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ABSTRACT 

Declining malaria transmission leads to infection hotspots which need to be targeted to 

eliminate and eradicate malaria. The degree of parasite mixing in and around 

transmission foci is likely to impact the effectiveness of targeted interventions and 

should be considered when developing control programmes. Few studies currently 

provide empiric evidence on parasite mixing over time and space, making it hard to 

predict the likely outcomes of targeted interventions. Here, spatio-temporal malaria 

transmission networks were inferred using genetic data. P. falciparum SNP data were 

analysed at micro-epidemiological scales in two sites in Kenya and one site in The 

Gambia, and in a subsequent study at macro-epidemiological scales in Western Kenya. 

Principal component analysis and linear regression were used to analyse population 

structure and genetic relatedness in time and space, respectively. Study sites were 

analysed for parasite genotype clusters, barriers to, and directionality in parasite 

movement. Parasite genetic relatedness was predicted by relatedness in time and space 

at micro-geographical scales, but no evidence of population structure was seen over 

larger areas. No barriers to parasite movement were detected at micro or macro-

epidemiological scales, although directional movement was observed in two regions of 

Western Kenya.  

PfAMA1 and surf4.2 capillary sequence data from parasites collected between 1995 – 

2014 in Kilifi county were used to validate SNP data results. Sequence data showed 

high parasite mixing, with no clustering of distinct haplotypes in time or space. Time 

and distance interacted antagonistically such that distance no longer predicted genetic 

variation for parasites collected more than 1 year apart.  

These findings show parasite populations that are well mixed in time and space, thus 

targeting hotspots is likely to benefit surrounding communities. However, this high 

parasite movement is likely to lead to re-introduction of infection from surrounding 



regions following “one-off” interventions, although repeated targeted interventions may 

be effective.  
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Chapter 1 Literature Review 

 

1.1 INTRODUCTION 

Malaria, an infectious disease with high morbidity and mortality, is endemic in most 

tropical and sub-tropical regions of the world (WHO, 2016). In humans, it is caused by 

six species of the Plasmodium protozoan parasite (P. falciparum, P. vivax, P. malariae, 

P. ovale curtisi, P. ovale wallikeri and P. knowlesi). P. falciparum, which is responsible 

for the highest malaria morbidity and mortality, is found predominantly in Africa 

(Guerra et al., 2008). P. vivax is associated with less mortality than P. falciparum, but is 

more geographically widespread, hence increasing the number of people at risk of the 

disease (Guerra et al., 2010). Most P. vivax cases occur in Asia (~ 91%) and South 

America (~ 5.5%), with fewer cases being reported in Africa (3.5%) (Guerra et al., 

2010). P. malariae and the two sub-species of P. ovale are less common, but are also 

found in South America, Asia, Africa and Oceania (Rutledge et al., 2017). P. knowlesi 

is a simian parasite transmitted by the long and pig-tailed macaque monkeys in 

Southeast Asia and can result in severe disease in humans (WHO, 2015). In regions 

where more than one species occurs, co-infection is common (Rutledge et al., 2017, 

WHO, 2015).  

Malaria is transmitted through the bite of an infective female Anopheles mosquito. At 

least 30 – 40 Anopheles species that transmit malaria have been identified (Kiszewski et 

al., 2004). One of the most efficient vector species complexes, Anopheles gambiae, is 

found predominantly in Africa (Kiszewski et al., 2004). In rare instances, the disease 

can also be transmitted through transfusion of blood and blood products, organ 

transplants, needle-sharing among intravenous drug users and congenitally during 

pregnancy or delivery (Bartoloni and Zammarchi, 2012). 
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1.2 P. falciparum life cycle 

Plasmodium parasites belong to the phylum apicomplexa, which exhibit a complex life 

cycle involving both a vertebrate host and an arthropod vector, and are characterized by 

the presence of an apical complex that is important in host cell invasion (Cowman and 

Crabb, 2006). The P. falciparum life cycle begins when an infected mosquito takes a 

human blood meal. While feeding, sporozoites contained in the salivary glands of the 

mosquito are released into the bloodstream and travel to the liver where they invade 

hepatocytes and undergo asexual replication (exo-erythrocytic schizogony), leading to 

the formation of merozoites that are then released into the bloodstream. Merozoites 

invade red blood cells and develop through three main stages: rings, trophozoites and 

schizonts. The schizonts rupture and release newly formed merozoites that then invade 

other red blood cells and undergo another round of maturation and replication. This 

cycle continues multiple times, leading to increased parasitaemia within the infected 

host. During the blood stage, some parasites undergo sexual differentiation into male 

(micro) and female (macro) gametocytes. When these are ingested by mosquitos during 

a blood meal, the microgametocytes fuse with macrogametocytes to form zygotes in the 

mosquito midgut. The zygotes develop into motile forms called ookinetes that penetrate 

the midgut wall and develop into oocysts, which in turn mature and rupture to release 

sporozoites. Sporozoites then travel to the salivary glands and are released into the 

bloodstream during the next blood meal, thus perpetuating the life cycle (Wiser, 2017) 

(figure 1.1).  
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Figure 1.1: Plasmodium life cycle.  

The diagram shows the various developmental stages of the parasite in the human host 

and mosquito vector.  

 

1.3 Clinical manifestations of malaria disease 

Following an infective mosquito bite, disease progression in an individual can proceed 

through successive steps of infection, asymptomatic parasitaemia, uncomplicated 

disease, severe malaria and death (WHO, 2014). Progression through these stages 

depends on factors such as the species of the infecting parasite, the host’s levels of 

innate and acquired immunity, host genetic factors as well as the timing and 

effectiveness of treatment (WHO, 2014). Clinical symptoms associated with malaria are 

caused by the blood stage of the infection, when merozoites invade, egress and re-
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invade erythrocytes (Wiser, 2017). P. falciparum malaria infection causes an acute 

febrile illness that was classically said to be characterized by intermittent fever attacks 

that occur at 48-hour intervals, coincident with the synchronized rupture of infected red 

blood cells and release of merozoites into the bloodstream (Wiser, 2017). Symptom 

presentation differs depending on whether the infection leads to uncomplicated mild 

malaria or proceeds to severe disease. Severe malaria is characterised by variable 

symptoms including impaired consciousness, acute respiratory distress, multiple 

convulsions, shock, acute renal failure, prostration and severe anaemia, among others 

(Marsh et al., 1995, WHO, 2014, Bartoloni and Zammarchi, 2012). The pattern of 

presentation of severe malaria varies between children and adults, although it is 

currently unclear whether these variations are attributable only to age differences or 

whether they result from variations in other aspects such as exposure patterns and health 

care provision (WHO, 2014). Uncomplicated malaria is characterised by fever and 

nonspecific, flu-like symptoms including malaise, headache, chills, sweats, vomiting 

and diarrhoea (Bartoloni and Zammarchi, 2012).  

 

 1.4 The epidemiology of malaria in Africa 

Globally, malaria was estimated to have caused 212 million clinical cases (range 148 – 

304 million) and 429 000 deaths (range 235 000 – 639 000) in 2015 (WHO, 2016). 

This, however, is likely to be an underestimate of the actual burden of disease, as 

malaria occurs predominantly in some of the poorest countries in the world, where 

health systems for identification, documentation and reporting of cases are weakest 

(WHO, 2014). Additionally, many malaria cases and deaths occur at home, away from 

health facilities, and even where individuals present to hospital, there may be a 

misdiagnosis due to the non-specific symptoms of the disease, especially in the absence 

of confirmatory tests (WHO, 2014). Regionally, most of the morbidity and mortality 
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attributed to malaria occurs in sub-Saharan Africa, with this region accounting for at 

least 90% of cases and 92% of deaths from the disease (WHO, 2016). The distribution 

of malaria infections and cases is highly heterogeneous. There are currently 91 countries 

with ongoing transmission around the world (WHO, 2016). 13 of these, mainly in sub-

Saharan Africa, are responsible for 76% of cases and 75% of deaths globally (WHO, 

2016). Infants and young children are the most at risk group, with hospital admissions 

for, and death from, malaria being concentrated in children under the age of 5 years 

(Carneiro et al., 2010). Pregnant women, especially primigravidae (women in their first 

pregnancy), are also at increased risk of malaria infection, with adverse effects such as 

low birth weight, preterm birth and foetal and maternal deaths being observed (Takem 

and D'Alessandro, 2013).  

The epidemiology of malaria varies depending on transmission intensity (Snow and 

Marsh, 2002). At low transmission intensities, all individuals in the population are 

susceptible due to low or no immunity to the disease. Increasing transmission intensity 

leads to more frequent exposure to infection, and hence acquisition of immunity, which 

protects older children and adults in these regions from severe disease, although not 

infection and uncomplicated disease (Snow and Marsh, 2002). In regions with very high 

transmission intensities, most members of the population will have acquired anti-disease 

immunity, and will carry parasites asymptomatically, while severe disease will usually 

be restricted to infants in their first year of life (Snow and Marsh, 2002).  

As transmission declines due to intensified control efforts, the clinical presentations of 

severe disease also change, with a shift from young children getting predominantly 

severe malarial anaemia in high transmission regions, to older children getting 

predominantly cerebral malaria in low transmission regions (Reyburn et al., 2005). 

Several studies provide evidence of this association between age and transmission 

intensity with disease syndromes. In an analysis of 18 years of surveillance data 
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collected from a paediatric facility in Kilifi, Kenya, the shift from younger children 

getting severe anaemia to older children getting cerebral malaria was noted as malaria 

transmission declined in the study area (O'Meara et al., 2008). In Tanzania, analysis of 

admissions to 10 hospitals in areas of different transmission intensities showed the 

average age of children admitted with severe malaria to be lowest in regions with the 

highest transmission intensities, and highest in regions with the lowest transmission 

intensities (Reyburn et al., 2005). In this study, severe malarial anaemia predominated 

in the high transmission areas while cerebral malaria was most common in the low 

transmission areas (Reyburn et al., 2005).  

Symptoms associated with pregnancy malaria also vary with transmission intensity. In 

regions with stable, moderate to high transmission intensities, malaria infections during 

pregnancy are usually asymptomatic, and symptomatic infections are in the minority 

(Newman et al., 2003, Takem and D'Alessandro, 2013). However, even so-called 

“asymptomatic” infections are associated with maternal anaemia and low birth weight, a 

major cause of infant death (Newman et al., 2003, Takem and D'Alessandro, 2013). In 

regions with low, unstable transmission, higher rates of symptomatic infections, 

including severe disease, are observed in pregnancy, with higher risks of foetal and 

maternal deaths (Newman et al., 2003, Takem and D'Alessandro, 2013).  

 

1.5 Shifting trends in infection and clinical incidence of malaria in 

Africa 

The launch of the Roll Back Malaria initiative in 1998 signalled a recommitment from 

international funding organizations, governments of malaria endemic countries and the 

research community to reduce global rates of malaria mortality and morbidity. This was 

marked by increased funding towards control efforts using available strategies such as 
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long lasting insecticide treated nets (LLINs) and artemisinin combination therapies 

(ACTs), as well as research into novel intervention strategies such as vaccines (Nabarro 

and Tayler, 1998). These efforts have led to marked declines in both mortality and 

morbidity in many endemic regions since 2000. According to the 2016 world malaria 

report, 17 countries eliminated malaria between 2000 and 2015, although all these 

countries were situated outside of Africa, which bears the biggest disease burden 

(WHO, 2016). However, during the same period, the incidence of new malaria cases 

and deaths reported in Africa fell by 21% and 31% , respectively (WHO, 2016).  

Evidence from multiple studies shows a steady decline in malaria incidence in Africa 

between 2000 and 2015, albeit to variable extents in different geographical areas. At the 

continental level, studies using both surveillance data and mathematical modelling to 

quantify the impact of increased control estimated huge gains in reduction in both 

malaria infection and clinical incidence (Bhatt et al., 2015, Gething et al., 2016, Noor et 

al., 2014). Within specific countries, declines in malaria incidences have been reported 

in The Gambia (Ceesay et al., 2010), Mozambique (Mayor et al., 2015), Senegal 

(Daniels et al., 2015), Eritrea (Graves et al., 2008), Zambia (Sutcliffe et al., 2011), 

Zanzibar (Bhattarai et al., 2007), Burkina Faso (Geiger et al., 2013) and Sao Tome and 

Principe (Teklehaimanot et al., 2009), among others. Greater declines have been 

reported in East Africa compared to West Africa (Noor et al., 2014, O'Meara et al., 

2008).  

In Kenya, declining malaria incidence has been reported along the east African coast 

(Mogeni et al., 2016, Snow et al., 2015), as well as in the western part of the country 

(Kenya national malaria control programme, 2016). In some instances, the decline was 

coincident with increased control, although in some cases malaria incidence began to 

decline before widespread interventions were implemented (O'Meara et al., 2008, Snow 
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et al., 2015, Mogeni et al., 2016). Factors that contributed to the decline prior to 

interventions are currently unknown.  

While malaria reduction in Africa is in general a success story, the decline has not 

occurred uniformly in all countries, or even within individual countries. Several 

countries recorded little or no changes in malaria incidence over the same period, e.g. in 

Malawi (Bennett et al., 2013) and northern Uganda (Proietti et al., 2011), and in some 

cases even reported an increase in incidence, e.g. in Gabon (Assele et al., 2015). In a 

spatio-temporal analysis of the variations in risks of infection from malaria in Africa 

between 2000 and 2010, malaria infection was shown to have increased in Malawi and 

South Sudan, while it remained stable in DR Congo and Chad (Noor et al., 2014). 

Recent data show rebounds in infection in some regions such as coastal Kenya (Mogeni 

et al., 2016, Snow et al., 2015), western Kenya (Zhou et al., 2016) and Thiés, Senegal 

(Daniels et al., 2015). This is a cause for concern, and indicates the need for novel or 

improved control interventions to sustain or reduce disease incidence.  

 

 1.6 Malaria control 

Several strategies have been employed in attempts to control, eliminate and eradicate 

malaria. The Global Malaria Eradication Programme (GMEP) (1955 – 1969) was the 

first large scale attempt at malaria eradication and led to the elimination of malaria from 

some regions, using the long-lasting insecticide, dichloro-diphenyl-trichloroethane 

(DDT) to kill mosquitoes, and chloroquine to treat clinical malaria (Najera et al., 2011). 

However, the programme failed, facing a combination of the development of resistance 

to both the insecticide and the drug, political priorities, and a recognition that 

transmission was too high in much of sub-Saharan Africa for interventions to lead to 

elimination. The programme was in fact barely implemented in Africa, which bares the 

biggest burden of the disease. Resurgence of malaria epidemics in regions where it was 
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near elimination saw the abandonment of the GMEP in favour of malaria control in 

regions where elimination was not feasible, but control remained in a lull until the 

1990s. The initiation of the Roll Back Malaria venture led to increased funding for 

malaria vector control using insecticide treated nets (ITNs), indoor residual spraying 

(IRS) and larviciding (The malERA Consultative Group on Vector Control, 2011). 

Controlled ITN trials were carried out in different parts of Africa in the mid to late 

1990s and showed the effectiveness of bed nets at reducing morbidity and mortality, 

especially in children (Alonso et al., 1991, D'Alessandro et al., 1995, Habluetzel et al., 

1997, Nevill et al., 1996). The results of these and other studies led to increased 

funding, and consequently to higher bed net coverage across Africa (Bhatt et al., 2015, 

Noor et al., 2014, Noor et al., 2009).  

Apart from bed nets, indoor residual spraying to kill mosquitoes is also widely used as a 

malaria vector control strategy and has been highly effective in reducing malaria 

incidence (Curtis and Mnzava, 2000, Pluess et al., 2010). These measures, however, are 

only partially protective and therefore do not eliminate malaria in high transmission 

areas. Furthermore, challenges such as high costs have prevented the achievement of 

high levels of coverage, especially among endemic populations living in poor African 

villages, although coverage has improved markedly in some parts of Africa with 

consequent public health benefits (Noor et al., 2014, Noor et al., 2009). Bed nets may 

also be ineffective against Anopheles vectors that are outdoor feeding and resting (The 

malERA Consultative Group on Vector Control, 2011). Development of resistance to 

available insecticides has also reduced the efficiency of some of these vector control 

strategies (The malERA Consultative Group on Vector Control, 2011). Other vector 

control measures such as poisoning or removing the breeding grounds of the mosquito 

and aquatic habitats of the larval stages of the vector can also be used, although such 

environmental modification measures are less often employed due to their associated 
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high costs (Utzinger et al., 2001). Cost-effective strategies employing integrated vector 

management are being encouraged as a better way of controlling malaria, instead of 

relying on any one control measure alone (The malERA Consultative Group on Vector 

Control, 2011).  

Other than vector control, antimalarial drug therapies are also used as intervention 

strategies. Quinine was used as far back as the 17th century to treat malarial fevers, and 

more than 400 years later, it remains effective, although its use is limited due to its 

adverse side effects (Butler et al., 2010). Quinine was the main antimalarial drug used 

until 1920s, when more effective synthetic drugs were introduced (Achan et al., 2011). 

One such drug was chloroquine, which was widely used beginning in the early 1940s, 

and was the mainstay drug during the GMEP era (Najera et al., 2011). However, 

resistance to chloroquine developed quickly, and by 1957, resistance had been detected 

in Thailand and spread through south and southeast Asia, before spreading to East 

Africa and then on to western and southern Africa (Packard, 2014). Resistance to 

chloroquine also arose independently in south America in the 1960s (Packard, 2014). 

Resistance to chloroquine was first reported in Kenya in 1978. An alternative to 

chloroquine came in the form of sulfadoxine/pyrimethamine (SP) in 1967. 

Unfortunately, resistance developed rapidly and SP resistance was reported in Thailand 

in the same year (1967). Resistance to SP remained relatively low in Africa until the 

1990s, but spread rapidly once it was established (Packard, 2014).  

Artemisinin, isolated from the Artemisia annua (sweet wormwood) plant, and its 

derivatives were later introduced as more effective antimalarial drugs. Artemisinin has a 

short half-life and rapidly reduces the density of blood stage parasites, although its 

mode of action is not conclusively known (Cui and Su, 2009). Artemisinin and its 

derivatives are commonly used in combination with other long-lasting partner drugs 

such as mefloquine, lumefantrine and piperaquine to reduce the chances of the parasite 
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developing resistance (Cui and Su, 2009). Artemisinin-based Combination Therapies 

(ACTs) are currently widely employed as first-line treatments against uncomplicated P. 

falciparum malaria and have been highly effective in reducing malaria associated 

mortality and morbidity (Dondorp et al., 2009). However, reports of P. falciparum 

resistance to artemisinin emerged in western Cambodia in 2009, characterised by 

delayed parasite clearance time (Dondorp et al., 2009). Resistance against this drug has 

now been confirmed in the four Southeast Asian countries of Thailand, Vietnam, 

Myanmar and Cambodia (Dondorp et al., 2009). Although resistance has not been 

reported in Africa, some of the mutations in the propeller domain of the Kelch 13 gene 

associated with artemisinin resistance in Southeast Asia have been identified in African 

parasite populations, albeit at much lower frequencies (MalariaGEN, 2016). Resistance 

to the ACT partner drug piperaquine has also been detected in Cambodia (Saunders et 

al., 2014). Although ACTs are still effective in Africa, access to such drugs especially 

by poor, marginalized communities in endemic areas has been relatively low, meaning 

that treatment cannot be accessed by those who need it most (Noor et al., 2009). 

Intermittent preventive treatment of malaria in infants, young children and pregnant 

women is also employed as a malaria control strategy in high transmission areas 

(Nganda et al., 2004, White, 2005). Although this may protect the individual, the 

limited targeting within the population is not sufficient to impact transmission (Nganda 

et al., 2004), and the parasite’s resistance to the recommended drugs, sulfadoxine-

pyrimethamine (SP),  has reduced the effectiveness of this malaria control method 

(White, 2005). In lower transmission settings, carrying out public awareness and 

increasing the capacity to detect, respond to and prevent disease during epidemics can 

also be used as control measures.  

Although malaria incidence is declining, it may not be possible to eradicate malaria 

with the current tools, and novel interventions including vaccines, are needed. Although 
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there are currently no approved malaria vaccines in the market, there are multiple 

vaccine constructs that are either under development or in clinical trials (WHO, 2016). 

These vaccines target the different life cycle stages of the P. falciparum parasite (Hill, 

2011, WHO, 2016). A blood stage vaccine based on the merozoite surface antigen 

apical membrane antigen 1 (AMA1) showed high protection (64.3%) against malaria 

caused by parasites homologous to the vaccine strain, but much lower protection 

(17.4%) against heterologous strains in Malian children (Thera et al., 2011). The pre-

erythrocytic stage vaccine RTS’S which is based on P. falciparum’s circumsporozoite 

protein showed an efficacy of 36.3% in children aged 5 – 17 months old who received 

four doses of the vaccine (RTS'S Clinical Trials Partnership, 2015), although efficacy 

waned over time (Olotu et al., 2016). The RTS’S vaccine received a positive scientific 

opinion from the European Medicines Agency and was recently recommended by the 

world health organization for malaria vaccine pilot programmes in Ghana, Malawi and 

Kenya. Though promising, the current vaccines give only short term protection and 

malaria control would be achieved only if the vaccine is given continuously and if all 

members of the community are vaccinated, a scenario which is currently not feasible. 

All these control measures are therefore more likely to result in a reduction in 

transmission intensity, but not in elimination or eradication of malaria (Bhattarai et al., 

2007, Fegan et al., 2007). Newer techniques including gene drives that prevent female 

mosquitoes from producing eggs or make mosquitoes resistant to P. falciparum 

infection have been touted as technological breakthroughs that could eradicate malaria, 

but ethical concerns abound about releasing these modified insects into the wild 

(Hammond et al., 2016).  
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 1.7 Spatial and temporal heterogeneity in malaria transmission  

Most infectious diseases, including malaria, are heterogeneous in their mode of 

transmission and follow the 80/20 Pareto principle where 80% of infections occur in 

only about 20% of the population (Woolhouse et al., 1997). Heterogeneity in malaria 

transmission leads to hotspots of infection which present as a small number of 

individuals (or clusters of individuals) within a larger population in a defined 

geographical area who have higher episodes of symptomatic or asymptomatic P. 

falciparum infections than the population outside the hotspot (Bousema et al., 2013, 

Bousema et al., 2016). Although heterogeneity in transmission is present at all levels of 

transmission intensity, the variation is most conspicuous in areas of low and moderate 

transmission, where a minority of the population may experience multiple episodes of 

infection while the majority remain infection free (Bousema et al., 2010, Bousema et 

al., 2016, Woolhouse et al., 1997). In higher transmission settings, heterogeneity may 

be masked because most of the people in the population will be infected and carry 

infections asymptomatically (Bousema et al., 2012).  

Heterogeneity is observed both in time and space (Alemu et al., 2013, Mogeni et al., 

2016). Temporal heterogeneity is most evident in regions with seasonal transmission, 

where high infection rates are observed during the rainy season when vector densities 

increase, and infection rates are lower during the dry season when vector densities 

reduce (Bousema et al., 2013), but may also occur from year to year (Mogeni et al., 

2016). Spatial heterogeneity in malaria transmission has been detected at different 

geographical scales, including between different regions in a country (Alemu et al., 

2013), between villages (Bejon et al., 2010) and even between homesteads in the same 

village (Bejon et al., 2014). The factors that underlie this variation in transmission are 

not well understood, although environmental factors such as altitude, cultivation 

practices, urbanization and proximity to water bodies that act as mosquito breeding sites 
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may play a role (Baidjoe et al., 2016). House structural features (Chirebvu et al., 2014, 

Leandro-Reguillo et al., 2015, Lwetoijera et al., 2013, Wanzirah et al., 2015), human 

behavioural factors such as the amount of time spent outdoors (Chirebvu et al., 2014, 

Liebman et al., 2014) as well as genetic factors (Kwiatkowski, 2005, Verhulst et al., 

2013, Leffler et al., 2017) also play roles in the heterogeneity of transmission. 

Heterogeneity in malaria transmission leads to hotspots of infections which need to be 

identified and targeted, if malaria elimination is to be achieved (Bousema et al., 2016).  

 

 1.8 Identification and targeting of hotspots for malaria control 

The presence of infection hotspots makes malaria control strategies less effective as 

they usually persist even after infection has been reduced in surrounding areas 

(Bousema et al., 2012, Ernst et al., 2006, Smith et al., 2007). Hotspots act as reservoirs 

of infection and thus a source of disease to the rest of the community, hindering 

elimination efforts (Bousema et al., 2012, Bousema et al., 2016). Achieving any 

meaningful reduction in malaria transmission in areas containing malaria hotspots will 

require a scale up in the current malaria control activities, including repeated mass drug 

administration, widespread distribution of LLINs and intensive IRS. These measures are 

very costly and may not be realistic for universal coverage in most of the resource-poor 

countries afflicted by the disease. Identification of hotspots for targeted control may 

therefore be useful to manage scarce resource, as the limited available resources could 

be targeted to regions with the highest burden, thus ensuring that those most in need get 

the intervention. Alternatively, and arguably more importantly, targeting control to 

hotspots is likely to lead to a reduction in incidence in the surrounding community as 

well if it interrupts the nodes of transmission (Woolhouse et al., 1997).  

The spatial extents over which hotspots can be identified and targeted vary in size from 

entire countries, to small geographical areas less than 1km2 (Bousema et al., 2012, 
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Bejon et al., 2014). At these scales, malaria hotspots can be identified by measuring 

asymptomatic parasite prevalence rates, incidence of disease in young children or 

seroconversion rates in individuals within defined geographical regions (Bousema et al., 

2010, Bousema et al., 2016). Based on the type of metric used, both stable and unstable 

hotspots can be identified (Bejon et al., 2010). Prevalence of asexual parasites and 

serological markers to malaria-specific antigens can be used to detect stable hotspots, 

since on the one hand immunity to infection is acquired late in life, or not at all, and on 

the other, antibodies to malaria are acquired following multiple repeated exposures and 

are relatively long lived (Bousema et al., 2010, Bousema et al., 2012). Hotspots defined 

by incidence of clinical disease are usually temporally unstable, since consistent higher 

exposure to malaria parasites in any given location would most likely lead to rapid 

acquisition of immunity against disease. Thus, temporally stable hotspots would be 

more likely to cause an increased prevalence of infection in the absence of marked 

increases in disease. Monitoring clinical disease is more linearly related to transmission 

only in infants or young children, who generally have low immunity regardless of the 

transmission intensity (Bousema et al., 2012, Bousema et al., 2016). In the coastal town 

of Kilifi, Kenya, both stable hotspots of asymptomatic infections and unstable hotspots 

of febrile disease have been detected within the same study site (Bejon et al., 2010).  

The choice of marker is also dependent on the transmission intensity, with serological 

markers and parasite prevalence (measured by PCR) being the most sensitive at low 

transmission intensities (Kangoye et al., 2016). Malaria transmission hotspots have been 

identified in multiple regions in Africa (Bejon et al., 2010, Bousema et al., 2010, 

Bousema et al., 2016, Kangoye et al., 2016), Asia (Ahmed et al., 2013) and South 

America (Bautista et al., 2006).  
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 1.9 Monitoring the effectiveness of control interventions 

Different metrics are available to measure changes in malaria transmission and quantify 

the impact of control interventions. These include both entomological metrics, such as 

the entomological inoculation rate (EIR), vectorial capacity and sporozoite rate, as well 

as clinical metrics such as parasite rate, gametocyte rate and the force of infection (FOI) 

(Tusting et al., 2014). Each of these metrics presents its own pros and cons, and the 

choice of which metric to use is guided by multiple factors including costs, the accuracy 

and precision desired, the transmission intensity and the availability of expertise needed 

to measure the metric (Tusting et al., 2014). The entomological inoculation rate, which 

measures the number of infectious bites received by each person per year, has long been 

considered the gold standard metric of transmission. In line with transmission intensity, 

EIR varies widely throughout Africa, ranging from less than 1 to higher than 1000 

infective bites per person per year (Hay et al., 2000). This metric is measured as the 

product of the human biting rate (the number of bites received by each individual in a 

year) and the sporozoite rate (the proportion of mosquitoes collected that contain 

sporozoites) (Tusting et al., 2014). Computing human biting rates involves catching and 

counting mosquitoes attempting to feed on an individual, and this can be done using 

human landing catches, CDC light traps and pyrethroid spray catches (Tusting et al., 

2014). Sporozoite rates are computed by examining the caught mosquitoes for 

sporozoites e.g. using enzyme-linked immunosorbent assays (ELISA) to detect anti-

sporozoite antibodies.  

Parasite rate (PR) measures the proportion of individuals who are parasite positive in a 

specific population, at a given timepoint (Tusting et al., 2014). It is the most widely 

collected metric and has been used, both traditionally and currently, to classify 

geographical regions based on malaria endemicity (Gething et al., 2011, Hay et al., 

2009, Noor et al., 2014). It is measured by examining the blood of a sample population 
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under a microscope to detect blood stage parasites (Tusting et al., 2014). RDTs and 

PCR based techniques can also be used to detect parasites. Its usefulness for measuring 

transmission intensity depends on endemicity, and has been shown to saturate at high 

transmission intensities due to acquired immunity and multiple infections.  

Most of these ‘traditional’ metrics are not standardized between or even within 

countries, making comparisons difficult. They are also labour intensive, technically 

challenging to collect and saturate at high transmission levels (Tusting et al., 2014). 

Most importantly, they lack accuracy in low transmission settings where evaluations of 

effectiveness of control measures are most needed (Yukich et al., 2012, Daniels et al., 

2015).  

Modern metrics based on parasite genomics can also be employed to measure 

transmission intensity, on the premise that parasite genetics reflects the number of 

different parasite clones infecting individuals in a population, and is representative of 

the transmission intensity. In high transmission areas, there is higher genetic diversity 

represented by a higher number of parasite clones, and this number reduces as 

transmission intensity declines. Metrics such as molecular force of infection (mFOI), 

which measures the number of new P. falciparum clones acquired over time, and 

multiplicity of infection (MOI), which measures the number of parasite clones in an 

individual at a given time point, are increasingly being used to measure and track 

transmission intensity, especially in low transmission areas, due to their higher 

sensitivity (Mueller et al., 2012, Yukich et al., 2012). These metrics rely on genetic 

variations among parasite isolates and can be collected by sequencing or genotyping 

highly polymorphic loci in the parasite genome.   
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1.10 Genetic variation and population structure of P. falciparum. 

The genome of the P. falciparum lab strain 3D7 was published in 2002 (Gardner et al., 

2002). The A+T rich (~ 81%) nuclear genome is 23MB long and has 14 chromosomes 

encoding more than 5000 genes (Gardner et al., 2002). The parasite also has a 6kb 

mitochondrial genome and a 35kb plastid genome (Conway, 2007). Since the 

publication of the first genome, efforts to improve the genome sequence and gene 

annotations have continued (Mu et al., 2010b), and the genomes of at least seven other 

Plasmodium species have since been sequenced (MalariaGEN, 2016).  

Whole genome studies of P. falciparum field isolates from different regions of the 

world show remarkable genetic diversity within the parasite’s genome. This diversity 

underlies the parasite’s ability to evade immune responses and develop resistance to 

anti-malarial drugs (Jeffares et al., 2007, MalariaGEN, 2016, Miles et al., 2016, Mobegi 

et al., 2012, Volkman et al., 2007). Studying the extent of this diversity and how it 

arises is important in understanding how parasites interact and develop resistance 

against drugs as well as in identifying vaccine targets (Amambua-Ngwa et al., 2012, 

Ariey et al., 2014, Jeffares et al., 2007). P. falciparum genetic variations include SNPs, 

short insertions and deletions (indels), inversions, non-coding variable number tandem 

repeats (VNTR), translocations, microsatellites and gene copy number variations 

(Cheeseman et al., 2009).  

Recombination, which refers to allelic rearrangements within chromosomes and has the 

effect of introducing new allele combinations into the genome, is a major source of 

genetic variation in the parasite (Jiang et al., 2011, Mu et al., 2010a). The P. falciparum 

genome shows evidence of recombination at relatively high rates which vary between 

and within populations (Jiang et al., 2011, Mu et al., 2005, Mu et al., 2010a). Within 

chromosomes, recombination rates also vary, with ‘recombination hotspots’ located at 

chromosome ends and centres, although factors that determine the location and activity 
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of such recombination hotspots are still unclear (Jiang et al., 2011, Mu et al., 2010a). 

Recombination is important as it allows the parasite to acquire new variations that allow 

it to evade the host’s immune response (Mu et al., 2010a). During the diploid sexual 

stage of the parasite life-cycle in a mosquito, recombination can occur if there are 

parasites of different genotypes, a situation which arises when mosquitoes feed on an 

individual infected with multiple genotypes or on different individuals with different 

genotypes (Jiang et al., 2011, Mu et al., 2010a). Recombination involves the exchange 

of genetic material between homologous regions of chromosomes of different parasite 

isolates, leading to new allele combinations in the progeny (Jiang et al., 2011, Mu et al., 

2010a). Where transmission intensity is low and less within-host genetic diversity is 

present, “selfing” is more common (Anderson et al., 2000, Manske et al., 2012).   

The genetic variations are present throughout the parasite genome with varying degrees 

of abundance; for example, microsatellites occur every 2-3kb throughout the genome 

(Anderson et al., 2000). Single nucleotide polymorphisms (SNPs) are single base 

variations occurring at specific chromosome locations in different members of a species 

and are common in most organisms (Kwok and Chen, 2003). Although most of the 

SNPs have no biological functions and generally occur in the non-coding regions of the 

genome, others, especially those occurring in or near coding regions, may be of 

biological importance and have in some cases been associated with increased 

susceptibility to disease (Kwok and Chen, 2003, Tarazona-Santos et al., 2011). SNPs 

are an abundant type of variation in the P. falciparum genome, with up to 86,158 SNPs 

identified in a conservative analysis (Manske et al., 2012), and  several hundred 

thousand with less conservative analysis (MalariaGEN, 2016). Most of these SNPs are 

present at very low frequencies, especially in African parasite populations 

(MalariaGEN, 2016). Several studies have also identified a high number of indels in P. 

falciparum when comparing either lab strains (Volkman et al., 2007) or genetic crosses 
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(Miles et al., 2016). Several SNPs have been associated with resistance against the 

major antimalarial drugs, including chloroquine (Payne, 1987, Wootton et al., 2002), 

sulfadoxine-pyrimethamine (Ekland and Fidock, 2007, White, 2004), and more 

recently, artemisinin (Ariey et al., 2014, Miotto et al., 2015).  

P. falciparum population studies of genetically distinct subpopulations within a larger 

population have been conducted in different regions of the world. Genetic 

differentiation in subpopulations can occur due to natural selection favouring different 

genotypes in different environments, random events occurring during transmission of 

alleles to subsequent generations or initial variation in allele frequencies of the founder 

subpopulation (Anderson et al., 2000, Hartl and Clark, 2007). Population structure leads 

to reduced heterozygosity within a population as free movement of genes is restricted 

between different populations of the same organism (Hartl and Clark, 2007). Virtually 

all organisms have some population structure and in the case of P. falciparum, 

understanding its population genetic structure enables us to know how alleles are 

distributed  within the same parasite population as well as among different parasite 

populations (Hartl et al., 2002). Such an understanding would be important in 

explaining how parasites acquire drug resistance and how resistance against vaccines 

could occur, as well as informing on the best epidemiological control strategies (Hartl et 

al., 2002, Manske et al., 2012, Mobegi et al., 2012, Schultz et al., 2010).  

Population structure can also be used to measure the effects of control interventions on 

reducing transmission by studying the level of genetic diversity before, during and after 

applying control interventions (Daniels et al., 2015, Gunawardena and Karunaweera, 

2015, Kwiatkowski, 2015). Many P. falciparum population genetics studies have been 

conducted using either microsatellites (Anderson et al., 2000, Mobegi et al., 2012, 

Schultz et al., 2010) or polymorphic antigenic molecular markers such as merozoite 

surface proteins (MSP-1 and MSP-2) and glutamate rich protein (GLURP) genes 
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(Babiker et al., 1997, Congpuong et al., 2014, Gupta et al., 2014, Kyes et al., 1997, 

Mohd Abd Razak et al., 2016). Studies looking at MSP-1 and MSP-2 diversity in two 

villages in Tanzania and Sudan showed greater genetic diversity of parasites in high 

transmission areas (Babiker et al., 1997), while studies of the same genes in a coastal 

Kenya parasite population found little genetic diversity (Kyes et al., 1997). 

Microsatellites are preferred in population studies because they are presumed to be 

selectively neutral and thus the resulting observed variations are attributed solely to 

population history and not natural selection (Anderson et al., 2000). Recently SNPs 

have been used in population genetic studies due to their abundance in the parasite 

genome and their higher resolution, hence greater ability to distinguish parasite clones 

(Daniels et al., 2008, Manske et al., 2012, Roetzer et al., 2013, Volkman et al., 2007). 

In one study, Manske and others determined the genetic diversity of P. falciparum 

populations from Africa and Asia/Pacific regions through deep sequencing of parasites 

from natural infections (Manske et al., 2012). In this study, they showed that parasite 

populations were geographically distinct at the continental level, and parasites from 

Africa could be easily distinguished from parasites from Papua New Guinea and 

Southeast Asia, although there was less resolution of parasite populations at the regional 

level, and parasites from East and West Africa, for example, could not be distinguished 

from each other (Manske et al., 2012). Other studies have also been able to characterize 

parasites into distinct populations using much fewer SNPs when analysing data over 

large geographical areas (Campino et al., 2011, Daniels et al., 2008) as well as over 

smaller geographical areas (Daniels et al., 2015), thus demonstrating the power of SNPs 

in distinguishing different parasite clones.  

P. falciparum population genetics studies show that genetic diversity of this parasite 

varies greatly worldwide (Anderson et al., 2000, Volkman et al., 2007). In a detailed 

analysis, Anderson and others used a set of 12 microsatellites and showed that parasites 
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from Africa have greater within-population genetic variability when compared to 

parasites from South America and the Asia/Pacific regions (Anderson et al., 2000). The 

study also showed that population structures of P. falciparum vary based on the 

transmission intensities of different geographical areas, with areas of high transmission 

having more diverse genetic structures compared to areas of low transmission. These 

results are supported by studies which looked at the same set of microsatellites in a 

large scale study involving four countries in West Africa (Mobegi et al., 2012) and a 

small scale study involving villages in Papua New Guinea (Schultz et al., 2010). 

Most population genetic studies have, however, been carried out over relatively large 

geographical areas, whereas understanding parasite genetic structure at a local level is 

likely to provide information that best informs targeted control measures for specific 

regions. An example is the study by Schultz and others, which identified a single village 

in Papua New Guinea that had high genetic differentiation but little diversity and which 

could be effectively targeted for malaria control due to its isolation from surrounding 

villages (Schultz et al., 2010).  

SNPs are preferred in the analysis of parasite population structure because besides being 

abundant and widespread across the genome, they are easy to define on algorithmic 

screening, and can therefore be used as convenient markers. Linkage disequilibrium 

(LD), which is an important aspect of population structure, has been shown to be strong 

in low transmission areas due to low recombination rates among parasite clones as most 

of the zygotes are formed through ‘selfing’ of gametes from the same clone (Anderson 

et al., 2000, Anthony et al., 2005, Volkman et al., 2007). On the other hand, LD is low 

in areas of high transmission due to higher effective recombination rates among 

different parasite clones. This has been validated in studies by both Anderson and others 

(Anderson et al., 2000) and Schultz and others (Schultz et al., 2010) which looked at 

populations with different levels of endemicity using microsatellites, as well as a study 
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by Volkman and others (Volkman et al., 2007) which analysed genome-wide SNPs in 

16 geographically diverse parasites and showed that LD extends over shorter distances 

in African parasites as compared to Asian and South American parasites.  

The parasite genome is undergoing evolution, and signatures of both balancing and 

purifying selection are detectable across the genome in parasites from different regions 

of the world. The selection pressures seem to be specific to different geographical 

regions and include pressure from anti-malarial drugs and host immunity (Conway et 

al., 2001, Mackinnon and Marsh, 2010). Different techniques are available for detecting 

these genetic variations.  

 

1.11 Methods of genotyping malaria parasites 

Genotyping takes advantage of variations in the genetic make-up of organisms to 

distinguish parasite clones (Manske et al., 2012). Different genotyping methods can be 

employed based on the specific genetic variation that one wants to detect, sample 

numbers and available resources (Edenberg and Liu, 2009). Hemi-nested polymerase 

chain reaction (PCR) has been used as a genotyping method in analysis of 

microsatellites and highly polymorphic parasite genes such as MSP-1 and MSP-2 

(Anderson et al., 2000, Mobegi et al., 2012, Nyachieo et al., 2005). Hemi-nested PCR is 

a modification of nested PCR where a single primer is used in the second round of 

amplification as opposed to the usual two primers. The PCR products can then be 

separated using either capillary electrophoresis or conventional gel electrophoresis 

where the fragments are separated based on size (Anderson et al., 2000, Liljander et al., 

2009, Nyachieo et al., 2005). PCR has been used in combination with restriction 

fragment length polymorphism (RFLP) to identify different parasite clones (Falk et al., 

2006). RFLP makes use of differences in homologous DNA sequences which are 

detected by the presence of DNA fragments of varying lengths after digestion with 
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restriction enzymes (Falk et al., 2006). PCR-RFLP followed by agarose gel-

electrophoresis provides a relatively inexpensive method of identifying parasite clones 

and is the recommended method for use in the field during drug efficacy trials to 

distinguish re-infection from treatment failure (recrudescence) (WHO, 2008). The use 

of PCR-RFLP in high transmission settings is however difficult as the banding patterns 

produced on the gel become difficult to analyse due to the multiple complex infections 

present in these settings (WHO, 2008). In such cases, capillary electrophoresis can be 

used instead of gel electrophoresis as it provides greater resolution and can better 

discriminate the different alleles (Liljander et al., 2009). The choice of genotyping 

markers is very important when using these methods as markers that differ only in 

sequence cannot be used as they would be of the same length and would not distinguish 

different clones (WHO, 2008). Other genotyping techniques such as southern blotting 

and hybridization of PCR products using labelled probes can also be employed, but 

these methods are expensive and time consuming (WHO, 2008). To deal with these 

issues, different technologies have been adapted to SNP genotyping, with the methods 

differing in reaction chemistry, sensitivity, throughput and cost (Jenkins and Gibson, 

2002, Edenberg and Liu, 2009). Methods such as direct sequencing can be used for SNP 

detection but are now less commonly used due to their low throughput and high overall 

costs (Edenberg and Liu, 2009).  

Most studies now employ the use of high-throughput techniques such as Sequenom 

MassARRAY, TaqMan assays and pyrosequencing (Adams, 2008, Gabriel et al., 2009, 

McGuigan and Ralston, 2002, Pourmand et al., 2002, Edenberg and Liu, 2009). 

Sequenom SNP genotyping reaction uses a primer extension method (mini- sequencing) 

that detects specific alleles based on differences in mass using Matrix-Assisted Laser 

Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry (Gabriel et 

al., 2009). Two platforms are available; the hME (homogeneous MassEXTEND) 



35 
 

technology that allows detection of up to 7 SNPs in a pooled assay and the iPLEX 

GOLD technology that allows detection of up to 40 SNPs (Gabriel et al., 2009). Apart 

from detecting SNPs, Sequenom can also be used to detect small insertions and 

deletions in the DNA sequence. Sequenom platforms offer several advantages (Gabriel 

et al., 2009). Its multiplex PCR platform allows for the analysis of over 100,000 

genotypes per day with up to 40 assays per reaction and scale-up of the number of 

samples is easy (Gabriel et al., 2009). The design of new assays is also relatively easy, 

depending only on the ability to design primers adjacent to where SNPs of interest are 

located (Gabriel et al., 2009, Edenberg and Liu, 2009). The use of unmodified 

oligonucleotides further reduces the set-up cost of the assay (Gabriel et al., 2009, 

Edenberg and Liu, 2009). The disadvantages of using the Sequenom platform include a 

required previous knowledge of the position of SNPs to be studied (Gabriel et al., 

2009). This technology therefore requires previous sequencing to identify SNPs and 

cannot be used for SNP discovery studies. The method also returns only genotypic data, 

thus analyses such as linkage disequilibrium that requires the relation of several SNPs 

cannot be easily done unless haplotypes are inferred (Gabriel et al., 2009).  

TaqMan SNP genotyping assays are single tube based PCR systems exploiting the 5’ 

DNA polymerase exonuclease activity (De la Vega et al., 2005, McGuigan and Ralston, 

2002). The assay consists of locus-specific forward and reverse primers flanking the 

SNP to be detected and two labelled probes that are allele specific (De la Vega et al., 

2005). Each probe has a different fluorescent reporter dye at the 5’end and a non-

fluorescent quencher dye at the 3’end (De la Vega et al., 2005, McGuigan and Ralston, 

2002). The proximity of the two dyes on each probe ensures that, when the probe is 

intact, the quencher dye reduces the fluorescence emitted by the dye at the 5’end, thus 

reducing the signal (De la Vega et al., 2005, McGuigan and Ralston, 2002). During 

PCR, the allele-specific probe is cleaved at its 5’end by DNA Taq polymerase and with 
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each cycle, cleavage of the probe exponentially increases the fluorescent signal as the 

fluorophore is separated from the quencher (De la Vega et al., 2005). This genotyping 

platform has several advantages including increased allelic discrimination, flexible 

assay design and increased signal-to-noise ratio. It also allows one to mask any SNPs 

that are close to the SNP of interest, thus increasing the success of the assay (McGuigan 

and Ralston, 2002). Disadvantages include increased costs as it requires the use of 

labelled probes. The technology can also not be used in SNP discovery as it requires a 

prior knowledge of the SNPs to be studied (McGuigan and Ralston, 2002).  

Pyrosequencing has also been used in genotyping (De la Vega et al., 2005, Pourmand et 

al., 2002). Instead of labelled primers or nucleotides, this sequencing technology uses 

sulfurylase and luciferase enzyme reactions to monitor the release of inorganic 

pyrophosphate during incorporation of nucleotides (Pourmand et al., 2002). Multiplex 

pyrosequencing has also been done and involves simultaneous detection of multiple 

target DNA sequences (Pourmand et al., 2002).  

With advances in genotyping technologies, the use of parasite population genomics is 

gaining popularity as a way of measuring transmission intensity and tracking the 

outcomes of control interventions (Daniels et al., 2015).  

 

1.12 DNA sequencing  

SNP genotyping is easy, convenient and low cost, but it requires prior knowledge of 

SNPs of interest and is associated with ascertainment bias which can arise based on how 

SNPs are selected (Lachance and Tishkoff, 2013). As such, sequence data is preferred 

as it reduces SNP ascertainment bias and enables the typing of many more SNPs, 

including those present in highly genetically diverse regions of the genome, allowing 

more accurate analysis of population genetics (Lachance and Tishkoff, 2013).  
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Sanger sequencing was one of the earliest DNA sequencing methods (Adams, 2008). It 

uses a chain termination technique where synthesis of a DNA strand is terminated at 

different points of the synthesis using dideoxynucleotide triphosphates (ddNTPs) that 

are included in the reaction mix together with deoxynucleotide triphosphates (dNTPs) 

(Adams, 2008). Earlier methods involved setting up four different reaction tubes, each 

with a different fluorescently labelled ddNTP, and as the synthesis reaction progressed, 

DNA polymerase would occasionally incorporate a ddNTP to the strand, thus 

terminating synthesis (Adams, 2008). This resulted in strands of different lengths being 

synthesized as the reaction progressed. The different-sized products were then resolved 

using gel electrophoresis and the sequences determined based on the point of 

termination of the synthesis (Adams, 2008). This procedure is sensitive enough to 

distinguish DNA fragments that differ in size by only a single nucleotide (Adams, 

2008). Automated sequencers were later introduced, enabling the analysis of multiple 

samples at a go, and this was followed by the introduction of different fluorescent labels 

for each ddNTP, allowing the reactions to be carried out in a single tube (Adams, 2008).  

Cycle sequencing, which is similar to conventional PCR, was introduced as a 

modification of the Sanger chain-termination sequencing technique (Murphy et al., 

2005). In this technique, the target sequence is amplified from a purified DNA sample, 

the PCR products are then cleaned to remove unincorporated primers and dNTPs, and 

this is followed by a sequencing PCR reaction incorporating dye-labelled chain 

terminating ddNTPs (Murphy et al., 2005). The sequence products are then subjected to 

capillary electrophoresis and fluorescence detection (Murphy et al., 2005). Cycle 

sequencing allows the generation of strong sequence signals from small amounts of 

DNA template due to the multiple rounds of synthesis (Murphy et al., 2005). 

Although automated Sanger sequencing introduced a method of faster and more 

efficient detection of DNA sequences, it has low throughput (Adams, 2008). Next 
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generation sequencing (NGS) technologies with high throughput were later introduced 

and have encouraged studies to move from sequencing of candidate genes to sequencing 

of whole genomes (Adams, 2008). Examples of NGS platforms that are currently in use 

include Illumina/Solexa (Illumina), 454 pyrosequencing (Roche Applied Sciences), 

HeliScope systems (Helicos Biosciences), SoLiD (Applied Biosystems), PacBio 

(Pacific Biosystems) and Oxford Nanopore (Oxford Nanopore technologies). These 

techniques differ in their reaction chemistries, length of reads generated and costs 

(Goodwin et al., 2016). The NGS technologies can perform immensely parallel 

sequencing of PCR products or single DNA molecules. Advances in the development of 

NGS technologies coupled with the ever-reducing costs of sequencing has made high 

throughput whole genome sequencing more attractive and raised the possibility of 

analysing parasite population genomics to allow the assessment of the impact of control 

interventions in near-real time (Daniels et al., 2015).  

 

 1.13 Determining disease transmission networks using genetic 

data 

Traditional epidemiological studies to define clusters based on the localization of events 

in time and space risk reporting associations that are non-existent, or exaggerating 

existing associations due to bias and confounding (Grimes and Schulz, 2012). Such 

studies would not accurately determine disease transmission networks, yet identifying 

these networks is important in helping us understand disease dynamics and informing 

control strategies. Methods such as social network analysis in outbreaks and 

transmission of diseases have had limited success, thus necessitating the use of other 

methods such as genotyping and sequencing. Next generation sequencing techniques 

have enabled whole genome sequencing and analysis, aiding in the identification of 

genetic variations such as SNPs in whole organisms. These techniques are fast, 
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therefore disease transmission can theoretically be followed during the course of an 

outbreak. Due to its high-throughput nature, whole genome sequencing and analyses of 

hundreds to thousands of samples can be achieved in relatively short periods. Whole 

genome sequencing and SNP genotyping have been used to map transmission networks 

of the causative agents of typhoid (Salmonella typhi and Salmonella paratyphi A), 

tuberculosis (Mycobacterium tuberculosis) and methicillin-resistance staphylococcus 

aureus (MRSA) (Gardy et al., 2011, Harris et al., 2013, Harris et al., 2010, Janezic et 

al., 2012). 

In malaria control, parasite genotypes can be used as a “barcode” for individual isolates, 

allowing transmission steps to be linked, thus enabling one to track the spread of 

important parasite characteristics such as drug resistance (Ashley et al., 2014, 

MalariaGEN, 2016). Additionally, parasite genetics can be incorporated into a 

surveillance system to monitor parasite movement and prevent the re-introduction of 

malaria following elimination from a specific location (Daniels et al., 2015).  

 

 1.14 Justification for the study 

Malaria transmission continues to decline in many endemic areas, particularly in sub 

Saharan Africa, in part due to intensified control. As a result, transmission in these 

regions becomes more heterogenous, leading to hotspots of symptomatic and 

asymptomatic infection. Effective malaria control and final malaria elimination will 

require the identification and targeting of these hotspots or reservoirs of infection. 

However, the level of parasite mixing within and between geographical locations 

containing hotspots is likely to impact the effectiveness and durability of control 

interventions and should therefore be taken into consideration when developing control 

programs. Unfortunately, few studies currently provide empiric evidence on the mixing 

of parasites over time and space. This study aimed to provide data to fill that gap.  
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The project involved the use of SNP genotype and sequence data to analyse the genetic 

diversity and population structure of P. falciparum parasites in regions of varying 

transmission intensities in Kenya and The Gambia. The analyses aimed to describe the 

spatial and temporal genetic variation of parasite isolates and allow the mapping of 

parasite movement and interaction within different study sites. The results of the study 

would show the level of parasite movement and mixing at different geographical scales 

that may be of relevance to malaria programme officers when designing control 

interventions. Furthermore, the use of genetic data would enable an inference of the 

relationship between infections in transmission hotspots and infections in areas 

surrounding the hotspots, thus informing the design of effective hotspot-targeted 

interventions. Finally, the findings of this study would enable control programmes to 

make an inference of the likely outcome of malaria control interventions targeted at 

different spatial scales.  

 

1.15 Objectives 

1.15.1 General objective 

To determine P. falciparum malaria transmission networks in regions with varying 

transmission intensities in The Gambia, West Africa and Kenya, East Africa, by 

analysing the spatial and temporal genetic variations of parasite isolates at different 

geographical scales.  

1.15.2 Specific objectives 

1. To analyse the spatial and temporal micro-epidemiological genetic variation in 

P. falciparum parasite populations in three regions with varying malaria 

transmission intensities: Kilifi, coastal Kenya; Rachuonyo South, western Kenya 
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and The Kombo coastal districts, The Gambia, using genome-wide distributed 

SNP genotype data.  

2. To analyse spatial and temporal genetic variation of P. falciparum parasites at a 

national and sub-national level using genome-wide distributed SNP genotype 

data in samples collected from primary school children across Kenya.   

3. To analyse spatial and temporal genetic variation in P. falciparum parasite 

isolates collected from children admitted at the Kilifi District Hospital through 

capillary sequencing of two target genes: Apical Membrane Antigen 1 

(PfAMA1) and Surf4.2. 
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Chapter 2 Temporal and Spatial Micro-Epidemiological 

Genetic Variation in P. falciparum Parasite Populations in 

Regions with Varying Transmission Intensities in Africa.  

 

2.1 INTRODUCTION 

To predict whether targeting hotspots is potentially an effective way of interrupting 

transmission, there is a need to understand the spatial and temporal scales over which 

parasite mixing can be observed. Unfortunately, few studies currently provide empiric 

evidence on the mixing of parasites over space and time. This evidence is important, 

since targeted malaria control on micro-epidemiological scales is likely to be required to 

eliminate malaria (Bousema et al., 2012). The earliest models of malaria transmission 

conceived of a completely mixed and homogenous parasite population, and 

mathematical models based on these show that targeting hotspots may reduce 

transmission in surrounding areas (Smith et al., 2012). These models, however, assume 

that hotspots are stable and that mosquito mixing in the community is homogenous. 

However, there has been increasing interest in models allowing for spatial heterogeneity 

and variably mixed populations of parasites (Perkins et al., 2013). These have been 

guided, in part, by studies showing that certain species of mosquitoes exhibit some level 

of site fidelity, where they return to the same homesteads to feed (McCall et al., 2001). 

If such behaviour is the norm with very little mixing, then this would greatly reduce the 

community-wide impact of targeted interventions, and interventions would be beneficial 

only to individuals within the targeted region. If, however, transmission networks 

operate freely over large geographical areas, then these interventions would likely have 

an impact beyond the targeted region. The community-wide impact of targeted control 

has not been studied extensively. However, early controlled trials showed that bed nets 
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were effective at reducing child morbidity and mortality associated with malaria in 

villages or communities randomised to the intervention in The Gambia (Alonso et al., 

1991) and Kilifi (Nevill et al., 1996). More recent studies have shown that the use of 

bed nets in a village randomized to intervention in Asembo, western Kenya, also 

protected individuals just outside the intervention village who were themselves not 

using bed nets (Hawley et al., 2003). In a recent randomized controlled trial of targeted 

integrated vector control in Rachuonyo South district in Western Kenya, an initial 

impact was seen within targeted hotspot areas, but this did not reduce transmission 

outside the hotspots, and reductions within hotspots were not sustained (Bousema et al., 

2016). This may have been due to rapid mixing of parasites from areas outside the 

intervention zones.  

Additionally, parasite evolution takes place in a micro-epidemiological context and the 

spread of drug resistance or new antigenic variants through the population will also be 

critically dependent on the degree of mixing of parasite populations. Furthermore, 

declining malaria transmission is associated with increased risk of imported cases of 

infection and disease from high transmission to low transmission regions, hampering 

elimination efforts in the low transmission regions (Patel et al., 2014) and risking the 

spread of drug resistant malaria in higher transmission regions (Klein, 2013). Thus, 

understanding parasite movement and gene flow will provide insights into novel, more 

targeted approaches to malaria elimination and combating the threats posed by re-

introduction.  

Under this objective, it was hypothesized that genotyping parasites with fine-scale 

temporal and spatial data would allow the determination of fine-scale structure to the 

population and an inference of the degree of parasite mixing in time and space. 

Genome-wide distributed single nucleotide polymorphisms (SNPs) were genotyped in 

P. falciparum field isolates sampled from three African sites with varying transmission 
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intensities, and analysed to determine the genetic relatedness of parasites within each 

population. Principal Component Analysis (PCA) was used to detect parasite sub-

populations and tests of spatial autocorrelation including Moran’s I and spatial scan 

statistics were used to test for autocorrelation among parasite genotypes. The analyses 

were carried out at different spatial scales ranging from intensive within-village 

surveillance through to county-wide surveillance.  

 

 2.2 MATERIALS AND METHODS 

2.2.1 Study population 

I was not involved in sample collection or laboratory genotyping of samples analysed in 

this study. However, the methods used are reviewed here for reference.  

P. falciparum infected blood samples were collected from individuals at three sites in 

two African countries: Kombo coastal districts of The Gambia on the West African 

coast; Kilifi, Kenya on the East African coast and Rachuonyo South district in the 

western Kenyan highlands (figure 2.1).  

 The Gambia has a subtropical climate with a single rainy season between the months of 

June and October (Ceesay et al., 2010) while Kenya has two rainy seasons, 

experiencing short rains between October and December, and long rains between April 

and August (Scott et al., 2012). In all three sites, P. falciparum is the main causative 

agent of malaria (Bousema et al., 2013, Ceesay et al., 2010, Scott et al., 2012) and 

transmission occurs almost exclusively during and immediately after the rainy seasons 

(Ceesay et al., 2008, Mwesigwa et al., 2015). The common vectors in the Gambia are 

Anopheles gambiae s.s., Anopheles arabiensis and Anopheles melas (Caputo et al., 

2008). The common vectors on the Kenyan coast have historically been A. gambiae s.s. 

and A. funestus, although a recent shift to A. arabiensis and A. merus has been detected 
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(Mwangangi et al., 2013) . In Rachuonyo South district, the main vectors transmitting 

malaria are A. gambiae s.s, A. arabiensis and A. funestus (Stevenson et al., 2012). 

During the study period, temporal trends showed declining malaria transmission in The 

Gambia and Coastal Kenya (Ceesay et al., 2008, Ceesay et al., 2010, O'Meara et al., 

2008, Mogeni et al., 2016), although not in western Kenya (Okiro et al., 2009). 

Asymptomatic parasite prevalence is lowest in The Gambia at 8.7% (Sonko et al., 

2014), intermediate in Kilifi at 14% (Midega et al., 2012) and slightly higher in 

Rachuonyo South at 16% (Stevenson et al., 2013). Over the study period, malaria 

incidence, as measured by malaria slide positivity rate (the proportion of children with 

fever who are parasite positive based on microscopy), fell from 56% in 1998 to 7% in 

2009 in Kilifi (Mogeni et al., 2016), and rose slightly in Fajara and Brikama in the 

Gambia (Ceesay et al., 2010). However, transmission intensity is highly heterogeneous 

both in time and space, with community wide surveys conducted in western Kenya in 

2010 showing parasite prevalence rates ranging between 0% - 51.5% (Bousema et al., 

2013).  

 

2.2.2 Ethics statement 

Ethical approval for this study was obtained from Kenya Medical Research Institute 

(KEMRI)’s Ethical Review Committee (under SSC No. 2239). Written informed 

consent was obtained from parents/guardians of the study participants. The study 

methods were carried out in accordance with the approved guidelines. 
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Figure 2.1 Study areas across three sites in Africa.  

A) Map of Africa showing the sites of sample collection in The Gambia (red), Kilifi 

(purple) and Rachuonyo South (orange); and locations of individual sample collection 

in: (b) The Gambia, (c) Kilifi and (d) Rachuonyo South study sites. Each dot represents 

an individual sample mapped against the geographical location (homestead) where it 

was collected.  

 

2.2.3 Sample collection and DNA extraction 

A total of 5199 P. falciparum infected blood samples were collected in the three sites 

during hospital admissions and community surveys over a 14-year period from 1998 to 
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2011 (Table 2.1). In the Gambia, 143 samples were collected from children aged 

between 8 months to 16 years who presented with either mild or severe malaria at the 

Medical Research Council (MRC) Fajara clinic or the Brikama government health 

centre in the Kombo coastal districts in the western side of the country. These children 

were part of a clinical malaria study in 2007 – 2008 and the geographical coordinates of 

their residential locations within the Kombo coastal districts had been captured (figure 

2.1b) (Ceesay et al., 2010). 2312 samples were collected from the Kilifi site, and 

included children aged 1 to 6 years who had been recruited into a phase 2b randomized 

trial looking at the efficacy of the Candidate Malaria Vaccines FP9 ME-TRAP (multiple 

epitope–thrombospondin-related adhesion protein) and MVA ME-TRAP in 2005 

(Bejon et al., 2006), as well as samples from clinical malaria studies looking at 1) 

antibody responses to MSP-2 among individuals 3 weeks to 85 years old (Polley et al., 

2006), 2) the effect of declining transmission on mortality and morbidity in children up 

to 14 years old (O'Meara et al., 2008) and 3) definitions of clinical malaria endpoints 

(Olotu et al., 2010). The 2744 samples from Rachuonyo South district were collected 

during a community survey conducted in 2011 as part of a trial looking at the impact of 

targeted control interventions on reducing malaria transmission in the wider community 

(Bousema et al., 2013). Prior to genotyping, DNA was extracted from these samples 

using either ABI prism 6100 Nucleic Acid prepstation (Applied Biosystems, Waltham, 

Massachusetts, USA) or Chelex Extraction.  

 

2.2.4 SNP selection and genotyping 

276 SNPs in 177 genes were typed in the three parasite populations (Appendix Table 1). 

The SNPs were selected from a panel of 384 SNPs previously designed for a study of 

the population structure of P. falciparum parasites from Africa, Southeast Asia and 

Oceania (Campino et al., 2011) and were chosen based on three criteria:  
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a) polymorphic among three of the most studied and well characterised P. 

falciparum strains (3D7, HB3 and IT).     

b)  uniformly distributed across the parasite genome.  

c)  ease of typing on the sequenom genotyping platform. 

Genes typed included antigen-encoding, housekeeping and hypothetical genes. 52 and 9 

SNPs were typed in the antigen-encoding parasite ligands Erythrocyte Binding Antigen 

175 (EBA-175) and Apical Membrane Antigen 1 (AMA1), respectively. The remaining 

SNPs (herein referred to as “other” SNPs), were distributed more or less evenly across 

the genome. Between 158 and 226 SNPs were typed in each sample in the Kilifi 

parasite population, while in The Gambia and Rachuonyo South populations, 131 and 

111 SNPs were typed in 143 and 2744 samples, respectively.  

Genotyping was done on the Sequenom MassARRAY iPLEX platform that allows 

multiplexing of up to 40 SNPs in a single reaction well and differentiates alleles based 

on variations in their masses (Gabriel et al., 2009). Briefly, Locus specific PCR and 

iPLEX extension primers were designed with the sequenom MassARRAY designer 

software (version 3.1), using 3D7 as the reference genome (PlasmoDB release 9.0). A 

multiplexed PCR reaction was performed by pooling locus-specific primers, and 

unincorporated dNTPs and primers were dephosphorylated enzymatically using shrimp 

alkaline phosphatase (SAP). Extension primers binding immediately adjacent to the 

SNP site of interest were then extended by a single nucleotide base into the SNP site 

using mass-modified dideoxynucleotides. The extended products were resin cleaned to 

remove excess salts and the mass of the different alleles determined using MALDI-TOF 

mass spectrometry (figure 2.2).  
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Figure 2.2: Sequenom SNP genotyping process flow chart.  

The figure shows the steps involved in SNP genotyping, from designing locus specific 

PCR primers to conversion of mass-extended products into specific genotype calls.  

 

2.2.5 Sample and SNP cut-off selection criteria 

Genotype data were aggregated to determine the distribution of sample and SNP 

genotyping pass rates, and was carried out separately for each parasite population.  

Genotyping pass rates were chosen to optimize both the number of samples selected and 

SNPs typed in each sample.  Using both sample and SNP pass rate cut-offs ensured that 

any SNPs that had high success rates but were typed in only a few samples were 

excluded from analysis as they would be less useful for comparison purposes. Samples 

where >40% of SNP typing failed were excluded from analysis, and among the 

remaining samples, SNP typing for which >30% of samples failed were further 
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excluded from analysis. The criteria for successful SNP typing were based on the SNP 

intensity values (r) and allelic intensity ratios (theta). Alleles were called as successful if 

they were above an intensity cut-off value ranging between 0.5 and 1.0, set depending 

on the performance of the individual SNP assay, and were classified as failed if they 

were below this cut-off. For those SNPs that were above the cut-off, allelic intensity 

(theta) ratios ranging between 0 and 1 were used to classify them as homozygous 

(single parasite genotype infections) or heterozygous (mixed parasite genotype 

infections). Theta values nearing 0 and 1 indicate different homozygous alleles, while 

intermediate values indicate heterozygous SNPs, representing mixed parasite 

populations.  Where mixed parasite populations were identified, the majority SNP call 

at each position was taken to indicate the dominant genotype.  

 

2.2.6 Data analysis 

All statistical analyses were conducted in R statistical software (version 3.0.2) (R Core 

Team, 2013), except for the spatial scan statistics which were computed using SaTScan 

software  (version 9.3) (Kulldorf, 2014). Genotype and geographical data were imported 

into R software where pre-statistical analyses including removal of negative controls 

and samples that lacked either genotype and/or spatio-temporal data were undertaken. 

Analyses conducted included computation of time, distance and SNP differences 

between parasite pairs, principal component analysis, global and local measurements of 

spatial autocorrelation, analysis of spatial barriers to parasite movement and variations 

in genetic differences between parasite pairs over time and space. All analyses were 

carried out separately for each parasite population (i.e. The Gambia, Kilifi and 

Rachuonyo South). In each population, the analyses were carried out on the pooled SNP 

set (all SNPs), as well as three separate SNP subsets (EBA175, AMA1 and “other” 
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SNPs). “Other” SNPs represent all SNPs in the dataset, excluding the EBA175 and 

AMA1 SNPs.  

 

2.2.6.1 Calculating pairwise time, distance and SNP differences 

For each parasite population, time, distance and SNP differences were computed for 

parasite pairs (figure 2.3), taking half the lower limit of detection of temporal and 

spatial differences for parasites collected on the same day and/or at the same location. 

Parasite pairs collected on the same day were assigned a difference of 0.5 days. For 

older samples in Kilifi (i.e. collected prior to 2004) where location was known to a 5km 

accuracy, pairs collected at the same location were assigned a difference of 

2.5km.  Precise geospatial coordinates for recent samples collected in Kilifi (i.e. 

collected after 2004) as well as all samples from The Gambia and Rachuonyo South 

were available, so parasite pairs in these three groups collected from the same location 

(homesteads) were assigned a difference of 0.02km.  

SNP differences were computed by comparing genotype data for parasite pairs within 

each population and counting the number of SNPs between them. Missing SNP data for 

each parasite was replaced with the major allele in the respective population, after 

excluding SNP typing where > 30% of assays failed as described above. 
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Figure 2.3: Snapshot showing the computation of pairwise SNP, time and distance 

differences among 5 P. falciparum parasites.  

The snapshot shows, (a) pairwise SNP differences, (b) pairwise time differences in 

days, (c) pairwise distance differences in kilometres and (d) the final dataset containing 

SNP, time and distance differences. Samples compared against themselves were 

excluded from the final analysis.  

 

2.2.6.2 Effect of location and infection status on genetic variation 

For the Kilifi parasite population, pairwise SNP differences were also computed 

between and among parasites collected north and south of the naturally occurring Kilifi 

creek (the latitude coordinate -3.64 was used to mark the north/south boundary), as well 

as between and among isolates collected from asymptomatic (community surveys) and 

symptomatic (hospital cases and short-term laboratory cultured parasites) infections in 

order to determine whether there were variations in the number of SNP differences 

based on location of sampling or infection status. In the north/south analysis, each 

parasite pair was coded into a dummy (categorical) variable based on whether both 
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parasites were collected in the north, both collected in the south, or whether one 

member of the pair came from the north and the other from the south. Similarly, for the 

symptomatic/asymptomatic infections, parasite pairs were coded into dummy variables 

based on whether both members of the pair came from asymptomatic infections, both 

came from symptomatic infections or whether one member came from an asymptomatic 

infection and the other from a symptomatic infection. The dummy variables were then 

included as independent variables in a linear regression analysis with the number of 

SNP differences between parasite pairs as the outcome variable. The analysis was 

bootstrapped using 1000 resampling steps to determine the confidence intervals and 

statistical significance of the observations.  

 

2.2.6.3 Minor Allele Frequency (MAF) distribution 

The distribution of minor allele frequencies was computed for all SNP positions in each 

of the three parasite populations. 

 

2.2.6.4 Population structure and genetic differentiation. 

Existence of genetic structure within each parasite population was interrogated using 

principal components analysis (PCA). PCA is a statistical analysis generally applied to 

data with high dimensionality, i.e. data with multiple, often correlated variables, to 

reduce dimensionality of the data while retaining the variables that explain most of the 

variation in the dataset. The analysis involves transforming the original variables into a 

new set of variables that are linear combinations of the original variables in the data, are 

uncorrelated and ordered based on the amount of variation in the original dataset that 

they explain (Anderson, 2013). The first principal component explains most of the 
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variation in the data, and subsequent components sequentially explain as much of the 

remaining variation as possible (Ringnér, 2008).  

The R function prcomp was used to carry out the PCA. This function takes as its 

arguments a data matrix which can be either a correlational matrix or a covariance 

matrix. A covariance matrix is computed if all the variables in the dataset have the same 

unit of measurement while a correlation matrix is computed when the variables in the 

data have different units of measurement. In the case of this study, a covariance matrix 

was used, with individual SNPs representing the variables. PCA can be conducted using 

spectral decomposition (analyses the covariance and correlation between variables) or 

singular value decomposition (analyses covariance and correlation among samples) 

(Anderson, 2013).  

Each principal component is a linear combination of the original variables with some 

associated coefficients (called loadings), which indicate to what extent each variable is 

correlated with the principal component. The principal components are arranged in 

order, beginning with the one that explains most of the variation in the data. In this 

analysis, PCA was computed using singular value decomposition on a covariance 

matrix of pairwise SNP differences between parasites in each population. Principal 

component (PC) scores (representing new, uncorrelated parasite genotype values) were 

computed for the first 3 PCs in each population and the values plotted over geographical 

maps of the study sites.  

Within-population genetic diversity was analysed by computing the average number of 

pairwise SNP differences in each population. Inter-population genetic differentiation 

across the three sites was computed based on Weir and Cockrham’s estimate of 

Wright’s fixation index (FST), which uses differences in allele frequencies to quantify 

the level of genetic differentiation between and among populations, with this analysis 

restricted to 33 SNPs that had been successfully typed in all three populations. The 
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analysis was repeated with an expanded SNP set generated by relaxing the SNP cut-off 

pass rate to 40%, which increased the number of shared SNPs among the three 

populations to 40. 

Pairwise inter population analyses were also carried out between Kilifi and Rachuonyo 

South (57 SNPs) and Kilifi and The Gambia (94 SNPs). Analysis between Rachuonyo 

South and The Gambia was not carried out due to the few number of SNPs (33) that 

were successfully typed in both populations. 

 

2.2.6.5 Moran’s I spatial autocorrelation analysis 

Moran’s I is a spatial autocorrelation test that measures the correlation of feature 

locations and their associated values simultaneously, and is used to determine whether 

feature attributes are clustered, dispersed or randomly distributed in space. 

Mathematically, the statistic includes a computation of the mean and variance for each 

attribute being evaluated (e.g. parasite genotypes represented by PC scores). Deviation 

from the mean is then computed by subtracting the mean from each parasite PC score. 

A cross-product is generated by multiplying the deviation values of all features within a 

specified distance band (e.g. all parasites that are 1km apart), and summing the results. 

Large deviations from the mean are associated with a larger cross-product which may 

be positive or negative depending on whether the two features being compared have 

deviation values that are larger than the mean (positive cross product) or one feature has 

a deviation value that is less than the mean (negative cross product). Spatial clustering 

occurs if features with high cross-product values cluster near other features with high 

cross-product values, and in this case, the Moran’s I index will be positive. However, if 

features with high values tend to occur close to features with low values, the Moran’s I 

index will be negative, and features will be said to be spatially dispersed. If features 

with positive cross-product values are balanced with those with negative cross-product 



56 
 

values, the index will be zero and the features will be said to be randomly distributed in 

space.  

In computing the Moran’s I index, latitude and longitude coordinates were used to 

specify the locations of the features while the scores for the first 3 PCs were used as the 

feature attribute values. For each principal component, I was computed for parasites in 

1km, 2km and 5km distance classes, using 100 bootstrap resampling steps to determine 

the statistical significance of the Moran’s I correlation coefficients observed.  

 

2.2.6.6 Spatial scan statistics  

Spatial scan statistics to detect statistically significant spatial clusters of genetically 

related parasites were carried out in SaTScan software (version 9.3) (Kulldorf, 2014) 

and were run separately for each study site. The analysis involved running a purely 

spatial, retrospective analysis based on a normal probability distribution model using 

continuous variables (PC scores) and looking for areas with clusters of high PC scores. 

During the analysis, circular scanning windows centred on each homestead are 

continuously varied in size, starting from only the homestead (or latitude/longitude 

point) on which it is centred and gradually increasing to include 50% of the population 

in the study site. At each window size and location, the ratio of parasites with high PCs 

inside the window versus outside the window is calculated, and the window with the 

highest ratio is noted down as a cluster. The statistical significance of this cluster is then 

determined, taking into account all the multiple tests that are conducted when selecting 

the optimal window (cluster). This is done by applying random permutations of the PC 

scores to the spatial coordinates of sample locations, and calculating the log-likelihood 

statistic of the optimal window detected for each random permutation. A p value is then 

derived by comparing the log-likelihood statistic for the real data with that of the 

random permutation, based on 9999 rounds of the random permutation. 
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2.2.6.7 Relationship between P. falciparum population genetics and 

transmission intensity. 

Raster analysis was carried out to test for correlations between population genetics and 

transmission intensity at fine scale in each study site, with disease incidence and 

infection prevalence used as a marker of transmission intensity. A raster is a spatial data 

structure that divides a geographical region into equal sized grids/pixels, and then stores 

one or more values related to each grid, and allows the representation of 3D information 

in a 2D format. Raster analysis was carried out for the Kilifi and Rachuonyo South 

populations only as there was no data measuring transmission intensity (malaria positive 

fraction or PCR positive fraction) for The Gambian population. Pixels representing 

different spatial scales (0.5km x 0.5km, 1.0km x 1.0km, 2.0km x 2.0km, 4.0km x 

4.0km) were used in the analysis. At each spatial resolution, pixels were assigned the 

mean of the PC scores and either Malaria Positive Fraction (for Kilifi data) or 

asymptomatic parasite prevalence by PCR (for Rachuonyo South) of all samples found 

within that pixel. The correlation between mean PC score and mean MPF or between 

mean PC score and parasite prevalence was tested by Spearman’s rank ordered 

correlation coefficient. 

 

2.2.6.8 Analysis of spatial barriers to parasite movement 

To identify possible spatial barriers to parasite movement and mixing over short 

distances, each study area was divided into pixels of varying sizes (0.4km x 0.4km, 

0.5km x 0.5km, 1.0km x 1.0km) which were then scored with 1 or 0, based on whether 

or not a straight line linking any two parasites crossed their boundaries. These pixels 

were used as independent variables in a multivariable linear regression analysis that had 
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the number of SNP differences as the dependent/outcome variable. Significance of the 

coefficient estimates were determined using non-parametric bootstrap method with 

1000 resampling steps. Raster maps showing the mean of the bootstrapped p-values for 

samples in each pixel were generated. 

 

2.2.6.9 Effects of time and space on P. falciparum genetic variations  

To analyse the impact of time and distance on the changes in genetic variations between 

parasite pairs within each population, a multiple fractional polynomial regression 

analysis was carried out. The product of time (days) and distance (kilometres) was 

included as a co-variable in the model to test the effect of the interaction of time and 

distance on changes in genetic variations between parasite isolates. The analyses were 

run separately for each population. Since the number of days differed for almost all 

parasite pairs, dummy data were included in the regression analysis to enable the 

generation of time-distance interaction graphs. For each study site, a distance range of 1 

– 10km (with an interval of 0.1km between adjacent distances) was used. Temporal 

distance with 14 and 10 day intervals were assigned to parasite pairs in Kilifi and the 

Gambia, respectively, whereas time was not considered for the Rachuonyo South 

population. Constant SNP differences of 14, 10 and 8 were used for parasite pairs in 

Kilifi, Rachuonyo South and the Gambia, respectively. Within each population, 

analyses were carried out separately for all successfully typed SNPs as well as the three 

SNP subsets (EBA-175, AMA1, and “other” SNPs). In the Kilifi population where 

samples were contributed from different studies, separate analyses were also carried out 

for samples collected from hospital-based studies, community surveys and short term 

cultured parasites. The three study groups (hospital cases, laboratory cultured parasites 

and community surveys) showed similar patterns of variation in SNP differences with 

time and distance, therefore subsequent analyses were conducted for the individual SNP 
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subsets but on a combined parasite data set containing parasites from all three study 

groups. For the Rachuonyo South population, SNPs in the AMA1 gene were not 

analysed separately due to their few numbers, but were analysed as part of the entire 

SNP set (all SNPs) for this population. An analysis of the effect of the interaction of 

time and distance on genetic variation was not carried out for the Rachuonyo South 

population as the samples were all collected within a few days of each other.   

 

 

2.3 RESULTS 

2.3.1 Summary of study datasets 

A total of 5199 P. falciparum samples collected from both hospital admissions and 

community surveys from The Gambia, Kilifi and Rachuonyo South over a 14-year 

period from 1998 to 2011 were genotyped (Table 1; Table 2). 2769 (53%) of these were 

selected for further analyses based on SNP and Sample typing pass rates as well as 

availability of both temporal and spatial data for each sample.   

 

Table 2-1: Summary information for P. falciparum infected samples collected from 

The Gambia, Kilifi and Rachuonyo South. 

Region Study site Samples 

genotyped 

Samples 

analysed 
Study 

period 

Missing 

temporal 

data 

Missing 

spatial 

data 

Missing 

parasite 

density  

Average 

parasite 

density 

Kilifi Community 

surveys 

748 195 Feb -

Oct ‘05 

34 125 37 4562 

Kilifi KDH 1374 1259 Jul’98-

feb’08 

2 207 49 352K 

Kilifi Laboratory 

cultures 

190 148 Aug’03

-

Apr’10 

0 0 190 - 

The 

Gambia 

MRC Fajara 

& Brikama 

health centre 

143 133 Sep’07 

–

Jan’09 

0 0 5 406K 

Western 

Kenya 

Rachuonyo 

South 

2744 1034 2010 0 0 2744 - 
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Table 2-2: Temporal distribution of samples analysed in the P. falciparum 

populations. 

Study site Year of 

sample 

collection 

No of 

samples 

Kilifi 1998 1 

 1999 114 

 2000 114 

 2001 272 

 2002 211 

 2003 220 

 2004 191 

 2005 301 

 2006 69 

 2007 86 

 2008 13 

 2009 9 

 2010 1 

Rachuonyo South 2011 1034 

The Gambia 2007 104 

 2008 29 

 

Samples from Kilifi and The Gambia exhibited a wide range of parasite densities which 

invariably affected their genotyping pass rates, with samples having high parasite 

densities also having high genotyping pass rates (figure 2.4). Genotyping pass rates 

increased with increase in parasite density, up to a maximum of 10,000 parasites/µl in 

both Kilifi and The Gambia. Parasite density data were not available for the Rachuonyo 

South study site. 
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Figure 2.4: Correlation between parasite densities and SNP genotyping pass rates.  

The relationship was analysed for samples collected in a) Kilifi and b) The Gambia. 

Increasing genotyping pass rates were positively correlated with parasite densities, up to 

a maximum of approximately 10,000 parasites/µl, beyond which parasite density had 

little impact on genotyping outcome. 

 

Comparisons of the distribution of genotyping pass rates among samples in the three 

populations showed that hospital cases and short-term cultured isolates had less 

variation in pass rates compared to community surveys (figure 2.5). Within the Kilifi 

population, laboratory cultured parasite samples had the highest pass rates and showed 

the least variation among samples (figure 2.5a). Samples from hospital cases also had 

high pass rates, with a median value equal to that of the laboratory cultured samples. 

Those from the community survey had the highest variation in their genotype pass rates. 

These samples were collected from asymptomatic individuals with a wide range of 
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parasite densities. Samples from The Gambian parasite population (figure 2.5b) had 

comparable pass rate distribution to that of hospital cases from the Kilifi population, 

with median pass rate of over 85% and little variation. The Rachuonyo South 

population (Figure 2.5c) showed variation in distribution of success rates similar to that 

seen in samples from community surveys in the Kilifi population, but had a lower 

median success rate of around 40%, indicating lower parasite densities in the 

Rachuonyo South population compared to the Kilifi population.   

 

Figure 2.5: Box and Whisker plots showing the distribution of genotyping pass 

rates for P. falciparum.  

Plots were produced for parasites from a) Kilifi, b) The Gambia and c) Rachuonyo 

South populations. Greater variability in genotyping pass rate was seen in the samples 

collected during community surveys while the hospital cases had a higher number of 
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outliers. Laboratory cultured samples in the Kilifi population had the highest pass rates 

and showed the least variation.  

 

Genotyping pass rates among samples from the Kilifi population ranged from 5% to 

95.7%, while pass rates among SNPs ranged from 0.17% to 96.7%. The SNP that 

encodes the substitution PfcrtK76T found in the chloroquine resistance transporter gene 

had the lowest success rate, failing in 99.83% of the samples in which it was typed. This 

was followed by a SNP found in the EMP1-trafficking protein, which had a failure rate 

of 99.75%.  

Genotyping pass rates among samples from The Gambia population ranged from 15% 

to 97.7% and pass rates among SNPs ranged from 0 to 100%. Typing of an EBA-175 

SNP and a SNP found in a gene encoding a conserved protein of unknown function, 

PF11_0353, failed in all the samples while a SNP in the AMA1 gene was successfully 

typed in all samples. Genotyping pass rates for both samples and SNPs were generally 

lower in Rachuonyo South compared to Kilifi and The Gambian populations, possibly 

due to the lower parasitaemia in Rachuonyo South samples. Sample success rates 

ranged between 5% and 93.6%, with less than half the samples having 70% or more of 

their SNPs successfully typed. SNP pass rates ranged from 0% to 98.7%. Typing of 

three SNPs: two in hypothetical proteins (PF14_0153 and PF11_0347) and one in 

EBA175 was unsuccessful in all samples in this population. Overall, however, there was 

no specific bias towards failure of specific samples or SNPs in specific genes, but if 

there had been, it would have pointed to the possible presence of a previously un-

identified SNP within the primer binding site that prevented the primer from binding 

and prevented detection of the target SNP.  

In total, 276 SNPs were typed in parasites from the three populations. Many of these 

were SNPs distributed throughout the genome and mostly found in genes encoding 
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hypothetical proteins or proteins with unknown functions (Table 2.3; Appendix Table 

1).  Selection of samples and SNPs for use in further analyses was based on a trade-off 

between the highest number of samples and SNPs with the least number of missing and 

failed assays that could be used in the analysis to reach meaningful conclusions. 

 

Table 2-3: single nucleotide polymorphic (SNP) sites typed in Kilifi, Rachuonyo 

South and Gambian parasites 

 EBA AMA1 “Other” SNPs total 

Kilifi 52 9 175 236 

Rachuonyo South 27 3 81 111 

The Gambia 45 9 77 131 

All 52 9 215 276 

 

Variable numbers of samples and SNPs were selected for further analysis in each site, 

based on genotyping pass rates (Table 2.4, figure 2.6). In the Gambian population, 131 

SNPs were typed in 143 samples and of these, 133 samples and 107 SNPs with at least 

70% genotyping pass rates were selected for further analyses. Of the 2312 samples and 

236 SNPs typed in the Kilifi population, 1602 samples with a success rate of at least 

75% and 177 SNPs with a pass rate of at least 70% were selected for further analyses, 

while 1034 samples and 82 SNPs with minimum success rates of 60% and 70% 

respectively were selected from an original set of 2744 samples and 111 SNPs typed in 

the Rachuonyo South population. Among the samples selected from the Kilifi 

population, 1259 were from the hospital cases, 195 were from the community surveys 

and 148 were from the short-term laboratory cultured samples (Table 2.1).  

A sufficient number of SNPs were typed in EBA175 and AMA1 to enable a sub-analysis 

of these two genes in The Gambian and Kilifi populations (Table 2.3). The sub-analyses 

were carried out to determine whether patterns of temporal and spatial genetic variation 
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differed when these two genes, which have been shown to be under balancing selection, 

were analysed, compared to when SNPs in ‘neutral’ genes were analysed.   

 

Table 2-4: Samples and SNPs analysed in Kilifi, Rachuonyo South and Gambian 

parasite populations 

Study population Samples analysed (% 

pass rate cut-off) 

SNPs analysed (% 

pass rate cut-off) 

Kilifi 1602 (75) 177 (70) 

Rachuonyo South 1034 (60) 82 (70) 

The Gambia 133 (70) 107 (70) 

 

 

Figure 2.6: Frequency distribution of genotyping pass rates for samples and SNPs 

in P. falciparum parasite populations.  

The top panel shows the distribution of genotyping pass rates for samples while the 

bottom panel shows that of SNPs for The Gambia (left panel), Kilifi (middle panel) and 

Rachuonyo South (right panel) parasite populations.  
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2.3.2 Minor Allele Frequency (MAF) distribution 

Minor allele frequency (MAF) distribution of SNPs in the different populations ranged 

from 0% - 47% for parasites in Kilifi and Rachuonyo South populations, and 0% - 49% 

for parasites in The Gambian population (figure 2.7). Analyses indicate that Kilifi and 

The Gambia have a similar MAF distribution pattern, where most SNPs are present at 

low frequencies. For example, over 100 SNPs in the Kilifi population had minor allele 

frequencies of less than 5%. In comparison, Rachuonyo South parasite population had 

minor alleles with higher frequencies, indicative of higher genetic diversity.  

 

Figure 2.7: Minor allele frequency (MAF) SNP distribution.  

MAF was computed for parasites collected in a) Rachuonyo South district in western 

Kenya highlands, b) Kilifi in coastal Kenya and c) Kombo coastal districts in The 

Gambia.  
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Monomorphic positions (100% identical across all samples) were identified in each 

population. 26% (46 of 177), 20.7% (17 of 82) and 59.8% (64 of 107) of SNP positions 

in Kilifi, Rachuonyo South and The Gambia, respectively, were identified as 

monomorphic. Since these positions were identical across all parasite isolates, they did 

not contribute any information in the analysis of parasite genetic variations. Thus, the 

actual numbers of polymorphic positions that were detectable within each population, 

and which contributed to the final analyses were 131 in Kilifi, 65 in Rachuonyo South 

and 43 in The Gambia (Table 2.5). 

 

Table 2-5: Number of individual SNP positions analysed in P. falciparum parasite 

populations in Kilifi, Rachuonyo South and The Gambia. 

 EBA-

175 

AMA1 ‘Other’ 

SNPs 

Total 

Kilifi 36 (17) 8 (8) 133 (106) 177 

(131) 

Rachuonyo South 20 (10) 3 (3) 59 (52) 82 (65) 

The Gambia 39 (11) 9 (8) 59 (24) 107 (43) 

Brackets contain the number of polymorphic SNP positions in each SNP subset in each 

population. 

 

2.3.3 Population differentiation and pairwise SNP differences 

Wright’s fixation index (FST) analysis of population differentiation showed the level of 

differentiation among the three populations to be 0.046 (95% CI: 0.013 – 0.078), 

comparable with results of other studies of African P. falciparum populations using 

microsatellite typing and whole genome sequencing (Anderson et al., 2000, Manske et 

al., 2012). Pairwise population analysis gave FST values of 0.041 (95% CI: 0.013 – 

0.077) between Kilifi and Rachuonyo South, 0.078 (95% CI: 0.016 – 0.149) between 
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Kilifi and The Gambia and 0.108 (95% CI: 0.001 – 0.195) between The Gambia and 

Rachuonyo South. Thus, the highest level of differentiation was observed between The 

Gambian and Rachuonyo South populations and the lowest level of differentiation was 

observed between The Gambian and Kilifi populations.   

The average numbers of SNP differences within and between the three populations were 

computed using a set of 33 SNPs that were typed in all three populations (Table 2.6). 

Results of the analysis showed similar levels of diversity for The Gambia and 

Rachuonyo South (3.407), Kilifi and Rachuonyo South (3.337) and Kilifi and The 

Gambia (3.264) parasite populations. Within-population genetic diversity showed that 

parasites in Rachuonyo South had the highest genetic diversity (3.384 SNPs per parasite 

pair), those in The Gambia had the lowest genetic diversity (2.867 SNPs per parasite 

pair), while those in Kilifi had intermediate values (3.229 SNPs per parasite pair).  

 

Table 2-6: Average pairwise SNP differences within and between P. falciparum 

parasite populations in Kilifi, Rachuonyo South and the Gambia. 

 The 

Gambia 

Rachuonyo 

South 

Kilifi 

The Gambia 2.867   

Rachuonyo South 3.407  3.384  

Kilifi 3.264 3.337 3.229 

 

In the Kilifi parasite population where parasites were stratified by location (north vs 

south) and infection status (symptomatic vs asymptomatic), analysis of the number of 

SNP differences between parasites in the north and south showed a higher number of 

SNP differences between north-north (effect size = 0.357, 95% CI = 0.224 – 0.671, p = 

<0.001) parasite pairs, and lower number of SNP differences between south-south 

(effect size = -0.243, 95% CI = -0.578 - -0.119, p=0.002) parasite pairs compared to the 
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north-south parasite pairs. In the symptomatic/asymptomatic infections, there were 

more SNP differences between symptomatic-symptomatic infections (effect size = 

0.807, 95% CI = 0.337 – 1.022, p = < 0.001), and fewer SNP differences between 

asymptomatic-asymptomatic infections (effect size = -0.781, 95% CI = -1.308 - -0.448, 

p = < 0.001) compared to the symptomatic-asymptomatic group.  

 

2.3.4 P. falciparum population structure 

Principal components analysis (PCA) was carried out separately for each population 

using the 177, 82 and 107 SNPs that were successfully typed in Kilifi, Rachuonyo 

South and The Gambia parasite populations, respectively. Scree plots showing the 

amount of variation explained by each principal component were plotted for each 

parasite population (figure 2.8). In general, each PC accounted for only a small amount 

of the overall variation in the data. Cumulatively, the first three principal components 

accounted for 13.2% (PC1=5.1%, PC2=4.4%, PC3=3.7%) of the variability seen in 

Kilifi, 12.7% (PC1=4.4%, PC2=4.3%, PC3=4%) of the variability seen in Rachuonyo 

South and 36.1% (PC1=18.4%, PC2=10.4%, PC3=7.3%) of the variability seen in The 

Gambian parasite populations.   

 

 

 



70 
 

 

Figure 2.8: Scree plots showing the proportion of total variance in the data 

accounted for by individual principal components.  

In each population, plots were produced for the first 10 principal components in a) 

Kilifi, b) The Gambia and c) Rachuonyo South P. falciparum parasite populations. 

 

Based on general convention, the first three principal components in each population 

were selected for subsequent analyses.  Principal component plots pointed to a high 

level of within-population mixing among the parasites, and parasite populations could 

not be resolved into distinct sub-populations using principal component analysis (figure 

2.9 - figure 2.12).    
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Figure 2.9: Pairwise plots of the first three principal components for Kilifi P. 

falciparum parasite population.  

A) 1st PC plotted against 2nd PC, b) 1st PC plotted against 3rd PC and c) 2nd PC plotted 

against 3rd PC. Each dot represents an individual sample. No obvious clustering of 

parasites based on genotypes is evident from these plots. 
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Figure 2.10: Pairwise plots of the first three principal components for The 

Gambian P. falciparum parasite population.  

A) 1st PC plotted against 2nd PC, b) 1st PC plotted against 3rd PC and c) 2nd PC plotted 

against 3rd PC. Each dot represents an individual sample. No obvious clustering of 

parasites based on genotypes is evident from these plots. 
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Figure 2.11: Pairwise plots of the first three principal components for Rachuonyo 

South P. falciparum parasite population.  

A) 1st PC plotted against 2nd PC, b) 1st PC plotted against 3rd PC and c) 2nd PC plotted 

against 3rd PC. Each dot represents an individual sample. No obvious clustering of 

parasites based on genotypes is evident from these plots. 
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Figure 2.12: 3D Plots of the first three principal components.  

Plots were generated for parasite populations in a) The Gambia, b) Kilifi and c) 

Rachuonyo South. Parasites clustered together and did not separate in space along any 

of the three principal components. 

 

Scores for the first three PCs were represented on geographical maps of the study 

locations to show the spatial spread of the parasite isolates (figure 2.13 - figure 2.15). 

As with the PC plots above, the spatial pattern showed a high level of mixing of 

parasites, with no obvious clustering of genetically distinct parasites at the geographical 

scale analysed. 
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Figure 2.13: Geographic distribution of P. falciparum parasite genotypes in The 

Gambian population.  

Each point represents the location of an individual parasite isolate and the colour 

shading represents distinct genotypes of parasites based on scores for a) Principal 

Component 1, b) Principal Component 2 and c) Principal Component 3. 
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Figure 2.14: Geographic distribution of P. falciparum parasite genotypes in the 

Kilifi population.  

Each point represents the location of an individual parasite isolate and the colour 

shading represents distinct genotypes of parasites based on scores for a) Principal 

Component 1, b) Principal Component 2 and c) Principal Component 3. 
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Figure 2.15: Geographic distribution of P. falciparum parasite genotypes in the 

Rachuonyo South population.  

Each point represents the location of an individual parasite isolate and the colour 

shading represents distinct genotypes of parasites based on scores for a) Principal 

Component 1, b) Principal Component 2 and c) Principal Component 3. 

 

Inter-population comparisons showed a high level of homogeneity, and parasites of East 

and West African origins could not be resolved based on genotype when 94 SNPs typed 

in The Gambia and Kilifi were analysed (figure 2.16). Furthermore, Kilifi and 

Rachuonyo South parasite populations could also not be resolved using the 57 SNPs 
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that were successfully typed in the two populations (figure 2.17). Only 33 SNPs were 

successfully typed in both The Gambia and Rachuonyo South, and a comparison of 

these populations based on principal components is not reported due to the few number 

of SNPs.  

 

Figure 2.16: Principal Component Analysis plots of 133 Gambian (red) and 1602 

Kilifi (green) P. falciparum samples based on 94 SNPs typed in both populations.   

Clear differentiation of samples based on country of origin was not observed when the 

analysis was carried out along (a) the first and second principal components or (b) 

along the first and third principal components. 
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Figure 2.17: Principal Component Analysis plots of 1602 Kilifi (red) and 1034 

Rachuonyo South (green) P. falciparum samples based on 57 SNPs typed in both 

populations. 

 (a) Clear differentiation of samples was not observed when the analysis was carried out 

along the first and second principal components. (b) Two clusters containing samples 

from both populations were observed when the analysis was carried out along the first 

and third principal components. 

 

2.3.5 Moran’s I spatial autocorrelation analyses 

Having not seen parasite sub-populations by PCA alone, spatial analyses were included 

to test for spatial structure to the principal component values. Moran’s I analysis for 
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spatial autocorrelation showed slight positive correlations for parasites spaced over 

different distance classes of 1km, 2km and 5km. In the Gambian population, statistically 

significant (p<0.01) positive spatial autocorrelation was detected for parasites that were 

6km apart within the 1km distance class, but there was no significant correlation for 

parasites that were more closely related in space within this distance class (figure 2.18). 

Statistically significant (p<0.01) spatial auto-correlation was seen for parasites that were 

2km apart in the second distance class category while within the 5km distance class, 

parasites that were approximately 5km and 10km apart were spatially auto-correlated 

(p<0.01) as well. Only two samples came from the same homestead (0km apart) 

therefore no analysis was carried at out at this spatial resolution in this parasite 

population.  

Spatially auto-correlated parasites were identified in the Kilifi population at distance 

classes of 1km, where statistically significant associations were seen at 1km, 3km, 4km, 

5km and 6km intervals within this distance class (figure 2.19). Significant associations 

were also seen for samples that were spaced much further apart (up to 20km apart) 

showing that parasites move quite freely within this region. In the 2km distance classes, 

statistically significant spatial auto-correlations were observed for samples that were 

2km, 4km and 6km apart, as well as those that were slightly over 20km apart. Within 

the 5km distance class, most of the associations were very weak and non-significant, 

although there was one significant association (p<0.01) for parasites that were 5km 

apart.  

A slightly different trend was seen in the Rachuonyo South population (figure 2.20) 

where parasites that were more closely related in space tended to have a statistically 

significant (p<0.01) association. This was seen for parasites collected from the same 

homesteads (0km apart), as well as those that were 1km apart. In some instances, 
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however, statistically significant associations were seen for parasites that were more 

distantly spaced (over 10km apart).  

 

Figure 2.18: Moran’s I spatial autocorrelation analysis for the first three principal 

components in The Gambian P. falciparum parasite population.  

Correlation coefficients were computed at distance classes of (from top) 1km, 2km and 

5km. Asterisks indicate distances at which parasites have significant (p≤0.01) 

autocorrelations. The lines represent the correlation coefficients obtained when the 

different principal components were used. Moran’s I was not computed for samples 

collected at the same location (0 km distance difference) due to the few number of 

samples (2).  
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Figure 2.19: Moran’s I spatial autocorrelation analysis for the first three principal 

components in Kilifi P. falciparum parasite population.  

Correlation coefficients were computed at distance classes of (from top) 1km, 2km and 

5km. Asterisks indicate distances at which parasites have significant (p≤0.01) 

autocorrelations. The lines represent the correlation coefficients obtained when the 

different principal components were used.  
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Figure 2.20: Moran’s I spatial autocorrelation analysis for the first three principal 

components in Rachuonyo South P. falciparum parasite population.  

Correlation coefficients were computed at distance classes of (from top) 1km, 2km and 

5km. Asterisks indicate distances at which parasites have significant (p≤0.01) 

autocorrelations. The lines represent the correlation coefficients obtained when the 

different principal components were used. 

 

2.3.6 SaTScan analysis 

Spatial scan statistics based on a normal probability distribution model identified 

statistically significant (p≤0.01) clusters of genetically distinct P. falciparum sub-

populations in Kilifi and Rachuonyo South study sites (figure 2.21). In Rachuonyo 

South, one cluster with a 0.5km radius (p=0.001), containing 14 of the parasite isolates, 
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was detected when analysing the third PC, while in Kilifi, a larger cluster of 15 

genetically related parasites was detected with a radius of 1.54km (p=0.011) when 

analysing the second PC. No statistically significant clusters were detected in The 

Gambian parasite population. 

 

 

Figure 2.21: Spatial clusters of P. falciparum sub-populations in Kilifi and 

Rachuonyo South populations as identified by spatial scan statistics.  

One cluster was identified in Kilifi parasite population (a) when the second principal 

component was analysed and another cluster was identified in the Rachuonyo South 

parasite population (b) when the third principal component was analysed. Each dot 

represents a sample analysed in the study, mapped against the geographical location 

where it was sampled. Number of samples in Kilifi cluster = 15; number of samples in 

Rachuonyo South cluster = 14. 
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2.3.7 Spatial and temporal changes in P. falciparum genetic variation 

The effects of distance and time separating parasite pairs on genetic relatedness were 

examined to determine the spatial extent and rate of parasite mixing (figure 2.22 – 

figure 2.24). The analyses used regression models where the number of SNP differences 

between parasite pairs was an outcome predicted by the distance between parasite pairs 

and the time between parasite pairs. Time was not included for the Rachuonyo South 

population as the samples were collected in a single cross-sectional survey taken over a 

few days. Across all three datasets, distance was independently associated with 

increasing variation in genotype, i.e. the further apart in space any two parasites were, 

the greater the number of SNP differences between them (Table 2.7). In the Gambian 

and Kilifi populations, time was also shown to be associated with increasing variation in 

genotype, with parasite pairs collected further apart in time having a greater number of 

genetic differences than those collected closer to each other in time. Additionally, in 

The Gambia and Kilifi populations, time interacted antagonistically with distance to 

attenuate the effect of distance on genotype relatedness when the time separating 

samples was greater. This means that the genetic differences between any two parasites 

increased with distance, but at a decreasing rate when time between these samples 

increased. This pattern was consistent for all groupings of SNPs (all SNPs, “other” 

SNPs, EBA 175 and AMA1), with the exception of AMA1 SNPs in Kilifi, where power 

was limited due to the low number of SNPs analysed. SNPs were not grouped by gene 

in Rachuonyo South due to the low number of SNPs typed. 
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Figure 2.22: Time-distance interaction curves showing the effect of distance on the 

number of SNP differences between Gambian P. falciparum parasite pairs with 

increasing time.  

The analyses were carried out for a) all SNPs, b) EBA-175, c) AMA1 and d) “other” 

SNPs in The Gambian population. Dashed lines represent time intervals separating 

parasite pairs at 1 day (red), 1 month (green), 6 months (blue) and 1 year (purple).  
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Figure 2.23: Time-distance interaction curves showing the effect of distance on the 

number of SNP differences between Kilifi P. falciparum parasite pairs with 

increasing time.  

The analyses were carried out for a) all SNPs, b) EBA-175, c) AMA1 and d) “other” 

SNPs in the Kilifi population. Dashed lines represent time intervals separating parasite 

pairs at 1 day (red), 1 month (green), 6 months (blue) and 1 year (purple).  
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Figure 2.24: Effect of distance on the number of SNP differences between P. 

falciparum parasite pairs in Rachuonyo South.  

The analysis was carried out using all the SNPs in the population. The effect of time 

was not considered because all the samples were collected within a few days of each 

other.  

Bootstrapping the analyses (to account for the linked nature of pairwise observations) 

gave statistically significant effects of distance, time and the interaction between 

distance and time on variations in parasite genotypes (Table 2.7). 

Table 2-7: 95% bootstrap confidence intervals of the linear effects of time, distance 

and the interaction of time and distance on changes in SNP differences between P. 

falciparum parasite pairs. 

 Time (p value) Distance (p 

value) 

Distance-Time 

interaction (p 

value) 

Kilifi 0.190 – 0.647 

(<0.001) 

0.297 – 1.363 

(0.001) 

-0.453 – -0.072 

(0.003) 

Rachuonyo South - 0.0104 – 0.275 

(0.018) 

- 

The Gambia -0.005 - -0.001 

(0.004) 

0.086 - 0.723 

(<0.001) 

0.0003 – 0.002 

(0.003) 
Values represent the change in the number of SNP differences between parasite pairs per day (time), per 

kilometre (distance) and per day/kilometre (time-distance interaction). Time and distance were log 

transformed prior to running the regression analyses.       

   



89 
 

2.3.8 Correlation between P. falciparum population genetics and 

transmission intensity based on different metrics of transmission 

Raster analysis by pixels was conducted to examine the spatial relationship between 

distinct parasite genotypes as represented by principal component scores and either 

malaria positive fraction (MPF) data (in Kilifi) or PCR positive data (in Rachuonyo 

South). The range of MPF and parasite prevalence per pixel varied depending on the 

size of the pixels analysed. In the Kilifi population, MPF ranged from 0 – 100% (0.5km 

pixels), 0 – 100% (1.0km pixels), 20 – 83% (2.0km pixels) and 33 – 63% (4.0km 

pixels). In the Rachuonyo South population, PCR positive prevalence varied from 0 – 

75% (0.5km pixels), 0 – 47% (1.0km pixels), 3.5 – 35.8% (2km pixels) and 6.2 – 33.4% 

(4.0km pixels). 

Raster analyses showed an overall trend of heterogeneity in both populations, at all 

spatial resolutions (figure 2.25- figure 2.32). High or low mean PC scores are indicative 

of parasites that are more closely genetically related within a defined geographical 

region, while medium mean PC values may be indicative of a mixture of parasites that 

are less closely related within a geographical region of a similar size. Geographical 

regions with higher MPF or PCR positive values indicate a higher number of 

individuals with malaria or asymptomatic parasite infection, respectively. These regions 

can be classified as hotspots of symptomatic or asymptomatic infection as they have 

higher infection prevalence compared to surrounding regions. The analysis of principal 

components did not show any consistent or statistically strong associations with markers 

of transmission intensity (i.e. malaria positive fraction and prevalence of asymptomatic 

parasitaemia by PCR).   

Spearman’s rank correlation coefficients of association indicated a statistically 

significant, albeit weak negative association between the mean of principal components 

and malaria positive fractions at spatial resolutions of 1km x 1km ρ(313)=-0.13, p=0.02 
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and 2km x 2km, ρ(152)=-0.18, p=0.02 in the Kilifi population (Table 2.8). Within the 

Rachuonyo South population, clustering was observed at lower resolution of 4km x 

4km, with a statistically significant positive association between mean scores of PCR 

positive fractions and high principal component scores ρ(12)=0.68, p=0.007 (Table 2.8).  

 

Figure 2.25: Raster analysis by pixels to determine the spatial relationship between 

P. falciparum genotypes as represented by principal component analysis (PCA) 

and malaria positive fraction over 0.5km2 in Kilifi.  

The study area was divided into 0.5km x 0.5km sized pixels and each pixel assigned the 

mean PC score or the malaria positive fraction (MPF) of all samples falling within it. 

(a), (b) and (c) show the distribution of scores for principal components 1, 2 and 3 

respectively. (d) shows the distribution of MPF across the study site at the specified 

spatial scale.  
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Figure 2.26: Raster analysis by pixels to determine the spatial relationship between 

P. falciparum genotypes as represented by principal component analysis (PCA) 

and malaria positive fraction over 1.0km2 in Kilifi.  

The study area was divided into 1.0km x 1.0km sized pixels and each pixel assigned the 

mean PC score or the malaria positive fraction (MPF) of all samples falling within it. 

(a), (b) and (c) show the distribution of scores for principal components 1, 2 and 3 

respectively. (d) shows the distribution of MPF across the study site at the specified 

spatial scale.  
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Figure 2.27: Raster analysis by pixels to determine the spatial relationship between 

P. falciparum genotypes as represented by principal component analysis (PCA) 

and malaria positive fraction over 2.0km2 in Kilifi.  

The study area was divided into 2.0km x 2.0km sized pixels and each pixel assigned the 

mean PC score or the malaria positive fraction (MPF) of all samples falling within it. 

(a), (b) and (c) show the distribution of scores for principal components 1, 2 and 3 

respectively. (d) shows the distribution of MPF across the study site at the specified 

spatial scale.  
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Figure 2.28: Raster analysis by pixels to determine the spatial relationship between 

P. falciparum genotypes as represented by principal component analysis (PCA) 

and malaria positive fraction over 4.0km2 in Kilifi.  

The study area was divided into 4.0km x 4.0km sized pixels and each pixel assigned the 

mean PC score or the malaria positive fraction (MPF) of all samples falling within it. 

(a), (b) and (c) show the distribution of scores for principal components 1, 2 and 3 

respectively. (d) shows the distribution of MPF across the study site at the specified 

spatial scale.  
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Figure 2.29: Raster analysis by pixels to determine the spatial relationship between 

P. falciparum genotypes as represented by principal component analysis (PCA) 

and parasite positive fraction over 0.5km2 in Rachuonyo South.  

The study area was divided into 0.5km x 0.5km sized pixels and each pixel assigned the 

mean PC score or the parasite positive fraction (PPF) of all samples falling within it. 

(a), (b) and (c) show the distribution of scores for principal components 1, 2 and 3 

respectively. (d) shows the distribution of PPF across the study site at the specified 

spatial scale.  
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Figure 2.30: Raster analysis by pixels to determine the spatial relationship between 

P. falciparum genotypes as represented by principal component analysis (PCA) 

and parasite positive fraction over 1.0km2 in Rachuonyo South.  

The study area was divided into 1.0km x 1.0km sized pixels and each pixel assigned the 

mean PC score or the parasite positive fraction (PPF) of all samples falling within it. 

(a), (b) and (c) show the distribution of scores for principal components 1, 2 and 3 

respectively. (d) shows the distribution of PPF across the study site at the specified 

spatial scale.  
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Figure 2.31: Raster analysis by pixels to determine the spatial relationship between 

P. falciparum genotypes as represented by principal component analysis (PCA) 

and parasite positive fraction over 2.0km2 in Rachuonyo South.  

The study area was divided into 2.0km x 2.0km sized pixels and each pixel assigned the 

mean PC score or the parasite positive fraction (PPF) of all samples falling within it. 

(a), (b) and (c) show the distribution of scores for principal components 1, 2 and 3 

respectively. (d) shows the distribution of PPF across the study site at the specified 

spatial scale.  
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Figure 2.32: Raster analysis by pixels to determine the spatial relationship between 

P. falciparum genotypes as represented by principal component analysis (PCA) 

and parasite positive fraction over 4.0km2 in Rachuonyo South.  

The study area was divided into 4.0km x 4.0km sized pixels and each pixel assigned the 

mean PC score or the parasite positive fraction (PPF) of all samples falling within it. 

(a), (b) and (c) show the distribution of scores for principal components 1, 2 and 3 

respectively. (d) shows the distribution of PPF across the study site at the specified 

spatial scale.  
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Table 2.8: Spearman’s rank ordered correlation coefficients between parasite 

genotypes and infection status in Kilifi and Rachuonyo South. 

Kilifi (MPF) PC1 PC2 PC3 

0.5KM (n=432) -0.07 (0.14) 0.03 (0.53) 0.04 (0.43) 

1.0KM (n=313) -0.13 (0.02) 0.03 (0.58) 0.09 (0.11) 

2.0KM (n=152) -0.18 (0.02) 0.14 (0.08) 0.01 (0.87) 

4.0KM (n=57) 0.04 (0.74) 0.17 (0.21) -0.01 (0.96) 

Rachuonyo South (PPF) PC1 PC2 PC3 

0.5KM (n=272) 0.01 (0.88) 0.02 (0.72) 0.10 (0.11) 

1.0KM (n=104) 0.01 (0.93) 0.08 (0.43) 0.03 (0.73) 

2.0KM (n=32) -0.11 (0.61) 0.19 (0.27) -0.10 (0.57) 

4.0KM (n=12) -0.32 (0.27) 0.68 (0.007) 0.10 (0.74) 

n= degrees of freedom; p-values in brackets under each PC column. MPF = malaria positive fraction; PPF 

= Parasite positive fraction.  

 

 

 

 

Scatterplots representing the relationship between the distribution of mean PC scores 

and malaria positive fractions (Kilifi population) on the one hand, and PCR positive 

fractions (Rachuonyo South population) on the other, were produced at the 1.0km x 

1.0km spatial resolution (figures 2.33 and 2.34).  
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Figure 2.33: Association between mean PC scores and malaria positive fraction in 

Kilifi P. falciparum parasite population.  

Scores were computed within 1km x 1km geographical grids to show the relationship 

between malaria positive fractions and parasite genotypes represented by scores for a) 

Principal component 1, b) Principal component 2 and c) Principal component 3.  
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Figure 2.34: Associations between mean PC scores and PCR positive fractions in 

Rachuonyo South P. falciparum parasite population.  

Scores were computed within 1km x 1km geographical grids to show the relationship 

between parasite positive fractions and parasite genotypes represented by scores for a) 

Principal component 1, b) Principal component 2 and c) Principal component 3. 

 

2.3.9 Analysis of spatial barriers to parasite movement 

Raster analysis was also used to examine the study sites for discrete regions that acted 

as spatial barriers to parasite movement over short distances. This was done by dividing 

each site into pixels and analysing the number of SNP differences between parasites 
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separated by each pixel. The idea was that pixels that act as barriers to parasite 

movement and mixing would separate parasites that had a higher number of SNP 

differences, and conversely, pixels that acted as “gateways” for parasite movement 

would separate parasites with much fewer SNP differences between them. The analyses 

were carried out separately in each of the three sites. Additionally, a separate analysis 

was carried out for samples collected in Junju location in Kilifi county, where all the 

community survey samples were collected, to determine if there were spatial barriers to 

parasite movement in this defined region.  

Bootstrapping the multivariable linear regression analysis of pairwise comparisons of 

samples for SNP differences using 189, 703, 340 and 77 pixels for The Gambia, Kilifi, 

Rachuonyo South and Junju, respectively, showed that the majority of pixels were not 

significant influences on SNP differences (figure 2.35 – figure 2.38). The few pixels 

that were significant (p<0.05) were not significant after applying Bonferroni correction 

to account for multiple testing. Furthermore, the distribution of p values was uniform 

for each dataset (mean p value ~0.5), implying that the null hypothesis of there being no 

spatial barriers to parasite movement could not be rejected.  
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Figure 2.35: Raster analysis by pixels to examine the presence of spatial barriers to 

parasite movement in Kilifi.  

The pixel plot represents p values of bootstrapped linear regression correlation 

coefficients and show the significance of different geographical locations in acting as 

barriers to parasite mixing at a spatial scale of 1km x 1km. The colour key indicates the 

range of p values from > 0 to 1. Significant p values shown on the plot were not 

significant after applying Bonferroni correction to account for multiple testing. 

Accompanying the map are a plot showing the 95% confidence interval around the 

coefficient estimates (with a red line drawn through coefficient estimate 0) and a 

histogram showing the distribution of bootstrap p values following 1000 resampling 

steps.  
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Figure 2.36: Raster analysis by pixels to examine the presence of spatial barriers to 

parasite movement in Junju location, Kilifi county.  

The pixel plot represents p values of bootstrapped linear regression correlation 

coefficients and show the significance of different geographical locations in acting as 

barriers to parasite mixing at a spatial scale of 0.4km by 0.4km. The colour key 

indicates the range of p values from > 0 to 1. Significant p values shown on the plot 

were not significant after applying Bonferroni correction to account for multiple testing. 

Accompanying the map are a plot showing the 95% confidence interval around the 

coefficient estimates (with a red line drawn through coefficient estimate 0) and a 

histogram showing the distribution of bootstrap p values following 1000 resampling 

steps.  
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Figure 2.37: Raster analysis by pixels to examine the presence of spatial barriers to 

parasite movement in Rachuonyo South.  

The pixel plot represents p values of bootstrapped linear regression correlation 

coefficients and show the significance of different geographical locations in acting as 

barriers to parasite mixing at a spatial scale of 0.5km x 0.5km. The colour key indicates 

the range of p values from > 0 to 1. Significant p values shown on the plot were not 

significant after applying Bonferroni correction to account for multiple testing. 

Accompanying the map are a plot showing the 95% confidence interval around the 

coefficient estimates (with a red line drawn through coefficient estimate 0) and a 

histogram showing the distribution of bootstrap p values following 1000 resampling 

steps.   
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Figure 2.38: Raster analysis by pixels to examine the presence of spatial barriers to 

parasite movement in The Gambia.  

The pixel plot represents p values of bootstrapped linear regression correlation 

coefficients and show the significance of different geographical locations in acting as 

barriers to parasite mixing at a spatial scale of 0.5km x 0.5km. The colour key indicates 

the range of p values from > 0 to 1. Significant p values shown on the plot were not 

significant after applying Bonferroni correction to account for multiple testing. 

Accompanying the map are a plot showing the 95% confidence interval around the 

coefficient estimates and a histogram showing the distribution of bootstrap p values 

following 1000 resampling steps.   

 

2.4 DISCUSSION 

As malaria transmission declines, targeted control at the micro-epidemiological scale is 

likely to be important in eliminating malaria in any remaining transmission foci. The 

effectiveness of such targeted measures will depend on the extent of parasite mixing in 

and around these foci (Bousema et al., 2016). In the current study, genome-wide 
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distributed SNPs in P. falciparum samples collected from three African sites with 

varying transmission intensities were typed on the sequenom genotyping platform.  

Parasites within each site were then analysed for their level of genetic relatedness in 

time and space, to infer the extent of parasite movement and mixing at micro-

epidemiological scales.  

The Sequenom genotyping platform used here has high sensitivity and specificity, and 

samples containing as little as 2.5ng of genomic DNA can be typed successfully, even 

in the presence of contaminating human DNA (Gabriel et al., 2009). However, the 

genotyping pass rate is DNA concentration dependant, and in this study, was shown to 

increase with increasing parasite density up to 10,000 parasites/µl. Short-term 

laboratory cultured parasites and hospital cases from both Kilifi and The Gambia had 

higher genotyping pass rates compared to samples from community surveys in both 

Kilifi and Rachuonyo South. Community surveys from Rachuonyo South had the 

lowest parasite densities, possibly as a result of the higher transmission intensity 

associated with lower parasitaemia due to higher immunity in these populations (Bodker 

et al., 2006). Other than parasite density, sample and SNP assay failures were random 

and no bias was observed for specific samples or SNPs, although the existence of such a 

bias would indicate a possible SNP within the primer binding site which prevented the 

primer from binding to allow detection of the targeted SNP.  

Minor allele frequency (MAF) distributions were comparable in Kilifi and The Gambia 

where most polymorphisms were rare. Several SNPs had MAF values of zero, meaning 

that in these populations, the parasites were monomorphic and no SNPs were present at 

these positions which had been called as polymorphic. This indicates either that the 

typed positions were wrongly identified as polymorphic or that the polymorphisms were 

so rare that they could not be identified using the sample size. Given the low 
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frequencies of most minor alleles in African P. falciparum populations (MalariaGEN, 

2016, Manske et al., 2012, Mobegi et al., 2014), it is probably the latter. 

A simple inspection of the principal components derived from SNP genotyping in The 

Gambia, Kilifi and Rachuonyo South did not identify any population structure, but 

instead showed a high level of within-population variation in the three parasite 

populations. The first three principal components accounted for less than 15% of the 

variation observed in the parasites in Rachuonyo South and Kilifi, indicating high 

genetic diversity and low linkage disequilibrium between SNPs, similar to results 

obtained from analyses of microsatellite data (Anderson et al., 2000). However, there 

was less within-population genetic variation among Gambian parasites, pointing to 

greater homogeneity within this population. This is supported by the observation in this 

study that The Gambian parasites were identical in 64 of the 107 SNP positions 

analysed. High level of homogeneity within a population is a sign of clonal expansion 

resulting from self-fertilization and a small effective population size (Hartl et al., 2002), 

usually associated with low transmission intensities such as those seen in The Gambia 

(Anderson et al., 2000, Ceesay et al., 2010).  

The Kilifi-Rachuonyo South and Kilifi-Gambia inter-population genetic differentiation 

analyses did not resolve the parasites into distinct populations based on geographic 

location. Instead, parasites from both populations grouped together, indicative of high 

genetic similarity between these seemingly distantly spaced parasites. The Gambia-

Rachuonyo south comparison was not interrogated in detail because of the few SNPs 

(33) involved. The observation of fewer SNP differences between north-south parasite 

pairs compared to north-north parasite pairs in Kilifi further supports the inference of 

high parasite mixing within this parasite population. The fewer number of SNP 

differences between parasites in the south compared to those in the north indicates that 

there is a higher level of mixing of parasites in the south compared to the north and is 
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likely a result of the fact that most of the samples from the south were collected from a 

small area of the study site. This observation of a well-mixed parasite population is in 

agreement with results of studies using microsatellites, which showed little 

differentiation of parasites separated by up to 2000km in Africa (Anderson et al., 2000, 

Bakhiet et al., 2015, Oyebola et al., 2014), immune selected genes (Bodker et al., 2006, 

Duan et al., 2008) and SNPs (Mobegi et al., 2014). However, other studies have shown 

population structure when looking at other parasite populations (Anderson et al., 2005, 

Campino et al., 2011, Pumpaibool et al., 2009), although these analyses were carried 

out on larger geographical scales than those analysed here. On an international level, for 

example, some studies have been able to distinguish between Senegalese and Thai 

parasite isolates using a 24-SNP barcode (Daniels et al., 2008), and another study using 

4 SNPs out of a set of 384 SNPs was able to resolve East and West African parasites 

(Campino et al., 2011), showing that parasite populations can be resolved on a large 

geographical scale. A study in Senegal was also able to identify population structure 

among parasites using a 24 SNP barcode, despite a high level of similarity among the 

parasites analysed (Daniels et al., 2015). It is possible that more detailed genotyping 

using a larger number of markers, for instance by whole genome sequencing, would 

start to identify mutations that are private to particular sub-populations at a finer 

geographical scale, although the degree of mixing observed here suggests that discrete 

populations are unlikely. 

Based on the results of the principal component analysis, it was not concluded that there 

was a lack of genetic structure to the population, only that this structure could not be 

identified in the absence of spatial data. The genotype data were thus analysed using 

spatio-temporal data to detect both global (using Moran’s I statistic) and local (using 

spatial scan statistics) clusters of genetically distinct parasite sub-populations.  



109 
 

Global Moran’s I analysis is used to measure the spatial autocorrelation (spatial 

dependencies of observations in geographic space) between feature locations (Lat/Lon) 

and feature attributes (e.g. principal component scores) and is used to determine 

whether feature attributes are clustered, dispersed or randomly distributed in space.  

Positive Moran’s I correlation coefficient values indicate spatial clustering while 

negative values indicate dispersal of feature attributes in space. The analysis identified 

weak positive spatial autocorrelation at different spatial scales among parasites in all 

three populations, some of which were statistically significant. The evidence of spatial 

autocorrelation of parasite genotypes at different spatial scales points to possible 

existence of small clusters of genetically related parasites which themselves form part 

of larger clusters within the study areas. In The Gambian population, clusters of distinct 

parasite genotypes were detected for parasites separated by up to 6km in each of the 

distance classes analysed. In the Kilifi and Rachuonyo South populations, most of the 

statistically significant clusters of parasites were detected over relatively smaller 

distances of less than 10km. No significant clustering was observed for parasites 

collected from the same homesteads in the Kilifi population. This could be due to the 

presence of greater heterogeneity of parasites at this spatial level or the fact that the 

study consisted of only a few samples that were collected from the same homesteads. 

This explanation could also suffice for the Gambian population, were only 2 samples 

were collected from the same homestead. Within the Rachuonyo South population, 

significant spatial autocorrelation was detected for samples collected from the same 

homesteads. Making the point for mixing of parasites within the larger population is the 

fact that some significant clusters were detected in parasites that were more distantly 

separated in space (i.e. beyond 10km). This points to the possible existence of small 

clusters of genetically related parasites which themselves form part of larger clusters 

within the study areas. Previous studies of hotspots of asymptomatic and symptomatic 

malaria infection have identified hotspots or clusters up to the level of individual 
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homesteads (Bejon et al., 2010), and this study indicates that infections in such hotspots 

may be caused by parasites with different genotypes.  

Although Moran’s I analysis identified significant clustering of parasites based on 

genotypes in the different populations, the autocorrelation was modest in effect size, 

signifying weak association of parasites within the identified clusters. Some clustering 

was observed among parasites spaced over larger distances, but these were not 

convincing, as shown by the associated low correlation coefficients.  Overall, the 

consistent pattern observed from the Moran’s I analyses was that of spatial auto-

correlation at close-proximity (i.e. at a range of a few km), and little or no auto-

correlation at larger distances, with the correlation indices moving up and down around 

zero (correlation coefficient of zero is indicative of random spatial distribution).  

Moran’s I statistic is a global autocorrelation method of analysis used to determine 

whether or not parasites separated by specific distances in a defined geographical area 

are spatially auto-correlated. The statistic does not, however, identify the actual location 

of these clusters within the study sites. This additional information was derived from the 

computation of spatial scan statistics, which was used to identify the geographical 

locations and sizes of statistically significant clusters of genetically related parasite sub-

populations (Kulldorff, 2009). Based on this analysis, two parasite clusters were 

identified, one in Kilifi and the other in Rachuonyo South. The smaller size of the 

cluster in Rachuonyo South may indicate that parasites mix to high degrees in this 

population compared to Kilifi, although it may also simply reflect the fact that there was 

denser sampling in Rachuonyo South. No significant clusters were detected in the 

Gambian parasite population using spatial scan statistics, indicating that parasites mix 

freely in this parasite population. This finding is in agreement with those of other 

studies which failed to detect any genetic differentiation when parasites from this 



111 
 

population were compared to parasites from other west African parasite populations 

(Mobegi et al., 2014, Mobegi et al., 2012). 

Overall, Moran’s I statistics identified more clusters than the SaTScan analyses. This is 

because Moran’s I is a global statistic and looks for patterns on a global scale (over the 

entire geographical region) and is more likely to pick up global as well as local spatial 

patterns of clustering, whereas SaTScan looks for local patterns of clustering and is 

more likely to miss global patterns of clustering. The limited evidence of specific local 

clusters of parasite populations in the face of evidence of spatial auto-correlation over 

the whole study site implies that there is a high degree of mixing among parasites within 

the study sites, leading to limited clustering of parasites into genetically distinct sub-

populations at micro-epidemiological scales within the study sites. Previous studies 

have identified parasite sub-populations based on clustering of serological responses to 

the important antigen P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) in 

children in Kilifi (Bejon et al., 2011), supporting the observations of parasite sub-

populations at this site. In Papua New Guinea, sub-populations of parasites have also 

been identified at a micro-epidemiological scale using PfEMP1(Tessema et al., 2015), 

indicating that this may be a good marker for population differentiation at the micro-

epidemiological level. 

The effects of time, distance and time-distance interaction on the variation in SNP 

differences between parasite pairs within individual study sites were also interrogated. 

Time and distance were found to be independently associated with increasing variation 

between parasite genotypes (i.e. the further apart in time or space two parasites were, 

the greater the genetic differences observed between them). This is because parasites 

that are further apart in space may not easily interact, thus there are fewer chances for 

recombination to occur between them. Likewise, due to factors such as mutations and 

genetic drift, parasites are expected to acquire genetic changes over time, thus parasites 
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with less temporal space between them e.g. 1 month, are likely to have fewer 

differences than those with greater temporal space between them, e.g. 1 year. 

However, in the case of The Gambia and Kilifi populations where longitudinal data 

were available, time was shown to interact antagonistically with distance, with an 

increase in time reducing the variations in genetic differences between parasites as 

distance between the parasites increased. This implies that distance between samples 

was no longer predictive of genetic variation when there were longer time periods 

between samples, indicating that, given enough time, even parasites that are separated 

by large distances would get a chance to interact and recombine, especially if they are 

not geographically isolated. The number of SNP differences were seen to plateau at 

approximately 1km in The Gambia, 3km in Kilifi and 10km in Rachuonyo South. This 

may be attributed to the characteristics of the local parasite population, which in turn 

may be explained by the distribution of human settlement in the areas sampled, for 

example in the Gambia, homesteads tend to be clustered together in distinct, 

autonomous villages whereas in Rachuonyo South there is a denser and more uniform 

pattern of human settlement over the study area, enabling the interaction of parasites 

over a much larger distance.  

Raster analysis by pixels was carried out to determine the correlation between parasite 

genotypes and infection prevalence in Kilifi and Rachuonyo South, where data on 

infection prevalence was available. Statistically significant correlations were observed 

in both populations, implying the existence of a relationship between clusters of 

genetically related parasites and clusters of infection prevalence. In a population where 

disease transmission is heterogeneous, clusters of symptomatic or asymptomatic 

infections indicate possible “hotspots” of infection in the community as they represent 

areas where there is a higher than average rate of infection compared to the rest of the 

population. Studies on hotspots of symptomatic malaria infection have identified 
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hotspots or clusters of infections down to the level of individual homesteads in Kilifi 

(Bejon et al., 2014). However, most of the correlations identified in this study were 

weak and inconsistent, indicating that infections within higher incidence areas are likely 

not caused by distinct parasite sub-populations. Instead, such infections are likely 

caused by parasites that are well mixed within the general population.  

Our inability to detect barriers to parasite movement over short distances indicates that 

parasites move freely within the study areas, and the spatial extent of such parasites may 

be limited only by the ecology and dispersal range of mosquito vectors. Furthermore, 

recent examination of the epidemiology of hotspots shows that they occur at the full 

range of spatial scales, with a pattern of spatial auto-correlation that does not show a 

discontinuity at any scale (i.e. a smooth semi-variogram) (Bejon et al., 2014). This 

further argues against the existence of discrete “units” of transmission with sub-

populations of parasites.  

This study has implications for public health interventions that may target transmission 

hotspots. If hotspots consist of distinct parasite populations that do not mix with parasite 

populations in the wider parasite community, the impact of hotspot-targeted 

interventions beyond the hotspot boundaries can be expected to be limited. If parasites 

mix freely, as suggested by this data, the impact of hotspot-targeted interventions may 

affect community-wide malaria transmission. This assumes that hotspots can be 

detected, are stable in time (Bejon et al., 2010) and the spread of parasite populations 

indeed primarily occurs from hotspots to the surrounding community (Bousema et al., 

2016). 

This study had some limitations. First, the number of SNPs typed was relatively small, 

and this would have limited the power to detect genetic structure among the highly 

similar parasite populations, especially in The Gambia. Detecting genetic structure in 

highly similar parasite populations may require either a much larger panel of SNPs or 
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the use of more informative SNPs, as shown in the study by Campino et al, (Campino et 

al., 2011). However, despite the small SNP panel used in this study, population 

structure could still be detected at a micro-epidemiological scale. The analysis suggests 

that this structure was a uniform spatial and temporal auto-correlation rather than driven 

by discrete clusters of parasites at specific locations. Despite the limitations of the SNP 

typing and sample size it can therefore be concluded that any specific clustering is less 

prominent as a feature than the auto-correlations in space and time that can be detected. 

A second limitation is that the study was conducted in only two sites in Kenya and one 

site in the Gambia. It may be premature to generalize our results more widely and an 

analysis of more sites will be required to make confident generalizations. On the other 

hand, the three sites selected demonstrate differing transmission intensities typical of 

many endemic Sub Saharan African countries, and this was reflected in the level of 

genetic diversity observed in the populations. Furthermore, the findings are consistent 

across all three sites. Nevertheless, patterns of parasite mixing may differ between 

populations based on distinctive features such as geographic isolation and patterns of 

human movement. Further data are required to make more general conclusions. 

Furthermore, as transmission continues to decline and malaria programmes gradually 

shift their focus from control to elimination, the analysis of parasite gene flow between 

different transmission foci, e.g. Kilifi and Rachuonyo South, will become increasingly 

important in informing the mitigation measures needed to prevent importation of 

parasites as a result of human movement and migration. These analyses were not carried 

out in the current study since the numbers of common SNPs between the two Kenyan 

sites was low, and we only had parasites from one timepoint in Rachuonyo South, we 

were therefore unable to conduct an informative analysis of gene flow between sites. 

 In conclusion, this study has shown that P. falciparum parasite populations mix evenly 

within specific sites in The Gambia, Kilifi and Rachuonyo South and there appear to be 
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no detectable geographical barriers to parasite movement over short distances within 

these sites. That said, autocorrelations of genotypes were detected at the micro-

epidemiological level. It can be concluded that control strategies that efficiently target 

hotspots will likely benefit the wider community outside the hotspots at the 

District/County level (I am however unable to comment on larger geographical scales), 

although this is likely to be affected by factors such as the underlying transmission 

level, heterogeneity of transmission, and patterns of human movement (Bousema et al., 

2016). On the other hand, following mass-treatment campaigns it would be predicted 

that if residual foci of transmission are retained, this will rapidly lead to re-infection of 

the wider community, and that parasites acquiring mutations conferring drug resistance 

or immunological escape will be rapidly spread at a micro-epidemiological level. 

However, these conclusions may not stand if the apparent high level of mixing has 

emerged over a prolonged period of time, and full genome analyses with greater power 

to examine low-frequency mutations and recombination events will have greater power 

to examine the time-scales involved 
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Chapter 3 Geographic-genetic Analysis of Plasmodium 

falciparum Parasite Populations from Surveys of Primary 

School Children in Kenya.   

 

3.1 INTRODUCTION 

In the previous chapter, I analysed the spatio-temporal genetic variation of P. 

falciparum parasites at micro-epidemiological scales in order to show the degree of 

parasite mixing over short distances in regions with varying transmission intensities. In 

that analysis, I identified spatial structure at fine micro epidemiological scales within 

geographically defined regions in Kenya and The Gambia.  

In the current chapter, I carried out a similar analysis at a macro-epidemiological scale 

to determine whether similar patterns of parasite movement and mixing are observed 

over larger geographical scales. Limited genetic differentiation between malaria parasite 

populations has been observed at a regional scale in sub-Saharan Africa (Campino et 

al., 2011, Manske et al., 2012, Mobegi et al., 2012), as well as within individual 

countries (Nabet et al., 2016).  

This study used parasitological data collected during surveys of primary school children 

across Kenya. Surveys form an important part of monitoring and evaluation of 

interventions against different infections and diseases. Currently, various malaria 

indicators are collected through Demographic and Health Surveys (DHS), multiple 

indicator cluster surveys (MICS) and malaria indicator surveys (MIS) (Brooker et al., 

2009, Gitonga et al., 2010). These surveys mostly target pregnant women and young 

children under the age of five and collect data on intervention coverage (ITN ownership 

and use, indoor residual spraying), malaria case management (diagnosis of causes of 
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fever, use of anti-malarial drugs) and prevalence of malaria and anaemia (Kenya 

national malaria control programme, 2016). Unfortunately, such surveys are not ideal 

for routine monitoring as they are carried out only every 3-5 years due to the expense, 

time and labour involved (Brooker et al., 2009, Gitonga et al., 2010). Additionally, 

generalizing estimates of parasite prevalence collected in young children and pregnant 

women to the rest of the population may not be ideal because of parasite sequestration 

in pregnant women and protective effect of maternal antibodies in young children 

(Brooker et al., 2009, Gitonga et al., 2010). Moreover, these surveys are usually 

powered to provide data at the national or sub-national level, thus making it difficult to 

use this information for planning targeted control at local levels (Brooker et al., 2009, 

Kenya national malaria control programme, 2016). School surveys provide a cheaper 

and more rapid alternative to household surveys in the collection of malaria indicators 

(Brooker et al., 2009, Gitonga et al., 2010). In addition, school surveys can be used to 

estimate the community-wide coverage of various malaria interventions such as bed net 

use and prevalence of anaemia.  

This study aimed to examine the geographic-genetic patterns of malaria parasite 

populations sampled across Kenya, with a view of determining the extent of parasite 

mixing and genetic adaptation by the parasite population to its local environment. The 

study also aimed to determine the patterns of flow of parasites around the country, and 

thereby the main geographical sources and sinks of transmission. 111 single nucleotide 

polymorphic (SNP) positions were genotyped in 2715 P. falciparum isolates collected 

from children in 146 primary schools in five Kenyan provinces (Western, Eastern, 

Coast, North Eastern and Nyanza) in order to analyse the genetic relatedness among the 

parasites. Parasite population structure was examined based on principal component 

analysis (PCA), and measures of local and global spatial autocorrelation used to test for 

geographical relatedness among parasite genotypes. Furthermore, the spatial 
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distribution of allele frequencies was analysed to identify any evidence of genetic 

adaptation of parasite populations to their local environment, and the region examined 

for spatial barriers to parasite movement, as well as for patterns in the direction of 

movement in either north/south or east/west directions. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Study population 

P. falciparum positive samples were collected from children in 146 primary schools in 

28 districts spread across five of the eight Kenyan provinces (Western, Nyanza, Coast, 

Eastern and North Eastern). Kenya has recorded a decline in malaria transmission in the 

past decade (Bhatt et al., 2015, Mogeni et al., 2016, Noor et al., 2014) and current 

country-wide malaria prevalence is estimated at 8% (Kenya national malaria control 

programme, 2016). However, transmission is highly heterogeneous and these five 

provinces represent varied malaria endemicity zones ranging from semi-arid, seasonal 

malaria transmission in north eastern province through to endemic transmission in coast 

province and epidemic transmission in the Western Kenya highlands (Kenya national 

malaria control programme, 2016). Declines in transmission have been more obvious 

for the coastal region than for the western region (Okiro et al., 2009), two areas of the 

country that have historically experienced the highest transmission, although recent 

trends show an increase in transmission in the coast (Mogeni et al., 2016, Snow et al., 

2015). 

P. falciparum is the main causative agent of malaria, and is transmitted by different 

Anopheles mosquito species in different parts of the country (Mala et al., 2011, 

Mwangangi et al., 2013, Stevenson et al., 2012). The highest malaria transmission 

intensity is currently experienced in western Kenya and is characterized by stable, 
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endemic transmission along the lowlands, and unstable, epidemic transmission within 

the highlands (Kenya national malaria control programme, 2016, Noor et al., 2014, 

Okiro et al., 2009), and despite scale up of interventions, malaria transmission has 

remained high, or even increased in certain parts of this region (Bayoh et al., 2014, 

Zhou et al., 2011).  

 

3.2.2 Ethics statement 

During initial sample collection, consent for participation in the surveys was based on 

passive, opt-out consent by parents rather than written, opt-in consent, due to the 

routine, low-risk nature of the surveys that were carried out under the mandate of the 

Ministry of Public Health and Sanitation to conduct disease surveillance. Individual 

assent from the students was obtained before sample collection (Gitonga et al., 2010). 

Ethical approval for the current genotyping study was provided by Kenya Medical 

Research Institute (KEMRI) Ethical Review Committee (under SSC No. 2747) and 

study methods were carried out in accordance with approved guidelines.  

 

3.2.3 Sample collection and DNA extraction 

This study used finger prick blood samples collected during a previous nationwide 

parasitological survey of school children conducted in collaboration with the Division 

of Vector Borne and Neglected Tropical Diseases, Ministry of Health. The surveys were 

conducted between September 2008 and March 2010 (Gitonga et al., 2010), and were 

carried out to assess the health of school children and to provide measures of malaria 

endemicity against which the efficacy of control programmes could be measured. An in-

depth description of sample collection was published previously (Gitonga et al., 2012, 

Gitonga et al., 2010). Briefly, 480 government primary schools were surveyed and 
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49,975 samples collected, with a maximum of 110 children randomly sampled in each 

school. The sampling frame for the selection of schools was based on the national 

school census carried out in 2008 by the ministry of education, and schools were 

selected to provide optimal spatial distribution of sampling across the country.  

Samples were collected by spotting 3 separate drops of 200µl finger prick blood onto 

Whatman filter papers. These samples were then air dried and stored, with desiccant, at 

4oC. Additionally, each child was tested for P. falciparum parasite infection using rapid 

diagnostic tests. During sample collection, geospatial coordinates for each school were 

recorded. 2715 children from 146 schools in the five provinces were found to be 

parasite positive (figure 3.1, table 3.1). Genomic DNA was extracted from these 

parasite-positive samples.  

 

 

Figure 3.1: Spatial distribution of primary schools surveyed across Kenya.  
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The map shows the distribution of 146 schools across 28 districts in 5 provinces where 

2715 P. falciparum positive samples were collected. Each dot represents an individual 

school, colour-coded by the administrative district in which it is located.  

 

Table 3-1: Number of P. falciparum positive samples collected from five Kenyan 

provinces 

Province Number of samples 

Coast 186 

Eastern 8 

North Eastern 35 

Nyanza 1405 

Western 1081 

 

During DNA extraction, one of the blood spots was excised from each filter paper, cut 

into small pieces and placed into 1.5ml flip-top micro-centrifuge tubes (Eppendorf, 

Stevanage, UK). DNA was extracted using the QIAmp DNA investigator kit (Qiagen, 

UK), as per the manufacturer’s instructions on the Qiagen BioRobot. Picogreen (Fisher 

Scientific-UK Ltd, Loghborough, UK) was used to determine DNA concentration in 

each sample.  

 

3.2.4 SNP selection and genotyping 

111 exonic SNP positions were typed in 67 P. falciparum genes (Appendix Table 3.1) 

in each of the parasite positive samples. These SNPs were selected from the same 384-

SNP set mentioned in chapter two and were chosen based on the same criteria as those 

in chapter two, i.e.  

1) genome-wide distributed. 

2) polymorphic between at least two of three P. falciparum strains (3D7, HB3 

and IT). 
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3) type-able on the sequenom genotyping platform.  

Sequenom SNP genotyping was done at the Wellcome Trust Centre for Human 

Genetics in Oxford University in 2015, and was carried out following the same 

procedure described in chapter two. Based on primer compatibility, assays were pooled 

in groups of 38 or 40 SNPs per plate-well.  

 

3.2.5 Sample and SNP cut-off selection  

To determine Sequenom genotyping success rates, a pass/fail criterion was applied to 

genotyping. In each sample, SNPs that passed genotyping were assigned a 1, and those 

that failed were assigned a 0. The selection criterion for successful typing was based on 

individually defined SNP intensity values (R) ranging from 0 to 1. SNPs with intensity 

values <0.1 were considered low quality and were categorized as failed and excluded 

from further analyses. In addition, allelic intensity ratios (θ) nearing 0 or 1 were used to 

classify SNP positions as homozygous, and intensity ratios of intermediate values were 

used to classify SNPs as heterozygous, representing mixed parasite populations in a 

single sample. Where mixed parasite populations were identified, the dominant 

genotype as represented by the majority SNP call was taken forward for further 

analysis.  

Genotype data were then aggregated based on the pass/fail criterion. The criteria were to 

include samples where at least 60% of SNP typing was successful and, among these, to 

include SNPs that were successfully typed in at least 60% of samples. Applying these 

inclusion criteria, the analyses were restricted to 83 SNPs and 1809 samples collected 

from 88 schools in two provinces in Western Kenya (Nyanza and Western). Samples 

from the other 3 provinces were excluded either due to complete genotyping failure, i.e. 

none of the samples meeting the cut-off criteria (Northern Kenya province) or very few 
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numbers of samples and SNPs meeting the cut-off criteria (Eastern and Coast 

provinces). This likely reflects the lower parasite prevalence in Eastern and Coast 

provinces (Kenya national malaria control programme, 2016), and lower mean parasite 

densities among those that were positive (Bousema et al., 2014), leading to frequent 

genotyping failure. 

 

3.2.6 Statistical analyses 

Several statistical analyses were carried out either in R statistical software (version 

3.3.1) or SaTScan software (version 9.4). Pre-statistical analyses included removing 

water and G6PD samples which were used as negative and positive controls, 

respectively. Statistical analyses carried out included analysis of population structure, 

global and local spatial autocorrelation, distribution of allele frequencies, parasite 

adaptation to their local environments, spatial barriers to parasite movement and 

directionality of parasite movement. Each of these analyses (Table 3.2) will be 

discussed in the next sections. 
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Table 3-2: Statistical tests conducted on P. falciparum isolates from primary school 

children in Western Kenya. 

Statistical analysis Function 
Pairwise SNP and distance 

differences calculation 

To determine the number of SNP differences and 

distance differences between parasite pairs in the 

dataset. 

Minor allele frequency distribution  Analysis of the numbers and distribution of the 

minor alleles in the population. 

Principal component analysis Detecting P. falciparum population structure at the 

sub-national level. 

Moran’s I spatial autocorrelation 

analysis 

Analysis of global spatial autocorrelation among 

parasite pairs at different spatial scales. 

Spatial scan statistics  identification of local, spatial clusters or hotspots of 

parasite sub-populations. 

Logistic regression Analysis of the spatial pattern of distribution of 

allele frequencies among individual schools.  

Bernoulli regression  Identification of spatial clusters of schools with 

similar allele frequencies of specific SNP loci.  

Raster analyses by pixels Detecting geographical regions that act as spatial 

barriers to parasite movement; Moran’s I analysis 

was then used to determine if pixels acting as 

barriers to parasite movement were spatially 

autocorrelated.  

Bearing regression analysis  Analysing directionality in parasite movement 

within the region.  

 

 

3.2.6.1 P. falciparum pairwise SNP and distance differences calculations 

Pairwise SNP and distance differences were computed, comparing each parasite to 

every other parasite in the study population. For each parasite pair, the number of SNP 

differences at the 83 polymorphic positions analysed and the distance between sample 

pairs, based on the geographical coordinates of schools where the samples were 

collected, were computed. Samples collected from the same school were assigned a 

distance difference of 2.5km, assuming that schools were at least 5km apart, and taking 

2.5km as the lower limit of detection of any two schools (i.e. 2.5km was taken to 

represent the shortest distance within which any two schools could be separated). Time 

differences were not computed because the samples were collected over a few months, 

and samples in the same school were all collected on the same day.  
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3.2.6.2 P. falciparum population genetics 

Heterozygosity in the parasite population was computed as the average number of SNP 

differences per SNP site between two parasites in all parasite pairwise comparisons. 

SNP differences between parasite pairs were aggregated at the school level to determine 

the mean number of SNP differences among parasites per school and the effect of 

distance on genetic variations analysed by plotting changes in SNP differences against 

the difference in distance between schools.  

Minor allele frequency distributions were computed for all 83 SNPs that had been 

successfully typed to determine the distribution of common and rare genetic variants in 

the population. Population structure was interrogated using principal component 

analysis (PCA), based on singular value decomposition on a covariance matrix of 

pairwise SNP differences for all samples. SNPs that were included in the analysis but 

were unsuccessfully typed in individual samples were replaced (in that sample) with the 

major allele in the population so as not to artificially inflate the allelic diversity in the 

study population. Where there were mixed genotype infections in an individual sample, 

the major allele call was taken to represent the dominant genotype at that position in 

that sample. PCA scores (values of the transformed variables that correspond to a 

specific data point) representing individual parasite genotypes were computed for the 

first 3 principal components. Since geospatial positioning information was collected at 

the school level and samples from the same school were assigned the same geographical 

coordinates, principal component (PC) scores were later aggregated at the school level, 

and the mean PC score for parasites in each school plotted on a map of the study region.  
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3.2.6.3 Tests of spatial autocorrelation 

To test the hypothesis that P. falciparum genetic structure has a spatial distribution 

component, both global (Moran’s I) (Epperson and Li, 1996) and local (scan statistics) 

(Kulldorf, 2014) spatial autocorrelation analyses among parasite genotypes were carried 

out. Moran’s I simultaneously measures the correlation between feature attributes 

(parasite genotypes, represented here by the scores of the first 3 PCs) and locations 

(geospatial positioning of schools) to determine whether feature attributes are clustered, 

dispersed or randomly distributed in space. For each PC, Moran’s I correlation 

coefficients were computed for parasite pairs falling within 3 increasing distance bands 

of 1km, 2km and 5km. The analyses were bootstrapped using 100 resampling steps to 

determine the statistical significance of the Moran’s I correlations observed for parasite 

pairs within each distance class. The analyses were computed for samples separated by 

up to 60km within each distance class because the data got noisier beyond this point due 

to fewer pairwise comparisons.  

Spatial scan statistics to detect statistically significant local clustering of genetically 

related parasites were carried out in SaTScan software (version 9.4). The analyses were 

carried out separately for genotypes represented by each of the first three PCs. For each 

PC, scores representing individual parasite genotypes were imported into SaTScan, 

together with the geospatial coordinates of sample collection. A purely spatial, 

retrospective analysis was then undertaken, based on a normal probability distribution 

model, to locate geographical clusters of parasites with high PC scores, as described in 

chapter two. In the normal probability distribution model, each observation or sample is 

associated with a single negative or positive continuous attribute (the PC score) and the 

model uses a likelihood function based on the normal distribution. The spatial scan 

statistics employed here use a circular scanning window that is flexible both in location 

and size, with a radius that varies continuously from zero (including only a single 
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sample location/school) to an upper limit set by the user (in this case, the largest 

window was allowed to include up to 50% of the sample locations/schools). For each 

window location and size, a ratio of observed to expected PC scores is computed for 

samples found inside and outside the window. Clusters with high ratios are noted and 

their statistical significance determined after accounting for multiple comparisons using 

random permutations.  

SaTScan outputs the size and geographical midpoints of likely clusters, the number of 

samples within each cluster, and the p value associated with each cluster. The first 

cluster, which has the most significant p value, is called the primary cluster. Other 

clusters that are identified in the population that do not overlap with the primary cluster 

are reported as secondary clusters. After the analysis, shapefiles containing the spatial 

coordinates of statistically significant clusters were imported into R to allow for plotting 

of significant clusters on a map of western Kenya to identify locations of schools with 

genetically distinct parasite sub-populations.  

 

3.2.6.4 Spatial distribution of allele frequencies 

A binomial logistic regression model was used to examine geographic variations in 

allele frequencies. Each school was included in the model as a categorical independent 

variable, with the binary (1/0) outcome set as the presence or absence of a specific SNP 

in parasites within that school. This model was then compared to a null model in a 

likelihood ratio test to test the goodness of fit of the model containing the SNPs and to 

identify those SNPs that showed statistically significant (p < 0.05) variations in 

frequency between schools. To keep from inflating allele frequencies, SNPs that failed 

genotyping in individual samples were excluded from analysis. For those SNPs that 

showed a significant variation in frequency between schools based on the logistic 

regression model, the actual frequency of each SNP per school was computed and 
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plotted on a map of the region to visualize the distribution pattern of SNP frequencies in 

schools within the region.  

The Bernoulli model, implemented in SaTScan, was used to examine the study region 

for clusters of schools with similar allele frequencies for individual SNPs. Only SNPs 

that showed statistically significant variations in allele frequencies based on the logistic 

regression model described above were included in the analysis. The Bernoulli model 

requires that cases and controls be specified prior to the analysis, thus at each SNP 

position, samples were coded with a 1 if they contained the major allele, and 0 if they 

contained the minor allele. For each SNP, a case file was generated containing the 

frequency of cases (total number of 1s) in each school and a control file was generated 

containing the frequency of controls (total number of 0s) in each school. These two 

files, together with a coordinate file specifying the geographical location of each school 

were then imported into SaTScan for the analysis.  

The Bernoulli model analyses the distribution of cases (major allele) and controls 

(minor allele) and tests the null hypothesis that the distribution of cases and controls is 

random within the geographical area. The spatial scan statistics based on this model 

involves scanning the geographical space for regions with higher than expected number 

of cases. To do this, the software computes the fraction of cases/controls inside a 

specific window versus the cases/controls outside the window. The windows with the 

highest probability of a case inside versus a case outside are noted down as clusters. The 

statistical significance of the identified clusters is computed as in the normal 

distribution model described in chapter two, using random permutations of the 

cases/control over the spatial coordinates of schools and calculating the log-likelihood 

statistic of the model fit for the optimal window, then comparing this with the log-

likelihood value from the real data to derive a p value after 9999 replication steps. The 

output of the analysis includes the mid-point coordinates and sizes of primary and 
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secondary clusters, the associated p-value for each cluster, the number of cases as well 

as the total population (cases + controls) in each cluster. Shapefiles (data file containing 

location, shape and attributes of clusters) for individual clusters were exported from 

SaTScan and imported into R for representation on a map of the study area.  

 

3.2.6.5 Analysis of spatial barriers to parasite movement 

Raster analysis by pixels was used to test for the presence of spatial barriers to parasite 

movement and mixing within the study region, which was divided into 192 10km-by-

10km grids/pixels. Each pixel was then scored with either 1 or 0 depending on whether 

or not a straight line linking a school pair crossed the boundaries of that pixel. This was 

done for all 192 pixels and all school pairs in the study region. These scores were then 

included as independent variables in a multivariable linear regression analysis with the 

number of SNP differences between schools as the outcome variable, to test how the 

presence of a specific pixel affected the nucleotide diversity of parasites in schools 

separated by that pixel.  

To determine the statistical significance of observed differences in nucleotide diversity, 

the analysis was bootstrapped based on 10,000 resampling steps. The coefficient 

estimates derived from the pixel analysis were then included in a Moran’s I analysis to 

determine whether pixels acting as barriers to or gateways for parasite movement were 

spatially auto-correlated. Moran’s I analysis was computed for schools falling within a 

10km distance class, representing the same spatial extent as that used to generate the 

pixels (10km was chosen as this was the spatial scale at which significant results had 

been observed). The analysis was bootstrapped with 100 resampling steps to determine 

statistical significance of the Moran’s I analysis.  

Regression analyses based on bearing (direction of motion) were also carried out to 

examine the parasite population for patterns of directional movement, either in the 
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north/south or east/west directions. For each 10km-by-10km grid, school pairs that 

crossed its boundaries (scored as 1 in the previous pixel analysis) were selected. Each 

pair of schools was then individually coded as 1 if the absolute difference in latitude 

between them was greater than the absolute difference in longitude, indicating a 

north/south direction of movement, and coded as 0 if the reverse was true, indicating a 

west/east direction of movement.  These new variables were then included in a 

multivariable linear regression analysis to test the effect of north/south or east/west 

directional movement on parasite genetic diversity, with the number of SNP differences 

as the outcome variable. Statistical significance of each pixel in acting as a force in 

directional movement was tested using bootstrap method with 10,000 resampling steps. 

The coefficient estimates were plotted on raster grids, highlighting the pixels that were 

significant after Bonferroni correction. A histogram showing the distribution of 

bootstrap p values was also generated. The analysis was repeated at 20km-by-20km grid 

sizes to determine whether similar patterns would be observed at the larger spatial scale. 

Additional analyses were also carried out for those pixels that had at least 150 school-

school pairs crossing them, to rule out spurious significant results based on a small 

number of points crossing the pixels. The analysis was carried out at 10km-by-10km 

and 20km-by-20km grid sizes for 63 pixels that had at least 150 points passing through 

them. Coefficient estimates derived from the bearings’ regression analysis were then 

included as feature attributes in a Moran’s I analysis to examine the region for spatial 

autocorrelation in the direction of parasite movement. Moran’s I analysis was once 

again carried out for schools falling within 10km distance classes, and with 100 

resampling steps to determine statistical significance.  
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3.3 RESULTS 

3.3.1 Sequenom assay performance 

111 genome-wide distributed exonic SNPs were genotyped in 2715 P. falciparum 

positive samples collected from 146 primary schools in 28 districts across Kenya 

(figures 3.2a). Most of these samples (2486) were collected from 95 schools in Western 

Kenya (figure 3.2b and figure 3. 3). 83 of the 111 SNPs were successfully typed in 1835 

samples including 1097, 712, 1 and 25 samples from Nyanza, Western, Eastern and 

Coast provinces, respectively.  
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Figure 3.2: Country-wide distribution of primary schools having P. falciparum 

positive infections.  

Each dot represents an individual school, colour-coded by the administrative district in 

which it is located. (a) shows the distribution of 146 schools in 28 districts across 5 
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provinces from where 2715 P. falciparum positive samples were collected. (b) shows 

the distribution of 101 schools in 23 districts across 4 provinces containing 1835 

samples with at least 60% genotyping pass rate.  

 



134 
 

Figure 3.3:  Distribution of P.  falciparum positive samples per school and their 

associated genotyping success rates.  

(a) 2715 samples were collected from 146 schools in 5 provinces across Kenya. The 

total number of samples varied from 1 to 81 per school. (b) 111 single nucleotide 

polymorphic (SNP) positions were genotyped in all parasite positive samples. Mean 

genotyping success rates per school ranged from 6-86%. 

 

Genotyping was done on the sequenom platform which allows the identification of 

genotypes based on variation in the masses of the alleles (figure 3.4) 

 

Figure 3.4: Sequenom output plot showing the genotyping results of one SNP 

position in EBA 175 (MAL7P1_176_MAL7_1413900(AG)).  

Single infection/homozygous genotypes are coded as blue (A) or red (G) whereas 

mixed/heterozygous genotypes (AG) are coded as green. The grey dots represent 

samples that failed to genotype as well as negative water controls. The low intensity 

cut-off mark is represented by the light blue line.  



135 
 

Assay genotyping success rates ranged from 0 – 97.6% across the 111 SNPs (figure 

3.5). However, the genotyping of 8 SNP positions was unsuccessful in all samples 

(100% failure rate), including the two SNPs typed in the sulfadoxine/pyrimethamine 

resistance-associated gene dihydrofolate reductase (dhfr), two SNPs in EBA-175, one 

SNP in Surf4.1 and the remaining in hypothetical and conserved proteins. Genotyping 

success rates among samples across the schools ranged from 1.8% - 86.5% (figure 3.5). 

The 111 SNPs typed in the study were in 67 genes distributed across the parasite 

genome, and between 1 and 27 SNPs were typed in each of these genes (Appendix 

Table 2).   

SNP genotyping performance was positively correlated with transmission intensity, 

with parasites from regions with very low transmission intensities (North Eastern) 

having the lowest genotyping success rates, and those from regions with high 

transmission intensities (Western Kenya) having the highest genotyping success rates 

(figure 3.3). 
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Figure 3.5: Distribution of P. falciparum sequenom genotyping success rates 

among 2715 samples and 111 SNPs.  

Success rate ranges were 1.8% - 86.5% among the samples (top panel) and 0 – 97.6% 

among the SNPs (bottom panel). 

 

None of the samples from North Eastern province met the 60% sample and SNP 

inclusion criteria that had been set and were therefore excluded from further analyses. 

Samples from Coast and Eastern provinces were also excluded from further analyses 

due to the low number of successfully typed samples (25 samples from Coast province 

and 1 sample from Eastern province), and subsequent analyses were carried out on 1809 

samples from 88 schools in the two Western Kenya provinces (Western and Nyanza). 
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Variation in parasite prevalence was observed in the region, with areas north and west 

of Lake Victoria having higher infection prevalence than areas south and east of the 

lake (figure 3.6). 

 

 

Figure 3.6: P. falciparum parasite prevalence in primary schools across Western 

Kenya.  

Each dot represents an individual school, colour-coded based on parasite prevalence 

(%). Parasite prevalence ranged from 0.9% - 62%. 
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3.3.2 Minor allele frequency distribution 

Analysis of the minor allele frequency (MAF) distribution showed that most of the 

genotyped SNPs were present at medium to high frequencies in the parasite population, 

with 51 of the 83 successfully typed SNPs having minor allele frequencies of 5% or 

higher (figure 3.7). Although there was a high level of genetic diversity among the 

isolates, 14 positions that had been identified as polymorphic/ variable based on the 

3D7 reference genome were monomorphic (i.e. the same nucleotide was present at that 

position in all the samples) in this population.  

 

 

Figure 3.7: Minor allele frequency distribution spectrum of 111 genome-wide 

distributed SNPs in a western Kenya P. falciparum population.  

SNP frequencies were calculated based on 1809 samples from 88 schools in Western 

and Nyanza provinces.  
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3.3.3 P. falciparum population genetics 

A high level of within-population genetic diversity was observed in the parasite 

population, with a heterozygosity score of 0.184 per SNP site. Only 2 parasite pairs 

were identical in the population. The average number of SNP differences was 15.3 

(range 0 - 33) per parasite pair.  

Principal Component Analysis (PCA) was carried out to determine the extent of genetic 

structure within the parasite population. A scree plot showing the amount of variation 

explained by each of the first 10 principal components was plotted (figure 3.8). Each PC 

accounted for only a small amount of the genetic variation seen in the parasite 

population. The first three PCs cumulatively accounted for only 10.78% of the variation 

(PC1=3.74%, PC2=3.54%, PC3=3.5%), indicating high diversity levels among the 

parasites. Based on genotype data alone, the parasite population could not be resolved 

into distinct sub-populations at a sub-national level using PCA (figure 3.9). 

 

Figure 3.8: Proportion of total variance accounted for by individual principal 

components in a P. falciparum population in western Kenya.  

The plot was produced for the first 10 principal components. 
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Figure 3.9: 3D Plots of principal component analysis based on scores of the first 

three principal components.  

Each dot represents one of 1809 P. falciparum samples collected from 88 schools in 

western Kenya. Parasites clustered together and did not separate in space along any of 

the three principal components. 

 

Adding spatial information to the PCA also showed little population structure among 

parasite isolates at the regional level, and there was no difference in population structure 

in lower versus higher transmission intensity areas (figure 3.10). These results are 

indicative of a parasite population that is well mixed within the study area.  

 

 

 

 



141 
 

 



142 
 

Figure 3.10: Spatial distribution of scores for the first 3 principal components 

(PCs) representing parasite genotypes.  

Geospatial positioning information was collected at the school level, thus PC scores 

(values of the transformed variables corresponding to a specific data point) were 

aggregated for all samples in an individual school. Here each dot represents a school, 

and has been colour-coded based on the mean genotype score of all parasite isolates 

collected in that school. Cumulatively, the first three PCs accounted for only 10.78% of 

the variation observed in the genotype data (PC1=3.74%, PC2=3.54%, PC3=3.5%).  

 

3.3.4 Spatial autocorrelation analysis of P. falciparum parasites in 

western Kenya. 

To examine structure to the PC scores at a fine scale, both local (spatial scan statistics) 

and global (Moran’s I) spatial autocorrelation among parasite isolates were analysed. 

Moran’s I analysis showed no statistically significant trends of spatial autocorrelation 

among parasite pairs that were close to each other in any of the three distance classes 

(1km, 2km and 5km) analysed. Significant autocorrelations (p<0.01) were observed 

among parasites that were on average at least 20km apart in space (figure 3.11), but 

these autocorrelations were associated with very low correlation coefficients (< 0.03) 

and were not consistently seen in adjacent distance categories. Thus, the overall pattern 

seen from this analysis was that of little or no spatial autocorrelation in genotypes, even 

among parasite pairs that were very close to each other in space.   
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Figure 3.11:  Moran’s I correlation coefficients describing the spatial 

autocorrelation of genotypes of P. falciparum parasite pairs in western Kenya.  

Spatial autocorrelation was tested separately for parasites grouped into three distance 

classes of a) 1km, b) 2km and c) 5km. Within each distance class, correlations were 

computed for each of the first 3 principal components (PCs). The asterisks represent 

those distances at which statistically significant (p<0.01) correlation coefficients were 

found for parasite pairs within each distance class, indicative of possible clustering of 

specific parasite genotypes.   
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However, one statistically significant (p=0.001) cluster was identified based on the 

second principal component when the data were analysed for local geographical 

clustering of distinct parasite genotypes using spatial scan statistics (figure 3.12). This 

cluster was relatively large, with a radius of 67.84km, and included 852 of the 1809 

samples. No significant clusters were identified when the first and third PCs were 

analysed.  

 

Figure 3.12: Spatial scan statistics to identify local spatially autocorrelated clusters 

of genetically distinct P. falciparum parasite sub-populations in western Kenya.  

Spatial scan statistics employing the use of multiple circular windows of varying sizes 

(ranging from covering only 1 sample up to 50% of the sample population) around 

samples in geographically defined regions was used to compute the ratio between 

expected and observed number of distinct genotypes within each window. Each window 
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with higher than expected number of similar genotypes was noted down as a cluster, 

and its statistical significance determined after accounting for the multiple comparisons. 

Genotypes for individual parasites were assigned based on scores of the first 3 principal 

components. Here, each school is colour-coded based on the mean principal component 

score for all parasite genotypes found within it. One cluster of highly related parasite 

genotypes (blue circle) was identified when analysing the second principal component.  

 

3.3.5 Allele frequency distribution 

A logistic regression model was used to examine the distribution of allele frequencies at 

each SNP position, and a likelihood ratio test was computed to test for the effect of 

school on the frequency of each SNP (i.e. determining how the frequency of each SNP 

varies from school to school). 18 out of 83 SNPs were shown to have statistically 

significant (p < 0.05) variations in frequencies among schools, although none of the 

SNPs were significant after Bonferroni adjustment for multiple testing.   

These 18 SNPs were then included in a spatial scan statistics analysis, using the 

Bernoulli probability regression model to run a purely spatial analysis to determine the 

geographic pattern of allele frequency distribution within the parasite population. For 

each SNP position, cases were represented by the major allele in the population while 

controls were represented by the minor allele. 5 of the 18 SNPs produced statistically 

significant geographical clusters containing schools with a higher than expected number 

of samples with the major allele (figure 3.13; table 3.3). In each of the analyses, only 

the primary cluster was significant and so was represented on the maps to show how the 

frequency of specific alleles in schools within the clusters differed from schools outside 

the clusters.   
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Figure 3.13: Spatial clusters of primary schools with similar allele frequency 

distributions of specific P. falciparum SNPs.  

Each dot represents an individual school, colour-coded based on the frequency of a 

specific allele in the school. Red and blue represent different alleles at each SNP 

position, and the range between the two colours represent varying frequencies of each 

allele. Blue circles represent locally distinct clusters of schools identified to have similar 

frequencies of a particular allele.  

Table 3-3: Spatial clusters of primary schools with similar allele frequency 

distributions of specific P. falciparum SNPs. 

SNP Size of 

cluster 

(radius in 

km) 

Population size* No. of cases 

(samples with 

major allele) 

P value 

1 30.55 166 162 0.05 

2 67.84 782 495 0.001 

3 120.77 454 311 0.053 

4 52.87 154 25 0.033 

5 45.54 375 284 0.032 

*Population size includes both cases (samples with the major allele) and controls (samples with the minor 

allele). Clusters were generated in SaTScan based on a Bernoulli probability model (Kulldorf, 2014). 
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3.3.6 Spatial variations in genetic differences between P. falciparum 

parasites 

Using a linear regression model to examine the effect of distance on parasite genetic 

relatedness showed that the number of SNP differences between parasite pairs was 

positively correlated with distance between the parasites (effect size = 1.85 x 10^-3) 

(figure 3.14). However, bootstrapping the analysis (to take into account the linked 

nature of pairwise observations) gave no statistically significant effects of distance on 

genetic relatedness (p=0.347; 95% CI = -0.012 – 0.017). These results therefore provide 

no evidence for genetic isolation by distance in this parasite population.  

 

Figure 3.14: Variation in genetic diversity of P. falciparum parasites over distance 

across western Kenya.  

Genetic diversity was defined as the average number of single nucleotide polymorphic 

(SNP) differences between parasites in each pairwise school comparison, and was 

plotted against the distance between the corresponding school pair. The blue line 

represents loess-fitted smoothing with 95% confidence intervals (grey area).  
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3.3.7 Spatial barriers to parasite movement and mixing 

Raster analysis using 10km x 10km sized pixels was undertaken to examine the study 

area for spatial barriers to parasite movement. Most of the pixels were found to have a 

non-significant influence on the number of SNP differences among parasites, and none 

were significant after correcting for multiple testing using the Bonferroni correction 

method (figure 3.15a).  Furthermore, a histogram of p values showed a null (uniform) 

distribution (figure 3.15b), and an analysis of spatial relationships among pixels based 

on coefficient estimates derived from the pixel regression showed no evidence of 

autocorrelation among pixels acting as either barriers to or gateways for parasite 

movement (figure 3.15c). Similar results were observed when the analyses were carried 

out using 20km-by-20km sized pixels.  

 

 

Figure 3.15: Raster analysis by pixels to examine the presence of spatial barriers to 

P. falciparum movement in a geographically defined region of western Kenya.   



149 
 

(a) Each pixel represents a 10km-by-10km area of the region, and is colour-coded based 

on the coefficient estimates derived from a linear regression analysis that was used to 

test the impact of each pixel in acting as either a barrier (blue pixels) or gateway (red 

pixels) to parasite movement within the region. No pixels were significant barriers or 

gateways to parasite movement after Bonferroni correction to account for multiple 

comparisons. (b) Distribution of p values observed after bootstrapping the regression 

analysis (with 10,000 resampling steps) to determine the level of significance of pixels 

in acting as barriers to parasite movement. (c) Moran’s I analysis describing the spatial 

autocorrelation between geographical locations of pixels and their associated coefficient 

estimates. Autocorrelation was calculated for parasites grouped in 10km distance bands, 

and the analysis was bootstrapped 100 times to determine significance.  

 

Raster analysis by pixels was further extended to examine the bearing (direction of 

movement) of parasites in either the east/west or north/south directions. Individually, 

most of the 192 pixels were not significant factors in determining directional movement 

of parasites over the region (figure 3.16a). However, some of the pixels were 

statistically significant (p<0.0003) in representing regions with greater east/west 

movement, even after accounting for multiple testing. When the regression coefficient 

estimates derived from analysis of bearing were included in a Moran’s I analysis to 

examine the parasite population for spatially auto-correlated direction of movement, 

there was evidence of statistically significant (p<0.01) autocorrelation for school pairs 

that were separated by up to 40km (Figure 3.16c).  
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Figure 3.16: Raster analysis by pixels to examine patterns of north/south versus 

east/west directional movement of P. falciparum parasites in western Kenya.  

(a) Each pixel represents a 10km-by-10km area of the region, and is colour-coded based 

on coefficient estimates describing the effect size of each pixel in influencing 

directional movement. Pixels that were statistically significant after correcting for 

multiple testing are highlighted with black borders. Grids were colour-coded to 

represent east/west (red) or north/south (blue) movement. (b) Distribution of p values 

observed after bootstrapping the regression analysis (with 10,000 resampling steps) to 

determine the level of significance of pixels in influencing parasite directional 

movement. (c) Moran’s I analysis to describe the spatial autocorrelation of movement 

within the region. The analysis was computed using geographical coordinates of 

individual pixels to represent feature locations and coefficient estimates derived from 

the bearing regression analysis to represent the associated feature values. 

Autocorrelation was computed for parasites grouped in10km distance bands. Significant 

positive correlation coefficients (p<0.01; marked by asterisks) were observed for 

schools separated by up to 40 km within the 10km distance bands. 
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No statistically significant pixels were observed when the bearing regression analysis 

was repeated at 10km2 and 20km2 spatial scales using only those pixels with at least 150 

school-school pairs crossing their boundaries. However, two separate clusters of pixels 

were identified within the region that showed patterns of specific directional movement, 

one in the north east (indicative of greater north/south movement) and another in the 

west (indicative of greater east/west movement) (Figure 3.17).  

 

 

Figure 3.17: Map of the western Kenya study area with raster grids representing 

bearing analyses superimposed on top of it.  

Multivariable linear regression analysis was carried out to determine bearing 

(directionality of movement) of P. falciparum parasites among schools in the region. 

Grids are colour coded based on the coefficient estimates describing the effect size of 

that grid in influencing directional movement. Red represents east/west movement, 
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while blue represents north/south movement. The grids with black borders represent 

those areas that were significant in east/west movement, even after Bonferroni-

correction for multiple testing. The blue circle shows the region of the study site that 

had predominantly north/south movement, while the red circle represents that region 

that had predominantly east/west movement. Each dot represents a school, colour-coded 

based on the district in which the school is located.     

 

3.4 DISCUSSION 

In chapter two of this thesis, I used SNP genotype data to examine the level of genetic 

relatedness among P. falciparum parasites on a micro-epidemiological scale within 

three regions with varying transmission intensities in Kenya and the Gambia, and found 

evidence of spatial sub-structure over short distances (i.e. <10km), despite a high level 

of parasite mixing (Omedo et al., 2017a). In the present analysis, I examined the level 

of parasite mixing at a sub-national scale in Western Kenya, using parasitological data 

from primary school surveys to describe the patterns of parasite mixing at a larger 

geographical scale.  

Primary school children were selected as the study population because they are easy to 

sample. Furthermore, infection diversity peaks at 3 -14 years and then declines in older 

age groups in high transmission settings (Konate et al., 1999, Owusu-Agyei et al., 2002, 

Smith et al., 1999), hence our study sample is likely to contain a diverse genetic pool 

representative of parasites circulating in the region. Sampling only asymptomatic 

infections in schools may not give the whole range of genetic diversity within the 

region, as one study identified specific polymorphisms in AMA1 that could have been 

more frequent in symptomatic infections compared with asymptomatic infections 

(Cortes et al., 2003). Young children with symptomatic infections would be absent from 

school and away from the sampling frame. However, the sampling strategy used here 
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was consistent across the different schools and furthermore, the evidence of genomic 

variation in parasites according to clinical outcome is limited. 

This study showed evidence of high genetic diversity in the Western Kenya parasite 

population, consistent with the high malaria transmission intensity experienced in this 

region (Ingasia et al., 2016, Kenya national malaria control programme, 2016, Noor et 

al., 2014, Okiro et al., 2009). Of the five malaria transmission zones in Kenya, Western 

Kenya currently experiences the highest transmission intensity (Kenya national malaria 

control programme, 2016) despite efforts to scale up various control interventions, such 

as long lasting insecticide nets, indoor residual spraying and artemisinin combination 

therapy, in this region (Gatei et al., 2015, Ototo et al., 2015, Zhou et al., 2016).  

Using PCA, I did not identify any genetic structure through inspection of the PC plots 

derived from SNP genotype data. This indicates an absence of discrete sub-populations 

within this P. falciparum parasite population, and is in agreement with the previous 

analysis of parasites from the same region (Omedo et al., 2017a), and with whole 

genome data from different African countries (Manske et al., 2012, Mobegi et al., 

2012). In South-East Asia, distinct sub-populations associated with antimalarial drug 

resistance have been detected (Miotto et al., 2015). Previous analyses of P. falciparum 

population structure in western Kenya also showed high genetic diversity and little 

population differentiation in this parasite population (Baliraine et al., 2010, Bonizzoni 

et al., 2009, Zhong et al., 2007).  

In contrast with the previous study of P. falciparum parasite populations from The 

Gambia, Kilifi and Rachuonyo South discussed in the previous chapter (Omedo et al., 

2017a), analysis of trends in spatial relationships among parasite genotypes identified 

no significant autocorrelations using Moran’s I spatial autocorrelation analysis in this 

study. Overall, the consistent pattern observed across all distance classes was that of no 
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autocorrelation among parasites in schools at all distances, with occasional inconsistent 

associations that were considered likely to be spurious.  

Using the spatial scan statistics, only a single cluster of genetically related parasites was 

identified based on the second principal component. This limited genetic clustering at 

both local and global scales, and weak evidence of genetic isolation by distance, are 

indicative of a parasite population that is well mixed at the sub-national geographical 

scale. This finding is in contrast to the micro-epidemiological study discussed in the 

previous chapter, which showed spatial structure to genetic relatedness over short 

distances (Omedo et al., 2017a). In that previous study, however, it was noted that the 

gradient between spatial separation and genetic relatedness was non-linear, and became 

less steep with distance such that past 10km there was little genetic differentiation. This 

observation was hypothesized to be as a result of parasite movement and mixing 

observed within the study sites, with no geographical areas acting as spatial barriers to 

parasite movement. It is therefore consistent that no relationship was identified in this 

study of schools where most pairs of schools were more than 10km apart.   

The geographical distribution of allele frequencies for all 83 SNPs in our study 

population was also examined. Studies of allele frequency distribution have been used 

to determine parasite population structure and identify patterns of local adaptation of P. 

falciparum isolates (Anderson et al., 2005, Gunther and Coop, 2013, Schlotterer, 2002). 

Such local adaptation may be due to various selection pressures, including 

environmental pressure and immune selection, and may occur at individual, population 

or regional scales (Kaltz and Shykoff, 1998, Ochola et al., 2010). Of the 83 SNPs 

examined, 18 SNPs were shown to have statistically significant variations in allele 

frequencies among schools based on a logistic regression analysis, although none of 

these 18 SNPs were significant after accounting for multiple testing. These findings 

suggest that although we were not sufficiently powered to distinguish any individual 
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SNPs as likely to be significant beyond a Bonferroni correction, on the other hand the 

fact that 18 SNPs showed a value of p<0.05 when only 4 would be expected by chance 

suggests that there may be some genuine differences in frequency within the group of 

SNPs. 

Reasoning that genuine geographical variation would be likely to show spatial 

clustering as well as variation by school, the scan statistic was subsequently measured 

for those SNPs showing significant variation among schools. 5 of the 18 SNPs that were 

identified showed local clustering among schools. However, these SNPs were not 

entirely private to a sub-population and occurred in schools inside and outside the 

clusters. This finding provides weak support for the existence of variable local genetic 

selection pressures in this parasite population. The identification of SNPs with 

significant geographical variation in allele frequencies could indicate adaptation of P. 

falciparum parasite populations to their local environment, or more likely may indicate 

a temporary expansion of a parasite sub-population with a particular SNP simply due to 

random genetic drift. 

An extensive analysis of the study area for spatial barriers to parasite movement using 

10km-by-10km and 20km-by-20km sized pixels provided little evidence for the 

existence of geographical regions that act as barriers to parasite movement at the sub-

national scale, and is in agreement with similar analysis in the previous chapter which 

did not identify any barriers to parasite movement at a micro-epidemiological scale 

(Omedo et al., 2017a). This observation of free movement over the western Kenya 

region is also supported by a previous analysis of mobile phone data that was used to 

analyse patterns of human movement within the country (Wesolowski et al., 2012) , and 

which showed substantial movement of people within this region, and further supports 

the observation here of little or no barriers to parasite movement within the region.  
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However, a cluster of pixels representing predominantly north/south movement in the 

north east and another cluster representing predominantly east/west movement in the 

west of the study area were identified, and when the site was analysed for spatial 

autocorrelation in the directionality of pixels, statistically significant autocorrelations 

were observed for school pairs separated by up to 40km. This means that pixels with 

greater east/west movement were more frequently found next to other pixels with 

greater east/west movement, and similarly, pixels with greater north/south movement 

were more frequently found next to pixels with greater north/south movement.  

Furthermore, some individual pixels showed statistically significant directionality that 

met Bonferroni-adjusted significance criteria. Although spatial autocorrelation of 

directionality might simply be because the same data (the same school pairs) cross 

pixels that are physically close to each other, the observation of two large clusters of 

pixels with distinct directional patterns of parasite movement is unlikely to have been an 

artefact of the same school pairs being analysed when all pixels in the clusters were 

considered, suggesting that the analysis could detect specific migration pathways of 

parasites. 

The findings in this study have several implications for the outcomes of malaria control 

programmes. Since they show that parasite populations mix to high degrees within the 

region, with little evidence of geographical clustering, one might conclude that 

interventions targeting smaller geographical areas within the region are likely to reduce 

the flow of parasites to regions beyond those targeted. However, the high degree of 

parasite mixing also means that parasites move relatively freely within the region, and 

there is therefore a high likelihood of importation of infection from untargeted to 

targeted regions. This is strongly corroborated by evidence from a cluster-randomized 

controlled trial in a highland region of western Kenya that showed no impact in 

reducing transmission inside hotspots 16 weeks after applying interventions, possibly 
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due to the importation of parasites from untargeted surrounding regions (Bousema et 

al., 2016).  

This study had some limitations.  First, we cannot be definite about the time-scale over 

which gene flow has occurred.  If the gene flow is rapid, this supports this study’s 

conclusions regarding malaria control. On the other hand, it is possible that the well-

mixed population emerged over a longer period and that gene flow, while resulting in 

complete mixing, could be less rapid, in which case targeted interventions would 

probably not have far reaching effects in the surrounding community.  The results of the 

previous analyses showing spatial and temporal structure at a fine micro-

epidemiological scale among parasites in The Gambia, Kilifi and Rachuonyo South 

suggests rapid gene flow (Omedo et al., 2017a). In that study, parasite pairs taken from 

nearby homesteads had fewer SNP differences between them than parasite pairs that 

were further apart. However, over the period of a month this distance gradient was 

attenuated, and was gone by one year such that there were barely any SNP differences 

between parasite pairs collected one year apart and those collected three years apart, 

irrespective of the distance between them. However, more definitive work will require 

an in-depth analysis of whole genome data to identify haplotypes and rare variants in 

the population, and infer variation over time. 

Second, geospatial coordinate data were collected for schools as opposed to individual 

homesteads, and hence genotype data were aggregated at this level. Structure at micro-

epidemiological scales would likely be missed during this analysis. Third, only a small 

number of SNPs were analysed. This made it impossible to detect relatively rare private 

SNPs. It is likely that a larger set of genetic markers will be required to identify private 

SNPs and evidence of local parasite adaptation. SNPs in genes previously shown to be 

under selection in the parasite genome may additionally be analysed to determine 

whether population structure is observed based on local variations in selection pressure. 
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Our previous study showed no population structure when SNPs in EBA175 and AMA1 

were analysed, we therefore did not type and analyse separately SNPs in antigenic 

genes for the present study.  

Fourth, genotype data collected from only one part of the country were analysed, 

making it impossible to describe patterns of parasite flow across the country, or to 

generalize these findings to other geographical areas. Additional analyses of samples 

from other regions of the country that experience malaria transmission such as coast, 

eastern and north-eastern provinces are recommended. Furthermore, over longer 

distances human movement becomes more important than mosquito movement in 

distributing parasites and therefore will need to be taken into consideration when 

analysing parasite genetic relatedness across large spatial scales. Information on travel 

distance can be obtained from travel history, or more objectively from mobile phone 

data, and can be used to track human movement between sources and sinks of parasite 

transmission. Concordance between spatial parasite genetic relatedness and human 

movement will further support our hypothesis of high parasite movement and mixing. 

In conclusion, this study has shown that parasites mix to high levels within the western 

Kenya region, with no evidence of parasite sub-populations or geographical barriers to 

parasite movement, and weak evidence of spatial autocorrelation of parasite genotypes 

at the local and global scales. It has also shown that directionality of parasite migration 

can be inferred based on genetic relatedness, and gene flow models, e.g. as implemented 

in migrate-n software, can be used to determine the migration rates within the region, 

although such models are likely to prove more useful if distinct parasite populations 

exist and can be identified within the region.  
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Chapter 4 Analysis of Spatio-Temporal Genetic Variation 

among Plasmodium falciparum Parasites in Kilifi County 

Between 1995 and 2014 using Sequence Data of Target Genes.  

 

4.1 INTRODUCTION 

In chapter two of this thesis, I used genome-wide distributed single nucleotide 

polymorphic (SNP) data to study the rate and extent of parasite mixing, by analysing the 

spatio-temporal changes in genetic variations of P. falciparum parasites at micro-

epidemiological geographical scales in three sites with differing transmission intensities 

in Africa (Omedo et al., 2017a). In chapter three, I carried out a similar analysis but at a 

larger, sub-national scale to determine whether the patterns of parasite movement and 

mixing that are observed at micro-epidemiological scales are still present at a macro-

epidemiological scale (Omedo et al., 2017b). The results of the analyses in the two 

chapters showed evidence of clustering of distinct parasite sub-populations over short 

distances (< 10km), and little or no clustering of parasite sub-populations over larger 

distances, indicating that there is a high degree of parasite mixing within the studied 

sites.  

Both studies used SNP data generated on the sequenom genotyping platform to analyse 

P. falciparum population genetics and arrive at the conclusions drawn about parasite 

movement and mixing. However, genotype data can show different patterns of 

population genetics and demographic history based on the SNPs that are analysed, due 

to SNP ascertainment bias which can arise as a result of the process by which SNPs are 

chosen (Lachance and Tishkoff, 2013). Therefore, to further validate these results, and 

to confirm that the observations made were not merely due to the SNP subset selected 
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or the genotyping technique used to generate the data in the two studies, additional 

analyses of temporal and spatial genetic variations were carried out using Sanger-

derived sequences of genes encoding two important P. falciparum proteins, SURFIN4.2 

and Apical Membrane Antigen 1 (AMA1). Other than their functional roles, these genes 

were also selected because they contain a high number of SNPs, allowing different 

parasite isolates to be distinguished, as well as the absence of structural polymorphisms 

such as variable number of tandem repeats, which would have made the analysis more 

complicated. Analysing sequence data also provides the added advantage of allowing 

the identification of the different haplotypes that were circulating in the population over 

the study period. Although haplotypes can be inferred using data from isolated SNPs, 

the method becomes less sensitive when using SNPs that are widely dispersed 

throughout the genome, due to the high level of recombination that occurs particularly 

in African P. falciparum populations.  

 

4.1.1 P. falciparum Surf4.2 genetic diversity. 

SURFINs are a family of 200 – 300 kDa type 1 transmembrane proteins expressed on 

the surface of merozoites and infected red blood cells (iRBCs) (Mphande et al., 2008, 

Winter et al., 2005). They contain domains that share sequence and structural similarity 

with iRBC-expressed proteins of other plasmodium parasites such as P. falciparum 

erythrocyte membrane protein 1 (PfEMP1), VIR family proteins of P. vivax and P. 

knowlesi’s variant surface antigen (SICAvar) (Mphande et al., 2008, Winter et al., 

2005). The SURFINs are a polymorphic group of proteins encoded by a 10-member 

multi-gene family called surface-associated interspersed genes (surf genes) in P. 

falciparum 3D7 and include 3 predicted pseudogenes (Winter et al., 2005). These genes 

are located within the subtelomeric regions of 5 chromosomes (1, 4, 8, 13, and 14) 

(Mphande et al., 2008), and are classified as group A or group B depending on whether 



161 
 

they contain 2 or 3 exons, respectively (Winter et al., 2005). Not much is known about 

these proteins, and only two members, SURFIN4.1 and SURFIN4.2, have been described 

in detail (Gitaka et al., 2017, Mphande et al., 2008, Winter et al., 2005, Xangsayarath et 

al., 2012).  

The P. falciparum SURFIN4.2 encoding gene, surf4.2 (PlasmoDB ID: PF3D7_0424400), 

which is the focus of this study, is located in the subtelometric region of chromosome 4. 

The 7301 nucleotides long gene is composed of 2 exons (exon 1 is 2292 nucleotides 

long and exon 2 is 4851 nucleotides long) that are separated by a short, 158-base pair 

intronic region. This gene encodes a 2380 amino acids long protein that is divided into 

an N-terminal domain (amino acids 1-50), a cysteine rich domain, CRD (amino acids 51 

- 195), a variable region (amino acids 196 - 733), a single transmembrane domain 

(amino acids 734 - 764) and an intracellular domain (amino acids 765 - 2380) (figure 

4.1) (Kagaya et al., 2015). In terms of genetic diversity, the N-terminal region and 

cysteine rich domains are relatively conserved, both within and between species. This 

region is followed by a highly variable (var) region, and a transmembrane domain 

which is also conserved (Kagaya et al., 2015, Winter et al., 2005). The C-terminal 

region of the protein contains 3 to 4 segments of highly conserved tryptophan rich 

domains (WRDs) composed of about 145 amino acids that are separated by highly 

variable sequences (Winter et al., 2005).  
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Figure 4.1: Schematic showing the P. falciparum surf4.2 domains.  

Nter = N-terminal region; CRD = cysteine rich domain; VAR = variable region, TM = 

transmembrane domain; WRD = tryptophan rich domains. WRD are found in the 

intracellular domain and are highly conserved within and between Plasmodium species. 

 

The exact role that SURFIN4.2 plays has not been determined conclusively. The protein 

is shown to be co-transported to the surface of the infected red blood cells together with 

P. falciparum erythrocyte membrane protein 1 (PfEMP1) and RIFINs, while in released 

merozoites, it is present at the apical complex (Winter et al., 2005). Other studies show 

that SURFIN4.2 may be involved in modifying and maintaining the structure of the 

infected red blood cell, as disrupting the gene lowers the rigidity of iRBCs (Kagaya et 

al., 2015). iRBC rigidity is important for parasite retention and blockage within micro-

capillaries, and would point to an important role for the protein in causing severe 

disease (Kagaya et al., 2015). Due to its high level of polymorphism and co-localization 

with PfEMP1 and RIFINs to iRBC surface, the antigen may also play a role in immune 

evasion (Chan et al., 2014, Ochola et al., 2010).  

Population genetics analyses indicate that the gene is under balancing selection in a 

Kenyan population (Ochola et al., 2010) and Thai population (Kaewthamasorn et al., 
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2012). These, together with evidence that antibodies against the antigen inhibited 

erythrocyte invasion (Winter et al., 2005) , indicates that this protein may be a potential 

vaccine candidate.    

 

 4.1.2 P. falciparum Apical Membrane Antigen 1 (PfAMA1) 

P. falciparum Apical membrane antigen 1 (PfAMA1) is an important merozoite protein 

that is one of the leading vaccine candidates against blood stage malaria infection 

(Remarque et al., 2008, Thera et al., 2016). It is an 83kDa type 1 integral membrane 

protein that is structurally conserved and varies in size from 556 to 563 amino acids in 

most plasmodium species (Chesne-Seck et al., 2005). In P. falciparum, it is 622 amino 

acids long (Chesne-Seck et al., 2005, Remarque et al., 2008) and consists of an N-

terminal signal peptide (25 amino acids), an extracellular domain (527 amino acids), a 

single transmembrane domain (20 amino acids) and a short cytoplasmic domain (50 

amino acids) (Chesne-Seck et al., 2005). The extracellular region can be divided into 3 

sub-domains (I, II and III) based on pairwise disulphide bonding of 16 conserved 

cysteine residues (Hodder et al., 1996, Polley and Conway, 2001, Remarque et al., 

2008). 
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Figure 4.2: Schematic showing the ectodomain structure of P. falciparum AMA1 

antigen.  

The diagram shows the extracellular domain (amino acid residues 141 - 538). The three 

sub-domains (I, II, III) defined by disulphide bonds (blue) are indicated. Red and Purple 

shaded positions represent polymorphic amino acids. Figure borrowed from (Nair et al., 

2002). 

PfAMA1 is synthesised during the parasite’s erythrocytic development stage and is 

translocated within micronemes (Bannister et al., 2003). Prior to merozoite invasion of 

red blood cells, the 83KDa precursor protein is cleaved into a 66kDa mature protein 

which is then translocated onto the merozoite surface (Narum and Thomas, 1994). 

Functionally, PfAMA1 interacts with PfRON2 protein to form the irreversible tight 

junction which commits the parasite to invasion (Srinivasan et al., 2011).  

Genetic diversity in P. falciparum AMA1 presents as single nucleotide polymorphisms 

(SNPs) (Takala et al., 2009). AMA1 shows a high level of genetic diversity which poses 

a challenge for the development of a vaccine based on this antigen (Drew et al., 2012, 
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Thera et al., 2011), with approximately 10% of the amino acid positions being 

polymorphic (Chesne-Seck et al., 2005, Remarque et al., 2008, Takala et al., 2009). 

Genetic diversity in the gene is thought to be maintained by balancing selection, driven 

primarily by host immunity (Polley and Conway, 2001, Thera et al., 2008). Evidence of 

balancing selection has been detected in both domains I and III when analysing parasite 

populations from Kenya (Osier et al., 2010), Nigeria (Polley and Conway, 2001) and 

Papua New Guinea (Arnott et al., 2014, Cortes et al., 2003). 

The greatest genetic diversity within the gene is found in domain I near a hydrophobic 

pocket that is thought to be the binding site for PfAMA1 and proteins forming the 

erythrocyte invasion machinery (Cortes et al., 2003, Takala et al., 2009). Domain II has 

been shown to have the lowest genetic diversity among the three domains (Zhu et al., 

2016) , and contains an epitope that forms the binding site for a monoclonal antibody 

that inhibits invasion (Chesne-Seck et al., 2005). At a population level, diversity in 

PfAMA1 gene varies with P. falciparum transmission intensity (Zhu et al., 2016). 

Greater genetic diversity occurs in African parasites, with over 200 haplotypes 

identified in one village in Mali (Takala et al., 2009), and lower haplotype diversity in a 

Papua New Guinea population (Cortes et al., 2003). However, most of these genetic 

variations occur at low frequency. For example, in the population genetic analysis of 

506 P. falciparum isolates collected in Mali, nearly half of 214 haplotypes identified 

were seen only once, i.e. were unique to an individual sample (Takala et al., 2009).  

At the continental level, genetic structure within PfAMA1 was detected when comparing 

sequences of P. falciparum parasites from Africa, Southeast Asia, Oceania (Papua New 

Guinea) and South America (Zhu et al., 2016) and a separate study of the global 

distribution of PfAMA1 alleles found variations in allele frequencies when analysing 

different regions of the gene (Takala et al., 2009). Additional analysis of genetic 

diversity among sequences from different regions of the world shows that most of the 
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diversity exists within samples collected in the same geographic region (96.9%), with 

little variation between samples collected in different regions (3.1%) (Duan et al., 

2008).   

Evidence of the clinical impact of PfAMA1 polymorphisms is limited and contradictory. 

Certain polymorphisms have been associated with symptomatic disease in Wosera, 

Papua New Guinea, indicating that certain strains of PfAMA1 are a determinant of 

morbidity associated with the disease (Cortes et al., 2003). In a rural population in 

coastal Kenya, differences in nucleotide frequencies were observed at 16 polymorphic 

positions when comparing symptomatic (both severe and mild malaria cases) to 

asymptomatic cases (Osier et al., 2010). However, an analysis of PfAMA1 using 

restriction fragment length polymorphism (RFLP) did not find an association between 

specific genotypes and either symptomatic or asymptomatic infections in a rural area of 

Burkina Faso (Soulama et al., 2015). 

This current study examined the spatio-temporal genetic variation of P. falciparum 

parasites using sequence data of genes encoding the two parasite proteins AMA1 and 

SURFIN4.2, described above, based on two different but complementary metrics:  

1) Number of SNP differences. 

2) Length of DNA segment that is identical by sequence (IBS) between parasite 

pairs.  

As the name suggests, identical by sequence (IBS) is a term used to describe an 

identical sequence of DNA at a specific locus in two or more parasites. The number of 

SNP differences was computed as a measure of genetic diversity among parasites, 

whereas IBS was computed as a measure of genetic similarity among parasites, with an 

aim of determining whether the two metrics gave similar results regarding changes in 

parasite genetic variation over time and space. PfAMA1 and surf4.2 genes were 
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sequenced and analysed in P. falciparum isolates collected from children admitted with 

either mild or severe malaria at the Kilifi County Hospital between 1995 and 2014.  

For each gene, sequences were analysed to identify the number of polymorphic sites, 

and to determine the level of sequence diversity. The patterns of genetic variation in 

time and space were visualised using heatmaps, and phylogenetic trees were generated 

to depict the evolutionary relationship among the sequences. Neutrality tests were 

performed to determine whether the sequences were evolving randomly or under 

selective pressure. Additional analyses of linkage disequilibrium and recombination 

were also carried out. Finally, the effect of time and space on P. falciparum parasite 

genetic variation was interrogated using both pairwise IBS and SNP differences data. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Study population 

P. falciparum positive blood samples were collected from 1164 children aged 3 months 

to 13 years old who were admitted to Kilifi County Hospital (KCH) with mild or severe 

malaria between 1995 and 2014. Most of these children were resident within the Kilifi 

Health and Demographic Surveillance System (KHDSS) catchment area and their 

residential locations had been geocoded as part of an on-going surveillance. The 

KHDSS, which was set up in 2000 to link hospital morbidity and mortality surveillance 

data to community surveillance data, has been described in detail previously (Scott et 

al., 2012). Changing trends in malaria transmission was recorded during the study 

period, with high transmission intensity witnessed before 1998, a decline in 

transmission observed between 1998 and 2009, and a steady increase in transmission 

after 2009 (Mogeni et al., 2016).  
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4.2.2 Sample selection and DNA extraction 

Between 53 and 63 P. falciparum parasite positive samples were selected in each year 

from 1995 to 2014, giving a total of 1164 samples (Table 4.1). Sample selection was 

based on availability of temporal and/or spatial data and parasitaemia levels of ≥ 5,000 

parasites/µl. Total DNA was extracted from the samples using the QIAamp 96 DNA 

QIAcube HT kit (Qiagen, Manchester, UK), as per the manufacturer’s protocol. 

 

Table 4-1: P. falciparum positive samples collected from children admitted at Kilifi 

County Hospital between 1995 and 2014.  

  AMA1 SURFIN4.2 

Year Number 

sampled 

Number 

sequenced 

Number 

analysed* 

Number 

sequenced 

Number 

analysed* 

1995 60 59 59 44 42 

1996 58 55 54 48 47 

1997 60 56 52 46 45 

1998 58 55 52 53 49 

1999 56 52 49 48 45 

2000 56 49 44 49 47 

2001 63 53 36 52 52 

2002 58 53 43 50 50 

2003 60 56 52 53 53 

2004 63 54 52 55 53 

2005 63 55 52 44 43 

2006 59 48 47 45 42 

2007 53 44 41 42 41 

2008 58 51 48 44 39 

2009 54 47 47 43 34 

2010 56 51 48 49 46 

2011 57 54 54 49 49 

2012 57 43 41 38 36 

2013 56 50 48 51 46 

2014 59 59 59 58 38 

Total 1164 1044 978 961 897 

*For both genes, the final number of samples analysed varies from the original number of samples 

collected because some samples failed the PCR amplification (AMA1=120; Surf4.2 = 203), while others 

produced sequence data with high background noise (AMA1 = 66; Surf4.2 = 64) and were excluded from 

the final analyses.   
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4.2.3 Primer Design 

Gene specific polymerase chain reaction (PCR) and sequencing primers for surf4.2 were 

designed using 3D7 surf4.2 gene (PF3D7_0424400) as the reference sequence. A 2660 

base pair region encompassing the 2292 base pair long exon 1 was downloaded from 

PlasmoDB (http://plasmodb.org/plasmo/) and imported into Editseq application 

(DNASTAR Lasergene version 7) for primer design. PCR primers were designed in the 

intronic regions around exon 1 of this gene (Table 4.2; figure 4.3). AMA1 primers used 

in this study were derived from published literature (Polley and Conway, 2001, Ochola-

Oyier et al., 2016), and covered an 1824 base pair region of the 1869 base pair long, 

single exon gene (Table 4.2; figure 4.4). 

 

Table 4-2: Primers used in PCR amplification and sequencing of surf4.2 and AMA1 

genes in P. falciparum isolates from Kilifi, Kenya. 

Gene ID Product 

name 

Primer  

name 

Primer sequence 

PF3D7_0424400 SURFIN4.2 F1 TAGTAGCTGTAAATGTGGTTAGTC 

  F3B ATCTGATCAAGGTTCTCAGA 

  R1 CCCTTGAACAATTGTTGTACCAA 

  R2 TTC AAC AAA ATG TGG CAC ATT C 

  R5 ACTGGTAGAGACGACATCA 

PF3D7_1133400 AMA1 FI GAG CGC CTT TGA GTT TAC 

  F143 GAC TTC CAT CAG GGA AAT GTC C 

  F344 TTG AGT GCT TCG GAT CAA CCT AA 

  R1 TCC ATC AGA ACT GGT GTT G 

  R2 CTT TTG ATC ATA CTA GCG TTC T 

FI and R1 primers were used in the initial PCR amplification of each of the genes. All primers were used 

in the sequencing PCR reactions for individual genes. 

http://plasmodb.org/plasmo/
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The sequence is 2660 bases long and includes the 2292 base pair long exon 1 

(uppercase bases) and surrounding intronic regions (lowercase bases). Each primer 

sequence has been colour-coded as in Table 4.2.  

 

 

ggtaaataaatacctatatacatatatattttttattaattcatatagtagctgtaaatgtggttagtcttcatttttatattttcccatttttgataatATGCTTTT

TGTTGTTGAGCTCGACAGCAGATTGGAAAAATCTGCAGATAAAAGAATAAGTGTTGAAAGA

TTTAGGAAAATATTTGAAATTTATGTTGAAGATAAACTTGAAGAATTAAAAAGGTCAGGAT

CTGAAAAGTATGATAAGGATTGTCGAGATTTCAATTATTTTATCGATGATGTAAAAGATGTA

TTTATAAATAATGATTTGGTAAAAATCCCTGTTAAAGTTCGTAAGAGTATTTGGGAAACGCA

TGTTGACAAAAACTTACCGAAACTTATGAAAAACACTACTAGTTGTAAATGTATTAGAAAA

GAACATAATTATAATAAAGAATATAGAGATATGACTCGAACGTTAGAAGATTTTTGTGAAG

AAAAAACACGCAAGCTAGAAATTATATATCAAAAGGATTACGACGAAAGTTTATATGTGAA

TTTTAATGAATGGATAAATAAAAAAAAAGAAGACATTTTAAAGGAATATGAAAAATTAAGT

AATAAAGATAAATATAAACACTTATTAAAAATTAGTGAAACCTGTGATCTTAATCATGTGG

ATAAATTATTCCTTAATATATCAAGTGAGGATATGAAAAAAATGAAGGAAGATGTTAAAAA

ACAACATCTTGAAGTTAAAGTAAGACCACCAGTAAATGAACCGATTGACGATAGAGGTAAA

GAGGATGCTCTAAGTAGAGGGGGTAAAAGCATTATTTTAAATAAGGAGGAAAATTCACCTA

CTGAAGAAATCACGACTGAATATAATCCTGTAAGTGAAATGGGCGTTGGAACTACTATAGC

TCATAGTGAACCTGGGCCCAAAACGGTTAATACTGAAGTTAGAAATGTTCTAAGATCTGAT

GGAAAAATATCTGATCAAGGTTCTCAGAAAAGTCCTCCTAAGGAACTTTCTAATAAACAAA

TGACTCCTGCTCAACGTAAGAATGTGCCACATTTTGTTGAAAGAAGAGGCTATGGAAATAG

TCATGTTAGGGGTAACGCACTTAAAAAAATTAGTAATGGTGATGATAATTATAAAAGTCCTT

CTTCTAATTATATTGAAGTTGATTGTGCTGAAGATAAATATTTTCTATTAGAAGATGGAACT

AATCAATCAGAAAATAGTTGTAAAACAAAATATAACTATTTTGTATCTAATGATTATGATGG

TACTGGGTCTGCTATTTATTCGACAGATCAGGTACCTAGTAGGGAAGAAATTAAAAGCCCTG

ATTCTTTATCTACATTAGATGCCAGAGGAAGTACACATAATTTAAATGTTTCTAATGAGGGA

AATCCTCTTGAGGGTGGGGAGGAAAAAAATAATGTTAAGATAAGTGAACAAAATGGTCGTA

ATCTGGAAAGTTCTGTAGGAACAGATAAGGGTTCAGATAAAAATGAAGAAGAAGTAGCTGC

TACTTGTGATCCAAACGATCGAAACTGTTTTGATGGAAGATATATAAATGTTGATTATATAA

GAGGTTTATTAAAGGGTAAACGTTCTGGTTCAGATGGAAGATCTAATATAAAACACATAAT

TTCTAATAACTTTGATGATAGTAATATGATTTTTCCTACTTTTAATTTTGATTTCGATATTTTA

AAAGCTGAAGAAGAAGTTTTACCTGTGAATAATTCTGATATAATATATGGACATGAAGAAG

TGGAAGAAACTACTCAAGAAGGTGCATCAATATTTGAAAAACATAGTCATACTTCTTCTCAA

CAAAATGATTCATTGCTTCAGGAAATAAATATAGAATGTTATCTACAACTATGGAATTACCT

AATCAACAAGAGGTATTTGGACTATATTCACCTGTATCACGAACGCTTGATAGTGCTATGAG

TTTTTTGCGAAGTATTATTAGTTTGAGTAGTGCTCCAGTTTCACGAAGTGAAGGTCAAAGCA

AAGAAAGCAAACGTGTAGAAATATCAACTACGGTTCAGGATCCTATTGGATATAGGACTTC

CCCTTTACAAATGAATGCTCATAGCGTTGGTGCTGGTATTAATGTATCCTCAATATTATCAAT

GTTAGGTTTGTCTAGTGGACAAGTTCGAAGAAGTGGTGGGCAAGGAAGTGAAACATATATA

GTTGGTACGTCTCAAAGTGGTTTCCATAAAAATGAAGTAATTCCCTCCATAAAAGATAAAA

GTGGTAAAACTCAAATCGTAAGTAATGAAAAAGGAGGGATTTTTTCAAAAGGGATAACATC

AATGATGTCGTCTCTACCAGTTGCATTAGTAACATTTGTATTTCTTTTTATGTTTTTGGTATTT

AATAAGgtaataatatatgataatattatattttgattaaataatatatttatattatgtaataatttttttttttttttttattattaatttaaatataataaattatataa

tgacataatatttaatttaattcattttgtttttatttcattattttgtagatgaatccttttggtacaacaattgttcaagggaagaaaaaaaaaaaagt 

 

Figure 4.3: P. falciparum surf4.2 gene sequence showing the binding sites of the PCR 

and sequencing primers used. 
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The sequence is 1869 nucleotides long and represents the entire single exon gene. Each 

primer sequence has been colour-coded as in Table 4.2. These primers were derived 

from published literature (Ochola-Oyier et al., 2016, Polley and Conway, 2001). 

 

4.2.4 Polymerase Chain Reaction optimization and gene amplification. 

Gradient PCR reactions for PfAMA1 and surf4.2 were run on the verity 96-well 

thermocycler (Applied Biosystems), using a range of annealing temperatures (Tables 

4.3 and 4.4), to identify optimal temperature conditions needed for the amplification of 

ATGAGAAAATTATACTGCGTATTATTATTGAGCGCCTTTGAGTTTACATATATGATAAACTT

TGGAAGAGGACAGAATTATTGGGAACATCCATATCAAAATAGTGATGTGTATCGTCCAATC

AACGAACATAGGGAACATCCAAAAGAATACGAATATCCATTACACCAGGAACATACATAC

CAACAAGAAGATTCAGGAGAAGACGAAAATACATTACAACACGCATATCCAATAGACCAC

GAAGGTGCCGAACCCGCACCACAAGAACAAAATTTATTTTCAAGCATTGAAATAGTAGAA

AGAAGTAATTATATGGGTAATCCATGGACGGAATATATGGCAAAATATGATATTGAAGAA

GTTCATGGTTCAGGTATAAGAGTAGATTTAGGAGAAGATGCTGAAGTAGCTGGAACTCAA

TATAGACTTCCATCAGGGAAATGTCCAGTATTTGGTAAAGGTATAATTATTGAGAATTCAA

ATACTACTTTTTTAACACCGGTAGCTACGGGAAATCAATATTTAAAAGATGGAGGTTTTGC

TTTTCCTCCAACAGAACCTCTTATGTCACCAATGACATTAGATGAAATGAGACATTTTTATA

AAGATAATAAATATGTAAAAAATTTAGATGAATTGACTTTATGTTCAAGACATGCAGGAA

ATATGATTCCAGATAATGATAAAAATTCAAATTATAAATATCCAGCTGTTTATGATGACAA

AGATAAAAAGTGTCATATATTATATATTGCAGCTCAAGAAAATAATGGTCCTAGATATTGT

AATAAAGACGAAAGTAAAAGAAACAGCATGTTTTGTTTTAGACCAGCAAAAGATATATCA

TTTCAAAACTATACATATTTAAGTAAGAATGTAGTTGATAACTGGGAAAAAGTTTGCCCTA

GAAAGAATTTACAGAATGCAAAATTCGGATTATGGGTCGATGGAAATTGTGAAGATATAC

CACATGTAAATGAATTTCCAGCAATTGATCTTTTTGAATGTAATAAATTAGTTTTTGAATTG

AGTGCTTCGGATCAACCTAAACAATATGAACAACATTTAACAGATTATGAAAAAATTAAA

GAAGGTTTCAAAAATAAGAACGCTAGTATGATCAAAAGTGCTTTTCTTCCCACTGGTGCTT

TTAAAGCAGATAGATATAAAAGTCATGGTAAGGGTTATAATTGGGGAAATTATAACACAG

AAACACAAAAATGTGAAATTTTTAATGTCAAACCAACATGTTTAATTAACAATTCATCATA

CATTGCTACTACTGCTTTGTCCCATCCCATCGAAGTTGAAAACAATTTTCCATGTTCATTAT

ATAAAGATGAAATAATGAAAGAAATCGAAAGAGAATCAAAACGAATTAAATTAAATGAT

AATGATGATGAAGGGAATAAAAAAATTATAGCTCCAAGAATTTTTATTTCAGATGATAAA

GACAGTTTAAAATGCCCATGTGACCCTGAAATGGTAAGTAATAGTACATGTCGTTTCTTTG

TATGTAAATGTGTAGAAAGAAGGGCAGAAGTAACATCAAATAATGAAGTTGTAGTTAAAG

AAGAATATAAAGATGAATATGCAGATATTCCTGAACATAAACCAACTTATGATAAAATGA

AAATTATAATTGCATCATCAGCTGCTGTCGCTGTATTAGCAACTATTTTAATGGTTTATCTT

TATAAAAGAAAAGGAAATGCTGAAAAATATGATAAAATGGATGAACCACAAGATTATGGG

AAATCAAATTCAAGAAATGATGAAATGTTAGATCCTGAGGCATCTTTTTGGGGGGAAGAA

AAAAGAGCATCACATACAACACCAGTTCTGATGGAAAAACCATACTATTAA 

 
Figure 4.4: P. falciparum AMA1 gene sequence showing the binding sites of PCR and 

sequencing primers. 
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the two genes. PfAMA1 optimization reactions involved an initial denaturation at 94oC 

for 2 minutes, 10 cycles of denaturation at 94oC for 15 seconds, annealing (using 

gradient temperatures of 55oC – 57.7oC) for 30 seconds and extension at 72oC for 2 

minutes. This was then followed by 25 cycles of denaturation at 94oC for 15 seconds, 

annealing using the gradient temperatures (55oC – 57.7oC) for 30 seconds and extension 

at 72oC for 2 minutes with a 5 second increment on the extension time per successive 

cycle. A final extension reaction was then carried out at 72oC for 7 minutes (Table 4.3).  

 

Table 4-3: PCR amplification conditions for P. falciparum AMA1 gene 

Step Temperature (0C) Time (min: sec) Cycles 

Initial denaturation 94 2:00 1 

Denaturation 

Annealing 

Extension 

94 

55 – 57.7* 

72 

0:15 

0:30 

2:00 

10 

Denaturation 

Annealing 

Extension 

94 

55 – 57.7* 

72 

0:15 

0:30 

2:00 + 0:05 

cycle extension 

for each 

successive 

cycle. 

25 

Final extension 72 7:00 1 

*6 different temperatures (550C, 55.70C, 560C, 56.70C, 570C, 57.70C) within the indicated range were 

tested to identify the optimal annealing temperature for PfAMA1. 

 

 

Optimization of amplification conditions for surf4.2 involved initial denaturation at 94oC 

for 2 minutes, followed by 10 cycles of denaturation at 94oC for 15 seconds, annealing 

(using a temperature range of 53oC - 58oC) for 30 seconds, and extension at 68oC for 3 

minutes. This was followed by 25 cycles of denaturation at 94oC for 15 seconds, 

annealing at 53oC - 58oC for 30 seconds, extension at 68oC for 3 minutes, with a 5 
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second increment on the extension time per successive cycle. A final extension was 

carried out at 68oC for 7 minutes (Table 4.4.).  

Table 4-4: PCR amplification conditions for P. falciparum surf4.2 gene. 

Step Temperature (0C) Time (min: sec) Cycles 

Initial denaturation 94 2:00 1 

Denaturation 

Annealing 

Extension 

94 

53 – 58* 

68 

0:15 

0:30 

3:00 

10 

Denaturation 

Annealing 

Extension 

94 

53 – 58* 

68 

0:15 

0:30 

3:00 + 0:05 cycle 

extension for each 

successive cycle. 

25 

Final extension 68 7:00 1 

*6 different temperatures (530C, 540C, 550C, 560C, 570C, 580C) within the indicated range were tested to 

identify the optimal annealing temperature for surf4.2. 

 

Following optimization reactions, a 10µl reaction was set up in two micro-centrifuge 

tubes as follows: 1µl of 1X PCR buffer 4 (Roche, Basel Switzerland), 0.2µl of 250µM 

dNTPs (Bioline, Ohio, USA), 0.3µl each of 1µM forward and reverse primers, 0.5µl – 

1.5µl of 50ng -500ng of DNA template and DNase free water (Invitrogen, California, 

USA) were added to the first tube, giving a final volume of 5µl. In the second tube, 

0.15µl (0.525 units) of Expand High Fidelity Taq Polymerase (Roche), 1µl of 1X PCR 

buffer 2 (Roche) and 3.85µl of DNase free water were added to give a final volume of 

5µl. The contents of the two micro-centrifuge tubes were then combined to make the 

10µl reaction mix. For the actual PCR reactions, the above optimization conditions were 

maintained, but the annealing temperatures were set at 57oC for PfAMA1 and 55oC for 

surf4.2, as these were found to result in optimal gene amplification. 
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4.2.5 Gel electrophoretic analysis of PCR products 

PCR products were run on electrophoretic gels to identify samples that were 

successfully amplified. A 1% w/v agarose gel was prepared by weighing and dissolving 

1g of agarose powder (AGTC Bioproducts, UK) in 100ml of 1X Tris Borate EDTA 

(TBE) buffer (Life Technologies, California, USA). The mixture was heated to boiling 

point in a microwave oven to dissolve the agarose powder in the buffer. The solution 

was left to cool before adding 5µl of Red Safe gel stain (iNtRON Biotechnology, 

Korea) and mixing. The mixture was poured into gel trays with combs and left at room 

temperature for 45 minutes to allow the gels to set. 

Once set, the gels were transferred into electrophoresis tanks containing 1X TBE buffer. 

1.5µl of each PCR product was separately mixed with an equal volume of 6X Blue 

Orange loading dye (Promega Corporation, Wisconsin, USA) then loaded into wells in 

the gel. 2µl of hyperladder I DNA standards (Bioline) was loaded into an extra well on 

the gel. Positive (3D7) and negative (water) controls were also mixed with the loading 

dye and loaded into separate wells on the gel. The electrophoresis reaction was then run 

at 100 volts for 40 minutes (for PfAMA1) and 60 minutes (for surf4.2) to separate out the 

DNA fragments. After electrophoresis, gels were viewed and photos taken on a 

molecular imager Gel Doc (Bio-Rad, California, USA).  

 

4.2.6 PCR product purification 

Successfully amplified PCR products were purified using EXOSAP-IT (Affymetrix) 

reagent, based on an enzymatic clean up protocol. The EXOSAP-IT reagent contains 2 

enzymes, Exonuclease 1 and Shrimp Alkaline Phosphatase (SAP), which remove 

unincorporated dNTPs and primers that are likely to interfere with downstream 

processes such as sequencing. The Exonuclease breaks down the remaining single 
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stranded primers into dNTPs and SAP removes the phosphate group from the dNTPs. 

Briefly, 3.4µl of the EXOSAP-IT reagent was mixed directly with 8.5µl of successfully 

amplified PCR product and the mixture incubated in a thermocycler for 15 minutes at 

37oC to degrade any remaining primers and nucleotides and then at 800C for 15 minutes 

to denature the enzymes. A final incubation at 150C for 5 minutes was carried out to 

allow the plates to cool.  

 

4.2.7 BigDye sequencing reaction 

BigDye sequencing reactions were set up separately for each primer as follows: 0.5µl of 

BigDye terminator ready reaction mix (Applied Biosystems, California, USA), 2.0µl of 

5X sequencing buffer, 1.0µl of primer, 5.5µl of DNase free water and 1.0µl of purified 

PCR product were mixed to give a final volume of 10µl. The plates were then loaded 

into the thermocycler and the products amplified using the following program: 25 

cycles of denaturation at 96 0C for 30 seconds, annealing at 50 0C for 15 seconds and 

extension at 60 0C for 4 minutes.  

 

4.2.8 Purification of sequenced products 

The post-sequencing PCR products were purified to remove unincorporated dNTPs and 

unused primers using ethanol/sodium acetate precipitation. Briefly, a premix solution 

containing 3µl of sodium acetate, pH 5.2, 62.5µl of 95% ethanol and 24.5µl of distilled 

water was constituted to make a final volume of 90µl per reaction well. 90µl of the mix 

was added to each well containing sequenced products. The plates were then sealed 

with micro-seals (Bio-Rad) and incubated at -20oC for 60 minutes to allow the DNA to 

precipitate out of solution. After incubation, the plates were spun at 4000 revolutions 

per minute (rpm) for 30 minutes in the 5810R benchtop centrifuge (Eppendorf) to 
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separate the precipitated DNA from the rest of the solution. The seal covers were 

removed from the plates, the plates overlaid with clean paper towels and gently inverted 

to drain the solution mix. The inverted plates were then spun at 200rpm for 1 minute to 

further remove any remaining solution from the plates without discarding the 

precipitate. 150µl of ice cold (-200C) 70% ethanol was then added into each well, the 

plates sealed and spun at 4000rpm for 10 minutes for a second round of cleaning to 

remove any remaining salts which could interfere with downstream processes. After 

spinning, the plates were once again inverted on top of paper towels, and excess ethanol 

solution drained. The plates were then overlaid with a clean set of paper towels, 

inverted and gently spun at 200rpm for 1 minute. All centrifugation steps were carried 

out at 40C. Finally, the plates were covered with fresh paper towels and left on the 

bench to air dry, to allow any remaining traces of ethanol to evaporate as these can 

interfere with subsequent capillary electrophoresis steps, resulting in high background 

noise.   

 

4.2.9 Capillary electrophoresis of sequenced PCR products 

After air drying, 10µl of Formamide HiDi (Applied Biosystems) was added into each 

plate well, the plates sealed and heated for 3 minutes at 96oC in the thermocycler. The 

plates were sent to International Livestock Research Institute (ILRI)’s sequencing lab 

for capillary reading of the sequences and generation of sequence chromatograms.  

 

4.2.10 Data analysis 

4.2.10.1 Sequence assembly and confirmation of base calls 

Sequence chromatograms (trace files) were imported into seqman application 

(DNASTAR, Lasergene Version 7) for confirmation of base calling. For each gene and 
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each sample, sequences generated from the 5 different primer extensions were aligned 

into contigs. 3D7 reference sequences (PF3D7_1133400 and PF3D7_0424400) were 

used to scaffold the trace data generated from each primer for each gene. Trace files 

were assessed for the quality of peaks and accuracy of base calling. Corrections to base 

calling were done on the basis of the peaks of the electropherogram and independently 

of the reference sequence. Where there was a double peak (peak within a peak) at the 

same position along the sequence, the major peak was taken to represent the major 

allele at that position. Sequence chromatograms with high background noise, or in 

which the two overlapping sequences had a mismatch at a specific location, were 

excluded. Clean sequences were saved as consensus files after removing the reference 

sequence.  

 

4.2.10.2 Multiple sequence alignments and identification of segregating sites 

To identify polymorphic positions in the gene sequences, a multiple alignment of the 

consensus files for all samples in each gene was carried out using muscle algorithm 

implemented in MUSCLE software (Edgar, 2004). The respective 3D7 gene sequences 

were used as references. The resultant multiple alignment file for each gene was saved 

in msf file format and imported into Jalview software (Waterhouse et al., 2009) where 

the alignment was confirmed by eye and misaligned sequences manually corrected. 

Each multiple alignment was then trimmed to get sequences of equal length across all 

samples in the alignment, with a view of retaining the highest number of samples that 

provided the longest length of sequence across each gene. Sequences which were too 

short were removed from the alignment at this point. The final alignments, which 

consisted of 978 AMA1 sequences and 897 surf4.2 sequences were saved in fasta format, 

and imported into MEGA7 (Kumar et al., 2016) and DnaSP v.5.10.01 (Rozas, 2009) 

software for subsequent analyses.  
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4.2.10.3 Heatmaps of genetic diversity among PfAMA1 and surf4.2 sequences.  

Temporal and spatial patterns of genetic diversity in PfAMA1 and surf4.2 genes were 

visualised by generating heatmaps using the Heatmap function in R’s ComplexHeatmap 

package. The analysis was carried out on the informative (polymorphic) sites only. 

Briefly, for each gene, a multiple alignment file containing nucleotides at the 

polymorphic positions was imported into R. For each sample in the alignment, each 

position was coded as 0 if the base was identical to the 3D7 reference, and 1 if it 

differed from the reference allele. The resulting 1/0 data matrix was then used to 

generate heatmaps showing the clustering of sequences based on genetic similarity, with 

dendrograms illustrating the hierarchical clustering patterns among the sequences. The 

sequence clustering algorithm works by first converting the 1/0 data matrix into a 

distance matrix computed using a binary distance measure to calculate the dissimilarity 

distances between the sequences in the data matrix. The distance matrix is subsequently 

used in a hierarchical cluster analysis which works by initially assigning each object 

(sequence) to its own cluster and then sequentially joining the two most similar clusters 

until there is only one cluster present. A dendrogram representing the sequence 

clustering pattern was generated. The hierarchical cluster analysis was bootstrapped, 

based on 1000 resampling steps, using the pvclust() function in the pvclust package to 

test the stability of the observed clustering pattern represented by the dendrogram.  

To discern the patterns of temporal distribution of genetic diversity in the genes, the 

sequences were clustered based on the year of sample collection. To discern the spatial 

pattern of genetic diversity, the sequences were clustered based on two categories (north 

versus south), depending on whether the samples were collected from children living 

north or south of the naturally occurring Kilifi creek. 978 and 795 sequences were used 

to generate heatmaps showing the temporal and spatial genetic clustering of PfAMA1, 
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respectively. For surf4.2, 897 and 754 sequences were used to determine the temporal 

and spatial clustering of sequences, respectively. The disparity in the number of samples 

used in the temporal and spatial analyses was because some of the samples lacked 

records on their locations of origin, either because this information was not captured 

during admission, or because the child lived outside of the KHDSS catchment area.  

Additional heatmaps were generated using the variable amino acids, to determine 

whether clustering of genetic diversity showed different patterns when analysing amino 

acid instead of nucleotide sequence data.  

 

4.2.10.4 Statistical tests of neutrality 

Statistical tests of neutrality are used in population genetics to determine whether the 

observed variations are evolving randomly or under selective pressure. Under neutral 

evolution, most genetic variations do not affect fitness, thus the fate of such mutations is 

based on a stochastic process and can either increase to fixation or be lost over time in 

the population (Duret, 2008).  

The Tajima’s D statistic is used to measure whether mutations are under selection. This 

test uses different parameters to measure allele frequency distribution and determine 

whether observed mutations are selectively neutral. Tajima’s D considers the difference 

between the number of segregating (or polymorphic) sites (S) and the average number 

of pairwise nucleotide differences between sequences (K) (Tajima, 1989). Negative 

values derived from the test statistic signifies an excess of low frequency or rare 

polymorphisms, indicating either a population expansion, selective sweep and/or 

purifying selection (Akey et al., 2004). Positive values, on the other hand, signify an 

excess of intermediate-frequency alleles (alleles present at 5% - 20% frequency), 

indicating either a decrease in population size (population bottlenecks) or balancing 
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selection, while 0 values signify a population that is evolving randomly (Akey et al., 

2004).  

To carry out this analysis, multiple sequence alignment files were imported into 

DnaSP5.10.01 software. For PfAMA1, the tests were performed separately on:  

1) the full region sequenced (nucleotides 70 - 1800),  

2) the entire ectodomain (nucleotides 421 - 1641) and 

 3) each of the individual domains: I (nucleotides 445 - 906), II (nucleotides 958 

-       1254) and III (nucleotides 1327 - 1527).  

For surf4.2, the tests were performed on:  

1) the entire sequenced region (nucleotides 1 – 2199),  

2) the cysteine-rich domain (nucleotides 153 – 585) and  

3) the variable region (nucleotides 588 -2199). 

 A stepwise analysis of Tajima’s D was also carried out on the 1731bp and 2199bp 

regions of PfAMA1 and surf4.2 genes using a sliding window approach, with a window 

size of 100 nucleotides and a step size of 25 nucleotides. Additionally, the tests were 

computed separately for samples collected in individual years, using the 1731bp and 

2199bp fragments of PfAMA1 and surf4.2, respectively. 

 

4.2.10.5 Linkage disequilibrium and recombination analysis 

Linkage disequilibrium (LD), which refers to the non-random association between 

SNPs at different loci, was measured using the D’ (normalised coefficient of linkage 

disequilibrium) and R2 (square of the correlation coefficient of allelic states at each loci 

pair) indices (Mueller, 2004), to test the strength of association between nucleotides at 

different segregating sites throughout the PfAMA1 and surf4.2 sequences in the parasite 
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population. For surf4.2, LD was computed in a pairwise analysis at 323 diallelic sites in 

897 samples, after excluding sites with gaps and those that were segregating for three or 

more nucleotides. For PfAMA1, LD was computed in a pairwise analysis for 88 diallelic 

sites in 978 sequences. For both genes, the significance of each pairwise association was 

tested using Fisher’s exact test and the relationship between LD and nucleotide distance 

plotted.  

The level of recombination was analysed across 897 surf4.2 sequences and 978 PfAMA1 

sequences to determine the minimum number of recombination events that have 

occurred in the entire sequence (Hudson and Kaplan, 1985). The recombination 

parameter, C, was also computed between adjacent sites as well as in the entire 

sequence. C is represented by 4Nc, where N represents the effective population size and 

c represents the probability of recombination between adjacent nucleotides per 

generation (Hudson, 1987).  

 

4.2.10.6 Identification of circulating PfAMA1 and surf4.2 haplotypes 

PfAMA1 and surf4.2 haplotypes (combination of SNPs across the gene that are inherited 

together) circulating in the population during the study period were identified using 

DnaSP software. Additionally, haplotype diversity, which signifies the uniqueness of a 

specific haplotype in the population, was also computed.  

 

4.2.10.7 Temporal and spatial genetic variation in P. falciparum AMA1 and 

surf4.2 sequences  

To analyse the effects of time and space on P. falciparum genetic diversity, two 

different but complementary measures of genetic diversity were computed: 1) number 

of SNP differences and 2) identity by state (IBS), which represents identical DNA 
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segments or sequences at a particular locus in two or more parasites. Whereas the 

number of SNP differences is a proxy for the level of genetic diversity, IBS is a proxy 

for the level of genetic similarity between sequence pairs. For each gene, each parasite 

was compared to every other parasite in the dataset, noting the time (day), distance 

(km), SNP differences and the longest contiguous sequence length shared by the two 

parasites (IBS). 

The number of SNP differences were computed as previously indicated in chapters 2 

and 3, i.e. for each gene, pairs of sequences were compared and the number of SNPs at 

observed polymorphic sites between them counted. Half the lower limit of detection of 

temporal and spatial differences were taken for parasites collected on the same day 

and/or at the same location. Parasites collected on the same day were assigned a 

difference of 0.5 days and those collected from the same location were assigned a 

difference of 2.5km since location was known to a 5km accuracy.  

The relationship between genetic variation and time, distance and the interaction of time 

and distance was analysed in a multiple fractional polynomial regression model, with 

the number of SNP differences between parasite pairs as the outcome variable and 

either time, distance or time-distance interaction between parasite pairs as the 

independent variables. For PfAMA1, the variation in the number of SNP differences was 

computed over distance for 795 samples that had associated geospatial positioning data, 

over time for 966 samples that had associated temporal information (i.e. a record of the 

specific date of admission was available) and over time and space for 795 samples that 

had both temporal and spatial data. For surf4.2, variation in the number of SNP 

differences was computed over distance for 754 samples that had geospatial positioning 

data, over time for 890 samples that had temporal data and over time and space for 754 

samples that had both temporal and spatial data. All the analyses were bootstrapped in 



183 
 

linear regression analyses using 1000 resampling steps to determine statistical 

significance and confidence intervals of the observed results.   

Analysis of identity by state involved identifying, for each parasite pair, the longest 

stretch of contiguous sequence that was shared between the pair. To ensure that the 

longest stretch of contiguous sequence shared between parasites that was identified was 

not simply a conserved region across the gene, only polymorphic sites were considered. 

To do this, each parasite pair was first compared across the polymorphic sites and each 

nucleotide position coded as 1 if the two parasites had the same base, and 0 if the bases 

differed. The number of nucleotides in the longest stretch of sequence with identical 

bases between the two samples was noted and taken to represent the IBS for that 

parasite pair. The IBS values were then included as outcome variables in a multiple 

fractional polynomial regression analysis to examine the spatio-temporal relationship 

between parasite genotypes, using logarithmic transformations of time, distance and 

time-distance interaction as independent variables. The analyses were bootstrapped in 

linear regression analyses using 1000 resampling steps to determine statistical 

significance and confidence intervals of the observed results. For both genes, the IBS 

analyses were carried out using the same number of samples as those used in the 

analyses of SNP differences over time, distance and the interaction of time and distance. 

For both IBS and SNP differences data, the analyses were carried out on the entire 

dataset. To determine the rate of change in parasite genotype in more detail, similar 

analyses were also carried out on subsets of data collected within specific time frames: 

1) Samples collected within three years of each other. 

2) Samples collected between 4 to 10 years of each other. 

3) Samples collected more than 10 years apart.  

In each of the above datasets, the analysis was bootstrapped in a linear regression 

analysis to determine the confidence intervals and statistical significance of the 
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observed results. Finally, a scatterplot of IBS versus SNP differences between 

sequences was produced to visually represent the relationship between the two 

parameters.   

 

4.3 RESULTS 

4.3.1 P. falciparum AMA1 and surf4.2 sequence diversity 

A total of 1164 P. falciparum samples were collected from children who were admitted 

to Kilifi County Hospital with mild or severe malaria between 1995 and 2014. PfAMA1 

and surf4.2 genes were successfully amplified (figures 4.5 and 4.6) and sequenced in 

1044 and 961 of these samples, respectively. Sequences containing high background 

noise and those where one or more primers were unsuccessfully sequenced were 

excluded from further analyses, and the remaining sequences were aligned to identify 

polymorphic sites.  

 

Figure 4.5: Electrophoresis gel photo showing PCR amplification results of 

PfAMA1 in 24 samples.  

Wells marked 1 and 26 contain Hyperladder I DNA standards. Bands representing DNA 

fragments of size 1000bp and 2000bp are indicated with arrows.  
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Figure 4.6: Electrophoresis gel photo showing PCR amplification results of surf4.2 

in 24 samples.  

Wells marked 1 and 26 contain Hyperladder I DNA standards. Bands representing DNA 

fragments of size 1000bp and 2500bp are indicated with arrows. 

 

A multiple alignment of each gene was trimmed to get equal sequence lengths across all 

samples in the alignment, giving a final list of 978 PfAMA1 sequences that were 1731 

nucleotides long (bases 70 – 1800 with reference to the full length PfAMA1 gene), 

corresponding to codons 24 – 600, and 897 surf4.2 sequences that were 2199 nucleotides 

long (bases 1 – 2199 of exon 1), corresponding to codons 1 – 733.  

A total of 156 mutations were identified across 137 polymorphic sites in the 1731 

nucleotide region sequenced in PfAMA1. 92 of these polymorphic sites were found in 

the ectodomain region (nucleotide range 421 - 1641). The polymorphic sites included 

variable numbers of singleton (mutation present in only 1 sample), di-allelic (two 

alleles) and tri-allelic (three alleles) mutations (Table 4.5). One site was identified 

which contained a mutation that was fixed in the Kilifi parasite population. In surf4.2, a 

total of 487 mutations were identified across 442 polymorphic sites in the 2199 

nucleotide region analysed, and included singletons, di-allelic, tri-allelic and tetra-allelic 
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(four alleles) mutations (Table 4.5). Additionally, a 3-base pair deletion was identified 

at positions 1051 – 1053 in 6 of the samples, and another 3-base pair deletion was 

identified at positions 1408 – 1410 in 27 of the samples.   

 

Table 4-5: Characteristics of the polymorphic sites identified in P. falciparum 

AMA1 and surf4.2 sequences in a coastal Kenya population.  

Mutation type PfAMA1 Surf4.2 

Singletons* 30 76 

Diallelic 88 323 

Tri-allelic 19 41 

Tetra-allelic 0 2 

Invariable sites 1594 1751 

INDELS 0 2** 

*Singletons are polymorphisms that are found in only 1 sample, and may be considered as a sub-category 

of diallelic SNPs. 

**each gap consisted of a 3 base-pair deletion.  

 

Average pairwise nucleotide diversity per site (π) was 0.01487 for PfAMA1 and 0.04513 

for surf4.2. Among the PfAMA1 sequences, most of the polymorphic sites were present 

in domain I (54 SNPs), while domains II and III had 14 and 13 SNPs, respectively. 

Nucleotide diversity within individual domains showed that domain I had the highest 

diversity at 0.0276, while domains II and III had comparable diversities at 0.0095 and 

0.0166 nucleotide differences per site, respectively. In surf4.2, the highest diversity was 

recorded within the variable region, with 375 of the 442 polymorphic sites found here, 

and an average of 0.0578 nucleotide differences per site (Table 4.6) across this region. 

To show how genetic diversity varied across different regions of the sequences, 

nucleotide diversity was computed across the entire sequences of both genes based on a 

sliding window approach, using a window size of 100 nucleotides and a 25-base pair 

step size. The sliding window plots showed that most of the diversity was in domain I of 

PfAMA1 (figure 4.7) and the variable (VAR) region of surf4.2 (figure 4.8).  



187 
 

 

Figure 4.7: Sliding window plot showing the average pairwise nucleotide diversity 

(π) across a 1731 nucleotide region of P. falciparum AMA1 in a coastal Kenya 

parasite population.  

A window size of 100 nucleotides with a step size of 25 nucleotides was used to 

generate the plot. The nucleotide regions corresponding to the three sub-domains (D I, 

D II, D III) of the gene as determined by 8 disulphide bonds are indicated within the 

plot. The plot was generated based on 978 sequences collected between 1995 and 2014. 

 

Figure 4.8: Sliding window plot showing the average pairwise nucleotide diversity 

(π) across a 2199 nucleotide region of P. falciparum surf4.2 exon 1 encoding the 

extracellular domain of SURFIN4.2 antigen.  
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A window size of 100 nucleotides with a step size of 25 nucleotides was used to 

generate the plot. Nucleotide regions corresponding to the cysteine rich domain (CRD) 

and the variable region (VAR) are indicated within the plot. The plot was generated 

based on 879 sequences collected between 1995 and 2014. 

 

The high level of diversity was also reflected at the protein level, with 298 and 98 

amino acid positions being polymorphic among the surf4.2 and PfAMA1 sequences, 

respectively. PfAMA1 and surf4.2 haplotypes circulating in the Kilifi population during 

the study period were identified and haplotype diversity (Hd) computed. 641 PfAMA1 

haplotypes were identified out of the 978 sequences, and the corresponding haplotype 

diversity was very high, at 0.996. 535 of the 641 PfAMA1 haplotypes identified were 

unique to individual samples. When the three domains were analysed separately, 

domain I had 318 unique haplotypes, while domains II and III had 57 and 52 unique 

haplotypes, respectively. Among the 897 surf4.2 sequences, 685 distinct haplotypes were 

identified, with a haplotype diversity index of 0.999. 583 of these haplotypes were 

unique to individual samples. None of the haplotypes could be considered as dominant 

in either gene, with haplotype frequencies ranging between 1 and 12 (0.15% - 1.7%) 

among the surf4.2 sequences and 1 and 27 (0.15% – 4.2%) among the PfAMA1 

sequences. For both genes, most of the shared haplotypes were found in samples 

collected in different years, and identical haplotypes did not cluster within individual 

years.   

 

4.3.2 Statistical tests of Neutrality 

Tajima’s D statistic was calculated in DnaSP5.10.01 to test for departure from neutrality 

among 978 PfAMA1 and 897 surf4.2 sequences. The statistic was computed across the 

entire sequenced region (1731bp for PfAMA1 and 2199bp for surf4.2), using a window 
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size of 100 nucleotides with a 25-nucleotide step size. In the case of AMA1, additional 

tests were carried out separately for the three sub-domains as well as the ectodomain 

region. For surf4.2, additional tests were carried out on sequences in the variable region 

and cysteine rich domain. In each gene, the analyses were carried out on the total 

number of mutations as opposed to the segregating sites to account for multiple 

mutations at the same site.     

 

Table 4-6: Tajima’s D statistic for PfAMA1 and surf4.2 sequences from children 

admitted to Kilifi County Hospital, Kenya, between 1995 and 2014.  

 L S  ƞ ƞs π K Tajima’s 

D 

H (Hd) 

surf4.2 

Whole 

sequence 

2199 442 487 96 0.045 98.97 1.463 685 (0.999) 

VAR 1612 375 418 79 0.055 89.15 1.676 658 (0.998) 

CRD 433 52 54 11 0.02 8.541 0.447 288 (0.986) 

PfAMA1 

Whole 

sequence 

1731 137 156 32 0.015 25.74 0.658 641 (0.996) 

Ectodomain 1221 92 106 14 0.017 21.25 1.388 450 

Domain I 462 54 65 8 0.027 12.75 1.258 318 (0.985) 

Domain II 297 14 14 2 0.009 2.83 1.097 57 (0.92) 

Domain III 201 13 13 2 0.017 3.34 1.952 52 (0.917) 

The analysis was carried out on 978 PfAMA1 sequences and 897 surf4.2 sequences. Analysis on PfAMA1 

was carried out on region 70 -1800 of the 1869 base pair long gene. Surf4.2 analysis was carried out on 

region 1 – 2199 of the 2299 base pair long extracellular exon. Tajima’s D statistic was calculated based 

on the total number of mutations rather than the number of segregating sites to account for multiple 

mutation events at a single site. L= sequence length (in base pairs); N = Number of samples; S = 

segregating sites; ƞ = total number of mutations; ƞs = number of singleton mutations; π = average 

nucleotide diversity; K = average number of nucleotide differences; H= number of haplotypes; Hd = 

haplotype diversity; VAR = variable region; CRD = cysteine-rich domain. 

 

PfAMA1 was associated with positive Tajima’s D values when the entire 1731bp region 

was analysed, as well as when the ectodomain and domains I, II and III were analysed 
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separately (Table 4.6). However, none of the observed Tajima’s values were statistically 

significant. In the surf4.2 analyses, the entire sequence region, the cysteine rich domain 

and the variable regions were all associated with positive Tajima’s D values.  

Sliding window plots were generated to show Tajima’s D statistics calculated over the 

1731bp PfAMA1 and 2199bp surf4.2 regions (figure 4.9). Tajima’s D values associated 

with PfAMA1 were not significant along the entire sequence, although in surf4.2, 

statistically significant values were observed at different points along the sequence 

(figure 4.9).  

 

Figure 4.9: Sliding window plots of Tajima’s D for PfAMA1 and surf4.2 sequences. 

Plots were generated for 978 PfAMA1 sequences (a) and 879 surf4.2 sequences (b). The 

test statistic was calculated over a sliding window size of 100 nucleotides, with a 25-

nucleotide step size. Asterisks indicate regions that were statistically significant (p < 

0.05). 

 

4.3.3 Analysis of linkage disequilibrium and recombination 

Linkage disequilibrium was computed in a pairwise analysis of 323 polymorphic sites 

in 897 surf4.2 sequences and 88 polymorphic sites in 978 PfAMA1 sequences in the Kilifi 

P. falciparum parasite population. In the surf4.2 analysis, 23509 SNP pairs were found to 
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be statistically significant based on Fisher’s exact test (p<0.05), with 11590 pairs 

remaining significant after accounting for multiple testing using Bonferroni correction. 

In the PfAMA1 analysis, there were 1376 SNP pairs that were shown to be in LD based 

on Fisher’s exact test (p<0.05). 720 of these comparisons were significant after 

accounting for multiple comparisons using Bonferroni correction method.  Both D’ and 

R2 indices of LD showed a rapid decline of LD with distance among the sequences, 

with most of the significant non-random associations being present between SNPs that 

were less than 600 base pairs apart (figures 4.10 and 4.11).  

 

 

Figure 4.10: Linkage disequilibrium (LD) calculated using R2 and D’ across a 1731 

base pair region of PfAMA1 gene in a parasite population from Kilifi, Kenya.  

Plots show R2 and the absolute values of D’ (|D’|) plotted against nucleotide distance. 

Red dots represent those pairs of nucleotide sites that showed significant linkage 

disequilibrium based on Fisher’s exact test, while all other pairs are represented by 

black dots. 
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Figure 4.11: Linkage disequilibrium (LD) calculated using R2 and D’ across a 2193 

base pair region of surf4.2 gene in a parasite population from Kilifi, Kenya.  

Plots show R2 and the absolute values of D’ (|D’|) plotted against nucleotide distance. 

Red dots represent those pairs of nucleotide sites that showed significant linkage 

disequilibrium based on Fisher’s exact test, while all other pairs are represented by 

black dots.  

 

The minimum number of recombination events (Rm) estimated to have occurred in the 

PfAMA1 sequences in this parasite population was 47, while the Rm estimated to have 

occurred among the surf4.2 sequences was 177. The estimated recombination parameter, 

C, was 0.1168 between adjacent sites and 202 in the whole PfAMA1 sequence. When 

the different gene regions were analysed separately, C across the analysed region and 

between adjacent sites was determined to be, respectively, 152 and 0.1246 for the entire 

ectodomain, 102 and 0.2213 for domain I, 101 and 0.3412 for domain II and 28.5 and 

0.1425 for domain III. Among the surf4.2 sequences, the recombination parameter 

between adjacent sites was estimated at 0.03 between adjacent sites and 65.9 in the 

whole sequence. When the cysteine rich domain (CRD) and variable regions were 

considered separately, C across the whole region and between adjacent sites was 
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estimated at 143 and 0.3310, respectively, for the CRD and 53 and 0.0329, respectively, 

for the variable region.  

 

4.3.4 Temporal and spatial patterns of genetic diversity among AMA1 

and surf4.2 sequences in P. falciparum isolates from Kilifi, Kenya.  

To provide a visual summary of the genetic diversity present among P. falciparum 

AMA1 and surf4.2 sequences collected in coastal Kenya between 1995 and 2014, 

heatmaps were generated based on the segregating sites present in the two genes. The 

heatmaps showed a high level of genetic diversity spread throughout the sequenced 

regions of the genes (figure 4.12 – figure 4.23). No discernible pattern of clustering was 

observed among the PfAMA1 sequences, either in time when sequences were analysed 

based on year of collection (figure 4.12), nor in space when they were analysed based 

on location of origin of the samples (figure 4.15). The addition of a hierarchical 

clustering algorithm to group the sequences based on genetic similarity did not show 

patterns of clustering of sequences either in time (figure 4.13) or over space (figure 

4.16), and bootstrapping the cluster analysis gave little statistical support for the 

identified clusters (figures 4.14 and 4.17). Instead, sequences collected from different 

years (1995 - 2014) and from different geographical regions (north and south) clustered 

together. This pattern is indicative of a well-mixed parasite population, both in time and 

space, with the same SNPs being shared by samples collected at different time points, 

and from different geographical locations.  

Similar patterns were observed when the heatmaps were generated using nucleotide or 

amino acid sequence data, showing that the high level of nucleotide diversity translates 

into a high level of antigenic diversity in PfAMA1 in this parasite population.  
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Figure 4.12: Clustering of AMA1 nucleotide sequences in a P. falciparum 

population from coastal Kenya based on the year of sample collection.  

The alignment was based on the segregating sites identified among the sequences. Each 

row represents one of 978 sequences and each column represents one of 138 

polymorphic positions. At each position, nucleotide bases that are identical to P. 

falciparum 3D7 AMA1 reference sequence are coloured blue, and those that differ from 

the reference are coloured red. The sequences are grouped in order, based on year of 

collection from 1995 to 2014.  
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Figure 4.13: Temporal clustering of AMA1 nucleotide sequences in a P. falciparum 

population from coastal Kenya based on genetic similarity.  

The alignment was based on the segregating sites identified among the sequences. Each 

row represents one of 978 sequences and each column represents one of 138 

polymorphic positions. At each position, nucleotide bases that are identical to P. 

falciparum 3D7 AMA1 reference sequence are coloured blue, and those that differ from 

the reference are coloured red. Hierarchical clustering was carried out on the sequences 

(rows) to group samples that are more similar to each other. A dendrogram is added to 

the heatmap to show this clustering relationship, with sequences that are more similar to 

each other appearing in the same clade. Year labels are coloured as in figure 4.12 above 

and include samples collected between 1995 – 2014.  
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Figure 4.14: Bootstrap support for the PfAMA1 temporal cluster.  

Dendrogram representation of the observed sequence clusters following a bootstrap 

analysis to test the statistical significance of the hierarchical clustering. Values on each 

node represent the number of times the specific cluster was observed in 1000 

resampling steps. The order of the alignment in the heatmap was maintained in the 

dendrogram.  

 

 

 

Figure 4.15: Clustering of AMA1 nucleotide sequences in a P. falciparum 

population from coastal Kenya based on the location of sample collection.  

The alignment was based on 138 segregating sites identified among the sequences. Each 

row represents one of 795 sequences and each column represents one of 138 

polymorphic positions. At each position, nucleotide bases that are identical to P. 

falciparum 3D7 AMA1 reference sequence are coloured blue, and those that differ from 

the reference are coloured red. The sequences are clustered based on whether they were 

collected north (green) or south (pink) of the Kilifi Creek (the latitude position -3.64 
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was used to mark the north/south boundary). 407 of the samples were collected in the 

north and 388 were collected in the south. 

 

 

Figure 4.16: Spatial clustering of AMA1 nucleotide sequences in a P. falciparum 

population from coastal Kenya based on genetic similarity.  

The alignment was based on the segregating sites identified among the sequences. Each 

row represents one of 795 sequences and each column represents one of 138 

polymorphic positions. At each position, nucleotide bases that are identical to P. 

falciparum 3D7 AMA1 reference sequence are coloured blue, and those that differ from 

the reference are coloured red. Hierarchical clustering was carried out on the sequences 

(rows) to group samples that are more similar to each other. A dendrogram is added to 

the heatmap to show this clustering relationship, with sequences that are more similar to 

each other appearing in the same clade. The sequences are labelled based on whether 

they were collected north (green) or south (pink) of the Kilifi Creek (the latitude 

position -3.64 was used to mark the north/south boundary). 407 of the samples were 

collected in the north and 388 were collected in the south.  
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Figure 4.17: Bootstrap support for the PfAMA1 spatial cluster.  

Dendrogram representation of the observed sequence clusters following a bootstrap 

analysis to test the statistical significance of the hierarchical clustering. Values on each 

node represent the number of times the specific cluster was observed in 1000 

resampling steps. The order of the alignment in the heatmap was maintained in the 

dendrogram.  

  

Heatmaps showing patterns of diversity were also generated for the surf4.2 gene, with the 

nucleotide and amino acid sequences being clustered by year and location of collection 

as well as by sequence similarity in time and space. Patterns of distribution of genetic 

diversity similar to those seen in PfAMA1 were shown to exist among the surf4.2 

sequences, with no specific groupings of SNPs among samples collected in the same 

year (figure 4.18) or in the same location (figure 4.21). However, a different pattern was 

observed among the sequences when they were clustered based on sequence similarity 

in time and space. The sequences could be divided into three separate clades, based on 

the presence or absence of two distinct blocks of SNPs. One of these blocks covered 

nucleotide region 1427 – 1896, and the second covered nucleotide region 1427 – 2114, 

with both blocks falling within the variable domain region of the exon. The SNP blocks 

were found in samples collected at different time points (figures 4.19 and 4.20), and 

from different geographical locations (figures 4.22 and 4.23), indicating a high level of 

mixing of parasites across time and space.  

Similar patterns were observed when the corresponding polymorphic amino acid 

residues were used to generate the heatmaps instead of nucleotide sequences. However, 

bootstrapping the analysis showed little statistical support for the observed clustering 

pattern, with most of the clusters having bootstrap values of 0, meaning that the specific 

node clusters were not obtained in any of the resampling steps. 
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Figure 4.18: Clustering of surf4.2 nucleotide sequences in a P. falciparum population 

from coastal Kenya based on the year of sample collection.  

The alignment was based on the segregating sites identified among the sequences. Each 

row represents one of 879 sequences and each column represents one of 442 

polymorphic positions. At each position, nucleotide bases that are identical to P. 

falciparum 3D7 surf4.2 reference sequence are coloured blue, and those that differ from 

the reference are coloured red. The sequences are grouped according to the year of 

sample collection from 1995 to 2014.  
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Figure 4.19: Temporal clustering of surf4.2 nucleotide sequences in a P. falciparum 

population from coastal Kenya based on genetic similarity.  

The alignment was based on the segregating sites identified among the sequences. Each 

row represents one of 879 sequences and each column represents one of 442 

polymorphic positions. At each position, nucleotide bases that are identical to P. 

falciparum 3D7 surf4.2 reference sequence are coloured blue, and those that differ from 

the reference are coloured red. Hierarchical clustering was carried out on the sequences 

(rows) to group samples that are more similar to each other. A dendrogram is added to 

the heatmap to show this clustering relationship, with sequences that are more similar to 

each other appearing in the same clade. Year labels are coloured as in figure 4.15 above 

and include samples collected between 1995 – 2014.  
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Figure 4.20: Bootstrap support for the surf4.2 temporal cluster.  

Dendrogram representation of the observed sequence clusters following a bootstrap 

analysis to test the statistical significance of the hierarchical clustering. Values on each 

node represent the number of times the specific cluster was observed in 1000 

resampling steps. The order of the alignment in the heatmap was maintained in the 

dendrogram.  

 

 

Figure 4.21: Clustering of surf4.2 nucleotide sequences in a P. falciparum population 

from coastal Kenya based on the location of sample collection.  

The alignment was based on the segregating sites identified among the sequences. Each 

row represents one of 754 sequences and each column represents one of 442 

polymorphic positions. At each position, nucleotide bases that are identical to P. 

falciparum 3D7 surf4.2 reference sequence are coloured blue, and those that differ from 

the reference are coloured red. The sequences are clustered based on whether they were 

collected north (green) or south (pink) of the Kilifi Creek (the latitude position -3.64 

was used to mark the north/south boundary). 374 of the samples were collected in the 

north and 380 were collected in the south. 
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Figure 4.22: Spatial clustering of surf4.2 nucleotide sequences in a P. falciparum 

population from coastal Kenya based on genetic similarity.  

The alignment was based on the segregating sites identified among the sequences. Each 

row represents one of 754 sequences and each column represents one of 442 

polymorphic positions. At each position, nucleotide bases that are identical to P. 

falciparum 3D7 surf4.2 reference sequence are coloured blue, and those that differ from 

the reference are coloured red. Hierarchical clustering was carried out on the sequences 

(rows) to group samples that are more similar to each other. A dendrogram is added to 

the heatmap to show this clustering relationship, with sequences that are more similar to 

each other appearing in the same clade. The sequences are labelled based on whether 

they were collected north (green) or south (pink) of the Kilifi Creek (the latitude 

position -3.64 was used to mark the north/south boundary). 374 of the samples were 

collected in the north and 380 were collected in the south.  
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Figure 4.23: Bootstrap support for the surf4.2 spatial cluster.  

Dendrogram representation of the observed sequence cluster following a bootstrap 

resampling analysis to test the statistical significance of the hierarchical clustering. 

Values on each node represent the number of times the specific cluster was observed in 

1000 resampling steps. The order of the alignment in the heatmap was maintained in the 

dendrogram.  

 

In summary, spatio-temporal genetic analyses of PfAMA1 and surf4.2 sequences using 

heatmaps and dendrograms displayed a high degree of mixing within the population, 

with no obvious clustering of distinct genotypes either in time or space. Instead, 

parasites with identical or similar genotypes were sampled from different time periods 

and different geographical locations. Overall, there was little statistical support for most 

of the dendrogram clusters observed, indicating that the clustering patterns observed 

where mainly due to chance. 

 

4.3.5 SNP differences versus Identity by State (IBS) for analysis of 

spatial and temporal genetic variation in PfAMA1 and surf4.2 genes  

Two different but correlated metrics; SNP differences and identity by state (IBS), were 

used to measure the trends of genetic variation between P. falciparum parasite pairs in 

the Kilifi population. AMA1 and surf4.2 had an average number of 25.901 and 99.37 

SNP differences per parasite pair, respectively and mean IBS of 24.23 and 51.64 

nucleotides for AMA1 and surf4.2, respectively (figure 4.24). There were several parasite 

pairs which were identical along their entire sequence lengths (i.e. had no genetic 

variations).  
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Figure 4.244: Distribution of the number of SNP differences and the longest shared 

contiguous sequence length (measure of IBS) in AMA1 and surf4.2 sequences 

among P. falciparum parasite pairs in Kilifi, Kenya.   

The top panels represent the distribution of the number of SNP differences between 

PfAMA1 (left) and surf4.2 (right) and the bottom panels represent the distribution of the 

longest shared contiguous sequence length (measure of identity by state) for PfAMA1 

and surf4.2.  

 

Variations in the number of pairwise SNP differences was inversely correlated with the 

length of the longest shared sequence between parasite pairs when both PfAMA1 (figure 

4.25) and surf4.2 (figure 4.26) were analysed. However, although a correlation was 
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observed, there was substantial scatter, indicating that there is a lot of variation in the 

data.  

 

Figure 4.255: Relationship between the number of SNP differences and the longest 

shared sequence length (IBS) among AMA1 sequences from a P. falciparum 

parasite population in Kilifi, Kenya.  

978 parasites were compared in a pairwise analysis when computing both SNP 

differences and IBS. The blue line represents a loess smoothed line showing the 

relationship between the two metrics.  
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Figure 4.266: Relationship between the number of SNP differences and the longest 

shared sequence length (IBS) among surf4.2 sequences from a P. falciparum parasite 

population in Kilifi, Kenya.  

897 parasites were compared in a pairwise analysis when computing both SNP 

differences and IBS. The blue line represents a loess smoothed line with 95% 

confidence intervals (grey shaded area) around it. 

 

Multiple fractional polynomial regression analysis was used to interrogate the 

independent effects of time and distance on genetic variation in the parasite population, 

using both SNP and IBS data. Time between sampling (in days) was associated with 

increasing number of SNP differences between parasite pairs in both PfAMA1 
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(6.338x10-5 SNP differences per day) and surf4.2 (8.544x10-5 SNP differences per day) 

datasets (figures 4.27 and 4.28), and this association was significant in PfAMA1 (p = 

0.002; 95% CI: 2.3x10-5 – 1.11x10-4), although not in surf4.2 (P = 0.3; 95% CI: -2.09x10-

4 – 4.05x10-4). 

   

Figure 4.27: Effect of time on variations in the number of SNP differences in 

AMA1 sequences between P. falciparum parasite pairs.  

The analysis was carried out on 966 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. The relationship between the number of 

SNP differences and time between sample collection was modelled in a multiple 

fractional polynomial regression. The relationship was statistically significant (p=0.002; 

95% CI: 2.3x10-5 – 1.11x10-4) based on a bootstrapped linear regression analysis with 

1000 resampling steps. The blue line represents the estimated change in the number of 

pairwise SNP differences over time and the grey shaded regions represent the 95% 

confidence intervals, with the lower and upper bounds defined by the red dotted lines.  

 

 



212 
 

 

 

 

Figure 4.28: Effect of time on variations in the number of SNP differences in surf4.2 

sequences between P. falciparum parasite pairs.  

The analysis was carried out on 890 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. The relationship between the number of 

SNP differences and time between sample collection was modelled in a multiple 

fractional polynomial regression. The relationship was not statistically significant (P= 

0.3; 95% CI: -2.09x10-4 – 4.05x10-4) based on a bootstrapped linear regression analysis 

with 1000 resampling steps. The blue line represents the estimated change in the 

number of pairwise SNP differences over time and the grey shaded regions represent the 

95% confidence intervals, with the lower and upper bounds defined by the red dotted 

lines. 
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Geographical distance (in kilometres) between individuals in the study location was also 

associated with increasing number of SNP differences between parasite pairs when 

PfAMA1 (effect size = 0.006 SNP differences per kilometre) and surf4.2 (effect size = 

0.013 SNP differences per kilometre) sequences were analysed (figures 4.29 and 4.30). 

However, bootstrapping the analyses to determine significance of the observed results 

showed non-statistically significant associations for both PfAMA1 (P=0.082; 95% CI: -

0.003 – 0.017) and surf4.2 (P = 0.38; 95% CI: -0.052 – 0.076).  

 

Figure 4.2928: Effect of distance on variations in the number of SNP differences in 

AMA1 sequences between P. falciparum parasite pairs.  

The analysis was carried out on 795 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. The relationship between the number of 

SNP differences and distance between sample collection points was modelled in a 

multiple fractional polynomial regression. The relationship was not statistically 

significant (p=0.082; 95% CI: -0.003 – 0.017) based on a bootstrapped linear regression 

analysis with 1000 resampling steps. The blue line represents the estimated change in 
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the number of pairwise SNP differences over distance and the grey shaded regions 

represent the 95% confidence intervals, with the lower and upper bounds defined by the 

red dotted lines. 

 

 

Figure 4.30: Effect of distance on variations in the number of SNP differences in 

surf4.2 gene between P. falciparum parasite pairs.  

The analysis was carried out on 754 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. The relationship between the number of 

SNP differences and spatial distance between samples was modelled in a multiple 

fractional polynomial regression. The relationship was not statistically significant (P= 

0.38; 95% CI: -0.052 – 0.076) based on a bootstrapped linear regression analysis with 

1000 resampling steps. The blue line represents the estimated change in the number of 

pairwise SNP differences over distance and the grey shaded regions represent the 95% 

confidence intervals, with the lower and upper bounds defined by the red dotted lines. 
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Using the IBS data instead of the SNP differences data, increasing time between 

sampling was shown to correlate with decreasing IBS in the PfAMA1 dataset (effect size 

= -0.17), i.e., the longest shared sequence length between any parasite pair decreased as 

the time between sampling of the parasites increased (figure 4.31). However, this effect 

was seen only in the first 3 years, after which IBS between parasite pairs began to 

increase as sampling time between the parasites increased. Bootstrapping the analysis 

gave statistically significant effect of time on IBS (P = 0.03; 95%CI: -0.345 - 0.006). 

This observation of decreasing IBS over time was inversely correlated with increasing 

number of SNP differences between the same parasite pair.  

 

 

Figure 4.291: Effect of time on IBS in AMA1 sequences between P. falciparum 

parasite pairs.  

The analysis was carried out on 966 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. The relationship between the number of 

SNP differences and time between sampling was modelled in a multiple fractional 

polynomial regression analysis. The relationship was statistically significant (P=0.03; 

95% CI: -0.345 - 0.006) based on a bootstrapped linear regression analysis with 1000 
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resampling steps. The blue line represents the estimated change in IBS over time and 

the grey shaded regions represent the 95% confidence intervals, with the lower and 

upper bounds defined by the red dotted lines. 

 

Interrogating the effect of distance on variation in IBS among the PfAMA1 sequences 

gave a negative association (effect size = -0.102) that was not statistically significant (p 

= 0.3; 95% CI: -0.537 – 0.341) (figure 4.32).  

 

Figure 4.302: Effect of distance on IBS in AMA1 sequences between P. falciparum 

parasite pairs.  

The analysis was carried out on 795 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. The relationship between the number of 

SNP differences and distance between sample collection was modelled in a multiple 

fractional polynomial regression analysis. The relationship was not statistically 

significant (p=0.3; 95% CI: -0.537 – 0.341) based on a bootstrapped linear regression 

analysis with 1000 resampling steps. The blue line represents the estimated change in 
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IBS over distance and the grey shaded regions represent the 95% confidence intervals, 

with the lower and upper bounds defined by the red dotted lines. 

 

In the surf4.2 dataset, IBS was positively correlated with time (effect size = 0.1812), 

although this observation was not statistically significant (P = 0.18; 95% CI: -0.276 – 

0.665) (figure 4.33). Increasing distance between sampling was associated with 

decreasing IBS among the surf4.2 sequences (effect size = -0.030), although this effect 

was also not statistically significant (P = 0.52; 95% CI: -1.156 – 0.982) (figure 4.34).  

 

Figure 4.31: Effect of time on IBS in surf4.2 sequences between P. falciparum 

parasite pairs.  

The analysis was carried out on 890 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. The relationship between the number of 

SNP differences and distance between sample collection points was modelled in a 

multiple fractional polynomial regression. The relationship was not statistically 

significant (P = 0.18; 95% CI: -0.276 – 0.665) based on a bootstrapped linear regression 
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analysis with 1000 resampling steps. The blue line represents the estimated change in 

IBS over time and the grey shaded regions represent the 95% confidence intervals, with 

the lower and upper bounds defined by the red dotted lines. 

 

 

Figure 4.34: Effect of distance on IBS in surf4.2 sequences between P. falciparum 

parasite pairs. 

The analysis was carried out on 890 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. The relationship between the number of 

SNP differences and distance between sample collection points was modelled in a 

multiple fractional polynomial regression. The relationship was not statistically 

significant (p=0.52; 95% CI: -1.156 – 0.982) based on a bootstrapped linear regression 

analysis with 1000 resampling steps. The blue line represents the estimated change in 

IBS over distance and the grey shaded regions represent the 95% confidence intervals, 

with the lower and upper bounds defined by the red dotted lines. 
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Table 4-7: Linear effects of time and distance on changes in the number of SNP 

differences and IBS between P. falciparum parasites based on AMA1 and surf4.2 

sequences. 

Gene Data type Time effect size (95% CI);  

p value 

Distance effect size (95% 

CI);  

P value 

PfAMA1 SNPs 6.338x10-5 (2.3x10-5 – 1.11x10-4); 

0.002 

0.006 (-0.003 – 0.017); 

0.082 

 IBS -0.17 (-0.345 – 0.006);  

0.03 

-0.102 (-0.537 – 0.341); 

0.3 

    

surf4.2 SNPs 8.544x10-5 (-2.09x10-4 – 4.05x10-4); 

0.3 

0.013 (-0.0519 – 0.076); 

0.38 

 IBS 0.1812 (-0.276 – 0.665);  

0.18 

-0.030 (-1.156 – 0.982); 

0.52 

 

The effects of time’s interaction with distance on genetic variation in PfAMA1 and 

surf4.2 were also investigated in this study. In addition to analysing the rate of change in 

parasite genotypes within the study site during the entire study period using the whole 

dataset, separate analyses were also carried out for samples collected within 3 years of 

each other, samples collected 4 – 10 years apart, and samples collected more than 10 

years apart. The latter analyses were conducted to determine whether the rate of change 

in genetic variation was similar throughout the study period or if it varied over time. 

Based on the SNP differences data of both genes, time and distance interacted to 

increase the number of SNP differences between parasite pairs (figure 4.35 and figure 

4.36). When the whole dataset was analysed, time was shown to interact 

antagonistically with distance to attenuate the effect of distance on genotype 

relatedness, and the effect was significant for PfAMA1 (effect size = 0.164, p< 0.001), 

but not for surf4.2 (effect size = 0.079, p = 0.456). The results also show that the 

PfAMA1 gene accumulates changes quite slowly in this parasite population, with an 

estimated average of 0.704 SNP differences for parasite pairs collected over the 20-year 

study period. Analysis of the different subsets of the data showed that most of the SNP 

differences seen among the sequences were present in parasite pairs that were closely 
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spaced in time, specifically those collected within a month of each other (figure 4.35b 

and figure 4.36b). However, these effects were not statistically significant for either 

PfAMA1 (effect size = 0.0676, p=0.203) or surf4.2 (effect size = 0.1745, p=0.353). The 

other data subsets of parasite pairs separated by 4 – 10 years or more than 10 years had 

very few SNP differences between them, with an estimated average change of 0.24 SNP 

differences in PfAMA1 sequences from parasites separated by 4 – 10 years, and 1.022 

SNP differences for parasites pairs collected more than 10 years apart (figures 4.35c – 

d). Among the surf4.2 genes, parasite pairs separated by between 4 – 10 years had an 

estimated average change of 0.898 SNP differences while those collected more than 10 

years apart had an estimated average change of 1.468 SNP differences (figure 4.36c – 

d).  

 

Figure 4.35: Effect of time-distance interaction on the number of SNP differences 

in AMA1 sequences between P. falciparum parasite pairs.  

The analysis was carried out on 795 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. Dashed lines represent time intervals 

separating parasite pairs. The analysis was carried out for (a) parasite pairs in the whole 
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dataset, (b) parasites collected up to three years apart, (c) parasite pairs collected 

between 4 and 10 years apart, and (d) parasite pairs collected more than 10 years apart. 

 

 

Figure 4.36: Effect of time-distance interaction on the number of SNP differences 

in surf4.2 sequences between P. falciparum parasite pairs.  

The analysis was carried out on 754 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. Dashed lines represent time intervals 

separating parasite pairs. The analysis was carried out for (a) parasite pairs in the whole 

dataset, (b) parasites collected up to three years apart, (c) parasite pairs collected 

between 4 and 10 years apart, and (d) parasite pairs collected over more than10 years 

apart. 

 

Analysis of the IBS data for both genes showed that time’s interaction with distance had 

the effect of reducing the longest contiguous stretch of sequence that was shared 

between parasites when PfAMA1 was considered, although this interaction was not 

statistically significant (effect size = -0.1175, p=0.106) (Table 4.8). Among surf4.2 

sequences, time interacted with distance to increase IBS, meaning that parasites became 

more similar over time, although this observation was also not statistically significant 
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(effect size = 0.0579, p=0.37). Like the observations made when analysing the SNP 

differences data, most of the changes in IBS were found among parasites collected 

within a month of each other (figures 4.37 and figure 4.38), with fewer changes between 

parasites separated by longer time intervals. Analysis of the different parasite subsets 

showed little differences among parasites separated by 4 – 10 years (1.17) and those 

separated by more than 10 years (0.177) when PfAMA1 sequences were analysed. 

Similar results of changes in IBS were also observed when surf4.2 sequences were 

analysed in parasites separated by 4 – 10 years (0.042) and more than 10 years (1.254).  

 

Figure 4.32: Effect of time-distance interaction on IBS in AMA1 sequences between 

P. falciparum parasite pairs.  

The analysis was carried out on 795 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. Dashed lines represent time intervals 

separating parasite pairs. The analysis was carried out for (a) parasite pairs in the whole 

dataset, (b) parasites collected up to three years apart, (c) parasite pairs collected 

between 4 and 10 years apart, and (d) parasite pairs collected over 10 years apart. 
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Figure 4.33: Effect of time-distance interaction on IBS in surf4.2 sequences between 

P. falciparum parasite pairs.  

The analysis was carried out on 754 samples collected from children admitted to the 

Kilifi County Hospital between 1995 and 2014. Dashed lines represent time intervals 

separating parasite pairs. The analysis was carried out for (a) parasite pairs in the whole 

dataset, (b) parasites collected up to three years apart, (c) parasite pairs collected 

between 4 and 10 years apart, and (d) parasite pairs collected more than 10 years apart. 
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Table 4-8: Linear effects of the interaction of time and distance on P. falciparum 

genetic variation based on SNP differences and IBS. 

GENE Data type Dataset Effect size (95% CI) P value 

PfAMA1 SNPs whole 0.164 (0.063 – 0.288) <0.001 

  0 – 3 years 0.068 (-0.885 – 0.228) 0.203 

  4 – 10 years 0.104 (-0.113 – 0.470) 0.113 

  > 10 years 0.441 (-0.098 – 0.920) 0.054 

 IBS whole -0.118 (-0.328 – 0.073) 0.106 

  0 – 3 years -0.282 (-0.675 – 0.045) 0.056 

  4 – 10 years -0.084 (-0.646 – 0.345) 0.287 

  > 10 years -0.100 (-1.100 – 0.753) 0.388 

     

Surf4.2 SNPs whole 0.079 (-0.563 – 0.789) 0.456 

  0 – 3 years 0.175 (-0.699 – 0.997) 0.353 

  4 – 10 years 0.379 (-1.713 – 1.757) 0.527 

  > 10 years 0.843 (-1.481 – 5.767) 0.104 

 IBS whole 0.058 (-0.434 – 0.553) 0.37 

  0 – 3 years 0.055 (-0.777 – 0.774) 0.437 

  4 – 10 years 0.018 (-1.025 – 1.477) 0.36 

  > 10 years -0.720 (-3.630 – 1.089) 0.185 

 

IBS = Identity by state, representing the longest shared contiguous sequence length between parasite 

pairs; SNPs = single nucleotide polymorphisms. 

 

 4.4 DISCUSSION 

This chapter aimed to determine the spatio-temporal genetic variation in P. falciparum 

field isolates collected over a 20-year period in Kilifi County, using sequences of genes 

encoding two antigens, apical membrane antigen 1 (PfAMA1) and SURFIN4.2, by 

measuring two complementary metrics of genetic variation: pairwise number of SNP 

differences as a proxy for genetic diversity, and identity by state as a proxy for genetic 

similarity. The study represents the single largest analysis of sequences from these two 

genes in P. falciparum parasites from a single geographical location.  

Sequence analysis showed high levels of genetic diversity in both PfAMA1 and surf4.2 

genes, with most of this diversity localised to the ectodomain region of PfAMA1 and the 

variable region of surf4.2. Similarly high genetic diversity among PfAMA1 sequences 

have been reported in previous studies of global P. falciparum isolates, including those 
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from Mali (Takala et al., 2009), Nigeria (Polley and Conway, 2001), Kenya (Osier et 

al., 2010), Papua New Guinea (Arnott et al., 2014), Thailand (Polley et al., 2003), the 

China-Myanmar border (Zhu et al., 2016) and Venezuela (Ord et al., 2008). Although 

surf4.2 has not been studied in detail, high genetic diversity has been noted in previous 

analyses of Kenyan (Ochola et al., 2010) and Thai (Kaewthamasorn et al., 2012) P. 

falciparum populations. For surf4.2, the average pairwise nucleotide diversity between 

parasite pairs in the current study (π=0.045) was similar to that from a previous analysis 

of 69 samples from the Kilifi population (π=0.043) (Ochola et al., 2010) and 74 samples 

from the Thai population (π=0.044) (Kaewthamasorn et al., 2012).  

The degree of genetic diversity identified among PfAMA1 sequences in this study was 

similar to that identified in other African sites but was higher than that seen in southeast 

Asian or South American parasite populations (Zhu et al., 2016), and is in agreement 

with the higher P. falciparum transmission intensity experienced in Africa compared to 

southeast Asia and South America.  

The high level of genetic diversity was also reflected in the number of haplotypes 

circulating in the region during the study period, with more than 600 distinct haplotypes 

identified when each gene was analysed separately. Previous studies have identified a 

large number of P. falciparum haplotypes based on AMA1, including 229 haplotypes 

when a global set of 956 sequences were analysed (Zhu et al., 2016), and 214 

haplotypes when a set of 506 sequences from one Malian village were analysed (Takala 

et al., 2009). Our study currently represents the largest number of PfAMA1 and surf4.2 

haplotypes identified to be circulating in a single study site, and points to the existence 

of greater genetic diversity than previously thought in this parasite population. There 

were no dominant haplotypes identified in this parasite population, and in fact most of 

the haplotypes were unique to individual samples. This is similar to a study of P. 

falciparum populations in a Malian village (Takala et al., 2009), and indicates that most 
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genetic variations are rare, particularly in African parasite populations. An excess of 

rare genetic variants in African parasites has been shown in previous studies using 

whole genome sequence data (MalariaGEN, 2016, Manske et al., 2012). 

The genetic diversity observed within the surf4.2 gene was similar to that seen in the 

Thai parasite population (Kaewthamasorn et al., 2012), despite differing transmission 

intensities in the two sites. The highest level of genetic diversity was observed in the 

variable region, in agreement with studies of other parasite populations 

(Kaewthamasorn et al., 2012, Ochola et al., 2010). Two positions, each with a 3 base-

pair deletion, were identified in a subset of the surf4.2 sequences analysed here. These 

deletions have been identified in a previous study of isolates from the same region 

(Ochola et al., 2010), but were absent when the same gene was analysed in a Thai 

parasite population (Kaewthamasorn et al., 2012), indicating that the gene may be 

evolving under different selective pressures in the two populations.  

Tajima’s D was computed to test for departure from neutrality among sequences of both 

genes. The entire sequenced region, the ectodomain, as well as the individual domains 

of PfAMA1 were associated with positive, albeit not significant Tajima’s D values, 

meaning that the null hypothesis of random evolution of the genes could not be rejected. 

This is in contrast to multiple other studies that have shown the ectodomain, and 

particularly domains I and/or III of PfAMA1 to be under balancing selection in different 

parasite populations (Osier et al., 2010, Polley et al., 2003, Polley and Conway, 2001, 

Cortes et al., 2003, Ord et al., 2008), although not in a parasite population along the 

China-Myanmar border (Zhu et al., 2016). Similarly, unlike previous studies showing 

evidence of selection in the surf4.2 gene in Kilifi (Ochola et al., 2010) and Thai 

(Kaewthamasorn et al., 2012) parasite populations, none of the tests were associated 

with evidence of selection in the current study despite the large sample sizes used. 

Previous studies of P. falciparum populations using whole genome sequence data show 
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that a majority of genes in the parasite genome are associated with negative Tajima’s D 

values. For example, in a study of over 4000 genes in 152 P. falciparum isolates from 

The Gambia and Republic of Guinea, only 2.5% had positive Tajima’s D values 

associated with balancing selection, while most of the remaining genes were associated 

with negative values (Mobegi et al., 2014). In a separate study, similar results were 

obtained in an analysis of over 2800 genes in 65 P. falciparum isolates from The 

Gambia (Amambua-Ngwa et al., 2012). These results are reflective of the historical 

population expansion that occurred in this parasite, especially in African populations. 

Thus, even in the absence of statistical significance, the highly positive Tajima’s D 

values observed in this study provides strong evidence of balancing selection, in line 

with previous studies that have analysed the same genes. Apart from balancing 

selection, the positive Tajima’s D values observed may also be interpreted in terms of 

population demographics, signifying a decrease in the population size (population 

bottleneck) resulting from the declining transmission intensity that has been observed in 

this parasite population during much of the study period (Mogeni et al., 2016). 

Linkage disequilibrium (LD) was computed in a pairwise comparison for all diallelic 

sites in each gene. LD was detected across the PfAMA1 sequence, although it was 

shown to decline rapidly as the distance between nucleotide pairs increased, and most of 

the significant associations were observed for nucleotide pairs that were less than 600 

bases apart. These results are consistent with those of previous studies which identified 

strong LD between closely spaced nucleotide sites in the PfAMA1 gene in other parasite 

populations in Africa and Southeast Asia (Polley et al., 2003, Polley and Conway, 2001, 

Zhu et al., 2016, Osier et al., 2010). LD was also observed among Surf4.2 SNPs, with 

high LD values for nucleotide sites that were less than 1000 bases apart, although LD 

was also observed for some sites that were more distantly spaced. These results are 

similar to those from an earlier study of a smaller sample set from the same Kilifi 
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population (Ochola et al., 2010). Previous analysis of LD in surf4.2 from a Thai parasite 

population showed evidence of LD for SNPs that were more than 1.5kb apart 

(Kaewthamasorn et al., 2012). The extent of LD in P. falciparum has been shown to 

vary based on malaria endemicity, with little or no LD in high transmission areas, and 

stronger LD in low transmission areas (Anderson et al., 2000, Conway, 2007). Using 

microsatellites data, Anderson and his colleagues showed that there was strong LD in 

regions with low prevalence (< 1%) and little or no LD in regions with higher 

transmission intensities (Anderson et al., 2000). In high transmission areas, strong LD 

has been shown to exist generally between nucleotide sites that are less that 1kb apart, 

with rapid decay to very low levels for nucleotide sites beyond this distance (Polley et 

al., 2003, Polley and Conway, 2001). This pattern of LD is attributed to the multiple 

mixed infections found in high transmission areas, which increase chances of 

recombination between gametes of different genotypes during sexual replication in 

mosquitoes. On the other hand, regions with low transmission intensity have fewer 

parasite genotypes and thus fewer mixed infections, meaning that selfing between 

parasites with the same genotype is more common (Anderson et al., 2000, Conway, 

2007).  

Recombination was shown to occur often in this parasite population, based on the rapid 

decline in LD with increasing distance between nucleotide sites and the high estimates 

of the recombination parameter, C, for both genes. In the Thai population, a minimum 

of 35 recombination events were estimated to have occurred in the extracellular region 

of surf4.2 (Kaewthamasorn et al., 2012), while this value was much higher in the current 

study, at a minimum of 177 recombination events among the sequences. When the 

cysteine rich domain and variable regions of the gene were considered separately, the 

variable region was shown to have a lower number of recombination events, an 

observation also seen among the Thai isolates. This lower number of recombination 
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events in the variable region is likely to be due to the multiple polymorphisms observed 

in this region which prevents effective recombination between sequences that are too 

diverse (Kaewthamasorn et al., 2012). The PfAMA1 sequence analysed in this study 

was estimated to have undergone an estimated 47 recombination events, which was 

higher than that estimated for a different parasite population from the same area (Osier 

et al., 2010), as well as a parasite population in Nigeria (Polley and Conway, 2001). 

Recombination rate is closely linked with transmission intensity, and is highest in 

Africa, followed by Southeast Asia and finally South America (Zhu et al., 2016, Ord et 

al., 2008, Anderson et al., 2000). The high recombination and rapid decline in LD 

observed in this study are indicative of high meiotic recombination within this parasite 

population. These results also indicate a high degree of parasite mixing within the study 

site and concurs with the observations of high mixing among parasites from this 

population reported in chapter 2 (Omedo et al., 2017a).  

Heatmaps displaying visual representations of genetic diversity showed a lack of 

obvious clustering of parasite genotypes in time and space using nucleotide and amino 

acid sequences of both PfAMA1 and surf4.2. This points to a high level of parasite 

mixing in the study area, and is further supported by the little to no statistical support 

observed by bootstrapping the hierarchical clustering of both genes.  

This high level of mixing and an inability to resolve parasite genotypes into allele 

clusters has previously been shown using PfAMA1 sequences. For example, in an 

analysis of P. falciparum isolates from Kilifi, no clustering was observed among 

parasites collected from children with asymptomatic, mild or severe malaria (Osier et 

al., 2010) and in western Kenya, parasites did not cluster based on PfAMA1 genotypes 

either (Escalante et al., 2001). In previous analyses of samples from the same western 

Kenya region, clustering was not observed among parasite genotypes at a subnational 

scale when analysing SNP genotype data  (Omedo et al., 2017b), although clusters of 
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parasite sub-populations were identified at micro-epidemiological scales of 10km and 

less (Omedo et al., 2017a). However, these clusters were weak and consisted of 

parasites with different genotypes. Weak clusters of parasite genotypes have also been 

identified in the Kilifi parasite population based on analysis of the S-antigen (Kyes et 

al., 1997). On a continental level, however, parasite populations have been shown to 

cluster into distinct groups. An analysis of a global set of P. falciparum populations 

clustered parasites based on AMA1 haplotypes according to their geographical regions 

of origin, although some haplotypes were shown to cluster with parasites from a 

different area (Duan et al., 2008).  Using whole genome sequence data, P. falciparum 

parasite populations have been shown to cluster into distinct groups along continental 

lines (Manske et al., 2012). However, there has generally been lower clustering of 

parasites at the regional level when African parasites were analysed. For example, low 

clustering among samples in individual countries was observed using a set of 12 

microsatellite markers, which showed little or no differentiation among parasites that 

were separated by up to 2000km across Africa (Anderson et al., 2000). Mobegi and 

others showed similar results using microsatellite data to analyse parasite populations 

across four West African countries (Mobegi et al., 2012). Similar results were observed 

when SNP data were used across Africa, as well as within West Africa (Campino et al., 

2011, Mobegi et al., 2014).  

Neither PfAMA1 nor surf4.2 sequences clustered based on relatedness over time, and 

most of the haplotypes were present at only one timepoint. This is similar to a study of 

parasite populations from Mali, where sequences of parasites collected at one time point 

did not overlap with those of parasites collected at two other time points (Duan et al., 

2008), as well as to temporal analyses carried out on PfAMA1 parasites from the China-

Myanmar border (Zhu et al., 2016). The temporal mixing of parasites observed among 

the surf4.2 sequences in our study are in contrast to the analysis of the same gene in Thai 
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parasites, where the same haplotypes were seen to be circulating up to 14 years apart 

(Kaewthamasorn et al., 2012). This difference in results may be explained by the lower 

transmission intensity experienced in Thailand, where selfing of the same parasite 

clones is common compared to the higher transmission setting in Kilifi where 

recombination among different parasite clones is more common (Anderson et al., 2000, 

Conway, 2007, Hartl et al., 2002).  

Among the surf4.2 sequences, polymorphic SNPs were concentrated in the variable 

region, and could be clustered based on the three distinct patterns in this region. Similar 

clusters were observed in a Thai parasite population when this gene was analysed 

(Kaewthamasorn et al., 2012). The functional significance of these clusters is currently 

unknown. In our analysis, specific SNP patterns were not restricted to parasites from a 

specific year or location, but were instead found in sequences from different time points 

and different geographical locations.  

Although SNP genotype data are often used to study genetic diversity in parasite 

populations, these can be affected by ascertainment bias since most SNPs chosen for 

genotyping are usually present at intermediate to high frequency, and it therefore biases 

against rare SNPs. For this reason, the conclusions reached regarding demographic 

history and natural selection of the parasite population may be very different depending 

on whether one uses genotype or sequencing data (Lachance and Tishkoff, 2013). To 

confirm that the observations made in this study about parasite mixing and movement 

over the study sites were not simply due to the SNP subsets used but were a true 

reflection of the underlying population genetic dynamics, the genes encoding two 

important P. falciparum antigens: AMA1 and SURFIN4.2 were sequenced on the sanger 

sequencing platform. Two different but complementary metrics of parasite diversity: 

SNP differences and identity by state (IBS), were then measured. IBS is used in 

genetics to describe two identical alleles or sequences of DNA. It is different from the 
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more commonly measured metric, identity by descent (IBD), in that IBD refers to 

similarity between a pair of DNA sequences due to common ancestry, whereas IBS 

does not consider a common ancestry between the parasites. IBS was used in this study 

because of the observed high level of recombination and high parasite mixing which 

makes it difficult to accurately determine IBD.  

Temporal and spatial genetic variation in the parasite population was measured using 

the number of pairwise SNP differences and IBS to determine whether the two metrics 

were in concordance. The metrics showed similar results of variations in parasite 

genotypes when PfAMA1 and surf4.2 were analysed over time, with the number of 

pairwise SNP differences increasing as IBS declined over time. Similarly, SNP 

differences increased and IBS decreased as the distance separating parasite pairs 

increased. This inverse relationship is expected because as the number of SNP 

differences increases between a parasite pair, IBS, represented by the longest 

contiguous stretch of sequence shared between the parasite pair, is expected to decline. 

This is because mutations introduce variations in nucleotide sequences, increasing SNP 

differences, and recombination leads to the break-up and exchange of segments of 

DNA, reducing the length of the shared stretch of sequence between parasite pairs. The 

decrease in IBS over time further shows that recombination and mutation act across the 

entire sequence in both genes, and is not confined to specific locations in the sequences. 

However, our analysis of the recombination parameter across both genes showed a 

lower rate of recombination in the highly variable regions, similar to observations made 

in the surf4.2 gene in parasites from Thailand, indicating that recombination occurs much 

less efficiently in regions of high variability.    

Among the PfAMA1 sequences, the increase in genetic variation over time was shown 

to be statistically significant. This was similar to our previous analysis of parasites from 

this site, as well as parasites from two other locations in Kenya and The Gambia 
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(Omedo et al., 2017a). This increase in genetic diversity over time indicates that, to a 

large extent, genetic drift is driving the evolution of the gene in this population, with the 

number of SNPs increasing over time, and supports our observation of non-statistical 

significance in the tests of neutrality. The results of the changes in genetic variation was 

corroborated by IBS data, which showed statistically significant reduction in genetic 

variation over time. However, the pattern of increasing genetic diversity over distance 

observed in the PfAMA1 sequences was not statistically significant, in contrast to our 

earlier analysis which showed statistically significant increase in variation when a set of 

genome-wide distributed SNPs were used (Omedo et al., 2017a). Concordant trends of 

decreasing, albeit non-significant genetic variation over distance were noted when IBS 

data were used instead of SNP data.  

Among the surf4.2 sequences, parasites showed increased genetic variation over both 

time and distance when SNP differences data were used. However, neither of these 

observations were statistically significant. When IBS data were used, genetic variation 

between parasite pairs was shown to decrease over both time and space, although these 

decreases were also not statistically significant. Furthermore, time was shown to interact 

antagonistically with distance to affect changes in genetic variation between parasite 

pairs. Here, genetic variations between parasite pairs increased with distance between 

the parasites, but this increase was rapidly attenuated as the time separating parasites 

also increased, and was gone within one year. Analysing subsets of parasites collected 

within different temporal ranges showed that most of the genetic variation was found 

among parasites collected within a few days of each other (1 – 30 days), and there were 

barely any differences between samples that were collected more than one year apart 

from each other. In fact, beyond one year, few SNP differences were observed between 

sequences, indicating that there were few genetic variations acquired over time during 
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the 20-year study period. These same patterns were observed when both PfAMA1 and 

surf4.2 genes were analysed.  

These results are similar to observations made in the study of parasite pairs from Kilifi, 

Rachuonyo South and The Gambia that was reported in chapter two, which used SNP 

genotype data to show a rapid decline in changes in genetic variation with increasing 

distance when time was taken into account (Omedo et al., 2017a). As in the current 

analysis, most of the genetic variations between parasites observed in that study were 

observed between parasite pairs that were collected within a month of each other, and 

most of the genetic variation was gone after one year.  

When IBS data were used in place of SNP differences data, a pattern complementary to 

that observed when using SNP differences emerged. Time interacted antagonistically 

with distance, leading to a reduction in IBS as the distance separating samples 

increased. However, this reduction was attenuated over time, and was gone within one 

year. These observations using both SNP and IBS data show that there is substantial 

gene flow within the study site such that distance no longer predicts genetic variation 

for P. falciparum parasites collected more than 1 year apart.  

The findings in this study have several implications regarding the outcomes of malaria 

control programmes. As shown in chapters two and three, P. falciparum parasites mix 

to high degrees within Kilifi county, thus targeting control interventions to transmission 

hotspots within the region is likely to lead to a reduction in transmission in un-targeted, 

surrounding areas. Unfortunately, as noted in those other studies as well, the high 

mixing of parasites within the study site means that there is a high chance of 

importation of infection from untargeted to targeted regions. The analysis of temporal 

variations in genetic diversity over a 20-year period shows that gene flow between and 

among parasites occurs all the time in this parasite population, and is not due to 

historical demographic events that occurred decades or centuries earlier. This further 
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supports our conclusion of a well-mixed parasite population and is supported by our 

previous analysis of parasite pairs from the same site, which showed that parasites 

collected from nearby homesteads had fewer SNP differences between them than 

parasite pairs that were further apart, although this distance gradient was attenuated over 

a month and was gone within a year.  

This study had some limitations. First, some samples lacked exact geospatial 

(homestead) positioning data and their geographical locations had to be aggregated at a 

location or sub-location level. This may have led to fine-scale patterns of genetic 

variation over distance being missed. However, we used imputed location data in the 

analysis reported in chapter two and we were able to identify genetic variation and 

population structure at fine-scales (Omedo et al., 2017a). A similar data imputation 

technique was used in this study, thus increasing our confidence in being able to pick up 

the fine scale spatial patterns of genetic variation. Second, only a small number of 

samples (between 34 – 59) were sequenced in each year, thus limiting our ability to 

detect genetic changes and selection between parasites in a year-by-year analysis. 

Additional sequences are needed from each of the years analysed in order to provide a 

complete picture of temporal genetic variation in this parasite population. Third, the 

analyses were carried out on two genes which are expressed on the surface of the 

merozoite and are under host immune pressure. This selection pressure may have 

influenced the spatio-temporal pattern of genetic variation observed. Inclusion of a 

neutral gene in the analysis to determine whether the same patterns of parasite mixing 

and changes in genetic variation are observed in the neutral gene would provide an 

additional measure of validation. However, in our previous analyses (chapter two), we 

observed similar results when we analysed genome-wide distributed SNPs including a 

large number of SNPs from neutral genes, and when we separately analysed SNPs typed 

in AMA1 and erythrocyte binding antigen 175 (EBA175), showing that similar patterns 



236 
 

of changes in genetic variation are observed regardless of whether “neutral” or immune 

system-selected genes are analysed. 

In conclusion, I have used sequence data derived from genes encoding two important 

antigens to show that there was a large repertoire of genetic diversity among parasites 

circulating in Kilifi county between 1995 and 2014. I have also shown that there is a 

high level of meiotic recombination in the two genes based on the high number of 

recombination events and rapidly declining LD observed among the sequences. A high 

degree of parasite mixing was observed within the study area, with little or no clusters 

of parasite genotypes in time and space, further supporting the previous observation of 

no geographical barriers to parasite movement within this study site (Omedo et al., 

2017a). Additionally, similar patterns of temporal and spatial genetic variation of P. 

falciparum parasites were identified using pairwise SNP differences and IBS data, 

meaning that either metric can be used to study population genetics of P. falciparum 

parasites and further showing that there was no ascertainment bias in the selection of the 

subset of genome-wide distributed SNPs that were typed in chapters two and three. 

Time’s effect of attenuating genetic variation with distance shows that parasites mix 

rapidly within the study site, with little genetic variation between samples that are 

separated by more than one year. These results support our conclusions from the studies 

in chapters two and three that targeted control is likely to have an impact in reducing 

transmission in the surrounding community.  
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Chapter 5 Concluding Remarks 
 

This thesis focused on analysing the spatial and temporal genetic variation in P. 

falciparum parasites in several sites in two sub-Saharan African countries: Kenya and 

The Gambia, and involved the use of genome-wide distributed SNPs as well as capillary 

sequence data from two antigen-encoding genes: surf4.2 and PfAMA1. The different 

studies described in the various chapters reported in the thesis all fed into an overall aim 

of using parasite genetic data to determine parasite relatedness in time and space. This 

would, in turn, be used to infer the rate and spatial extent of parasite movement and 

mixing within individual study sites. The study was informed by the trends of declining 

malaria incidence reported over the last 15 years in most parts of sub-Saharan Africa 

where the disease is endemic, a phenomenon which has put elimination back on the 

forefront of the malaria research agenda for some of these countries. However, 

increasing decline means that malaria transmission becomes more heterogenous, 

leading to hotspots that often act as reservoirs of infection and fuel transmission to the 

rest of the community. As malaria control efforts enter pre-elimination and elimination 

phases, these hotspots need to be identified and targeted for more effective control to 

get rid of the reservoirs and prevent re-introduction into areas where transmission has 

been interrupted. The attractiveness of hotspot-targeted interventions to national malaria 

control programmes depends on their ease of identification, their stability over time and 

whether they seed transmission to the rest of the community such that eliminating 

malaria in the hotspot leads to malaria elimination in areas surrounding the hotspot. 

This last point was tested using several statistical measures in this thesis.  

Under the first objective, SNP data were used to analyse parasite genetic relatedness in 

time and space as a proxy for parasite movement and mixing within three study sites 

with varying transmission intensities. In all three cases, several lines of investigation led 

to a conclusion of high degrees of mixing among parasites within each study site. First, 
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spatial autocorrelation analyses showed little clustering of parasites into distinct sub- 

populations on large scale geographical levels, although weak clusters of parasite sub-

populations were identified at micro-epidemiological scales of 5km or less. Second, 

analysis of the effect of the interaction of time and space in affecting changes in genetic 

variation between parasite pairs also pointed to rapid mixing of parasites within the 

study sites, with an increase in genetic differences between parasites being observed 

most conspicuously for parasites separated by up to 1 month, and little or no changes in 

genetic variation for parasite pairs separated by longer time intervals, regardless of the 

distance between them. A further analysis of spatial barriers to parasite movement 

showed no geographical barriers to parasite movement, and parasites were free to move 

and mix within individual study sites.  

The implications of these observations to malaria control programmes are that targeting 

interventions to hotspots is likely to lead to a reduction in transmission in the 

surrounding regions. However, these control efforts will need to be sustained until all 

reservoirs are cleared, failure to which would increase the likelihood of re-introduction 

of infection due to the high mixing of parasites, e.g. if another hotspot exists nearby 

which also fuels transmission to the rest of the community. Having achieved malaria 

elimination in a specific area, additional effort will need to be put in place to prevent re-

introduction of malaria infection due to importation fuelled by human migration.  

Under the second objective, genome-wide distributed SNP data were once again used to 

analyse the spatio-temporal parasite genetic relatedness, this time on a sub-national 

scale, using P. falciparum samples collected from primary school children residing 

predominantly in western Kenya. This analysis also showed evidence of a high degree 

of parasite mixing, with little spatial autocorrelation among parasites, no local 

geographical adaptation of parasites to their environment and no evidence of spatial 

barriers to parasite movement within the region. Interestingly, additional analyses 
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showed evidence of directionality in parasite movement for some parasites in the 

east/west and north/south directions. Analysis of human movement in this region, e.g. 

using mobile phone data, is recommended as part of further studies to determine 

whether concordant patterns in the directionality of human movement is observed. Such 

an observation would provide support for the observations made in this study.  

The results reported in the two studies relied on analysis of a small number of SNPs 

which may have limited the power to detect genetic structure among highly similar 

parasites within individual study sites. Future studies that include the analysis of whole 

genome sequence data instead of SNP genotype data are recommended for a more 

detailed understanding of genetic variation, population structure and barriers to and 

directionality in parasite movement at finer geographical scales which may be targeted 

as part of malaria control efforts. Additionally, coupling whole genome sequence data 

with detailed temporal data will be required to determine the rate of parasite movement, 

evidence which would be useful in estimating how long targeted control would need to 

be sustained to achieve and maintain malaria elimination.  

To ensure that the observations made in the two objectives above were accurate and not 

subject to SNP ascertainment bias resulting from the SNP subsets chosen, surf4.2 (exon 

1) and PfAMA1, two highly polymorphic genes, were sequenced using capillary 

electrophoresis. Analyses of these sequences showed high genetic diversity and high 

levels of parasite mixing, with little evidence of clustering in time and space, similar to 

previous results observed using SNP genotype data. Analysis of both SNP and identity 

by state (IBS) data derived from the sequences showed high rates of parasite mixing 

over the 20-year study period, and for both genes, most of the variations in the 

sequences were observed between parasite pairs collected within a few days of each 

other. The fact that the results were similar to those obtained in the previous two 

analyses using SNP genotype data gives us more confidence in the conclusions reached 
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in the previous analyses. The analysis shows high levels of parasite mixing in the study 

area. However, the analyses were carried out on genes that have previously been 

determined to be under immune selection. Future analysis may require the analysis of 

“neutral” genes or microsatellites, to determine whether similar patterns of genetic 

variation over time and distance are observed.  

The data consistently point to a high level of parasite mixing, with a pattern showing 

increasing genetic differences between parasite pairs over distance where the pairs are 

collected within a few weeks of each other, but where distance is uninformative for 

genetic difference once the pairs are collected within several months or more of each 

other. 

With parasites simply showing genetic drift one might expect increasing genetic 

differences over increasing distance without an interaction with time.  I therefore 

propose a different model, where parasites exist in discrete parasite sub-populations, 

with newly acquired parasites multiplying and becoming established within these sub-

populations and then being displaced by incoming parasites. Under this scenario, when 

initially comparing parasites sampled within a short time span, e.g. one week, the 

comparisons would be among parasites in individual sub-populations (A, B, C or D), 

and between parasites in non-mixing sub-populations (A vs B, A vs C, etc) (figure 5.1). 

Due to this non-mixing, there would be a high level of genetic diversity between 

parasites in different sub-populations, with diversity increasing with distance between 

the four sub-populations. However, over time, due to free movement, parasites in 

different populations would interact and exchange genetic material, thus decreasing 

genetic differences between parasites in different sub-populations. However, the 

introduction of new parasite genotypes into an existing population would be expected to 

be transient, with the new genotypes being either rapidly displaced by superinfecting 

strains or suppressed by host immunity, thus we see genetic diversity declining rapidly. 
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In the absence of these local factors acting on the survival of specific parasite 

genotypes, genetic diversity would be expected to increase with distance, without an 

interaction over time. This hypothesis can be tested using a mathematical model that 

incorporates the loss of genotypes from a population e.g. due to superinfections or host 

immunity.  

 

Figure 5.1: Possible representation of parasite movement and mixing explaining 

the pattern of genetic variations observed over time and space.  

A, B, C, and D represent parasite sub-populations within two locations (1 and 2) that are 

initially non-mixing. Over short time spans, differences are computed within a 

population (represented by red block arrows). Blue arrows show comparisons between 

populations.  Over time, parasites from different populations move and mix, thus 

reducing the genetic differences observed between these parasites. Hence when parasite 

pairs are sampled within a short period of time, the regression model of genetic 

difference versus distance is comparing parasite pairs at short distances, e.g. populations 

within location 1 (e.g. within population A) with parasite pairs across locations 1 and 2 

(e.g. populations A and B), thus an effect of distance on genetic differences is seen.  On 

the other hand, where parasite pairs are sampled with a long time interval between 
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them, then the regression model of genetic difference versus distance is comparing 

parasites separated in time within location 1 (e.g. across populations A and C) with 

parasites across locations and time (e.g. across population A vs D), thus an effect of 

distance is no longer seen when the pairs collected are separated in time. 

 

5.1 CONCLUSION 

As malaria transmission declines, targeting control interventions to high incidence areas 

(hotspot) become increasingly important in resource-poor regions where the disease 

predominates. How effective such targeted control measures are depend on the extent of 

parasite mixing within and around the targeted areas. I have used SNP genotype and 

Sanger sequence data to analyse the rate and spatial extent of parasite mixing and have 

shown that there is a high level of parasite mixing in study sites with different 

transmission intensities, with no detectable geographical barriers to parasite movement 

over short distances. The various studies reported in this thesis show that parasites mix 

to high levels within the individual study sites analysed, with no barriers to parasite 

movement and weak clustering of parasite sub-populations over short spatial scales. 

This high level of parasite mixing means that targeting hotspots is likely to lead to a 

reduction in transmission in areas surrounding the hotspot. However, on a cautionary 

note, residual transmission will likely lead to rapid re-infection of the wider community, 

hence the need for sustained control until elimination is achieved and thereafter 

continuous monitoring to prevent parasite re-introduction. 
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Chapter 7 Appendix 
 

Appendix Table 1: SNPs and genes typed in The Gambia, Kilifi and Rachuonyo 

South P. falciparum parasite population. 

gene product Gene symbol Chr No.  

Dehydrofolate reductase DHFR 4 3 

dihydropteroate synthetase  DHPS 8 1 

Erythrocyte Binding Antigen - 165 EBA165 4 1 

Hypothetical protein MAL13P1_147 13 1 

myosin C (MyoC) MAL13P1_148 13 1 

DNA repair protein RAD5, putative (RAD5) MAL13P1_216 13 1 

conserved Plasmodium protein, unknown function  MAL13P1_234 13 1 

step II splicing factor, putative MAL13P1_242 13 1 

guanylyl cyclase beta (GCbeta) MAL13P1_301 13 1 

exonuclease, putative MAL13P1_311 13 1 

mitochondrial ribosomal protein L9 precursor, putative MAL13P1_318 13 1 

DNA repair endonuclease, putative MAL13P1_346 13 1 

Hypothetical protein MAL13P1_380 13 1 

conserved Plasmodium protein, unknown function MAL13P1_39 13 1 

conserved Plasmodium protein, unknown function MAL13P1_88 13 1 

Hypothetical protein MAL7P1_17 7 1 

EMP1-trafficking protein MAL7P1_172 7 3 

Plasmodium exported protein, unknown function MAL7P1_173 7 1 

erythrocyte binding antigen -175 MAL7P1_176 7 52 

Plasmodium exported protein (hyp9), unknown function MAL7P1_177 7 1 

alpha/beta hydrolase, putative (GEXP08) MAL7P1_178 7 4 

DNA mismatch repair protein MSH2, putative MAL7P1_206 7 2 

Chloroquine resistance transporter (CRT) MAL7P1_27 7 1 

Regulator of chloroquine condensation, putative MAL7P1_38 7 1 

zinc finger protein, putative (ERF2) MAL7P1_68 7 1 

Conserved Plasmodium protein, unkown function MAL7P1_97 7 1 

protein phosphatase, putative MAL8P1_109 8 1 

peptidase family C50, putative MAL8P1_113 8 1 

tyrosine--tRNA ligase (TyrRS) MAL8P1_125 8 1 

Hypothetical protein MAL8P1_139 8 1 

E3 ubiquitin-protein ligase, putative MAL8P1_23 8 1 

Hypothetical protein MAL8P1_29 8 1 

small heat shock protein HSP20, putative (HSP20) MAL8P1_78 8 1 

Multidrug resistance Protein 1 MDR1 5 1 

Merozoite surface protein 1 MSP-1 9 1 

Plasmodium exported protein, unknown function PF07_0004 7 1 

Conserved Plasmodium protein, unkown function PF07_0044 7 1 

Hypothetical protein PF07_0053 7 2 

RNA binding protein, putative PF07_0066 7 1 

acyl-CoA synthetase (ACS5) PF07_0129 7 4 

Surface-associated interspersed protein 8.2 (SURFIN 8.2) PF08_0002 8 5 

GDP-mannose 4,6-dehydratase, putative PF08_0077 8 1 

Hypothetical protein PF08_0091 8 1 
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dihydropteroate synthetase (DHPS) PF08_0095 8 1 

inositol polyphosphate kinase, putative (IPK1) PF10_0078 10 1 

protein phosphatase, putative PF10_0124 10 1 

Hypothetical protein PF10_0205 10 1 

Hypothetical protein PF10_0212 10 1 

4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase 
(GcpE) 

PF10_0221 10 1 

Hypothetical protein PF10_0292 10 1 

merozoite surface protein (H101) PF10_0347 10 1 

syntaxin, Qa-SNARE family (SYN13) PF11_0052 11 1 

vacuolar sorting protein 35, putative PF11_0112 11 1 

mitogen-activated protein kinase 2 (MAP2) PF11_0147 11 1 

cysteine proteinase falcipain 3 (FP3) PF11_0162 11 1 

folate transporter 2 (FT2) PF11_0172 11 1 

DNA mismatch repair protein MLH (MLH) PF11_0184 11 1 

Hypothetical protein PF11_0185 11 2 

Hypothetical protein PF11_0342 11 4 

Apical Membrane Antigen 1 PF11_0344 11 9 

conserved Plasmodium protein, unknown function  PF11_0345 11 1 

Hypothetical protein PF11_0347 11 2 

RNA (uracil-5-)methyltransferase, putative PF11_0348 11 2 

Hypothetical protein PF11_0349 11 2 

heat shock protein 70 (Hsp70-3) PF11_0351 11 2 

Conserved protein, unknown function PF11_0353 11 1 

Farnesyltransferase beta subunit, putative PF11_0483 11 1 

Conserved protein, unknown function PF11_0528 11 1 

Hypothetical protein PF13_0018 13 1 

sodium/hydrogen exchanger, Na , H antiporter (NHE) PF13_0019 13 1 

membrane integral peptidase, M50 family, putative PF13_0028 13 1 

Surface-associated interspersed protein 13.1 (SURFIN 
13.1) 

PF13_0075 13 1 

U4/U6.U5 tri-snRNP-associated protein 2, putative 
(USP39) 

PF13_0096 13 1 

Hypothetical protein PF13_0237 13 1 

transcription factor with AP2 domain(s) (ApiAP2) PF13_0267 13 1 

Hypothetical protein PF13_0352 13 1 

mitochondrial import inner membrane translocase 
subunit Tim9, putative (TIM9) 

PF13_0358 13 1 

Hypothetical protein PF14_0045 14 1 

conserved Plasmodium protein, unknown function  PF14_0046 14 1 

conserved Plasmodium protein, unknown function  PF14_0047 14 1 

GTPase-activating protein, putative PF14_0048 14 2 

DNA mismatch repair protein, putative PF14_0051 14 2 

COBW domain-containing protein 1, putative (CBWD1) PF14_0052 14 2 

ribonucleotide reductase small subunit (RNR) PF14_0053 14 1 

Hypothetical protein PF14_0054 14 1 

conserved Plasmodium protein, unknown function  PF14_0093 14 1 

WD repeat-containing protein, putative PF14_0101 14 1 

Hypothetical protein PF14_0152 14 3 

Hypothetical protein PF14_0153 14 2 
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Hypothetical protein PF14_0154 14 1 

liver specific protein 1, putative (LISP1) PF14_0179 14 1 

DNA-directed DNA polymerase, putative PF14_0234 14 1 

ataxin-2 like protein, putative  PF14_0338 14 1 

apicoplast 1-acyl-sn-glycerol-3-phosphate 
acyltransferase, putative (AGPAT) 

PF14_0421 14 1 

histone deacetylase, putative PF14_0690 14 1 

Trailer hitch homolog, putative (CITH) PF14_0717 14 1 

Plasmodium exported protein (PHISTb), unkown 
function 

PF14_0746 14 1 

surface-associated interspersed protein 14.1 (SURFIN 
14.1) 

PF14_0747 14 1 

calcium-transporting ATPase (ATP6) PFA0310c 1 1 

conserved Plasmodium protein, unknown function  PFA0410w 1 1 

conserved Plasmodium protein, unknown function 
(GEXP19) 

PFA0550w 1 1 

multidrug resistance-associated protein 1  PFA0590w 1 1 

surface-associated interspersed protein 1.1 (SURFIN 1.1) PFA0625w 1 1 

knob-associated histidine-rich protein (KAHRP) PFB0100c 2 1 

DNA repair endonuclease, putative PFB0265c 2 1 

Merozoite surface protein 5 PFB0305c-a 2 1 

ABC transporter B family member 4, putative (ABCB4) PFC0125w 3 1 

DNA-directed RNA polymerase subunit I, putative PFC0155c 3 1 

conserved Plasmodium protein, unknown function  PFC0325c 3 1 

Hypothetical protein PFC0345w 3 1 

T-complex protein 1 subunit (CCT7) PFC0350c 3 1 

phosphoglycerate mutase, putative PFC0430w 3 1 

formate-nitrite transporter, putative PFC0725c 3 1 

conserved Plasmodium protein, unknown function PFC0790w 3 1 

surface-associated interspersed protein 4.1 (SURFIN 4.1) PFD0100c 4 4 

Hypothetical protein PFD0320c 4 1 

Hypothetical protein PFD0340c 4 1 

DEAD box ATP-dependent RNA helicase, putative PFD0565c 4 1 

DNA polymerase alpha PFD0590c 4 2 

Phosphoglucomutase-2 (PGM2) PFD0660w 4 1 

apicoplast ribosomal protein L10 precursor, putative PFD0675w 4 1 

Conserved protein, unkown function PFD0705c 4 1 

conserved Plasmodium protein, unknown function  PFD0735c 4 1 

Hypothetical protein PFD0860w 4 1 

reticulocyte binding protein homologue 5 (RH5) PFD1145C 4 3 

Surface-associated interspersed protein 4.2 (SURFIN 4.2) PFD1160w 4 4 

Hypothetical protein PFE0230w 5 1 

guanidine nucleotide exchange factor (RCC1) PFE0420c 5 1 

Pre-mRNA-processing ATP-dependent RNA helicase 
prp5, putative (PRP5) 

PFE0430w 5 1 

RNA pseudouridylate synthase, putative PFE0570w 5 1 

cation-transporting ATPase 1 (ATPase1) PFE0805w 5 2 

ATP-dependent RNA helicase DDX23, putative (DDX23) PFE0925c 5 1 

Hypothetical protein PFE1015c 5 1 

Hypothetical protein PFE1045c 5 1 
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Hypothetical protein PFE1095w 5 1 

ubiquitin carboxyl-terminal hydrolase, putative PFE1355c 5 1 

Conserved Plasmodium protein, unkown function PFE1520c 5 1 

ATP-dependent RNA helicase, putative  PFF0100w 6 1 

conserved Plasmodium protein, unknown function  PFF0175c 6 1 

phenylalanyl-tRNA synthetase subunit, putative  PFF0180w 6 1 

DNA helicase, putative PFF0225w 6 1 

nucleoside diphosphate kinase, putative PFF0275c 6 1 

Conserved Plasmodium protein, unkown function PFF0325c 6 1 

translation initiation factor IF-2, putative PFF0345w 6 1 

Hypothetical protein PFF0480w 6 1 

6-cysteine protein (P12) PFF0615c 6 1 

Hypothetical protein PFF0660w 6 1 

Hypothetical protein PFF0695w 6 1 

Hypothetical protein PFF0990c 6 1 

SNF2 helicase, putative (ISWI) PFF1185w 6 1 

DNA polymerase 1, putative PFF1225c 6 1 

Plasmodium exported protein, unknown function PFI0086w 9 1 

serine/threonine protein kinase, FIKK family (FIKK9.3)  PFI0105c 9 1 

DEAD/DEAH box helicase, putative PFI0165c 9 1 

Copper-transporting ATPase (CuTP) PFI0240c 9 1 

mitochondrial carrier protein, putative PFI0255c 9 1 

Conserved Plasmodium protein, unkown function PFI0275w 9 1 

subpellicular microtubule protein 1, putative (SPM1) PFI0460w 9 1 

cysteine repeat modular protein 1 (CRMP1) PFI0550w 9 1 

Hypothetical protein PFI0690c 9 1 

Hypothetical protein PFI1010w 9 1 

para-aminobenzoic acid synthetase (pBAS) PFI1100w 9 1 

Conserved Plasmodium protein, unkown function PFI1120c 9 1 

Acyl-CoA synthetase (ACS7) PFL0035c 12 1 

IMP-specific 5'-nucleotidase, putative,haloacid 
dehalogenase hydrolase, putative 

PFL0305c 12 1 

cysteine repeat modular protein 3 (CRMP3) PFL0410w 12 1 

Arginine-tRNA ligase, putative PFL0900c 12 1 

Conserved Plasmodium protein, unkown function PFL1025c 12 1 

isoleucine--tRNA ligase, putative PFL1210w 12 1 

RAP protein, putative PFL1280w 12 1 

Conserved Plasmodium protein, unkown function PFL1305c 12 1 

Cyclin PFL1330c 12 1 

Hypothetical protein PFL1430c 12 1 

Myosin D (MyoD) PFL1435c 12 1 

mitochondrial ribosomal protein L23 precursor, putative PFL1895w 12 1 

3-hydroxyisobutyryl-coenzyme A hydrolase, putative PFL1940w 12 1 

Hbeta58/Vps26 protein homolog, putative PFL2415w 12 1 

The No. column represents the number of SNPs typed in each gene. 
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Appendix Table 2: genes and SNPs analysed in P. falciparum samples collected in 

primary schools in western Kenya. 

gene product gene symbol chr No. 

Dehydrofolate reductase DHFR 4 2 

Erythrocyte Binding Antigen - 165 EBA165 4 1 

DNA repair protein RAD5, putative (RAD5) MAL13P1_216 13 1 

step II splicing factor, putative MAL13P1_242 13 1 

guanylyl cyclase beta (GCbeta) MAL13P1_301 13 1 

DNA repair endonuclease, putative MAL13P1_346 13 1 

Hypothetical protein MAL7P1_17 7 1 

erythrocyte binding antigen -175  MAL7P1_176 7 27 

Plasmodium exported protein (hyp9), unknown 
function 

MAL7P1_177 7 1 

alpha/beta hydrolase, putative (GEXP08) MAL7P1_178 7 1 

Regulator of chloroquine condensation, putative MAL7P1_38 7 1 

protein phosphatase, putative MAL8P1_109 8 1 

small heat shock protein HSP20, putative (HSP20) MAL8P1_78 8 1 

Multidrug resistance Protein 1 MDR1 5 1 

Conserved Plasmodium protein, unkown function PF07_0044 7 1 

Hypothetical protein PF07_0053 7 1 

RNA binding protein, putative PF07_0066 7 1 

acyl-CoA synthetase (ACS5) PF07_0129 7 3 

Surface-associated interspersed protein 8.2 (SURFIN 
8.2) 

PF08_0002 8 5 

inositol polyphosphate kinase, putative (IPK1) PF10_0078 10 1 

syntaxin, Qa-SNARE family (SYN13) PF11_0052 11 1 

mitogen-activated protein kinase 2 (MAP2) PF11_0147 11 1 

cysteine proteinase falcipain 3 (FP3) PF11_0162 11 1 

Apical Membrane Antigen 1 PF11_0344 11 3 

Hypothetical protein PF11_0347 11 2 

Hypothetical protein PF11_0349 11 1 

heat shock protein 70 (Hsp70-3) PF11_0351 11 1 

Farnesyltransferase beta subunit, putative PF11_0483 11 1 

sodium/hydrogen exchanger, Na , H antiporter (NHE) PF13_0019 13 1 

Surface-associated interspersed protein 13.1 (SURFIN 
13.1) 

PF13_0075 13 1 

conserved Plasmodium protein, unknown function  PF14_0093 14 1 

WD repeat-containing protein, putative PF14_0101 14 1 

Hypothetical protein PF14_0153 14 2 

liver specific protein 1, putative (LISP1) PF14_0179 14 1 

Plasmodium exported protein (PHISTb), unkown 
function 

PF14_0746 14 1 

surface-associated interspersed protein 14.1 (SURFIN 
14.1) 

PF14_0747 14 1 

conserved Plasmodium protein, unknown function  PFA0410w 1 1 

surface-associated interspersed protein 1.1 (SURFIN 
1.1) 

PFA0625w 1 1 

DNA repair endonuclease, putative PFB0265c 2 1 

Merozoite surface protein 5 PFB0305c-a 2 1 

ABC transporter B family member 4, putative (ABCB4) PFC0125w 3 1 
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conserved Plasmodium protein, unknown function  PFC0325c 3 1 

T-complex protein 1 subunit (CCT7) PFC0350c 3 1 

surface-associated interspersed protein 4.1 (SURFIN 
4.1) 

PFD0100c 4 4 

DEAD box ATP-dependent RNA helicase, putative PFD0565c 4 1 

DNA polymerase alpha PFD0590c 4 1 

Phosphoglucomutase-2 (PGM2) PFD0660w 4 1 

Conserved protein, unkown function PFD0705c 4 1 

conserved Plasmodium protein, unknown function  PFD0735c 4 1 

Hypothetical protein PFD0860w 4 1 

Surface-associated interspersed protein 4.2 (SURFIN 
4.2) 

PFD1160w 4 4 

Pre-mRNA-processing ATP-dependent RNA helicase 
prp5, putative (PRP5) 

PFE0430w 5 1 

cation-transporting ATPase 1 (ATPase1) PFE0805w 5 2 

Hypothetical protein PFE1015c 5 1 

ubiquitin carboxyl-terminal hydrolase, putative PFE1355c 5 1 

conserved Plasmodium protein, unknown function  PFF0175c 6 1 

Hypothetical protein PFF0695w 6 1 

Hypothetical protein PFF0990c 6 1 

DNA polymerase 1, putative PFF1225c 6 1 

Copper-transporting ATPase (CuTP) PFI0240c 9 1 

mitochondrial carrier protein, putative PFI0255c 9 1 

subpellicular microtubule protein 1, putative (SPM1) PFI0460w 9 1 

Hypothetical protein PFI1010w 9 1 

Acyl-CoA synthetase (ACS7) PFL0035c 12 1 

cysteine repeat modular protein 3 (CRMP3) PFL0410w 12 1 

isoleucine--tRNA ligase, putative PFL1210w 12 1 

Myosin D (MyoD) PFL1435c 12 1 

The No. column represents the number of SNPs typed in each gene. 

 

 


