µl for thick blood films.  

Laboratory technologists assessing malaria using each given diagnostic tool were blinded to the 

results of the other diagnostic tools. RDT, microscopy and PCR standards were monitored 

through a quality assurance scheme that included comprehensive training during induction and 

at regular intervals during the study period. Microscopy quality assurance was evaluated using 

external quality control slides. 
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5.3.4 Geographical cluster analysis 

Individuals who had complete data on RDT, PCR and microscopy were included in the analysis. 

Hotspots are defined as geographical areas experiencing significantly higher prevalence of 

asymptomatic parasitaemia than would be expected by chance. In this study, I assess chance 

using the spatial scan statistic (Kulldorff 1997) through the Bernoulli model in SaTScanTM 

software v9.4.1 as described in the methods section. Local clusters of RDT, PCR and 

microscopy data were assessed separately and the differences in parameters (i.e. risk ratios (RR), 

hotspots radius and P-values) compared.  

5.3.5 Temporal variation in malaria transmission 

Parasite prevalence was computed by imposing spatial grids on the data and collapsing to the 

mean prevalence within each cell of the grid. This was done with grids of variable sizes 

0.5x0.5km, 1x1km and 2x2km grid squares, selected a priori to allow for a sensitivity analysis 

that would examine the potential bias resulting from the modifiable areal unit problem, and 

repeated by year. The association between parasite prevalence by PCR and by microscopy or 

RDT was assessed for the various grid sizes. Furthermore, the stability of spatial heterogeneity 

for RDT, PCR and microscopy datasets was assessed by examining parasite prevalence within 

grids separated in time using the Spearman’s rank correlation coefficient.  

The degree to which hotspots overlap was defined as the fraction of homesteads within the 

intersection of hotspots detected by PCR and microscopy or RDT divided by the total number 

of homesteads within the hotspots. Only homesteads within primary hotspots (most likely 

cluster regardless of significance) and any other statistically significant secondary clusters were 

included in the computations. 
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Hotspots of malaria transmission were mapped on Google Map extracts in R version 3.3.1 

(Team 2016). Graphs were generated, Cohens’ Kappa statistic was computed and correlation 

analyses using Stata version 12 (StataCorp, Texas). 
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5.4 Results  

A total of 8581 study participants were surveyed in the three study sites. There was a positive 

correlation between P. falciparum parasite density measured by PCR and by microscopy among 

those testing positive (Figure 5.2a) (r=0.72, p<0.001, and a strong association between detection 

by PCR and detection by microscopy (Table 5.1, kappa=0.6159, p<0.001).  

 

Figure 5.2: Distribution of parasite densities. 

Panel A shows a scatter plot of Log-transformed parasite/µl densities detected by microscopy 

and PCR (PCR negative test results were assigned an arbitrary value of 0.05 parasite/µl, while 

microscopy negative test results were assigned an arbitrary value of 1 parasites/µl before log 

transformation to allow complete data presentation for samples that were either positive by 

PCR or microscopy). Panels B and C show histograms of log-transformed PCR and microscopy 

parasites/µl densities respectively, against normal distribution functions. 

 

Table 5.1: Number of samples that were malaria parasite positive by microscopy and PCR 

Site N 

Malaria test result  

Both PCR and 

Microscopy n(%) 

PCR only 

n(%) 

Microscopy 

only n(%) 

Negative by PCR and 

microscopy n(%) 

Junju 4910 790 (16.1) 688 (14.0) 22 (0.45) 3410 (69.45) 

Ngerenya 2406 5 (0.21) 44 (1.83) 0 (0) 2357(97.96) 

Ganze 1265 12 (0.95) 62 (4.90) 1(0.08) 1190(94.07) 

Total 8581 807 (9.40) 794 (9.25) 23 (0.26) 6957(81.07) 
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Parasite densities by PCR and microscopy were log-normally distributed (Figure 5.2b and 5.2c). 

The geometric mean PCR densities (of positive samples) were lowest in Ngerenya 11.79 

parasites/µl (95%CI 3.68-37.76 parasites/µl) and highest in Junju 220.02 parasites/µl (95%CI 

184.17-262.85 parasites/µl). 

5.4.1 Hotspots of malaria transmission 

Malaria species were only examined by microscopy. Overall, the prevalence of malaria by 

species in the three sites were 9.67% (830/8581 films), 0.16% (13/8004 films), 0.60% (48/8014 

films) and 0% (0/8014 films) for P. falciparum, P. ovale, P. malariae and P. vivax respectively. 

P. ovale and P. malariae were only detected in the moderate transmission site (Junju) and not 

in either of the low transmission sites. No P. vivax case was reported in any of the sites.  

In pooled data analysis from Junju, I identified 2 statistically significant hotspots of P. 

falciparum (radius=1.75 km, RR=2.69, p<0.001) and (radius=1.07 km, RR=2.87, p<0.001). I 

identified one significant primary hotspot of P. malariae (radius=0.053 km, RR=10.41, 

p=0.003) and a borderline significant secondary hotspot (radius=0 km, RR=9.33, p=0.065) and 

a non-significant hotspots of P. ovale (radius=1.76 km, RR=6.3, p=0.439). The hotspots of P. 

falciparum, P. malariae and P. ovale overlapped geographically (Figure 5.3). Further analysis 

is restricted to P. falciparum. 
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Figure 5.3: Hotspots of malaria transmission by species. 

Green (significant primary and secondary hotspots), blue (primary non-significant hotspot) and 

the black (significant primary and secondary hotspots) circles represent hotspots of P. 

falciparum, P. ovale and P. malariae respectively as detected by microscopy. 

P. falciparum was detected by PCR, RDT and microscopy. Significant hotspots of malaria 

transmission by the three diagnostic tools were observed in the Junju and Ganze sites. However, 

hotspots of malaria transmission in Ngerenya were statistically significant only when measured 

by PCR and RDT, and not statistically significant when measured by microscopy (Table 5.2). 

Overall (pooled data analysis across all years of monitoring), the degree of overlap between 

hotspots detected by PCR and those detected by microscopy was 100% in Junju, but less overlap 

was noted when hotspots were examined by year (Table 5.2 and Figure 5.4). 
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Figure 5.4: Hotspots of malaria transmission by diagnostic tool. 

Panels A and B show the Junju (moderate transmission) and Ganze (low transmission) cohorts 

respectively. In Junju, there was complete overlap between PCR (black circles) and microscopy 

(green circles) but partially by RDT (blue) for the primary hotspot (I). However, for the three 

diagnostic tools used, there was complete overlap in the significant secondary hotspots (II). In 

Ganze, the hotspot detected by microscopy (green circle) was within the hotspots detected by 

PCR (black circle) and at the border with RDT (blue circle). 

However, in the Junju site, there was partial overlap of PCR and RDTs’ primary hotspots 

(45.9%), but complete overlap for the significant secondary hotspots (Table 5.2). Overall, 

overlap in hotspots detected in Ganze and Ngerenya sites were inconsistent. The risk ratios for 

microscopy hotspots were consistently larger than those measured by PCR. 
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Table 5.2: Properties of malaria hotspots and degree of homestead overlap between hotspots detected by PCR, microscopy and RDT. 

    PCR Microscopy RDT Degree of Overlap (%) 

Study Period Radius RR P-value Radius RR P-value Radius RR P-value 
PCR vs 

Microscopy  

PCR vs 

RDT 

RDT vs 

Microscopy  

Junju 

Overall 1.75 1.85 <0.001 1.75 2.69 <0.001 0.81 1.91 <0.001 100 45.9 45.9 

Overall* 1.07 2.23 <0.001 1.07 2.87 <0.001 1.07 2.61 <0.001 100 100 100 

2007 0.9 2.17 0.003 2.11 4.57 <0.001 2.38 4.99 <0.001 42.02 39.32 82.22 

2008 1.67 2.2 <0.001 1.76 2.22 0.002 1.58 3.92 <0.001 71.54 72.5 85.71 

2009 2.38 2.34 <0.001 1.54 3.4 <0.001 1.71 7.88 <0.001 68.79 55.84 73.64 

2010 1.77 2.01 <0.001 1.78 2.65 <0.001 1.97 3.76 <0.001 79.2 73.13 63.19 

2011 1.44 2.71 <0.001 1.72 6.28 <0.001 0.64 5.5 0.009 76.42 20.18 23.68 

2012 2.08 2.02 <0.001 1.29 2.7 <0.001 1.78 2.08 0.001 57.63 61.81 57.76 

2013 0.36 3.31 0.002 0.19 9.07 0.133 1.98 2.69 0.001 8.33 8.53 2.33 

2014 0 3.37 0.089 0.94 4.11 0.096 0.19 2.11 0.018 0 0 0 

2015 0.74 2.25 <0.001 0.63 3.31 <0.001 0.52 2.44 <0.001 25.42 48.65 22.64 

2015* 0.33 2.68 0.02 0.14 3.56 0.015 0.33 2.49 0.025 25.42 100 0 

2016 0 3.74 0.208 0.64 3.19 0.122 0.02 3.61 0.017 0 0 0 

Ganze Overall  12.12 4.14 <0.001 0.76 31 0.003 10.08 67.4 <0.001 2.75 75.61 2.8 

Ngerenya 

Overall 1.04 5.35 0.005 0 36.6 0.122 0 33.8 0.017 50 50 100 

2007-2010 0 8.96 0.213 1.65 8.11 0.758 0 60.69 0.059 0 100 0 

2010-2014 0.56 5.2 0.016 - - - 0.83 14.28 0.34 - 25 - 

                 * includes significant secondary clusters 
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5.4.2 Association between parasite prevalence by PCR, microscopy and RDT 

In all sites, and across all three grid sizes examined, there was a strong positive correlation 

between prevalence of parasitaemia measured by PCR and microscopy or RDT (i.e. 

geographical areas experiencing high malaria prevalence as measured by PCR were also more 

likely to be high when measured by microscopy or RDT). However, the associations were 

weaker in low transmission settings (Table 5.3 and Table 5.4).  
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Table 5.3: Association between parasite prevalence by PCR and microscopy at various grid sizes. 

Site Year 

Parasite Prevalence  0.5x0.5 km2 Grid  1x1 km2 Grid  2x2 km2 Grid  

PCR 

(%) 

Microscopy 

(%) 
Correlation (CI) P-value Correlation (CI) P-value Correlation (CI) P-value 

Junju Cohort 

Overall  30.10 16.54 0.73 (0.70 - 0.76) <0.001 0.81 (0.77 - 0.84) <0.001 0.86 (0.82-0.89) <0.001 

2007 29.82 16.27 0.70 (0.50 - 0.83) <0.001 0.70 (0.37 - 0.88) <0.001 0.83 (0.38-0.96) 0.005 

2008 47.51 29.33 0.79 (0.63 - 0.89) <0.001 0.83 (0.62 - 0.94) <0.001 0.93 (0.71-0.99) <0.001 

2009 31.45 21.36 0.58 (0.32 - 0.76) <0.001 0.82(0.58 - 0.93) <0.001 0.90 (0.58-0.98) <0.001 

2010 39.32 21.98 0.78 (0.71 - 0.84) <0.001 0.76 (0.63 - 0.85) <0.001 0.83 (0.65-0.92) <0.001 

2011 26.93 15.48 0.69 (0.58 - 0.77) <0.001 0.80 (0.69 - 0.87) <0.001 0.88 (0.75-0.95) <0.001 

2012 27.68 15.40 0.72 (0.62 - 0.79) <0.001 0.79 (0.67 - 0.87) <0.001 0.80 (0.59-0.91) <0.001 

2013 19.42 7.89 0.69 (0.59 - 0.77) <0.001 0.79 (0.67 -0.87) <0.001 0.85 (0.68-0.93) <0.001 

2014 30.32 14.76 0.73 (0.64 - 0.81) <0.001 0.83 (0.73 - 0.89) <0.001 0.91 (0.81-0.96) <0.001 

2015 30.75 17.65 0.77 (0.61- 0.88) <0.001 0.76 (0.49 - 0.90) <0.001 0.81 (0.37-0.95) 0.005 

2016 23.51 11.26 0.46 (0.17 - 0.69) 0.004 0.48 (0.04 - 0.77) 0.036 0.47 (-0.22-0.85) 0.167 

Ngerenya 

Cohort 
Overall  2.04 0.21 0.37 (0.27-0.46) <0.001 0.38 (0.26-0.48) <0.001 0.40 (0.22-0.56 <0.001 

                    

Ganze 

Cohort 

Overall 5.85 1.03 0.45 (0.34 - 0.55) <0.001 0.45 (0.30 - 0.58) <0.001 0.48 (0.28 - 0.63) <0.001 

2012 7.73 1.81 0.51 (0.37 - 0.63) <0.001 0.53 (0.35 - 0.68) <0.001 0.60 (0.34 - 0.77) <0.001 

2013 4.11 0.30 0.35 (0.17 - 0.51) <0.001 0.30 (0.05 - 0.52) 0.0195 0.23 (-0.11 - 0.53) 0.1852 
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Table 5.4: Association between parasite prevalence by PCR and parasite prevalence by RDT at various grid sizes 

Site Year 

Parasite 

Prevalence  
0.5x0.5 km2 Grid  1x1 km2 Grid  2x2 km2 Grid  

PCR 

(%) 

RDT 

(%) 
Correlation (CI) 

P-

value 
Correlation (CI) 

P-

value 
Correlation (CI) 

P-

value 

Junju  

Overall  30.1 20.2 0.58 (0.53 - 0.63) <0.001 0.66 (0.60 - 0.71) <0.001 0.67 (0.60-0.76) <0.001 

2007 29.82 15.7 0.68 (0.46 - 0.82) <0.001 0.69 (0.35 - 0.87) <0.001 0.89 (0.54-0.98) 0.002 

2008 47.51 21.5 0.65 (0.42 - 0.81) <0.001 0.53 (0.09 - 0.79) 0.021 0.93 (0.69-0.99) <0.001 

2009 31.45 15.8 0.56 (0.30 - 0.75) <0.001 0.69 (0.34 - 0.87) 0.001 0.87 (0.49-0.97) 0.002 

2010 39.32 13.9 0.52 (0.36 - 0.64) <0.001 0.49 (0.25 - 0.67) <0.001 0.35 (-0.08-0.66) 0.1045 

2011 26.93 5.3 0.56 (0.43 - 0.67) <0.001 0.73 (0.59 - 0.83) <0.001 0.77 (0.55-0.89) <0.001 

2012 27.68 22.4 0.58 (0.45 - 0.69) <0.001 0.66 (0.50 - 0.78) <0.001 0.79 (0.57-0.90) <0.001 

2013 19.42 14.6 0.63 (0.51 - 0.73) <0.001 0.79 (0.67 - 0.87) <0.001 0.89 (0.77-0.95) <0.001 

2014 30.32 37.1 0.71 (0.61 - 0.79) <0.001 0.88 (0.81 - 0.93) <0.001 0.89 (0.77-0.95) <0.001 

2015 30.75 32.8 0.55 (0.29 - 0.74) <0.001 0.53 (0.13 - 0.78) 0.0135 0.86 (0.49-0.97) 0.002 

2016 23.51 28.9 0.54 (0.26 - 0.73) <0.001 0.62 (0.23 - 0.84) 0.005 0.91 (0.66 - 0.98) <0.001 

 Overall 5.98 1.67 0.44 (0.33 - 0.54) <0.001 0.47 (0.32 - 0.59) <0.001 0.52 (0.33 - 0.67) <0.001 

Ganze 2012 8.18 2.99 0.56 (0.42 - 0.67) <0.001 0.48 (0.28 - 0.64) <0.001 0.59 (0.34 - 0.77) <0.001 

 2013 3.94 0.44 0.23 (0.04 - 0.41) 0.0170 0.44 (0.21 - 0.62) <0.001 0.37 (0.03 - 0.63) 0.0327 

Ngerenya Overall  2.04 0.38 0.40 (0.22 - 0.56) <0.001 0.85 (0.78 - 0.90) <0.001 0.37 (0.18 - 0.53) <0.001 
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5.4.3 Temporal stability of malaria transmission in the study sites 

In the Junju site, the prevalences of parasitaemia within grids were predictive of the prevalence 

in the following year. The stability appeared to be greater for PCR and microscopy, which 

remained significant for intervals below 5 years, and less stable for RDT prevalences, which 

were significantly predictive of the prevalence in the following year and only up to 2 year 

intervals in this site.  

In contrast, the prevalences of parasitaemia within grids in Ganze were not predictive for the 

following year by any measure (Table 5.5, Table 5.6 and Table 5.7) and such an analysis was 

not possible in Ngerenya due to low power resulting from limited number of malaria cases in 

the area. The findings on temporal stability were consistent across the 3 spatial scales used 

(0.5x0.5 km2, 1x1 km2 and 2x2 km2). 
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Table 5.5: Association between distribution of malaria parasite prevalence detected by microscopy, PCR and RDT within 0.5x0.5 km2 

grid size over time intervals. 

    0.5x0.5 km2 Grid 

Study 

Site 

Interval between 

cluster (year) 

Microscopy Analysis PCR Analysis RDT Analysis 

Correlation 

(95%CI) 

P-

value 
Correlation (95%CI) P-value Correlation (95%CI) P-value 

Junju 

1 0.46 (0.40 - 0.52) <0.001 0.40 (0.33-0.46) <0.001 0.32 (0.25-0.39) <0.001 

2 0.46 (0.40 - 0.53) <0.001 0.34 (0.27-0.42) <0.001 0.34 (0.26-0.41) <0.001 

3 0.31 (0.22 - 0.39) <0.001 0.28 (0.19-0.37) <0.001 0.11 (0.02-0.21) 0.0233 

4 0.30 (0.20 - 0.40) <0.001 0.30 (0.19-0.40) <0.001 0.07 (-0.05-0.18) 0.2465 

5 0.31 (0.17 - 0.43) <0.001 0.19 (0.05-0.33) 0.009 0.05 (-0.09-0.19) 0.4637 

6 0.25 (0.09 - 0.40) 0.0022 0.18 (0.02-0.34) 0.0313 0.11 (-0.06-0.27) 0.2092 

7 0.19 (0.001 - 0.37) 0.0494 0.17 (-0.02-0.35) 0.0748 0.18 (-0.02-0.35) 0.0719 

8 0.28 (0.05 - 0.49) 0.0207 0.11 (-0.13-0.34) 0.3554 0.16 (-0.09-0.38) 0.2038 

9 0.27 (-0.08 - 0.57) 0.122 -0.04 (-0.38 - 0.30) 0.8105 -0.04 (-0.30 - 0.38) 0.8253 

Ganze 1 -0.05 (-0.40-0.31) 0.798 0.39 (0.04-0.65) 0.0308 - - 

 

 



 
 

156 | P a g e  

 

Table 5.6: Association between distribution of malaria parasite prevalence detected by microscopy, PCR and RDT within 1x1 km2 grid 

size over time intervals. 

    1x1 km2 Grid 

Study 

Site 

Interval between 

cluster (year) 

Microscopy Analysis PCR Analysis RDT Analysis 

Correlation (95%CI) P-value Correlation (95%CI) P-value 
Correlation 

(95%CI) 

P-

value 

Junju 

1 0.46 (0.37 - 0.54) <0.001 0.41 (0.32-0.49) <0.001 0.44 (0.35-0.52) <0.001 

2 0.49 (0.40 - 0.58) <0.001 0.40 (0.29-0.49) <0.001 0.44 (0.34-0.53) <0.001 

3 0.33 (0.21 - 0.45) <0.001 0.34 (0.22-0.45) <0.001 0.16 (0.03-0.29) 0.0175 

4 0.35 (0.21 - 0.48) <0.001 0.38 (0.23-0.50) <0.001 0.12 (-0.04-0.28) 0.1394 

5 0.27 (0.08 - 0.45) 0.006 0.15 (-0.05-0.34) 0.1403 0.03 (-0.17-0.22) 0.794 

6 0.29 (0.07 - 0.48) 0.01 0.19 (-0.03-0.39) 0.094 0.08 (-0.14-0.30) 0.4575 

7 0.20 (-0.05- 0.44) 0.1142 0.19 (-0.07-0.42) 0.1525 0.05 (-0.21-0.30) 0.7078 

8 0.23 (-0.09- 0.51) 0.1616 0.07 (-0.25-0.38) 0.6712 0.03 (-0.29-0.34) 0.871 

9 0.34 (-0.14- 0.69) 0.1574 0.04 (-0.42-0.48) 0.8789 -0.20 (-0.60-0.28) 0.4059 

Ganze 1 -0.05 (-0.40-0.31) 0.798 0.39 (0.04-0.65) 0.0308 - - 
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Table 5.7: Association between distribution of malaria parasite prevalence detected by microscopy, PCR and RDT within 2x2 km2 grid 

size over time intervals. 

    2x2 km2 Grid 

Study 

Site 

Interval 

between cluster 

(year) 

Microscopy Analysis PCR Analysis RDT Analysis 

Correlation (95%CI) P-value 
Correlation 

(95%CI) 
P-value 

Correlation 

(95%CI) 
P-value 

Junju 

cohort 

1 0.46 (0.32-0.58) <0.001 0.41 (0.26-0.53) <0.001 0.43 (0.29-0.56) <0.001 

2 0.55 (0.41-0.66) <0.001 0.44 (0.29-0.58) <0.001 0.50 (0.35-0.62) <0.001 

3 0.44 (0.26-0.59) <0.001 0.34 (0.15-0.51) <0.001 0.18 (-0.02-0.37) 0.0843 

4 0.46 (0.25-0.63) <0.001 0.48 (0.28-0.64) <0.001 0.08 (-0.16-0.31) 0.532 

5 0.53 (0.29-0.71) <0.001 0.34 (0.06-0.57) 0.0188 0.11 (-0.19-0.38) 0.4836 

6 0.47 (0.18-0.69) 0.003 0.32 (-0.01-0.59) 0.0505 0.27 (-0.07-0.55) 0.1179 

7 0.48 (0.12-0.73) 0.0111 0.65 (0.35-0.82) <0.001 0.22 (-0.17-0.56) 0.2651 

8 0.33 (-0.16-0.69) 0.1788 0.27 (-0.22-0.66) 0.2732 0.34 (-0.15-0.70) 0.1659 

9 0.54 (-0.19-0.89) 0.1318 0.74 (0.14-0.94) 0.024 0.34 (-0.42-0.82) 0.3721 

Ganze 

cohort 
1 0.35 (-0.08- 0.67) 0.1075 0.30 (-0.14-0.64) 0.1712 - - 
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5.5 Discussion 

P. falciparum parasite prevalence has frequently been used as a marker of transmission intensity 

and is widely used in detection of hotspots of asymptomatic parasitaemia. However, the 

estimated prevalence of parasitaemia has been shown to vary substantially with the diagnostic 

tool used. PCR and other molecular techniques are significantly more sensitive than microscopy 

and RDT for detection of malaria parasites, especially at lower transmission intensities where 

parasite densities are lower (Okell et al. 2009, Okell et al. 2012). This study examines the micro-

epidemiology of malaria transmission in three sites on the Kenyan coast experiencing varying 

transmission intensities.  

There was substantial heterogeneity of malaria transmission in the three sites, as has been 

previously described (Bejon et al. 2010). Hotspots were detected by PCR, RDT and microscopy, 

and were statistically significant for all sites except by microscopy in the Ngerenya site. When 

all years from the Junju site were pooled for spatial analysis, hotspots by PCR completely 

overlapped with hotspots by microscopy and partially overlapped with RDT. However, an 

analysis of individual year by year data showed some variation in the degree of overlap (Table 

5.1). Overlap became less marked in later years, coinciding with reductions in transmission 

intensity (O'Meara et al. 2008), and little overlap was noted in Ganze, where transmission is 

lower (Kangoye et al. 2016). It is unsurprising that hotspots of the different malaria species 

overlapped geographically since they are transmitted by similar vectors. 

There were significant correlations between PCR and microscopy, and between PCR and RDT 

parasite prevalences within grid cells imposed on the data at three different spatial scales. The 

correlations were stronger in Junju than in Ngerenya and Ganze (Table 5.2). The prevalence of 

infection was below 2% in Ngerenya and Ganze. Taking the findings on degree of overlap of 
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hotspots in the different transmission settings and the correlation between parasite prevalence 

together, I conclude that hotspots detected by PCR are likely to occur in the same geographical 

areas as those detected by microscopy at moderate transmission intensities. However, the degree 

to which they overlap is lessened when transmission is less intense. 

As would be expected, PCR densities were lower than microscopy densities (Bejon et al. 2006), 

and the average densities by PCR were lower in low transmission settings (Ngerenya and Ganze) 

compared to the moderate transmission setting (Junju). Moreover, the proportion of PCR 

positive cases that were positive by microscopy were highest in Junju, followed by Ganze and 

Ngerenya in that order (Table 5.1). My findings suggest that microscopy and RDT misses a 

larger proportion of infections in low transmission areas (Ngerenya and Ganze) compared to the 

one moderate transmission setting in Junju, and may explain why PCR becomes more important 

in detecting hotspots at lower transmission intensities.   

I observed stable hotspots of asymptomatic parasitaemia in the Junju cohort but not in Ganze, 

and I was not sufficiently powered to assess stability of hotspots in Ngerenya. Hotspots were 

similarly stable when detected by PCR or microscopy but not RDT (Table 5.3). The advent of 

HRP2 dependent RDTs greatly expanded access to malaria diagnostics tools because of low 

cost and ease of applicability in the field, but the sensitivity of this technique is lower than that 

of PCR and may be comparable to the sensitivity of routine microscopy (WHO 2012b). In 

addition, HRP2 antigen can circulate in blood for weeks after treatment leading to false 

positives,  and recent studies show that some P. falciparum parasites do not express the HRP2 

protein leading to false negatives (Cheng et al. 2014). These factors potentially result in poorer 

discrimination for the location of hotspots, explaining the lack of long-term stability of hotspots 

detected by RDT. Furthermore, hotspots defined by RDT did not consistently overlap the PCR 
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or microscopy hotspots. I conclude that although RDTs have a firmly established place in 

diagnosis of acute fever and malaria indicator surveys  (Murray et al. 2008, WHO 2012b), their 

utility for fine-scale mapping of hotspots is less clear. 

The main limitation of this study is that data were collected from geographical areas of close 

proximity on the Kenyan coast. However, these geographical areas captured a range of 

transmission intensities and during a period when transmission was falling (Mogeni et al. 2016). 

Although the Ngerenya dataset (i.e. a site with low transmission intensity) was large (n=2286), 

there were few positive cases (Table 5.1) and hence limited power to describe and compare 

hotspots. Microscopy has low sensitivity in detecting minority species in mixed infections. In 

this study only P. falciparum specific PCR was used and this could have led to non-falciparum 

infections being missed and therefore underestimated the prevalence of the minority species and 

the position, size and significance of the hotspots. 

Clinical malaria case monitoring has also been used to identify hotspots of malaria transmission 

(Kangoye et al. 2016). However, this may be less sensitive in identifying stable hotspots of 

malaria where substantial immunity in the population offsets the risk of clinical malaria (Bejon 

et al. 2010) and even at low transmission intensity, hotspots determined by PCR do not overlap 

with microscopy hotspots (Kangoye et al. 2016). Hence, PCR monitoring of asymptomatic 

infection may identify hotspots that would not be detected by monitoring clinical cases and may 

be useful for pre-elimination surveillance. 

5.6 Implications of the findings 

Malaria control programs increasingly need to adopt targeted malaria control at low 

transmission intensities. My findings suggest that PCR, RDT and microscopy can potentially 



 
 

161 | P a g e  

 

determine hotspots at moderate transmission intensities, but PCR testing has a diagnostic 

advantage as transmission intensity falls. Therefore, Malaria control programs should consider 

PCR testing when the prevalence of infection is low. 
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Chapter Six 

6 Concluding remarks and recommendations 

6.1 Summary of findings 

Parts of sub-Saharan Africa have witnessed declines in malaria transmission intensity over the 

past two decades. Spatial heterogeneity is expected to be more marked as transmission intensity 

declines and therefore presents an opportunity for targeted control. However, this should be 

accompanied by an understanding of the factors predicting malaria heterogeneity. Furthermore, 

it is predicted that declining transmission intensity may result to a shift in age of susceptibility 

to malaria with important consequences in case fatality rates. The analyses presented in chapter 

3 of this thesis examines some of these features using a detailed 25-year longitudinal hospital 

surveillance dataset with the aim of describing the spatial-temporal patterns of malaria 

transmission in Kilifi County. I conducted further analysis of trends of malaria positive fraction 

by age group and the effect of environmental factors, personal and community ITN use, and age 

on malaria heterogeneity. The key findings were: - 

• Malaria transmission intensity in Kilifi County is spatially and temporally 

heterogeneous. Hospital presentation with malaria parasites declined from around the 

year 2000 to 2009 and increased through to 2014. The decline in transmission intensity 

occurred before the mass distribution of ITN and the practical implementation of the 

government policy change over from chloroquine to ACT as the first line mode of 

treatment against uncomplicated malaria. Geographical heterogeneity was greater after 

the decline keeping with previous observations. Furthermore, the stability of malaria 

transmission at the locational level declined with declining transmission intensity such 
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that the negative association between MPF and age of susceptibility at the post decline 

period was non-significant. 

• During the high transmission period, young children predominantly presented to hospital 

for admission with malaria parasites in their blood. However, as transmission intensity 

declined, largely older children presented with malaria for admission. Fortunately, there 

was no clear trend towards increasing mortality as would be predicted. This result may 

not be definitive given several unmeasured potential confounders that likely mask the 

true trend in mortality over time. For instance, a) increasing hospital accessibility over 

time leading to more timely presentation for treatment and b) improved malaria case 

management over time because of implemented research findings. 

• The prevalence of ITN use among the whole population within a 2-kilometre radius of 

the admitted child’s residence was strongly predictive of protection. High community 

ITN coverages were associated with lower malaria cases. 

• The enhanced vegetation index (EVI) was predictive of malaria but explained a small 

fraction of the variability in the outcome variable. Overall, the variability explained by 

the model was ~23%. 

Geographically defined clusters (hotspots) are a consistent feature of malaria transmission in 

sub-Saharan Africa. The utility of hotspots to malaria control programmes is at moderate to low 

transmission intensity where hotspots are more marked and predicted to complicate elimination 

efforts. Although hotspots have been detected in most epidemiological studies, the potential of 

targeting them through cluster randomised controlled studies has not been assessed 

comprehensively to determine their utility in the field. This is partly because rational design of 

cluster randomised control interventions need detailed descriptions of the properties of hotspots 
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and the methods used to detect them. These properties of hotspots and the effects of diagnostic 

tools on hotspots are not well understood and compared over a variety of transmission settings 

to assess their reproducibility. The analyses presented in chapter 4 and chapter 5 of this thesis 

addressed some of these issues.  

Key findings: - 

•  The risk ratio of malaria within the hotspots was higher at low MPF suggesting that 

spatial heterogeneity becomes gradually marked at low transmission intensities, keeping 

with results from chapter 3. However, the strength of evidence (p-values) increased from 

low MPFs to moderate MPFs and then declined towards high MPFs further suggesting 

that although spatial heterogeneity becomes more apparent at low transmission 

intensities, the power to detect hotspots during low transmission becomes low as cases 

become more sparse. 

• Previous analysis of hotspots in Kilifi County on the Kenyan coast identified two types 

of hotspots; a) stable hotspots of asymptomatic malaria and b) unstable hotspots of 

febrile malaria. I examined the stability of hotspots using 4 longitudinal studies 

conducted outside Kilifi county to assess generalizability. Both hotspots of 

asymptomatic parasitaemia and hotspots of febrile malaria were unstable suggesting that 

stability of hotspots of asymptomatic malaria is not a reproducible feature in all 

transmission settings. 

•  Micro-variation of malaria transmission was negatively associated with age of 

susceptibility in most datasets, suggesting that, during high transmission intensity, 

children acquire immunity rapidly due to intense exposure when they are younger and 

hence do not present with symptomatic malaria when they are older and vice versa. I 
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assessed the association between micro-variation of symptomatic malaria with age of 

susceptibility for each dataset and combined the estimates in a meta-analysis at three 

spatial scales determined a priori. Heterogeneity between studies (I2) declined with 

increasing spatial scale while the pooled correlation estimate became larger at relatively 

coarse spatial scales keeping with previous studies (Bejon et al. 2014). In addition, there 

were significant positive spatial autocorrelations in age of susceptibility to febrile 

malaria in most datasets of febrile malaria, thus providing further evidence that micro-

variation of transmission intensity may have led to variation in the degree of acquisition 

of clinical immunity. 

The prevalence of asymptomatic parasitaemia varies considerably between diagnostic tools 

(Okell et al. 2009, Okell et al. 2012).  The aim of the analysis presented in chapter 5 (Mogeni et 

al. 2017b) was to assess the degree with which hotspots detected by RDT, PCR and microscopy 

analysis overlap geographically.  

Key findings: - 

• Substantial heterogeneity of malaria transmission was observed in the three sites, as 

previously reported (Bejon et al. 2010). P. falciparum was detected in the three sites 

examined (Junju, Ngerenya and Ganze cohorts), however, P. ovale and P. malariae were 

only detected in the Junju site. Hotspots of P. falciparum examined by microscopy 

overlapped with hotspots of P. ovale and P. malariae but there was no reported case of 

P. vivax in any of the three sites examined. 

• The degree of overlap between diagnostic tools decreased with decreasing transmission 

intensity. Hotspots detected by PCR and microscopy remained stable for over five years, 

however, hotspots detected by RDTs were significantly stable for up to 2 years.  



 
 

166 | P a g e  

 

The studies presented in this thesis provides important empirical evidence on the likely outcome 

following declined malaria transmission intensity and the importance of universal coverage with 

ITNs. This information emphasizes the need for continued investment on malaria control 

interventions even when transmission intensity is very low. The studies contribute to the limited 

empirical evidence of increased heterogeneity as transmission intensity decline. Furthermore, 

important recommendations for the malaria control programs are deduced; 1) PCR testing is 

needed for detection of asymptomatic malaria during low transmission intensities 2) Targeting 

of hotspots of malaria transmission may achieve greater impact when transmission intensity is 

low (i.e. when the PfPR is below 10%). 

Alternative definitions of hotspots 

A malaria hotspot can also be defined as an area where the malaria risk is highly likely to exceed 

a threshold considered to be relevant to policy. A key challenge with policy thresholds is in the 

determination of a universally acceptable cutoff that cuts across the spectrum of malaria 

transmission intensities. The definition could alternatively be based on prior theoretical 

assumptions. For instance, a threshold that includes 20% of the analysed population in the 

hotspot (Stresman et al. 2017) is based on the theoretical 80–20 assumption where 20% of the 

population has been shown to experience 80% of the disease episodes (Woolhouse et al. 1997a). 

Although this threshold may be applicable in some settings, site specific variations in 

distributions of infection may exist and the most appropriate proportion of the population to 

include in a hotspot may vary (Stresman et al. 2017). 

A hotspot of malaria transmission can also be defined as an area where the difference between 

the local sum of positive malaria cases for a given location and its neighbours is larger than the 

expected as calculated using the Getis Ord Gi* statistic. The Getis Ord Gi* statistic yields 
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standardised Z-scores and is defined as the ratios of the local sum of the values in the vicinity 

of a given distance to the sum of all values. When the local sum is different than the expected 

local sum, and the difference is too large to be the result of random chance, a statistically 

significant Z-score results. The positive Z-scores indicate high cases of malaria (hotspots) while 

negative Z-scores indicate low malaria cases (cold spots) (Getis and Ord 1992). The 

significance of a hotspot can be obtained from an optimized hotspot analysis function in ArcGIS 

(Ver.10.2, ESRI Inc., CA, USA) using threshold Z-scores (Izumi et al. 2015). For instance, 

Gwitira et al used a Z-score ≥1.96 as a cut-off to define a hotspot based on the critical Z-score 

values from 95% confidence level (Gwitira et al. 2018). Although Getis-Ord Gi* statistic has 

been used in literature to detect hotspots, it suffers from the problem of multiple testing (Gwitira 

et al. 2018), a longstanding difficulty in determining hotspots in the absence of non-arbitrary 

geographical “bins” for data, as recognized by Openshaw (Openshaw et al. 1987). 

6.2 Recommendations for future studies 

Although there was no clear trend towards increasing mortality in Kilifi following initial 

reductions in transmission intensity (chapter 3), parallel factors may contribute to the observed 

outcome. For instance, increased accessibility or hospital acceptance and improved case 

management may mask the true trend in mortality over time, if all factors were kept constant. 

Further analysis of malaria phenotypes over time may be required to give insight on the impact 

of the age-shifting burden of disease to older children on the severity of malaria. 

The rate of ITNs loss within the KHDSS area following the mass distribution of nets is a cause 

of concern. This work can be extended to assess reasons for ITN loss/ non ITN use in the 

community through focused group discussions and community engagement to improve ITN 

uptake. 
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Further analysis on the stability of hotspots during the dry and rainy seasons will likely provide 

useful information on the contribution of seasonality. Previous analysis shows that hotspots are 

maintained during dry seasons and rainy seasons (Bejon et al. 2010, Bousema et al. 2012b), 

however, there is little empirical evidence on the degree with which such hotspots overlap. The 

analysis of year to year variations presented in chapter 4 and 5 masks the potential role of 

seasonality. A more temporally fine-grained analysis to examine seasonal signals would have 

been a useful addition to this work, however, sample size constraints made it difficult to carry 

out monthly analysis for the limited longitudinal datasets that were available.  

Hotspots of malaria transmission could be predicted using remote sensing data extracted from 

NASA satellite (aqua and terra) (Bejon et al. 2010). Data from these satellites senses various 

environmental signals reflecting vegetation density, water/moisture and temperature. I 

identified that EVI (enhanced vegetation index) weakly predicted malaria cases in Kilifi County 

in Chapter 3.  A further extension to chapter 4 would entail an analysis of the correlation between 

the satellite data and malaria prevalence or MPF using regression models. The estimates can 

then be pooled to obtain overall effect sizes and a measure of heterogeneity between studies. A 

further assessment of trend in study specific effect size (for the various environmental 

covariates) over transmission intensity will be a valuable addition to the current literature 

assessing the effect environmental covariates at varying transmission intensities.  

Significant hotspots of malaria transmission can be detected within larger hotspots up to the 

homestead level (Bejon et al. 2014). This suggest that, the size of a hotspot will largely depend 

on the size of the area that is being examined. These feature of hotspots makes it difficult to 

determine the size of a hotspot that could be targeted if the whole foci of transmission were to 
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be studied. I recommend genomic studies to assess the degree of parasite mixing in space and 

time to determine the distances beyond which parasite mixing is unlikely. 

An important extension to chapter 5 will entail an analysis of the correlation between overlap 

of hotspots by diagnostic tools and temporal stability. This would require large assembled 

longitudinal datasets from which parameters describing both the degree of overlap and stability 

of hotspots could be computed and the correlations between these parameters assessed. 

6.3 Recommendations for malaria control programmes 

In conclusion, I recommend continued monitoring of malaria cases and related outcomes 

following declining malaria transmission intensity. Malaria control programmes should 

continue investing in malaria control interventions even when malaria transmission intensity 

appears to be low to prevent a likely “rebound” in malaria among older children as a population 

emerges with less immunity than was previously the case. ITN use remains an effective malaria 

control tool and achieving universal coverage should be prioritized. Key groups to target to 

achieve universal coverage are older children and adolescents.  

Heterogeneity of malaria transmission becomes more apparent as transmission intensity 

declines and is particularly marked at transmission intensities <10%. I propose that malaria 

transmission hotspots should be targeted when the overall parasite prevalence is low (<~10%), 

as my data suggest slight more modest clustering of malaria cases in hotspots at high 

transmission intensity. Many sub-Saharan Africa countries experience transmission intensities 

considerably above this threshold and may not benefit from hotspots targeted interventions. 

However, some countries in sub-Saharan Africa are already in the elimination stage and may 

benefit from targeted interventions. Mathematical modelling studies could guide on the most 

cost effective combination of interventions and coverage levels to achieve elimination. The 
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stability of hotspots may not be a reproducible property of malaria transmission hotspots in sub-

Saharan Africa and should therefore be assessed prior to rollout of interventions, and 

surveillance should therefore be continuously done to guide malaria control. Given the evidence 

on hotspots properties discussed, there is a need to design field trials to assess the impact of 

hotspot targeted interventions and the cost implication in areas experiencing low transmission 

intensities. Finally, I recommend Polymerase Chain Reaction for the identification and targeting 

of asymptomatic hotspots of malaria transmission when cross-sectional surveys are used in areas 

of very low transmission intensity, since RDT or microscopy seem to identify very similar 

hotspots at low to moderate transmission intensity. 

At the pre-elimination (Cohen et al. 2010) stage of malaria control, hotspots of malaria 

transmission are likely to be less stable and to lead to mainly symptomatic malaria cases due to 

reduced immunity among the population resulting from reduced exposure. At this stage malaria 

control programmes may consider using health-care based surveillance systems for targeting 

intervention. For instance, a symptomatic case presenting to hospital may be used to map out 

areas requiring targeted mass drug administration (MDA) in which case close contacts, 

households or villages of the index case are targeted (Hsiang et al. 2013). Alternatively, whole 

population MDA could be considered to clear residual transmission in areas of very low 

transmission intensity (von Seidlein and Greenwood 2003, Cotter et al. 2013). However, this 

approach will likely require an organized effort by neighboring countries and would be more 

feasible at a regional level as opposed to individual countries due to cross border human mobility 

and border vector dispersal. At low transmission intensity, MDA will likely result in treatment 

of many uninfected individuals, and this could be avoided by using a screening test to target 

treatment (i.e. mass screen and treat or MSAT). Countrywide MSAT will be hampered by the 
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apparent detection limitations of the available diagnostic tools and the amount of resources set 

aside for malaria interventions. 
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