
A multi-agent approach to adaptive learning using a
structured ontology classification system

EHIMWENMA, Kennedy Efosa

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/18747/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

EHIMWENMA, Kennedy Efosa (2017). A multi-agent approach to adaptive learning
using a structured ontology classification system. Doctoral, Sheffield Hallam
University.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A MULTI -AGENT APPROACH TO ADAPTIVE

LEARNING USING A STRUCTURED ONTOLOGY

CLASSIFICATION SYSTEM

EHIMWENMA, K. E. Ph.D. 2017

ii

A Multi-Agent Approach to Adaptive Learning using a

Structured Ontology Classification System

A Thesis submitted in Fulfilment for the Requirements

of Degree of Doctor of Philosophy

Sheffield Hallam University

United Kingdom

December 2017

Kennedy Efosa Ehimwenma

iii

Abstract

Diagnostic assessment is an important part of human learning. Tutors in face-to-face
classroom environment evaluate students’ prior knowledge before the start of a
relatively new learning. In that perspective, this thesis investigates the development of
an-agent based Pre-assessment System in the identification of knowledge gaps in
students’ learning between a student’s desired concept and some prerequisites
concepts. The aim is to test a student's prior skill before the start of the student’s higher
and desired concept of learning. This thesis thus presents the use of Prometheus agent
based software engineering methodology for the Pre-assessment System requirement
specification and design. Knowledge representation using a description logic TBox
and ABox for defining a domain of learning. As well as the formal modelling of
classification rules using rule-based approach as a reasoning process for accurate
categorisation of students’ skills and appropriate recommendation of learning
materials. On implementation, an agent oriented programming language whose facts
and rule structure are prolog-like was employed in the development of agents’ actions
and behaviour. Evaluation results showed that students have skill gaps in their learning
while they desire to study a higher-level concept at a given time.

iv

Dedication

To my lovely wife and children

v

Acknowledgment

The journey of a PhD is from Point A to B. Whereas you know point A, you can never guess

the Point B nor how to get there. This is because the route to Point B is multifaceted: There is

no absolute route. To have been able to reach the Point B, my deep and profound gratitude

goes to God Almighty for the strength and wisdom. This wouldn’t have been possible without

my supervisory team—Dr Paul Crowther (Director of Studies) and Dr Martin Beer

(Supervisor). I thank you for your immense support, guidance, collaboration, contributions

and professionalism in seeing to the successful and logical completion of this research study.

Dear sirs, you are not only my mentors, but my inspiration and models to emulate. Also worthy

of my appreciation is Professor A. U. Osunde (University of Benin) and Professor Maggie

McPherson (University of Leeds) who gave me faith and recommended me for this study. I

will not fail to mention Professor Jomi Hubner, Department of Automation and Systems

Engineering, Federal University of Santa Catarina, Brazil for his technical advice on Jason

programming syntax. My sincere appreciation also goes to Mr Caleb Adedigba for his

encouragement and psychological boost throughout the period of this work. To my lovely wife

Esohe, I owe huge indebtedness for her show of understanding, finance and moral support for

the arrival of this moment. Also not left out are my beloved children—Destiny Osawese,

Wellignton Iyosayi and Praise Isiuwa—who lost most of their playtime with ‘daddy’ to the

study-time of this research—that “daddy is always studying, when are you going to take a

break?” Kids I say to you; you’ve got me back now. Lastly, my recognition goes to my mother

Mrs Mary Ehimwenma for her relentless prayers and others too numerous to mention that

encouraged the successful completion of this research degree.

vi

Table of Contents

Abstract ... iii

Dedication ... iv

Acknowledgment .. v

Table of Contents .. vi

List of Figures ... xiii

List of Tables ... xviii

Abbreviations .. xix

Glossary ... xxi

Chapter 1 .. 1

Introduction and Pre-Learning Diagnosis ... 1

1. Introduction .. 1

1.1 Motivation for Study .. 1

1.2 Research Question .. 2

1.3 Purpose of The Research .. 2

1.4 Aim of The Study ... 2

1.5 Objectives of The Study ... 2

1.6 Defining The Pre-assessment System .. 3

1.7 What is Learning? .. 3

1.7.1 Classification of Students’ Learning.. 4

1.7.2 Human Learning .. 4

1.8 Need for Pre-assessment in Learning ... 6

1.9 Contribution to Knowledge .. 8

1.10 Overview of Thesis .. 9

1.11 Publications from this Work ... 9

Chapter 2 .. 11

Knowledge Representation and Intelligent Tutoring Systems............................. 11

2. Introduction .. 11

2.1 Knowledge Representation and Ontology .. 11

2.2 Description Logic and Ontology Languages .. 12

2.2.1 SHOE: Simple HTML Ontology Extension .. 12

2.2.2 DAML-ONT: DARPA Agent Markup Language-ONTology 12

vii

2.2.3 OIL: Ontology Inference Layer ... 13

2.2.4 DAML+OIL ... 13

2.2.5 RDF: Resource Description Framework.. 14

2.2.6 RDFS : Resource Description Framework Schema 15

2.2.7 OWL .. 15

2.3 TBox Terminology ... 16

2.4 ABox World Description .. 19

2.5 Answer Sets Prolog .. 19

2.6 Classification .. 22

2.7 Condition-Action Rule .. 22

2.8 Intelligent Tutoring and Learning Systems .. 23

2.9 SQL Assessment and Learning System .. 24

2.10 Chunking: An Educational Theory of Learning ... 25

2.11 Approaches to Agent Based Learning and Formative Assessment Systems . 26

2.12 Recommender Systems in Education ... 29

2.13 Student Modelling .. 30

2.13.1 Traditional Three-Model.. 31

2.13.2 Classical Four-Model ... 31

2.13.3 New-Generation Architectures .. 32

2.14 Summary of Chapter... 32

Chapter 3 .. 35

Agents, Agent Oriented Methodologies and Interaction 35

3. Introduction .. 35

3.1 Agents ... 35

3.2 Properties of Agent ... 37

3.3 Agent Architectures .. 37

3.3.1 Logic-based Architecture ... 38

3.3.2 Reactive Architecture .. 38

3.3.3 Hybrid Architecture ... 38

3.3.4 BDI Architecture.. 39

3.4 Agent Oriented Methodologies .. 40

3.4.1 Gaia .. 40

viii

3.4.2 Tropos .. 42

3.4.3 Prometheus... 43

3.5 Comparison of AOSE Methodology .. 46

3.6 The Speech Acts Theory .. 47

3.6.1 John Austin: 1962 .. 47

3.6.2 John Searle: 1969 ... 49

3.7 Pre, Post & Completion Conditions ... 50

3.8 Agent Communication Languages ... 50

3.9 Agent Oriented Programming languages and Platforms 51

3.9.1 Agent0 .. 52

3.9.2 PLACA .. 52

3.9.3 GOAL .. 52

3.9.4 Soar .. 52

3.9.5 JACK ... 53

3.9.6 Jadex .. 53

3.9.7 Jade .. 54

3.9.8 AgentSpeak .. 54

3. 9.9 Jason Agent Language .. 54

3.10 Agent Interaction in Jason .. 56

3.10.1 Beliefs .. 57

3.10.2 Annotations .. 57

3.10.3 Goals .. 58

3.10.4 Mental Notes .. 59

3.10.5 Internal Actions.. 59

3.10.6 Plan .. 60

3.10.7 Why Jason Agent Language? ... 61

3.11 Agent Environment Programming ... 62

3.11.1 Artifacts and Human Interaction.. 62

3.11.2 The CArtAgO Artifact ... 63

3.12 Summary of Chapter... 63

Chapter 4 .. 65

Methodology: Agent Oriented Analysis & Design and Classification Method .. 65

ix

4. Introduction ... 65

4.1 Prometheus Agent Oriented Software Engineering ... 65

4.1.1 Notation Symbols of PDT.. 66

4.2 System Specification .. 67

4.2.1 Scenario Overview ... 70

4.2.2 System Goal Diagram .. 70

4.2.3 Set of Functionalities ... 71

4.3 Architectural Design ... 72

4.3.1 Analysis Overview ... 72

4.3.2 Agent Role Ordering .. 73

4.3.3 System Overview ... 74

4.4 Detailed Design .. 77

4.4.1 Agent Overview ... 77

4.4.2 Roles and Capability Descriptors for Agents .. 81

4.5 The Student Model ... 83

4.6 The Pre-assessment Mechanism ... 86

4.7 The Learner Component ... 87

4.8 Pre-assessment By Immediate Next Prerequisite Class 89

4.8.1 Logic Based Classification Specification for Pre-assessment in a Regular

Ontology Model .. 89

4.9 Pre-assessment By Multiple Prerequisite Classes .. 93

4.9.1 Logic Based Classification Specification for Pre-assessment in a Non-

Regular Ontology Model .. 93

4.9.2 Estimating The Number of Rules by Prerequisites �࢏, ,࢐� and Leafnodes ࢐ ࢑

Notation in a Tree ... 99

4.10 Summary of Chapter... 102

Chapter 5 .. 103

A SQL Ontology and The Pre-assessment System .. 103

5. Introduction ... 103

5.1 Contextual Learning Structure ... 103

5.2 Description Logic for SQL Ontology ... 104

5.2.1 TBox Description for a SQL Ontology.. 105

x

5.2.2 SQL Individuals in Description Language .. 107

5.2.3 ABox Assertion for a SQL Ontology .. 107

5.3 Digraph analysis of the Description Logic SQL Ontology Model 108

5.3.1 A Regular SQL Ontology .. 109

5.3.2 Non-Regular SQL Ontology Model .. 109

5.4 Navigation of Ontology Nodes ... 112

5.5 Ontology Building Tools: Jena API and Protégé Ontology Editor 115

5.5.1 Constructing ontologies in Jena API ... 115

5.5.2 Protégé Ontology Tool... 116

5.6 The Pre-assessment System .. 119

5.6.1 CArtAgO + Jason .. 120

5.7 The Pre-assessment System Environment .. 121

5.8 Programming CArtAgO for Open-Ended Percepts .. 122

5.9 The Agents of the Pre-assessment System ... 123

5.9.1 Agent agInterface and Percept Observation .. 123

5.9.2 Agent agModelling and Classification .. 125

5.9.3 Agent agModel and Student History ... 130

5.9.4 The Agent agSupport and Pre-assessment... 131

5.9.5 Agent agMaterial and Ontology .. 133

5.10 Summary of Chapter... 135

Chapter 6 .. 137

System Evaluation, Results and Analysis of Data ... 137

6. Introduction .. 137

6.1 Sampling Technique ... 138

6.2 Experimental Setup .. 139

6.2.1 Recruitment for Evaluation Exercise ... 139

6.2.2 Student Consent and Lesson Plan .. 140

6.3 Pre-assessment Skills Data Collection and Analysis...................................... 141

6.4 Post Evaluation and Experiential Feedback Data ... 146

6.5 Summary of Chapter .. 150

Chapter 7 .. 151

Discussions .. 151

xi

7. Introduction .. 151

7.1 Dealing with The Research Question ... 151

7.1.1 How System Identified Gaps and Material Recommendation................. 152

7.1.2 Initial System Development Stages ... 153

7.2 Reactive System ... 154

7.2.1 Agent Long term and Short term memory ... 155

7.3 Agents Communication in The Pre-assessment System 155

7.4 Agent agInterface: The Interface Agent ... 159

7.4.1 Percept Observation ... 159

7.5 Agent agSupport: The Pre-assessment Agent .. 161

7.5.1 The Agent Pre-assessment Process .. 162

7.6 Strategies of the Pre-assessment System Development 167

7.6.1 Pre-assessment By Immediate Prerequisite Class Program Development

 .. 167

7.6.2 Pre-assessment By Multiple Prerequisite Classes Program Development

 .. 169

7.6.3 Open_Ended Answers Assessment .. 179

7.7 Agent agModelling: The Task of Classification .. 179

7.7.1 Generating Parameter Combination for Classification 183

7.8 Agent agModel: The Store Agent .. 185

7.9 Agent agMaterial .. 185

7.10 The Pre-assessment Sessions .. 187

7.11 Analysis of SQL Query Statements at Pre-assessment Sessions 187

7.11.1 Case Study I: The UPDATE Desired_Concept 187

7.11.2 Case Study II: The JOIN Desired_Concept ... 188

7.12 Findings from The Pre-assessment Exercise .. 191

7.13 Implications for Teaching... 191

7.14 Relevance of Chunking in the Pre-assessment System 196

7.15 System’s Post-Evaluation Survey .. 197

7.15.1 Student Course Distribution Data .. 197

7.15.2 User Perception of The Pre-assessment System and Sessions 197

7.15.3 Open-Ended User Feedback .. 198

xii

7.16 Summary of Chapter... 201

Chapter 8 .. 203

Conclusions and Future Work .. 203

8.1 Research Development Approach .. 203

8.2 Contributions to Knowledge .. 206

8. 3 Limitation of The Study .. 207

8.3.1 Volunteer Population Sample of the Study.. 207

8.3.2 System Constraint with Jason AgentSpeak Language 207

8.3.3 Alternative Languages of Implementation .. 208

8.4 Further Work .. 208

8.4.1 Recommendation ... 210

References ... 211

Appendix A ... 222

A.1 Pre-assessment Data .. 222

A.2 The MySQL Tennis_Database Tables .. 231

Appendix B ... 233

B.1 Students’ Feedback Questionnaire .. 233

B.2 Consent Form .. 237

B.3 Research Ethics Approval .. 238

B.4 Certificate of Volunteer Participants in the Survey 239

xiii

 List of Figures

Fig.1. 1: Transition State Diagram of Learning and Unlearning Processes. 5

Fig.1. 2: Overview of The Pre-assessment System (adapted from Ehimwenma, Beer &

Crowther 2015a)... 8

Fig.2. 1: Graph for RDF/XML Example: RDF resources are represented in ovals and

literals in rectangles.. 14

Fig.2. 2: Comparison of RDF, RDFS and OWL languages (based on Horrocks, Patel-

Schneider & Van Harmelen, 2003). ... 17

Fig.2. 3: OWL constructors and DL notation (Baader, Horrocks & Sattler, 2003). C is

a class, P is a role (property), n is the number of cardinality, r is the relation. 18

Fig.2. 4: A TBox hierarchy about family relationships. .. 18

Fig.2. 5: System prediction and motivation to achieve higher performance. 26

Fig.3. 1: The Structure of a Simple Reflex Agent (Russell & Norvig, 2010). 36

Fig.3. 2: Designing Intelligent Agents: An example (Monett, 2014). 37

Fig.3. 3: Horizontal Architecture ... 39

Fig.3. 4: Vertical architecture: two pass... 39

Fig.3. 5: Vertical architecture: one pass ... 39

Fig.3. 6: The Gaia model (Wooldridge, Jennings & Kinny, 2000) 41

Fig.3. 7: The phases of the Prometheus methodology (Padgham & Winikoff, 2004)

 .. 44

Fig.3. 8: Major models of Prometheus (Padgham and Winikoff, 2002) 45

Fig.3. 9: Jack code generation screen shot. The code generated are in Java,which is not

the language chosen for the execution of one of the objectives of this research. 46

Fig.3. 10: Comparative summary of Gaia, Tropos & Prometheus. 47

Fig.3. 11: Components of Agent Communication Language (Dogac & Cingil, 2003)

 .. 51

Fig.4. 1: PDT notation symbol. .. 67

Fig.4. 2: System scenario view. ... 70

Fig.4. 3: System goals specification for the pre-assessment system. 71

file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633795
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633796
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633796
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20FinalDraft.docx%23_Toc502923419
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20FinalDraft.docx%23_Toc502923420
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20FinalDraft.docx%23_Toc502923421

xiv

Fig.4. 4: System role overview showing structured Functionalities. 72

Fig.4. 5: Analysis overview from system scenarios. .. 73

Fig.4. 6: Agent Role Grouping. .. 73

Fig.4. 7: System overview diagram. .. 74

Fig.4. 8: FIPA-compliant AUML command protocol. .. 75

Fig.4. 9: FIPA Compliant AUML protocol diagram analysis for inter-agent interaction.

It shows the dynamic interaction of agent message passing via performatives. 76

Fig.4. 10: AUML Protocol Interaction table. ... 77

Fig.4. 11: Detailed overview of agent agInterface. ... 78

Fig. 4. 12: Agent agSupport receiving the desired_Concept percept and retrieving

quizzes. ... 78

Fig.4. 13: Agent agSupport Overview: Using answer percept to make comparison.

Taking pass or a fail decision, and communicating all activities and decision reached

to other agents of the MAS by its agent plans. This agent also date and timestamp

learning activities. .. 79

Fig.4. 14: The agent agModelling: The classifier agent Overview 79

Fig.4. 15: Agent agMaterial: The learning material agent Overview........................ 80

Fig. 4. 16: Agent agModel (student) Overview ... 80

Fig.4. 17: Capability descriptor. ... 81

Fig.4. 18: Expanded summary of capability descriptor: percepts, triggering events,

goals, plans and data used by agents in the system. ... 82

Fig.4. 19: The Pre-assessment Mechanism (Ehimwenma, Beer & Crowther (2014b)

 .. 87

Fig.4. 20: Strategic diagram of the Pre-assessment by immediate next prerequisite

class. Where C represents the desired amongst the classes of concept and B the

immediate prerequisite class to C. ... 89

Fig.4. 21: A digraph of a regular ontology tree. .. 90

Fig.4. 22: A digraph of non-regular ontology tree. A model where all the prerequisite

classes under a given parent class, in this case C1, are being considered for pre-

assessment. ... 94

Fig.4. 23: A knowledge graph of multiple horizontal and vertical traversal 99

file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633904
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633919

xv

Fig.5. 1: Hierarchy of six SQL Modules Learning Structure (extended version of

Ehimwenma, Beer & Crowther 2014b). .. 104

Fig.5. 2: TBox Description of an SQL Domain. .. 105

Fig.5. 3: A regular ontology of two leaf nodes per parent class node...................... 109

Fig.5. 4: Linear ontological model from the TBox. SELECT is reflexive. 110

Fig.5. 5: A non-linear hierarchy of the SQL learning structure. But some parent class

nodes are not connected in sequence according to Fig. 5.1. 111

Fig.5. 6: A variant ontology model of the TBox description and its navigation. But not

in the structured sequence presented in Fig. 5.1 .. 112

Fig.5. 7: Illustrating navigation strategy for agent !achievement goal. 113

Fig.5. 8: Illustrating navigation strategy based on directed links between class nodes.

Yet contrasts the structured sequence in Fig. 5.1. .. 113

Fig.5. 9: The insert class example with its leaf node and literal (or data) nodes. 114

Fig.5. 10: Jena ontology rendered in Turtle syntax. ... 116

Fig.5. 11: A cross-section of the concepts: DELETE, INSERT and SELECT in

structured of Figure 5.1. ... 116

Fig.5. 12: Protégé OWL ontology using Turtle syntax from Jena API.................... 117

Fig.5. 13: A Regular SQL ontology ... 118

Fig.5. 14: Snapshot of Agents creation and configuration in the Pre_asssessment MAS

Project in Jason. ... 120

Fig.5. 15: Facility of the Pre-assessment System Agent (Based on Monette, 2014) 121

Fig.5. 16: A Slice of the Java Code that gets Percept through human interaction in

CArtAgO. ... 123

Fig.5. 17: Snapshot of the PreassessmentGUI CArtAgO Artifact 124

Fig.5. 18: A slice of Jason plans that creates observable artifact and percept

communication ... 124

Fig.5. 19: CArtAgO artifact for Agent Percept and User Interaction. With overlapping

MAS output or display console. The output console prompts the user for inputs when

the MAS is started (Ehimwenma, Beer & Crowther, 2015a). 125

Fig.5. 20: Agent plans based on the derived FOL syntax specified in Chapter 4 for

classification of student knowledge on the DELETE desired concept. 127

file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633874
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633875
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633875
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633877
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633883
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633883
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20MinorCorrection.docx%23_Toc503633884

xvi

Fig.5. 21: Inputs, communication and classification in the multiagent Pre-assessment

System. Inputs are serial, as students reaction to the System. 129

Fig.5. 22: One vs. All Multiple Classification (Ehimwenma, Beer & Crowther, 2016a)

 .. 129

Fig.5. 23: A snapshot of the agent agModel (student) Mind Inspection of updated

beliefs in Persistent beliefs after some pre-assessments by the MAS. 130

Fig.5. 24: Agent achievement goal for retrieving and displaying the deleteSelect

quiz from BB. ... 132

Fig.5. 25: Plan snapshot for a passed answer assessment, user feedback,

communication and next quiz display use of achievement goal by the agent agSupport

 .. 133

Fig.5. 26: Adoption of a hasKB predicate relation, and content query from BB with

?hasContent test goal in a plan. .. 134

Fig.7. 1: List of desired SQL concepts contained in a plan context and a tell

Performative as means of Communication. ... 160

Fig.7. 2: Plan for Perceiving the SQL Answer Queries from the student environment.

 .. 161

Fig.7. 3: Adoption of the DELETE desired Concept 163

Fig.7. 4: Plan for a Passed Pre-assessment of InsertSelect 164

Fig.7. 5: Plan for a Failed Pre-assessment of InsertSelect, and giving agent the

subgoal !quizInsertValue(InsertValueQuiz) .. 165

Fig.7. 6: Adoption of +!quisInsertValue achievement goal, display and

communication. .. 166

Fig.7. 7: Initialising an iteration belief. .. 168

Fig.7. 8: Testing and updating the iteration in a plan body...................................... 168

Fig.7. 9: Classified Decision Tree Flow for DELETE Pre-assessment 169

Fig.7. 10: A non-regular ontology tree... 173

Fig.7. 11: Semantic relations of a total of 4 prerequisite leafnode of two prerequisites

parent classes under Join. .. 174

Fig.7. 12: Semantic relations of a total of 4 prerequisites leafnode for pre-assessment

under the Insert. .. 175

xvii

Fig.7. 13: Semantic relations of a 3 prerequisite leafnodes under the Union

desired_Concept. .. 176

Fig.7. 14: Pseudo-algorithm of the pre-assessment process that depends on the number

of leafnodes N considered under a desired_Concept ... 178

Fig.7. 15: Initialisation of iterations as beliefs in agent agSupport 178

Fig.7. 16: Two multiple prerequisite classes of 4 leafnodes classification. Agent

agModelling sending hasPrerequisite predicate message. 181

Fig.7. 17: Two multiple prerequisite classes of 4 leafnodes classification. Agent

agModelling sending hasKB predicate message. ... 182

Fig.7. 18: Classification rules generation algorithm .. 183

Fig.7. 19: Classification rules formation process ... 184

Fig.7. 20: Agent agMaterial use of test goal ?hasContent before the retrieval URL

materials for students 186

Fig.7. 21: Percentage of number of passed vs. failed leafnode concepts................. 194

Fig.7. 22: Percentage of students’ abilities. ... 194

Fig.7. 23: Time-Independent Variant Student Performance Regression Analysis based

on the data in TABLE 7.6. ... 195

file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20FinalDraft.docx%23_Toc502520566
file:///C:/Users/lette/Documents/PhD%20RESUB/KenEhimwenma_PhD%20FinalDraft.docx%23_Toc502520566

xviii

List of Tables

Table 3. 1: Comparison of agent oriented programming (AOP) and platforms 56

Table 6. 1: Sample size of volunteers and recruitment records 139

Table 6. 2: Percentage of correct and incorrect pre-assessment answers 146

Table 6. 3: Question 1. Course of Study? .. 147

Table 6. 4: Question 2. Year of Study? .. 147

Table 6. 5: Questions 3 – 13... 147

Table 6. 6: Question 14. What was most interesting about the session's organisation?

 .. 148

Table 6. 7: Question 15. What was least interesting about the session's organisation?

 .. 149

Table 6. 8: Question 16. What is most interesting about the SQL system? 149

Table 6. 9: Question 17. What was least interesting about the SQL system? 149

Table 7. 1: Desired_concept and order of multiple prerequisites class 170

Table 7. 2: The Join pre-assessment process illustration ... 175

Table 7. 3: The Insert pre-assessment process illustration 176

Table 7. 4: The Union pre-assessment process illustration 177

Table 7. 5: Summary of correct and incorrect answer responses 189

Table 7. 6: Time-independent variant students’ performance analysis.................... 195

xix

Abbreviations

AI Artificial Intelligence

ACL Agent Communication Language

API Application Programming Interface

AOP Agent Oriented Programming

AOSE Agent Oriented Software Engineering

AUML Agent Unified Modelling Language

BDI Belief, Desire and Intention

CArtAgO Common Artifact for Agents Open environment

CBR Computer Based Reasoning

DARPA Defence Advanced Research Projects Agency

DBMS Database Management System

DL Description Logic

FIPA Foundation for Intelligent and Physical Agents

FOL First Order Logic

GUI Graphica User Interface

HTML HyperText Markup Language

ITS Intelligent Tutoring System

JADE (Jade) Java Agent Development Environment Language

Jason Jason AgentSpeak Programming Language

KB Knowledge Base

KIF Knowledge Interchange Framework

KQML Knowledge Query and Manipulation Language

KR Knowledge Representation

MAS Multiagent Systems

OWL Web Ontology Language

PDT Prometheus Design Tool

POMDP Partially Observable Markov Decision Process

RDF Resource Description Framework

SQL Structured Query Language

STEM Science Technology Engineering & Mathematics

URI Universal Resource Identifier

xx

URL Universal Resource Locator

W3C World Wide Web Consortium

XML eXtended Markup Languag

xxi

Glossary

Atomic formula : This is a formula of the form p(t1, …, tn). For example, the expression
p(a, b) is an atom or atomic formula where a and b are terms or literals, and p predicate.

Base symbol in DL: Are primitive concepts that only occur on the right-hand-side of
axioms.

Body of a Plan: is the course of action to be used to handle events if the plan contexts
(or pre-conditions) are believed true at the time an agent plan is chosen to handle an
event.

Classification: Classification in the pre-assessment system is the act by which an
agent applies a set of pre-conditions in its plan context to match belief updates so as to
categorise a student and trigger the release of learning materials, for either a pass or a
fail pre-assessment.

Context: Represents the circumstances or conditions in which a plan can be selected
for execution. They are constraints that are expected to be true before the action in a
plan.

Curriculum : This refers to the knowledge and skills students are expected to learn.
They are specific course or lessons taught by a teacher in a school.

Desired_Concept: This is any of the class node concept in the SQL ontology tree that
a student is expected to enter before the commencement of pre-assessment.

Events: Are what happens as a consequence to changes in an agent’s beliefs or goals.

Named symbol in DL: Are the concepts being defined that occurs on the left-hand-
side of axioms.

Percepts: Are events that are observable by agents.

Plans: A plan is an option of the action that an agent can select and perform. In other
word, they are recipe for action or some given courses of actions. They represent
agents’ know-how.

Predicate: In logic based statements, the expression p(a) or p(a, b) is an atomic
formula where p is a predicate. A predicate can be unary or binary.

Protocols: Are simple sequence of agents’ communication using directed arrows.

Swing: Is a java library that provides GUI components for developing user interface.

Triggering_event: Denotes the events that a plan is meant to handle.

Chapter 1

Introduction and Pre-Learning

Diagnosis

1. Introduction

Concepts of learning are interdependent and chronological. In human learning the

successful learning of a target concept may be dependent upon relative and previously

learned concepts in a given sequence of learning. Pre-learning assessment or pre-

assessment as a process of learning is an enquiry into previous learning and an

invitation of prerequisite knowledge into a new and higher-level concept learning. This

could enhance new concept learning and improve performance. In teaching-learning

environments, this process is frequently carried out by human tutors. But how can this

process be replicated in an agent based system, such as, the Pre-assessment System

that is designed in this study?

1.1 Motivation for Study

In a learning domain, tutors teach concepts in the order of simple-to-complex or from

known-to-unknown. Before a higher concept or topic is taught, lower topics in the

hierarchy of learning ought to be understood. In a teaching-learning session, a tutor

may probe students’ prerequisite topic related to the topic that is about to be taught. In

such scenarios, when the tutor asks questions, students’ responses may be right or

wrong. Based on this diagnosis of knowledge, the tutor is informed of the cognitive

status of his students and how to begin his new teaching. Therefore, the motivation of

this thesis is to investigate a strategy on an agent based system that can imitate the

action of the human tutor. The system makes decisions and assembles students’

knowledge status, and then recommend supplementary materials so as to close any

gaps.

Chapter 1 Introduction and Pre-Learning Diagnosis

2

1.2 Research Question

The research problem of this work is stated in the question:

How can students be helped to identify gaps in their current learning so that they can

be fully prepared for the next stage in their learning?

1.3 Purpose of The Research

The purpose of this research is to identify gaps in students’ learning via a pre-learning

or pre-assessment strategy, and develop a conceptual ontology to apply in the pre-

assessment process on a multiagent system platform. Before the commencement of

learning, students are first and foremost pre-assessed on the relative prerequisite

concepts to a desired concept: where the desired concept is the intended and chosen

concept of learning. This is to ascertain strengths or weaknesses, whether students

possess the background knowledge to proceed to learn the chosen concept

successfully.

1.4 Aim of The Study

The aim is to develop a model of Pre-assessment System that can pre-assess students’

learning in a given domain and to use logic based rules in specifying the classification

of skills and recommendation of suitable learning materials for students.

1.5 Objectives of The Study

The objectives of this study are as follows:

1. To investigate a systematic way of identifying gaps in students’ knowledge

which may hinder them in their next stage of learning. This is to allow students

to self-diagnose any gaps on their previous learning before the start of a new

module.

2. To build a domain ontology of related concepts and use declarative logic based

representation in the system in the process of learning gap identification prior

to the start of a higher and desired learning by students.

Chapter 1 Introduction and Pre-Learning Diagnosis

3

3. To investigate the communication of ontological concepts in the system in the

process of identifying gaps in students’ learning.

4. To develop the tools that allow the system to recommend supplementary study

materials to close the gaps in their current learning.

5. To evaluate the effectiveness of the system by assessing how effective it is in

helping real students improve their learning.

1.6 Defining The Pre-assessment System

The Pre-assessment System is an agent based elearning system that perceive the

knowledge of students, communicate such knowledge, make decisions, categorise

students according to knowledge assembled, and finally recommend suitable learning

materials. This aforementioned processes are functionalities that are handled by a

group of agents.

The domain content of the system is Structured Query Language (SQL). The system

uses the example of SQL learning structure from the Introduction to SQL (Lans, 2006).

The concepts of learning are interdependent on each other and shall be arranged in an

ontology tree structure that is modelled after the SQL teaching materials that were

made available for this work by database tutors in Sheffield Hallam University. The

system keeps activities of students’ during the course of pre-assessment. This is for

the tutor’s view so as to provide optimal assistance to students that may be facing

difficulties in their SQL query constructs. In this research, the problem is a

classification of students’ learning activity for learning materials recommendation.

1.7 What is Learning?

Learning can be categorised as a change in the mental state of humans or machines

after a sequence of acquired experiences. But whether these experiences have caused

any changes in the ‘knower' is normally determined by some form of assessment.

Inclusively, learning is search and find, recognising, classifying, grouping, separating,

sorting, drawing similarities, taking instruction, or making prediction using existing

knowledge. Learning is a display of intelligence which comprises information

Chapter 1 Introduction and Pre-Learning Diagnosis

4

gathering, fault detection, diagnosis and prognosis. Bratko (2001) describes learning

as having to recognise a concept: If C is a concept, to learn the concept C means to

learn to recognise objects [or features] in C. In artificial intelligence (AI), a concept

is a class or object.

Learning can be permanent or temporary — meaning that a concept or process can be

learned or unlearned. In a teaching-learning process, one way to determine the

occurrence of learning is through some form of assessment: To ascertain whether a

concept is learned or has been unlearned. In this work, the process is dichotomous, and

comprises of:

 Classification of students’ learning.

 Student Learning.

1.7.1 Classification of Students’ Learning

In this work, classification refers to the selective decision making and grouping of

students’ responses to the quizzes, based on the desired concept entered by a student.

Classification is the ability of the agent based system to recognise and classify features

according to its given rules (or plans) where agents have their knowledge or beliefs

represented in logic based structure. At the match of some beliefs (whether initial

beliefs or update beliefs), messages are communicated interchangeably and a trigger

for classification is performed to fulfill the overall goal of the agent based system.

1.7.2 Human Learning

Assessment is a critical catalyst for student learning (Conole & Warburton, 2005), and

this is used to measure the outcome of learning. At any given stage in a learning

process, this is imperative because of the need to improve students’ performance. As

such, assessment can be administered through one or a combination of the test

techniques:

summative -- for grading purposes at the end of study term;

formative -- for immediate feedback during course of learning;

diagnostic – for evaluating students’ prior knowledge;

Chapter 1 Introduction and Pre-Learning Diagnosis

5

self-assessment – for students’ reflection of own experiences and

 understanding. (O’Reilly & Morgan, 1999; Bull & McKenna, 2004, Conole

 & Warburton, 2005)

Using a schematic diagram, Figure 1.1 can be used to depict the processes of learning,

unlearning and forgetting under some hypothetical activity represented as stimulus (S)

(e.g. question) and response (R) (e.g. answer) activity. The Figure 1.1 maps learning,

unlearning and relearning processes to some states S0 and St, and possible reward

factors that influences learning.

Particularly for humans, the schematic representation shows the transition states in

metacognitive activities from initial state s0 to a new learning state st and vice versa

coupled with the effect of rewards ─ positive or negative. This is a view from the

studies of classical conditioning (Pavlov, 1960) and operant conditioning (Skinner,

1938) where positive and negative rewards were shown to influence learning.

To determine the occurrence of learning, one process to employ is the use of pre-

learning diagnosis. This is vital and effective in assessing students whether the

foundation is already laid for higher concept learning. In that view, skills diagnosis

provides the opportunity for a pre-learning assessment of a learner’s state of knowing

with regard to a given target concept. Tutors in contemporary classroom practice make

S0 = Initial state (i.e. a start or previous state).
St = Transition state (i.e. new learning state) where t = 1, 2, 3, …, n.

… , n.

Fig.1. 1: Transition State Diagram of Learning and Unlearning Processes. Fig.1.1: Transition State Diagram of Learning and Unlearning Processes.

Chapter 1 Introduction and Pre-Learning Diagnosis

6

enquiries into students’ prior knowledge before teaching some relatively higher

concepts. This is to determine the background knowledge readiness for the new

concept. When teachers give students the opportunity to explore their prior knowledge

and beliefs, and then thoughtfully look and listen at what is revealed; they are gathering

information for responsive instruction. This style of teaching intentionally connects

what students already know with the desired outcomes (STEM, 2013).

With intelligent learning systems, students themselves can embark on self-diagnosis

without the tutor’s intervention in their own time, space and comfort before proceeding

on the learning ladder. But most e-learning systems still do not use effective strategies

for evaluating students’ existing knowledge before teaching a new concept. Since

knowledge is building blocks that are sequentially planned from known-to-unknown,

the existence of gaps or zone of proximal development (Vygotsky, 1978) would inhibit

the successful learning of further concept(s).

1.8 Need for Pre-assessment in Learning

Pre-assessment is the inquiry into relevant pre-existing knowledge at the start of a

learning process to identify whether a student has the necessary background to enable

them to move forward with the new material that they wish to learn. Thus pre-learning

assessment creates a synergy between previous learning and the start of new learning.

In the process of inquiry, pre-assessment prompts related prior learning. In the views

of Conole & Warburton (2005) diagnostic assessment is used by tutors to determine

students’ prior knowledge. Andronico et al. (2003) state that diagnostics begins before

a course of learning with the purpose of identifying what learning resources are needed

by students. This is quite different from other forms of assessment. For example,

formative assessment that is designed to provide students with feedback on progress

and development whether the student understands the current teaching. Or summative

that is used to identify the students approximate level and giving the right score or

grades (Conole & Warburton, 2005; Andronico et al. 2003). By deduction, pre-

assessment leads to better formative assessment leading to the best summative

evaluation.

Chapter 1 Introduction and Pre-Learning Diagnosis

7

As the tutor in a face-to-face classroom context may perform a pre-learning or

diagnostic assessment concerning a particular knowledge concept before teaching a

higher level concept, so should intelligent tutoring systems (ITS) be modelled to assist

a learner. In a virtual learning environment, one of the major problems in deploying

materials for learning is ensuring that students have sufficient prior knowledge at the

start of a new study session. This is made more complicated by the range of different

routes that they may have taken to reach this point in their study.

Our effective approach to remedy this situation is self-assessment or self-diagnosis on

prerequisite concepts to the higher concept that is desired. This way, gaps that may

inhibit further knowledge may be detected and appropriate recommendation made to

fill any gaps by intelligent learning systems. In so doing, students will have greater

preparedness for higher or desired learning activities.

Thus this research demonstrates a pre-assessment procedure in a multiagent system

(MAS) that can identify gaps in learning. The chosen tool for developing the

multiagent Pre-assessment System is Jason AgentSpeak Language (Bordini, Hübner

& Wooldridge, 2007). This is due to the language support for: belief structure in logic

based representation, inter-agent communication via speech acts performatives, and

persistent beliefs.

The domain content of the pre-assessment system is the SQL database. The database

which is called the TENNIS_DATABASE was modelled and hosted on the MySQL

server. SQL quizzes and queries are dependent on this database, and students shall

have access to the database in order to provide answers to the pre-assessment quizzes.

The TENNIS_DATABASE is made up of five data tables.

The Figure 1.2 presents an overview of the pre-assessment system and the interaction

amongst the agent components. The system interacts with the user through the

CArtAgO (Common ART ifact for Agent Open environment) artifact. The CArtAgO

is the artifact (Ricci, Piunti, & Viroli; 2011) in which the multiagent system observes

its input or percepts.

Chapter 1 Introduction and Pre-Learning Diagnosis

8

All composite agents have their individualised tasks in their Condition-Action rules

otherwise known as plans. These plans constitute various agent functions as designated

duties within the MAS. The agents are cooperative through knowledge communication

so as to achieve the overall design goal of pre-assessment, which is, to identify learning

gaps in students’ learning and make recommendation for learning materials via

universal resource locator (URL) links. Thus the strategic purpose and functions of

the Pre-assessment System are:

1) Perceive events.

2) Communicate messages via performatives.

3) Process perceived events (e.g. SQL concepts, query statements, logic based

statement), feedback to the student, and carry out pre-assessment.

4) Assemble updated beliefs, match the plan that satisfies the given set of updated

beliefs from an array of agent plans, and trigger classification.

5) While doing 4) above, dynamically keep students' activity-history for the

course tutor access to unravel the technical difficulties confronting his students.

6) Make suitable recommendation for learning materials.

1.9 Contribution to Knowledge

The findings and significant contributions of this research study are:

1. Identifying gaps in students’ learning using a devised Pre-assessment

Mechanism.

Student

Interface Agent

(Classifier)
Modelling Agent

Support

 Agent

(Ontology)

Material Agent

Student Model

Agent

MAS

CARTAGO Artifact

(Pre-assessment)

Fig.1. 3: Overview of The Pre-assessment System (adapted from Ehimwenma, Beer & Crowther 2015a)

Chapter 1 Introduction and Pre-Learning Diagnosis

9

2. Goal specification for agents using Agent oriented software engineering

methodology for developing e-learning system.

3. Use of description logic syntax for defining an ontology of a learning domain.

4. Modelling classification features with logic based representation for agents for

the prediction of appropriate knowledge-level learning materials.

1.10 Overview of Thesis

This thesis has been structured into eight Chapters. Chapter 2 explores the literature

of knowledge representation; description logic (DL) language, DL notation and

symbols for knowledge modelling. This include the TBox and ABox components. The

Chapter also present intelligent tutoring systems, assessment systems and multi-

agents. Chapter 3 continues with the literature on agents, agent properties,

architectures and methodologies. In furtherance, the chapter discusses speech acts

theory as a protocol for knowledge sharing in agent based systems, agent

communication and agent oriented programming. In Chapter 4 the conceptual

development of the Pre-assessment System is presented using the Prometheus

methodology. This is followed by a devised Pre-assessment Mechanism for the pre-

assessment process, the Student Model parameters, and first order logic formula

specification of the classifier agent reasoning process. Also discussed in the chapter is

our model equation that can calculate the number of classification rules in a given

ontology tree. Chapter 5 describes the implementation of the Pre-assessment System.

This include the various agent components, ontology models from the DL definition,

and the classification procedure. In Chapter 6 the Pre-Assessment System is evaluated

by volunteer participants, and the data collected analysed. Chapter 7 is discussion and

explanation of findings. Chapter 8 is conclusions and direction of further research

work.

1.11 Publications from this Work

Elements of this work have been published and have been referenced in this thesis.

Note that the terminologies and notations used in this thesis supersedes those used in

the publications.

Chapter 1 Introduction and Pre-Learning Diagnosis

10

I. Ehimwenma, K.; Beer, M. & Crowther, P. (2014a). Ontology Engineering and

Modelling for Learning Activity in a Multiagent System. Proceedings of the 1st

International Conference on Systems Informatics, Modelling and Simulation

(SIMS2014), Washington, DC, IEEE Computer Society. Pp.143-147.

[Ehimwenma, Beer & Crowther (2014a), Chapter 5]

II. Ehimwenma, K. E.; Beer, M. & Crowther, P. (2014b). Pre-assessment and

Learning Recommendation Mechanism for a Multi-agent System. In

Proceedings of the 14th IEEE International Conference on Advanced Learning

Technologies (ICALT 2014). IEEE Computer Society. Pp. 122-123.

[Ehimwenma, Beer & Crowther (2014b), Chapters 1, 4]

III. Ehimwenma, K. E., Beer, M., & Crowther, P. (2015a). Adaptive Multiagent

System for Learning Gap Identification Through Semantic Communication and

Classified Rules Learning. 7th International Conference on Computer

Supported Education, In Doctoral Consortium (CSEDU). SCITEPRESS. Pp.

33-38. [Ehimwenma, Beer & Crowther (2015a), Chapter 1, 4, 5]

IV. Ehimwenma, K. E., Beer, M., & Crowther, P. (2015b). Student Modelling and

Classification Rules Learning for Educational Resource Prediction in a

Multiagent System. 7th Computer Science and Electronic Engineering

Conference (CEEC2015), IEEE. Pp. 59-64. [Ehimwenma, Beer & Crowther

(2015b), Chapter 4]

V. Ehimwenma, K. E., Beer, M. & Crowther, P. (Feb. 2016a). Computational

Estimate Visualisation and Evaluation of Agent Classified Rules Learning

System. International Journal of Emerging Technologies in Learning (IJET),

Vol 11 (1). Pp. 38-47 [Invited paper]. [Ehimwenma, Beer & Crowther (2015a),

Chapter 5]

VI. Ehimwenma, K. E., Crowther, P. & Beer, M. (2016b). A System of Serial

Computation For Classified Rules Prediction In Non-Regular Ontology Trees.

International Journal of Artificial Intelligence and Applications (IJAIA) , 7(2),

pp.21-33. [Ehimwenma, Crowther & Beer (2016b), Chapter 4]

Chapter 2

Knowledge Representation and

Intelligent Tutoring Systems

2. Introduction

This chapter presents the background literature of description logics (DL) and

knowledge representation (KR). It deals with the various forms of KR and DL support

for ontology languages and development. This includes DAML + OIL, RDF(S), and

OWL. The chapter describes the unary predicate, and binary predicate relation as

triples in RDF and its Prolog-like ground facts equivalence for representing knowledge

in a system. This herald a DL language into a TBox and its ABox counterpart, and the

condition-action rule for symbolising a classification process for programming. The

chapter also looks at intelligent tutoring systems (ITS) architectures, ITS and their

strategies for supported learning. This covers multiagents in the development of ITS

and analysis of some student models. The chapter also looks at some SQL assessment

systems, and Chunking: an educational learning theory for supporting effective

learning in a challenging educational environment and why it is important in this study.

2.1 Knowledge Representation and Ontology

An ontology is a description of things and their relationships. It represents knowledge

organisation. Ontologies define objects, properties and the relationships that exists

between objects (Gruber 1993; 1995), and information about an object itself

(Horrocks, Patel-Schneider & Van Harmelen, 2003) in a given domain of interest.

Ontologies specifies the classes of objects that exist, the relationships amongst those

classes, the possible relationships amongst instances of the classes, and constraints

over those instances (Gruber 1993; 1995). In formal concepts, Maedche & Staab

(2001) defined ontology as a 5-tuple O = <C; R; F; A; I> where:

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

12

 C: finite set of named concepts organisation.

 R: finite set of binary relations among concepts.

 F: functions that relates concept and relations

 A: set of axioms that are valid in the conceptualisation.

 I: set of individuals belonging to a domain.

2.2 Description Logic and Ontology Languages

Description Logic (DL) is a family of formal description languages for the

representation of concepts (or classes) and their roles (known as properties or

relationships) and literals (also known as individuals). Different formalisms or data

structures exists for the representation of ontologies, and examples of these are OIL,

OIL + DAML, RDF, OWL and answer set prolog. As a way of defining knowledge

for systems, Baader, Horrocks & Sattler (2007) states that DL are the basis for

ontology languages such as OIL, DAML + OIL and OWL for knowledge

representation. In the following section, the various forms of knowledge representation

models are presented.

2.2.1 SHOE: Simple HTML Ontology Extension

Frame-based languages or systems were first developed in the mid-1970s. Frame

describes Classes, and a set of Slots in which slots may consist of property-value pairs,

or a constraint on the value (i.e. an individual or data value). Frame was subsequently

adopted by SHOE: a frame-based language with XML syntax. SHOE then became one

of the earliest attempts at defining an ontology language for the web. SHOE used URI

(Universal Resource Identifier) references for names that became the convention in

both DAML-ONT and DAML+OIL languages (Horrocks, Patel-Schneider & Van

Harmelen, 2003). SHOE was not based on RDF, and as such had lesser influence on

the syntactic and semantic design of OWL.

2.2.2 DAML-ONT: DARPA Agent Markup Language-ONTology

The DARPA Agent Markup Language (DAML) was initiated in the year 2000 with

the goal to develop a language and tool to enable the realisation of the Semantic Web

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

13

(DAML, 2006). The semantic web is the idea to represent basic fact, information or

data (e.g. in document) and connect them together on the web. It is different from the

connectivity of document of the hyperlink technology.

RFDS, a language that was already adopted by the World Wide Web Consortium

(W3C) was to be the starting point, but lacked the much needed power of

expressiveness for knowledge representation. This led to the development of DAML-

ONT that extended RDF with language constructors from object-oriented and frame-

based knowledge representation languages (Horrocks, Patel-Schneider & Van

Harmelen, 2003). DAML-ONT was tightly integrated with RDFS. But DAML-ONT,

like RDFS, was not without semantic specification issues. With DAML-ONT, it was

realised that there could be disagreements, in the precise meaning of terms, both

amongst human and machines in a DAML-ONT ontology.

2.2.3 OIL: Ontology Inference Layer

OIL is one of the languages in which OWL (Web ontology language) is based. At

around the same time that DAML-ONT was developed, a group of researchers from

Europe had designed the OIL language. OIL became the first ontology language to

combine elements from Description Logics, frame languages and web standards such

as XML and RDF (Horrocks, Patel-Schneider & Van Harmelen, 2003).

2.2.4 DAML+OIL

The merger of DAML-ONT and OIL efforts produced DAML+OIL. Though, heavily

influenced by OIL, DAML+OIL received additional influence from DAML-ONT and

RDFS. DAML+OIL adopted a Description logic (DL) style axiom and retained and

used the DL language constructors developed in OIL. But not the frame structure that

could easily integrate with RDF syntax. Nonetheless, DAML+OIL, provided a

meaning for those parts of RDF which were consistent with its own syntax and DL

style model theory (Horrocks, Patel-Schneider & Van Harmelen, 2003).

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

14

2.2.5 RDF: Resource Description Framework

RDF is a graph database. It is a standard model for data interchange on the Web (W3C,

2014). RDF extends the linking structure of the Web to use URIs to name the

relationship between things as well as the two ends of the link (known as “triple”)

(Fig.2.1). This linking structure forms a directed, labelled graph, where the edges

represent the named link between two resources, represented by the graph nodes

(W3C, 2014). RDF are triples (a, P, b) or set of triples which are expressed as logical

formulas P(a, b): This is a binary statement in which the binary predicate P relates

the subject a to object b. RDF are binary predicates only. The relationships or

graphical connectedness between a node subject a and a node object b via a predicate

P is a semantic net. RDF has been given the syntax of XML (W3C, 2004). RDF is

very scalable, but is not very expressive and does not provide support for semantics

(W3C, 2004). RDF is not data format, but a data model with a choice of syntaxes for

storing data (DuCharme, 2013).

Fig.2. 1: Graph for RDF/XML Example: RDF resources are represented in ovals and literals in
rectangles.
Source: https://www.w3.org/TR/REC-rdf-syntax/

The edges (arrow-head lines) go from a resource to any other resource or to a literal,

and never from a literal to a resource or another literal. So in RDF representation,

literals are the terminal values of a resource. Simply put, RDF resources and edges are

URIs, literals are not, but simply values e.g. universal resource locator (URL).

All web URLs are URIs but not all URIs are URLs.

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

15

Thus RDF vocabulary is the set of URIs for the edges that make up the RDF graphs─so

the use of common URIs is synonymous to act of communicating in an understandable

language─hence the term vocabulary. For two semantic webs to share data there needs

to exist a common vocabulary or keyword. Similarly, the model of agent

communication in FIPA is also based on this assumption that two agents, who wish to

converse, must share a common knowledge of the ontology for the domain of

discourse. That is the agents must ascribe the same meaning to the symbols used in the

message (FIPA, 2000).

2.2.6 RDFS : Resource Description Framework Schema

RDFS is expressed as RDF. RDFS is object oriented in its nature. That is, it is

fundamentally about describing classes of objects. Its supports semantics of data by

class and properties descriptions, class hierarchies and inheritance, and property

hierarchy. RDFS gives flexibility to the definition of data in that a data of a particular

class may be expressed to have various type declaration i.e. RDFS:type or different

property declaration i.e. RDFS:property.

2.2.7 OWL

The development of OWL has been influenced by several ontology languages. For

example, RDFS, SHOE, OIL, DAML-ONT and DAML+OIL. But DAML+OIL has

heavily influenced the emergence of OWL (Horrocks, Patel-Schneider & Van

Harmelen, 2003). OWL is an increasingly expressive language. For example, one of

such expressiveness is its power to specify property values and validate relationships

while maintaining upward compatibility with RDF and RDFS. OWL has three

sublanguages, which are Owl Lite, OWL DL and OWL Full.

 Owl Lite

OWL Lite is termed as the simpler OWL DL expression language. The language is

based on the SHIF(D) version of description logic language which allows complex

class descriptions, specification of conjunction, disjunction, negation, existential and

universal value restrictions, role hierarchies, transitive roles, inverse roles and

restricted form of cardinality constraints (cardinality 0 or 1) and support for concrete

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

16

domains (Horrocks, Patel-Schneider & Van Harmelen, 2003, de Bruijn et al. 2004).

Its support for constraint features are simple (Laclavik et al. 2012).

 OWL DL

This is the SHOIN(D) variant of description logic language (Horrocks and Patel-

Schneider, 2003; de Bruijn et al. 2004). OWL DL is more expressive than OWL Lite.

It provides additional support for individual names in class descriptions (also called

nominals) and allow arbitrary cardinality restrictions (de Bruijn et al. 2004). OWL DL

is equivalent to DAML + OIL. OWL DL constructs are with restrictions such as:

o a class cannot be both an individual (instances) and property

o a property cannot be an individual as well as a class (Laclavik et al. (2012).

 OWL Full

OWL Full gives greater freedom for expressiveness by allowing the syntax and

semantics use of both OWL DL and RDFS languages (de Bruijn et al. 2004). For

example, while a class cannot be both individual and property in OWL DL as stated

above; in OWL Full, a class can be both. OWL Full is not restricted to DL, and it is

also very close to first-order logic (FOL).

In the Fig. 2.2 a comparison and the relationship between RDF, RDFS and OWL

languages is given. There are different approaches for building the agent knowledge

model, but the internal knowledge model of agents is left for an agent programmer

(Laclavik et al. 2012).

2.3 TBox Terminology

Knowledge representation system based on DLs consists of two components - TBox

and ABox (Obitko, 2007). TBox is a knowledge representation (KR) formalism that

represents the knowledge of an application domain (the world) by defining relevant

concepts (expressions) in that domain and then using these concepts to specify

properties of individuals occurring in the domain (the world description). Nardi and

Brachman (2003) state that TBox contains intensional knowledge in the form of a

terminology or taxonomy and is built through declarations that describe general

properties of concepts. The “terminology” denotes hierarchical structure built to

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

17

provide an intensional representation of the domain of interest (Nardi and Brachman,

2003).

Fig.2. 2: Comparison of RDF, RDFS and OWL languages (based on Horrocks, Patel-Schneider & Van
Harmelen, 2003).

A DL system is a combination of a TBox and ABox. The term ABox and TBox which

are used to describe two-different but-related kinds of statements for ontologies

together make up a knowledge base. The Figure 2.3 is a table showing the DL syntax

notations for expressing logical axioms or statements in DL. A TBox describes the

vocabulary or the classes of objects that make up a KB in an application domain.

Basically this vocabulary are the concepts (set of individuals) plus the roles

(relationship between concepts). The Figure 2.4 is a TBox description of some

modelled axioms in a family domain (Baader & Nutt, 2003). The left hand side of the

equality sign is where the named symbol (defined concepts) known as the atomic

RDF RDFS OWL

* Domain

independent.

* States fact in

triple and

establishing the

relation between

two ends.

* provide mechanism for defining

specific domain.

* States class and property

relation.

* Declares class and subclasses in

subsumption hierarchy, supports

property and subproperty, domain

and range restriction.

* Logical combinations beyond its

use.

* Compatible with several existing

ontology languages e.g. OIL, DAML + OIL.

* Extends RDF fact stating ability, and

RDFS class and property structure ability.

* Declares class and subclasses in

subsumption hierarchy

* Classes can be logical combinations

(intersection, union, negation) of other

classes. Or as enumeration of other

specified object.

* Extends RDFS by declaring properties as

transitive, symmetric, functional or

inverse.

* Expresses disjoint, equivalence,

individuality of object, quantification and

value restriction.

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

18

concept occurs, and on the right hand side is the base symbol also known as the

primitive concepts.

Fig.2. 3: OWL constructors and DL notation (Baader, Horrocks & Sattler, 2003). C is a class, P is a
role (property), n is the number of cardinality, r is the relation.

Fig.2. 4: A TBox hierarchy about family relationships.

From the TBox terminology in Figure 2.4, the axiom

 then defines the concept of “A man that is married to a doctor, and all of whose

children are either doctors or professors” (Baader, Horrocks & Sattler, 2003).

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

19

2.4 ABox World Description

The term ABox (Assertion Box) which complements the TBox are assertions about

named individuals in terms of the vocabulary described in a TBox. Precisely, the ABox

contains assertional knowledge called ground fact (Rudolph, 2011) which is a

description of world. It asserts and introduces named individuals of the world, and

their properties. Properties can be unary and binary. A unary property specifies what

class a named individual belongs while the binary property specifies the relationships

also known as role between two named individuals. Given that C is an atomic concept,

R as role concept, and a, b, and c as individuals, it follows that (Baader & Nutts, 2003;

Rudolph, 2011):

1. C(a) – concept assertions implies a belongs to C,

2. R(b, c) – role assertions implies c is a filler of the role R for b.

According to Baader & Nutts (2003), if Peter, Paul and Mary are individuals, the

following are constituents of an ABox assertions from the TBox in Figure 2.4:

 MotherWithoutDaughter(mary)

 Father(peter)

 hasChild(mary, peter)

 hasChild(peter, harry)

hasChild(mary, paul)

2.5 Answer Sets Prolog

Answer Set Programming or Prolog (ASP) is a language for knowledge representation

and reasoning based on the answer set logic programs (Gelfond, 2008; Baral &

Gelfond, 1994). ASP or language allows domain and problem-specific knowledge,

including incomplete knowledge, defaults, and preferences, to be represented in an

intuitive and natural way (Brewka, Eiter, & Truszczyński, 2011). ASP is an approach

to declarative programming whereby in a declarative style, a problem or the world

description are specified declaratively. ASP has its roots in deductive databases, logic

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

20

programming, logic based knowledge representation and reasoning, constraint [rules]

solving, and satisfiability testing (Hölldobler & Schweizer, 2014).

A logic program is a set of rules of form, and ASP models are declarative and consist

of rules likened to those in Prolog (Gelfond, & Lifschitz, 1988; Lifschitz, 2008) such

as:

A ← L1, …, Lm

where A is an atom and head of the rule, and L1, …, Lm are literals and body of rule.

Thus

 p(1),
 q(2),
 q(x) ← p(x).

can be a model of a program.

More so,

 q(a, 1).
 q(b, 2).
 p(X) ← K + 1 < 2,
 q(X, K).
 r(X) ← not p(X).

is a program of Answer Set Prolog containing two facts, and two rules, where p, q, and

r are predicates; and X and K are variables. A program is called ground if its terms,

literals and rules are ground. That is, if the program contains no variable and no

symbol for arithmetic function (Gelfond, 2008). A fact being ground is contained and

used in the program.

In the description of knowledge bases (KB), answer set models as a knowledge

representation language can be combined with description logic to represent facts and

to reason about facts. This is a situation where ABox and Answer Set program models

draw on some similarities. In Gelfond (2008), a basic methodology for representing

knowledge was described using open-ended signatures which are names, courses, and

departments to constitute some KB facts (a collection of departmental record):

 member(sam, cs).
member(bob, cs).
teaches(sam, cs).

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

21

course(java, cs).
course(c, cs).
course(ai, cs).
course(logic, cs).

together with the closed-world assumptions expressed by the rules:

teaches(P, C) ← member(P, cs),
Course(C, cs),
teaches(P, C).

Which states that

if the variable P is a member of cs,

and the variable C is a cs Course,

and the variable P does teach C;

then conclude that the variable P that matches sam

teaches a Course in cs.

Thus, teaches(sam, cs) is returned because the conditions which are contained in the

ground facts are satisfied in the program. Like ABox, ASP allows the expression of

KR in both both unary and binary form. This form of KR formalism that constitute

atoms (or constants) have also been expressed in prolog-like rules for program

execution, for example (Eiter et al. 2008, p.1501; Zini & Sterling, 1999; Brewka, Eiter,

& Truszczyński, 2011).

In Zini and Sterling (1999) for instance, the knowledge represented was for multiagent

system that comprised of four agents. The KB which are a representation of a Sports

ontology (Zini and Sterling 1999) were specified as follows:

sport(cycling)
sport(soccer)

which are unary declaration stating that cycling and soccer are types of sports; and

competition_of(seriea; soccer)

a binary declaration which states that seriaa is a league competition of soccer. Wu,

Zeng & Yang (2008) state that in DLs, the conceptual knowledge of an application

domain is represented in terms of concepts (unary predicates) that are interpreted as

sets of individuals, and roles (binary predicates) that are interpreted as binary relations

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

22

between individuals. Thus, in the Sports ontology, the unary predicate sport is

property of both cycling and soccer, respectively, while the binary predicate

competition_of is a relation between seriea and soccer literals.

2.6 Classification

Classification is feature, instance or attribute learning. It is when features (inputs or

training set) that are symbolised in a system have corresponding class labels (i.e.

outputs) to predict. These features can be continuous, categorical or boolean

(Kotsiantis, Zaharakis & Pintelas, 2007). Classification consists of taking input vectors

or data and deciding which N classes they belong to after running them through a

classifier(s) (Rifkin & Klautau, 2004; Marsland, 2014). While most classification

system is the support vector machine, this thesis considers an agent based classifier for

students’ learning.

Having looked at the various ontology languages for representing knowledge for

systems, the act of classification in this research is not about the grouping of nodes in

an ontology tree. But the collection of information about the knowledge status of

students and the recommendation of the appropriate or a set of appropriate learning

materials based on the available information to the system. The decision process in

which students are categorised is through condition-action rules.

2.7 Condition-Action Rule

In a classification system, decision rules are the fundamental knowledge that are

compared and matched with available information or known facts, and subsequently

utilised by the system to perform the act of classification or conclusions. Rules of this

nature have two component parts: the left-hand side known as the antecedent,

condition, premise or situation, and the right-hand side part referred to as the

consequent, action, conclusions, response, or prediction (Patterson, 1990). This is the

logical structure of a rule based system where a classification system is given a

reasoning task about some available knowledge or concepts in order to draw

conclusions about some incoming data. In Hutchinson (1994) such methods can be

used for learning concepts: In AI (artificial intelligence), a concept is treated as a

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

23

formal definition or predicate. For most of these systems to work, Hutchinson (1994,

p.310) states that in a learning system the following assumptions are valid:

 Conditions which are basic predicates for testing a state must be specified in

advance: This is preparing rules that must be satisfied as pre-conditions for the

system or a component of the system.

 The predicates are the essential part of the language or formalism for task

representation: All the variables in the environment should be gathered for

adequate representation in the system.

 There must be something―set of rules―to learn: For a system to make

decisions, a set of rules must be specified according to the environment and

variables in the problem.

 The training set is clean or devoid of noisy relations: In that case, the data used

for preparing the rules for the system must be unambiguous to be suitable to

match the incoming unknown data or information.

 The training set should contain counter-examples: All examples (or facts) that

may be available to a system may not be similar. Some may be positive and

others negative. Rules should be stated to cover both positive and negative

facts.

 Basic predicates can be partitioned into independent group: Different

variables that are related can be grouped in one rule.

 Within each group, the predicates are mutually exclusive and cover all cases:

No case of classification much be missed. Otherwise, this would result in the

misclassification of an object.

The rule based systems are IF <conditions> THEN <actions> rules, where the set of

<conditions> are needed to be matched and satisfied before the <actions> part is

triggered.

2.8 Intelligent Tutoring and Learning Systems

Intelligent Tutoring Systems (ITS) are applications that employ AI: artificial

intelligence to education and instructional design (Rossi & Fedeli, 2012), or AI

techniques in computer programs to facilitate [human] learning (Padayachee, 2002).

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

24

ITS are computerised learning environments that incorporate computational models in

the cognitive sciences, learning sciences, computational linguistics, artificial

intelligence, mathematics, and other fields that develop intelligent systems that are

well-specified computationally (Graesser, Hu & McNamara, 2005). ITSs are cognitive

architectures that interact heavily with humans when supporting them in one of the

hardest cognitive process i.e. learning (Pipitone, Cannella & Pirrone, 2012). Several

ITS exist with support for a given level of adaptability but must be able to present

material at a level of difficulty and detail suited to the state of knowledge of the student,

and to do so, the system must know and follow the student’s changing knowledge

(Michalski, Carbonell & Mitchell, 2013). This is achieved by a set of carefully planned

rules (Hutchinson (1994) where a set of outputs are provided for some given set of

inputs. Integrating supervised classification technique into ITS development is aimed

at making accurate class predictions that suits an individual student’s need and level

of knowledge.

2.9 SQL Assessment and Learning System

A database is a repository of information organised in such a way that it can be

accessed, managed and updated easily. A database is created, stored and maintained

on a database management system (DBMS). DBMS interacts with a user, connects

with other application or other databases. Examples of DBMS are MySQL,

PostgreSQL and HyperSQL to mention a few.

SQL (Structured Query Language) is the dominant database language (Abelló et al.

2008). In Kenny & Pahl (2005) SQL is a formal declarative database programming

language that comprise data manipulation keywords such as select, from, where,

delete, insert, into, update, set, on, and join to mention a few. The skills in SQL are

challenging and students have many difficulties learning them (Mitrovic, 1998). In the

perspective of Prior (2003) learning and mastering of these skills is a difficult process

that requires considerable practice and effort on the part of the student. One of the

challenges is mapping a statement of problem given in natural language into the

information that is required from the database in an appropriate SQL statement; this

Prior (2003) stated is not easy. Another difficulty is students’ misunderstanding of the

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

25

basic elements of SQL and first order logic and the relational data model in general

(Dekeyser, de Raadt & Lee, 2007).

To support students with the learning of SQL and determine individual students’ SQL

query formulation skills, the AssesSQL (Prior, 2003; Prior, & Lister, 2004) was

developed. The research examined the difficulty faced in the assessment of students’

SQL query skills, and encourage students to use structured query language as SQL

professions. For assessment, the system present questions to student, and expects

students to enter query solution to the question. The AssesSQL query content covers

only the SELECT statements.

In the LEARN-SQL tool, Abelló et al. (2008) implemented a strategy that objectively

allows the evaluation of the correctness of the solution to a question given by a student

by providing automatic correction to queries by comparing the students’ solution to all

existing valid solutions in the system. The system, tests, feedback and grade students

in their learning of SQL. The LEARN-SQL was developed and comprised statements

such as the SELECT and UPDATE queries. This is from the backdrop of previously

development SQL systems whose content only covered the SELECT statements

(Abelló et al. 2008).

There also exists a number of sites that provides tutorial to students on SQL learning.

Examples are " w3schools.com/sql ", "Beginner SQL Tutorial" and "SQLCourse.com"

that have lists of modules from which a student can make a choice in order to start

learning; and the "SQLzoo.net" that provides support through multiple choice

(objective type) quizzes. While they provide ability for students to run queries or take

quizzes, they do not provide assistance or recommendation for errors and requisite

learning.

2.10 Chunking: An Educational Theory of Learning

In learning and learning technologies, the basic goal of instruction is to ensure

materials are learned and understand for the advancement of learning. But students

often face difficulty in their learning. Managing skills in smaller components known

http://sqlcourse.com/
http://sqlzoo.net/

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

26

as Chunking has helped to facilitate effective learning (Casteel, 1988; Anderson,

2008). Chunking is a procedure of breaking skills, learning materials or information

into smaller, more manageable units for students to succeed.

2.11 Approaches to Agent Based Learning and Formative

Assessment Systems

In Abdullah, Malibari & Alkhozae (2014), Adaptive Boosting (AdaBoost) multiagent-

based system was used to mine students’ historical data to classify and predict

students’ progress. Based on the current data, the prediction agent would receive a

communication request, and would then make a grade prediction. Experimental results

obtained showed that with accurate classification, students who got low performance

prediction had the reasons for this analysed by the system, and were subsequently

motivated by the system to achieve high performances (Fig. 2.5).

Fig.2. 5: System prediction and motivation to achieve higher performance.

In González, Burguillo & Llamas (2005) case-based reasoning approach was used to

model students in a multiagent systems for learning. Case-Based Reasoning (CBR) is

a problem-solving paradigm that is able to utilise the specific knowledge gained from

previous experiences in similar situations (cases) to solve a new problem. At the start,

a student new to the system is asked to take some tests. The system then analyses the

tests results to gather information about the student. This approach categorises students

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

27

according to knowledge level and their learning preferences, however it was devoid of

the assessment question selection strategy.

Chadli, Bendella & Tranvouez (2015) addressed how students should be evaluated

using multiagent system simulation. The approach employed fuzzy set theory and

agents’ negotiation, and was based on an evaluation model that: identifies skills in the

domain, student skills comparison with the background skill, and evaluation of student

ability. From the experimental results, it was stated that the simulated model provided

assessments similar to that of an expert and significantly improved learners’

performance.

In Rosbottom & Moulin (1998) a different approach was proposed for student

assessment and presentation of materials for learning in a multi-agent adaptive course

delivery system on Euclidean Geometry. The approach was based on probabilistic

models in which student behaviours at the interface of the system were interpreted,

and prediction for the next stage of learning was made.

The application of multiagent system for educational games in learning has been

reported as well. Dutchuk, Muhammadi & Lin (2009) presented work on the

development of Multi-Agent System-based educational game called QuizMASter for

e-learning. The game helped students learn their course material through friendly

competition. Their research explored the use of perceptive pedagogical agents that

would determine the learners’ attitudes and emotional states by examining their:

understanding, response timing, history, banter [humour]; and provide appropriate

feedback to students in order to motivate them for learning.

Using two different computational intelligent techniques, Alexakos et al. (2006)

addressed e-learning assessment on the platform of a multiagent system. The agents

provided intelligent assessment services based on Bayesian Networks and Genetic

Algorithms. Based on the Bayesian Networks’ techniques, the system managed the

questioners of an e-learning system using Bayesian Networks of probabilities that

capture the probabilistic relationship between variables, as well as historical

information about their relationship. From the report, results indicate that the agent

platform provided assessment services.

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

28

In Wang (2014) a Partially Observable Markov Decision Process (POMDP)

framework combined with reinforcement learning (RL) for building an ITS was

proposed. The systems main component state comprised of: actions, observations and

a policy. The POMDP intelligent technique was chosen on the premise that the agent

cannot fully observe the knowledge state of students for it [agent] to take action. On

the system, the agent partially observes students’ input, and the system takes actions.

To practically use the system, a student would ask a question (about a concept), the

system would choose an answer and present to the student; then another question is

asked, and the system would answer, and so on. The responses from the student thus

determines the agent policy i.e. the teaching strategy. In this approach, the students are

not assessed. The ITS teaches based on the questions asked by students. In this type of

strategy, though, students’ skills were not categorically measured, but the system

provided support to students’ learning. This is viewed in such way that, the questions

asked by students are the issues bordering around their learning. Despite the assistance

rendered by this ITS, a formal or formative assessment would still be required for

formal qualification or higher concept learning.

Yu & Zhiping (2008) proposed intelligent pedagogical agent for evaluating prior

knowledge based on the selective categorisation of learners as: novice, beginner,

intermediate, or advanced learners where the learners themselves make the decision

in selecting the group they think they fit-in before they start learning. Issues with this

strategy is that students may misjudge the best learning category that may suit their

own learning needs.

In an approach to meet learners’ needs, Gamalel-Din (2002) proposed the development

of the SmartTutor. As an agent based approach to support learning, SmartTutor was

prescribed with two major models: student model and teacher model. The teacher

model uses the concepts of Case-based reasoning for representing instructor past

experience (i.e. teaching strategy & capability) where each case represents an approach

for teaching a certain concept. The student model uses inductive learning-by-

experience component to adapt to expected student prerequisite profile and group

students together for tutors according to the different tutors teaching strategy and

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

29

capability. In SmartTutor, the instructor defines the prerequisite skills he believes the

student can follow to gain new skills. While the strategy can effectively keep track of

the lectures visited and content presented, SmartTutor would not identify the technical

skill gaps required by students. The strategy is more tailored towards the instructors’

advantage rather than the students because the identified group of students are tutored

together, thereby reducing the tutors’ workload.

2.12 Recommender Systems in Education

Recommendation systems in adaptive learning propose and prescribe content and

items that centres around the learning needs of students. This is quite different from

recommender systems for buying products because learning is an effort intensive task

that requires more time and interaction on the part of students compared to commercial

transactions (Manouselis et al. 2011). Furthermore, that learners rarely achieve a final

end state. Based on the fact that there are levels in learning. Instead of buying a product

and owning it, learners achieve different levels of competences that have various levels

in different domains. Thus in such situation, what is important is identifying the

relevant learning goals and supporting learners in achieving them (p.6).

In the views of Bañeres (2017) adaptive or personalised learning tends to model

learners' learning path, activities and educational resource. To this end, several e-

learning recommender systems have been proposed. In Bañeres (2017) for instance, a

standalone quasi-summative assessment model was proposed to boost instruction

process and customisation of learning path. In the model, students are graded based on

some learning activities using a model of equation, and the adaption on the students’

preferences and effort spent on course. Should a learner fail an activity, it means the

competence needed has not been completely acquired; and this could hinder further

learning.

El Mabrouk, Gaou & Rtili (2017) also proposed a recommender system that can

recommend the most appropriate content for learning. The system architecture

comprises four interactive modules, namely: i) data collection part that is based on

users’ profiles and interest; ii) information processing unit for the learning model, user

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

30

classification and content classification; iii) recommendation module; and iv) log file

component for the recommended classes meant for use in future reclassification. The

system matches users' interests with content categories and classify users according to

e.g. content submitted, subjects, and item ratings, respectively. Like El Mabrouk, Gaou

& Rtili (2017) proposed recommender system, several classification systems employ

the use of multiple components with different functions in order to fulfil the task of

classification or recommendation. Thus multi-components in a recommender system

draws similarity with multiagents to solve a problem. However, the aforementioned

proposed system is not the kind that would assess students’ skills before making

recommendation. This is similar to the recommender system proposed in Bañeres &

Conesa (2017) in which the system supports users to tick through a set of checkboxes

such as Completed Courses or Not Completed Courses so as to classify users whether

they possess the requisite skills for a given job. Though the system is geared towards

employability skills classification, it could assist users in recognising their areas of

skills limitation and then focus on the desirable skills. The system does not provide

any form of skills assessment.

One other assessment and learning tool is the PAT Tutor (Ritter et al 1998) -- an ITS

for teaching introductory algebra. In PAT, learning task and exercises are arranged in

sections at different skills level as specified in a standard mathematics curriculum.

When students demonstrate mastery of a section (by achieving a level of competence

on all underlying skills), the Tutor system promotes the student to a new section, which

includes some new skills (Ritter et al 1998). In this strategy, students’ knowledge is

assessed before moving to a higher level. Which means that the system can ascertain

that a set of competences have been achieved before promotion to other skills.

2.13 Student Modelling

Students modelling components or attributes determines the effectiveness of

intelligent tutoring systems. The method used in representing the knowledge of

students is referred to as the Student Model (Baffes, 1994). Since the 1970s, several

programmed learning methods have been used in modelling the components of

students in learning. Padayachee (2002) states that ITS architectures can be classified

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

31

into three categories, namely: traditional three-model, classical four-model and new-

generation architectures.

2.13.1 Traditional Three-Model

These ITSs models comprise three major components in their design, namely:

 Domain Model: This is the component that contains the knowledge relating

to the subject matter or content. It answers student arbitrary questions, and

provide alternative explanations to the same concept.

 Student Model: This is the component that holds the students emerging

knowledge and skills.

 Tutoring Model : Is the component that provide the knowledge towards the

learning goals and has control over the sequence and selection of subject

materials. It can diagnose misconception and learning needs.

2.13.2 Classical Four-Model

As well as maintaining the components of the Traditional Three-Model, an additional

User Interface as a fourth component is added to this model. Systems of this

architectural type have integrated modules named as:

 Knowledge Base: This component is similar to the domain model of the Three

Model Architecture. In this model, the subject tutor puts together declarative

knowledge (what to learn), and the procedural knowledge (how to learn) in the

system.

 Student Model: Stores information about student knowledge and skills, and

student cognitive processes. It maintains strategy that helps students to learn

from errors.

 Pedagogical Module: This module is similar to the Tutoring component of the

Three Model Architecture. This component uses the current learner’s state to

select an appropriate learning path to accomplish a learning goal.

 User Interface: This is the user interface where dialog between the system and

the user are ensured.

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

32

2.13.3 New-Generation Architectures

A prominent model of this type of architecture are those such as proposed on the

platform of multi-agent systems (MAS) for learning purposes. As modular entities that

are created to form a group of cooperative components, a MAS developed. Within the

systems, Padayachee (2002) states that the ITS architecture comprises an interface

agent with a function to interface between the learner and system, a communication

agent that ensures interaction between agent components, and a “micro-society” of

agents that may cooperate to solve a problem activity in a formal and well-structured

knowledge domain. Agents are computational entities that are modelled after the

human cognitive framework. Each ITS agent or micro-society of agent have their

micro-specialities or functions. To achieve the overall function of the system, agents

uses structured knowledge and communicative means. This is emphasised by the social

organisational perspective of the Gaia methodology (Wooldridge et al. 2000) that is

presented in Chapter 3.

2.14 Summary of Chapter

This chapter has presented knowledge representation (KR) and various representation

languages. It discussed description logic as the language that supports the development

of KR languages such as OIL, DAML + OIL, RDF, RDFS, OWL, TBox, ABox and

answer set prolog (ASP). The chapter analysed ASP as a KR language in unary and

binary predicates. While the unary predicate is of the form p(a), the binary predicate

is the form p(a, b) which is synonymous to RDF like triple and first-order logic

representation. A type of data representation form in agent based systems. Due to

OWL DL power of expressiveness, in Chapter 5, the ontology of the content of

learning of this thesis shall be presented in DL language.

The chapter also discussed intelligent tutoring systems (ITS), categories of student

model ITS, SQL learning and assessment systems, recommender systems, and agent

based systems for assessments and learning. The literature unveiled that recommended

learning is an effort and it is time consuming on the part of students, and of particular

interest to this thesis, SQL is not a language that is easy to learn. It is one that requires

considerable effort from students to understand, and one of the significant challenges

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

33

faced by students is the interpretation of a statement of problem in natural language

into its SQL equivalent query statement. Then, a few examples of SQL system were

examined. Each with different strategies for evaluating students SQL queries, but with

a similar process of testing students queries which involves the comparison of

students’ queries with the system underlying predefined answers to questions. It was

gathered from literature that SQL is challenging and difficult. Then one of the

educational design principles of learning known as Chunking was looked into. This is

in view of how Chunking could be applied in the design of an SQL system so as to

allow students pay attention to the small units of skills recommended for learning

within a given assessment; and not on a long waiting lists of recommended materials

to learn. This way, Chunking prevents fatigue, and boosts enthusiasm in learning.

The literature then surveyed some strategies that have been combined with multiagent

development for supported learning. But with a few actually targeted at the

misconception, misunderstanding or gaps in students’ learning. For instance, in the

QuizMASter system, the system supports student to learn through friendly

competition. But this is only by examining the learner’s attitude and emotional states.

An approach that provide motivation to learning and appropriate feedback, but not

content of learning. A similar approach is accounted for in the multi-agent adaptive

course delivery system on Euclidean Geometry, where prediction for next stage of

learning is by agents’ monitoring of physical behaviour of students at the interface.

This approach will certainly not gauge the appropriate material for next learning.

Alexakos et al. (2006) and González, Burguillo & Llamas (2005) case-based reasoning

approaches to support learning with the application of agent based systems assessed

students for learning. But the strategy for question selection was not reported. Question

selection strategy is determined by the kind of assessment being considered. The

AdaBoost (Abdullah, Malibari & Alkhozae, 2014) approach used historical data to

learn current data for the classification and prediction of students’ grade. The system

compares grades to gauge students’ progress, not giving attention to the critical

cognitive areas that can cause low performances. The best strategy for supporting real

time learning is the identification of skills. This was addressed in Chadli, Bendella &

Tranvouez (2015) by identifying domain skills in the system, comparison of students’

skill and evaluation of student ability. This type of model was targeted at unravelling

Chapter 2 knowledge Representation and Intelligent Tutoring Systems

34

the skills set of students in that domain, and would inform the tutor where the strengths

and weaknesses lies. The chapter also presented three categories of student model

architectures for designing intelligent tutoring systems. From Padayachee (2002) the

new generation student model architecture was stated as those models that supports

multiagent system development. Looking at the models, components of the Classical

Four-Model architecture can be integrated into the new model architecture of

multiagent systems. This involves the knowledge base which holds the target

knowledge, the student module that store students’ cognitive states, pedagogical

module that has the teaching strategy or sequence for efficient selection of learning

path; and user interface for interactive dialog. The next Chapter 3 continues with

literature survey on agents and multiagents.

Chapter 3

Agents, Agent Oriented

Methodologies and Interaction

3. Introduction

In Chapter 2, the history of different knowledge representation (KR) languages for

specifying knowledge was presented as well as intelligent tutoring systems, their

architectures and multiagent systems for educational purposes. This Chapter 3

continues with the literature on agents, agent properties and architectures, their

methodologies and communication. As defined in Chapter 1, the Pre-assessment

System is an agent based system. In view of that, this chapter looks at the various

phases of agent oriented analysis and design for a choice of a suitable methodology

for the design of the agent based pre-assessment system of this research. Also, the

chapter discusses the speech acts theory (Searle, 1969) and its influence on agent

communication languages, some agent oriented programming languages, and Jason

AgentSpeak Language (Bordini, Hubner & Wooldridge, 2007) in the communication

of logic based representation.

3.1 Agents

The term agent, otherwise known as agent based computing, agent based system or

multiagent system, are increasingly used within information technology to describe a

broad range of computational entities (Jenning & Wooldridge, 1995). An agent is an

autonomous computer system that is situated in some environment (Wooldridge,

2009). In that environment agents exhibits properties of autonomy, sociability,

reactivity and deliberation in order to meet their design objectives. Agents can observe

and perceive the state of their environment, and can perform actions intended to change

it (Fig. 3.1) (Russel & Norvig, 2003). The Figure 3.1 depicts the structure of an agent

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

36

model. In the model, agents have knowledge about the state of their environment, with

sensors, agents can observe percepts or inputs, and select condition-action rules to act

in that environment.

Fig.3. 1: The Structure of a Simple Reflex Agent (Russell & Norvig, 2010).

In Peredo et al (2011) agents are tools that independently perform various tasks on

behalf of human user(s) or other software agents. Agent based system may not be

stand-alone entities but a system consisting of a group of agents in the same

environment otherwise known as a multi-agent system (Gladun et al, 2009). As

applicable in other fields such as supply chain, autonomous vehicles, online trading,

and healthcare delivery, multiagent systems are gaining wider recognition for

educational applications.

Monett (2014), elaborated examples of agents’ environment with features that are

associated with teaching and learning. In Monett’s illustration of the interactive tutor

(Fig. 3.2), the environment that the agent will observe is specified as a set of students,

the keyboard as sensors; and academic exercises, suggestion for materials and

corrections as actuators on a display screen.

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

37

Fig.3. 2: Designing Intelligent Agents: An example (Monett, 2014).

3.2 Properties of Agent

Since agents independently perform different tasks on behalf of humans (Peredo et al,

2011), they also possess and exhibit some human attributes as described in literature.

For example, Genesereth & Ketchpel (1994), Castelfranchi (1995), Goodwin (1995)

Woodridge & Jennings (1995), Woodridge (2009), Padgham & Winikoff (2004), and

Bordini, Hubner & Woodridge (2007) have all proposed that agents are:

 Situated: That agents exist in a world in which it has sufficient knowledge

about, and can perceive and make changes to the world.

 Reactive: This is when an agent can perceive and respond to actions and

changes in its world. This property become successful if the agent can respond

quickly enough to the event. Failure to react leads to failure of subsequent

goals. Reactivity of agents can be dual: response to percepts on a graphical user

interface and/or response to shared messages.

 Deliberative: This is the application of practical reasoning mechanism on how

to achieve a state of the world. A deliberative agent has an internal model of

the world and uses its model to reason about the effects of perceived inputs in

order to select appropriate intentions that it predicts will accomplish the task.

3.3 Agent Architectures

An architecture proposes a methodology for building an autonomous agent [system];

and explains how the system can be decomposed into the construction of a set of

component modules [i.e. behaviours] and how these behaviours should be made to

interact (Maes, 1991). In Wooldridge & Jennings (1995) agent architecture represents

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

38

the move from specification to implementation. The decomposition process in the

views of Wooldridge & Jennings (1995) involves analysing the agent property to be

satisfied, perception of input data, internal knowledge representation, and the

programming language for implementation.

While Wooldridge & Jennings (1995) identified the different agent architectures, Chin

et al. (2014) categorised the architectures into three broad groups, namely: cognitive

architecture, semantic agent architecture and classical architecture. The classical agent

architecture that comprise the logic-based architecture, reactive architecture, hybrid

architecture, and BDI architecture are explained as follows:

3.3.1 Logic-based Architecture

This architecture uses symbolic representation for modelling agent behaviour and

reasoning. This involves the definition of agent capability using logic based semantics

for expression of: rules, reasoning, knowledge preferences to react to several

alternative choices of actions, and retrieval of information for a user’s best interest

(Dell'Acqua et al. 1999). De Silva (2009) asserted that logical formulas are used to

represent agent beliefs, and from the deductions made from the logical formulas, agent

behaviours are derived. That the deductions from the formulas are through a set of

rules whose predicates or antecedents correspond to executable actions.

3.3.2 Reactive Architecture

This is a direct stimulus-response approach. That is, percept-to-action that may change

the state of the environment, and the dynamic beliefs of the actors or agents. Stimulus-

response are agent behaviours i.e. plans which are used for decision making processes

and for effecting changes in the agent environment for selective actions.

3.3.3 Hybrid Architecture

This architecture is also known as layered architecture. It is a hybrid of the reactive

and deliberative architectures. The subcomponents of the layered architecture are

decomposed into hierarchies of layers to handle different behaviours that interacts.

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

39

There are two different modes of the layered architecture, namely; 1) horizontal layer,

where all layers are directly connected to the input sensor and action output in the

environment, and every layer functions concurrently (Fig. 3.3); and 2) vertical

architecture, where the layers are arranged in sequence such that the data from the

input sensor is transmitted from layer-to-layer until the final layer for action output

(Fig. 3.4 and Fig. 3.5).

3.3.4 BDI Architecture

This is a deliberative agent architecture based on mental states characteristic of agents

which have belief, desire, and intention. Beliefs are the set of information an agent has

about the world e.g. itself and the environment. Desires are the agent’s motivation or

possible options to carry out actions. Desires corresponds to goals, and are post-

conditions executed in plans (Bordini, Hübner & Wooldridge, 2007). Intentions are

the agent’s commitments towards its desires and beliefs. Intentions are the executable

Fig.3. 4: Vertical architecture: two pass

 Fig.3. 3: Horizontal Architecture

Fig.3. 5: Vertical architecture: one pass

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

40

statements contained in an agent plan, and an unexecuted statement is a failed

intention.

3.4 Agent Oriented Methodologies

A Software methodology is a set of guidelines covering the entire life-cycle of a

software development process. The set of guidelines that make up the software

development stages have shared abstraction in both the Object Oriented Programming

(OOP) methodology and Agent Oriented Software Engineering (AOSE) paradigm.

The OOP developmental stages are Requirements, Analysis, Design, Development,

Testing and Maintenance. While the AOSE process subsumes the steps in OOP

methodologies, the concepts for developing objects (in OOP) are different from those

in agent based systems. The OOP covers concepts such as objects, classes and

inheritance. AOSE design concepts are terms that view agents as autonomous, situated,

reactive, and social.

Several AOSE methodologies have been proposed and tested for application purposes.

Amongst them are Gaia (Wooldridge et al. 2000), Tropos (Bresciani et al. 2004),

MaSE (DeLoach et al. 2001), PASSI (Cossentino, 2005; Cossentino, & Potts, 2002),

and Prometheus (Padgham & Winikoff, 2004). Though these methodologies show

similarities, there are varying degree of differences in their respective design process:

From requirements analysis through functionality modelling for agents to

implementation. In the following section, the Gaia, Tropos and Promethous are

discussed.

3.4.1 Gaia

Gaia is a methodology that is based on the OOP analysis and design principles for

modelling agent based system from the framework of a social organisation. From its

organisational perspective, analysts can develop complex systems using a model that

includes interacting entities and roles to achieve some set of organisational goals. A

tool that supports the Gaia methodology is Gaia4E (Cernuzzi & Zambonelli, 2009).

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

41

The Gaia model is made of two major phases which are analysis and design. But with

its concepts divided into two main categories: Abstract and Concrete concepts

(Jennings, Wooldridge, & Kinny, 1998; Wooldridge, Jennings & Kinny, 2000). While

the Abstract concepts are those used during the analysis stage to conceptualise the

system, they do not have direct realisation within the system; the concrete components

are those used in the design process, and do have direct counterpart during

implementation.

Firstly, to begin the Gaia model, Statement of Requirements must be obtained before

the analysis and design phase (Fig. 3.6). The statement of requirement is the

identification of the domain problem of the system.

Fig.3. 6: The Gaia model (Wooldridge, Jennings & Kinny, 2000)

 Analysis

This is the phase where the structure of the systemic organisation needs to be

understood given the requirement needs. Without details, roles (like offices) in an

organisation, interaction between roles, and organisational goals are identified. The

roles are defined by responsibilities, permissions, activities, and protocols

(Wooldridge, Jennings & Kinny, 2000). In the analysis phase, the aim is to identify

what (number of) agents will be part of the organisation given the decomposition of

roles. Roles may be combined, and an agent can have multiple roles.

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

42

 Design
This is the stage where the roles, responsibility and interaction protocols that have been

identified in the analysis phase are outlined between agents. What agent does what,

what agent interacts, and how? At this stage abstraction starts to turn into concrete

analysis that can transform into implementation. The design phase is made up of three

models, namely: Agent Model, Services Model, Acquaintance Model (Wooldridge,

Jenning & Kinny (2000):

1. Agent Model: The model that identifies and specifies the agents or agent types

in the system. An agent type is a set of agent roles.

2. Agent Services: The model that identifies the main services of an agent role.

A service is a coherent block of activity in which an agent will engage. Each

service contains input, output, pre- and post-conditions.

3. Acquaintances Model: This is the description of the communication protocol

(or links) between agent types. In this model, nodes represent agents while

links which are directed graphs represent communication between nodes. For

example, a → b which means agent a is sending message to agent b.

3.4.2 Tropos

Tropos is an agent oriented programming (AOP) methodology that strongly emphasise

two key notions: The use of mentalistic features such as goals and plans from the BDI

model, and Early requirement analysis (Bresciani et al. 2004). The tool, Taom4E

(Morandini et al. 2011) is a graphical modelling editor that supports the Tropos

methodology development phases. In Tropos, there are five main development phases

(Bresciani et al. 2004):

 Early Requirement

This is the first phase of requirement analysis held to be crucial compared to the Later

prescriptive requirement phase. In this phase, the ideas developed are used in the later

requirement phase. The domain stakeholders (or entities) are identified, conceptual

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

43

models are developed, and social actors are modelled so as to achieve organisational

goals, furnish resource, and execute plans.

 Later Requirement

The analysis from the Early phase are engaged at this phase. Conceptual models are

also extended. The aim of the requirement phases is to provide functional requirements

for the system.

 Architectural Design

At this stage, the system underlying architecture is defined in terms of subsystems (i.e.

components or actors), and inter-connected through control flow. The system actors

are mapped to set of agents, each with their specified functions.

 Detailed Design

This phase specifies agent capabilities and interactions between agents. At this stage

the implementation platform can be chosen where detailed design can be mapped

directly to the code.

 Implementation

This is the step-by-step activity carried out for the realisation of the system on the

programming or development platform.

3.4.3 Prometheus

Prometheus (Padgham & Winikoff, 2004) is an AOSE methodology designed for the

realisation of BDI agent systems with the use of goals and plans. It supports

development activities from requirements specification through to detailed design for

implementation. Prometheus has three inter-connected design phases which are System

Specification, Architectural Design, and the Detailed Design (Fig. 3.7). Prometheus

Design Tool (PDT) (Padgham et al. 2008; Zhang et al. 2008) is a graphical editor that

supports the Prometheus methodology.

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

44

Fig.3. 7: The phases of the Prometheus methodology (Padgham & Winikoff, 2004)

The PDT is an AUML (Agent Unified Modelling Language) tool and graphical editor

that supports the development and documentation of the major phases of the

Prometheus methodology for building agent based systems.

 System Specification

This is a major phase that characterises the definition of the scenarios, goals, roles and

the expected interactions within the system. This phase also identifies the interface of

the system, incoming percepts, and actions or outgoing information. In the PDT tool,

some of the facilities for realising the specification phase are Scenario Diagram,

System Goal Diagram, and System Role Diagram.

 Architectural Design

This is the phase where the agent types, their roles, the data and the kind of

communication and messages that the agents will involve in are identified. At this

phase, the system overall structure is already constructed and scenarios are developed

into goals, then to roles and interactive protocols. When developing goals, Zhang,

Kendall, & Jiang (2002) states that the question to ask is: what is to be done and how

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

45

they can be done? The PDT tool supports the architectural design phase with the

System Overview Diagram.

 Detailed Design

This phase defines the design of individual agent and their internal structure in terms

of Capabilities descriptors which are a set of related plans used for achieving a

common goal or common set of goals. Other descriptors are for data, events and plans.

At this phase, much finer details from the architectural phase are established. The PDT

tool supports the detail design phase with facilities such as Agent Overview Diagram

(Fig 3.8).

Fig.3. 8: Major models of Prometheus (Padgham and Winikoff, 2002)

PDT support for implementation, testing, and debugging is still limited (Padgham &

Winikoff, 2004). Thus, interaction design accomplished with the PDT tool have had

their implementation carried out on different agent oriented programming (AOP)

platforms. For instance, the Electronic_Bookstore system (Padgham & Winikoff,

2004) was implemented on JACK(TM) (AOS, 2015), Bordini, Hubner & Wooldridge

(2007) version of the Electronic_Book was implemented using Jason, and the Gold

Miners robot (Bordini, Hubner & Tralamazza, 2006) implementation using Jason. The

PDT also supports JackTM skeletal code generation in Java (Fig. 3.9).

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

46

Fig.3. 9: Jack code generation screen shot. The code generated are in Java, which is not the language
chosen for the execution of one of the objectives of this research.

3.5 Comparison of AOSE Methodology

The Figure 3.10 is the highlights of the Gaia, Tropos and Prometheus AOSE

methodologies. The Figure depicts the similarities and differences in their design

phases. The similarities centres around the use of a customised design tool for MAS

development, but all differ in the design steps. The Tropos concept of Softgoals which

is equivalent to Subgoals in Prometheus is a breakdown of Hardgoals and Initial goal

of agents (or actors) functionalities, respectively.

Methodologies Phases Comparison

Gaia

* statement of requirement

* analysis

* design

* Lack detailed step-by-step breakdown.

* No details on how requirement statements may be

acquired.

* View agent system as an organisational model.

* Roles are similar to functionalities in Prometheus.

* Editor tool Gaia4E supports design.

Tropos *early requirement phase

* later requirement phase

* architectural design

* Emphasises the Early Requirement Analysis, then

the Later Requirement Phase.

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

47

*detailed design

* implementation

* Specialisation of Goals into subclasses of Hardgoal,

and Softgoals for actors of system.

* No general architecture containing all the phases of

design as in Gaia, MaSE, or Prometheus.

* Has a design support tool called Taom4E.

Prometheus

* system specification

* architectural design

* detailed design phase

* No Early Requirement phase as in Tropos. But this

can be adapted.

* Uses Initial goals, that are refined or broken down

into Subgoals for agents.

* Very detailed design activity from System

Specification phase to other phases.

* Reliance on expert knowledge on domain subject for

requirement acquisition.

* Has a customised PDT, a AUML tool that supports

design process.

Methodologies Phases Comparison

Fig.3. 10: Comparative summary of Gaia, Tropos & Prometheus.

3.6 The Speech Acts Theory

When we use utterances in a language our intention is often to achieve a specific goal

that is reached by a set of actions (Finlay & Dix, 1996). The acts that we perform with

language are called speech acts (Austin 1962; Searle 1969). Speech acts theory treats

communication as actions. This is on the premise that speech actions are performed by

agents just like other action in realising their intentions (Woodridge, 2009).

3.6.1 John Austin: 1962

In the use of words which make up sentences, there is a meaning (i.e. semantics) as a

result of the relationship between the words (i.e. structure or syntax). Every utterance

has the characteristics of actions (things we do) (Woodridge, 2009). A speaker

performs a speech act by uttering a sentence with an associated intention to the hearer

(Oishi, 2006). The actions performed could change our state of belief, the physical

world or environment.

This concept of speech acts is recognised to have begun with John Austin in 1962.

Austin (1962) investigated three different aspects of speech acts that can form

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

48

performative verbs, namely: lucotionary, illocutionary, and perlocutionary acts which

are known as the stages of sentence transition. A sentence starts with locution (an

utterance), goes through illocution (the performative action) and end with perlocution

(the effect of the action). The illustrations are given as:

 Act (A) or Locution (Utterance): He said to me ‘make some cake’. The act of

saying something i.e. the utterance is heard.

 Act (B.a) or Illocution (Request): He ‘urged me to make me some cake’. The

act performed in saying something, i.e. belief addition.

 Act (B.b) or Illocution (Command): He ‘ordered me to get some cake’. Also

the act performed in saying something i.e. also belief addition.

 Act (C) or Perlocution (Effect): ‘He got me to make cake’. The act performed

after the Saying.

In agent technology and programming in general, locution (e.g. giving information) is

the act of variable initialisation, declaration or a tell performative; and illocution, the

request by message passing or input statements such as get, askOne, achieve; while

perlocution is the output after processing. The performative begins from the issuing

of utterances to the performing of the action. Thus in utterances, the performative verb

is action or doing words succinctly denoted and are capable of instigating a course of

action or changing the state of things. Examples are broadcast, tell, askOne, and

achieve in agent communication technology.

For successive completion of performatives, three “felicity condition” conditions are

required (Austin, 1962:14; Woodridge, 2002:165):

1. There must be an accepted conventional procedure for the performative, and

the circumstances and the actors (or agents) must be as specified in the

procedure.

2. The procedure must be executed correctly and completely.

3. The act must be sincere, and any uptake required must be completed, insofar

as is possible.

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

49

Austin (1962) then classifies illocutionary acts into five types, namely:

i) Verdictive: one can exercise judgment;

ii) Exercitive: exert influence or exercise power;

iii) Commissive: assume obligation or declare intention;

iv) Behabitive: adopt attitude, or express feeling; and

v) Expositive: clarify reasons, argument, or communication.

Although it is often argued that Austin’s classification is not complete and that those

coined categories are not mutually exclusive (Oishi, 2006). In other words, they are

overlapping categories (Jiang & Huhns, 2005).

3.6.2 John Searle: 1969

John Searle, who inherited his idea from John Austin, elaborated on the Speech Acts

Theory; and proposed five but varied classification of illocutionary speech acts to

Austin’s (1962), namely:

i) Assertives: Telling people how things are;

ii) Directives: getting them to do things;

iii) Commissives: committing ourselves to do things;

iv) Expressives: expressing our feelings and attitude; and

v) Declaratives: bringing changes into the world by our utterances.

Searle (1969) points out that, to perform an illocutionary act is to express an

illocutionary intention (Searle 1969) using performative verbs such as state, request,

command, order, and promise (Searle, 1969:23). This is a variation from Austin’s

(1962) that in the performative: the issuing of utterances is the performing of an action

(Austin, 1962:6). In actual fact, not all actions are performed after perceiving or

hearing of the utterance. Humans and agents are alike, they have autonomy─To or Not

To─over their behaviour.

From the foregoing, let a speaker S utters a sentence T to a hearer H, ACTION A can

only be performed by H after the occurrence of T if and only if H understands the

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

50

sentence or message from S, and H has the capability to act (Searle, 1969, 57:61;

Woodridge, 2002:165).

If intelligent systems are to interact with humans or other agents, then speech acts

performatives must be part of their program designs, and the acts treated as physical

actions (Woodridge, 2009). The sender’s [e.g. a user] intention must produce certain

response r in the receiver [e.g. situated agent in the artifact], and a value [e.g. concept]

of r [when received] (Schiffer, 1972) that would change its mental state. With speech

acts performatives, agents would share the knowledge contained in a message.

3.7 Pre, Post & Completion Conditions

The speech acts theory of John Austin and John Searle have predominantly influenced

the development of Agent Communication Language (ACL) such that current speech-

act based ACLs specify domain knowledge representation and perfomative

communication acts. Labrou & Finin (1998) semantics of speech acts shed more light

on the locutionary, illocutionary and perlocutionary acts. These three performative

conditions for agents’ communication have been represented as preconditions,

postconditions and completion conditions (Labrou & Finin, 1998; Bench-Capon,

1998):

 Preconditions: The fact that is established before an act is performed (i.e.

utterance).

 Postconditions: The fact that is established after the act is performed (i.e.

action).

 Completion: The fulfilment of the intention of the act performed (i.e. effect).

3.8 Agent Communication Languages

Communication between entities comes by interaction of information when there is an

utterance of a concept i.e. word, phrase, or sentence at one end and perception at

another. In a MAS environment, communication is a rational behaviour between

agents using a conventional language (Russell & Norvig, 2003). Thus, communication

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

51

is realised by a set of syntactic definition and semantic rules specified in a given

programming language, used in a program.

According to Pitkäranta (2004) agent communication can be divided into two

fundamental parts. Firstly, that agents have to agree on a common agent

communication language, which defines the types of the message performatives and

their meanings. Secondly, agents must have a common understanding of the

knowledge that is exchanged within the messages. In that regard, Dogac & Cingil

(2003) asserted that smooth MAS communication broadly depends on three composite

layers (Fig. 3.11), namely:

 Agent Communication Language e.g. Knowledge Query and Manipulation

Language (KQML) which uses performatives such as the tell, achieve, and

askOne;

 Content Interchange Format i.e. the content language e.g. KIF, Prolog; and

 Ontology i.e. the knowledge domain of interest for the system.

Fig.3. 11: Components of Agent Communication Language (Dogac & Cingil, 2003)

3.9 Agent Oriented Programming languages and Platforms

Agents are developed or programmed from a variety of different programming

languages or platforms. The following section presents a range of agent oriented

programming (AOP) and platforms for developing agent, their support capability for

building and implementing agent based systems.

ACL

Content language

Ontology

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

52

3.9.1 Agent0

Agent0 is a simple agent oriented programming (AOP) language for implementing a

multiagent system (Shoham, 1991). In agent0, an agent is defined to have four parts:

i) a set of capabilities (describing what the agent can do: a relation between an agent’s

mental state and environment), ii) a set of beliefs, iii) a set of commitments or

intentions, and iv) a set of commitment rules containing a message condition, a mental

condition and an action (Bădică et al. 2011). Agent0 agents communicate via request

to performing an action, unrequest to stop an action, and inform that changes the

agent’s belief.

3.9.2 PLACA

PLACA is the improved version of Agent0. PLACA was the first language to

introduced the concept of plans in agents. Both Agent0 and PLACA were designed for

experimental use, not for practical applications.

3.9.3 GOAL

GOAL is an agent programming language that uses declarative knowledge to specify

what the agents wants to achieve. GOAL provides building blocks to design and

implement rational agents. An agent beliefs and goals are used for action selection

and structured decision making. Agents use knowledge representation language

(symbolic, logic language) to represent information they have, their belief, or

knowledge in the environment in order to achieve their goals. Programming an agent

in GOAL means to program with the mental state of the agent and providing a coding

strategy for action selection. A mental state consists of declarative knowledge, beliefs

and goals (GOAL, 2016). Applications developed on GOAL has been in transportation

and logistics domain. Goal has no support for inter-agent communication via speech

acts.

3.9.4 Soar

Soar (Laird, 2008; Laird, 2015) is an architecture for developing general intelligent

systems. Soar represents and uses declarative knowledge (i.e. known facts). In the area

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

53

of teaching and learning, Soar has been used as a platform for the development of

STEVE (Soar Training Expert for Virtual Environments) an animated pedagogical

agent (Johnson & Rickel, 1997). STEVE teaches students procedural tasks, for

example, how to operate controls in an engine room. The capabilities of STEVE

include observing the state of the world, monitors students’ requests and questions

posed by students. The STEVE system has specified knowledge which it uses to

execute actions in the form of a hierarchy of plans. Each plan includes a set of steps, a

set of ordering constraints, a set of casual links of steps that leads to the achievement

of goals that is either an end goal or a set of pre-condition for another subtask. The

Soar architecture does not support the BDI model and speech-acts based

communication in agent based applications.

3.9.5 JACK

JACKTM is a commercial agent framework for developing autonomous decision

making system by the Agent Oriented Software (AOS). JACK is a BDI based language

that is based on Java (Busetta et al. 1999). JACK supports the development of

multiagent and agents exchange messages interchangeably in a peer-to-peer mode.

JACK agents are not bound to any specific agent communications language (Howden

et al. 2001). In Jack, plans constitute reasoning methods that provides agent the

capability to act. Examples of applications developed on JACK are in decision support,

and defence operations. As a commercial agent development platform, Jack is a costly

software; and it is suitable alternative to implementing the pre-assessment system.

3.9.6 Jadex

Jadex is a Java- based agent middleware architecture that implements the BDI agent

model: beleifs, desires (goals in JADEX) and intensions (plans in Jadex) (Bădică et al.

2011). Jadex does not enforce a logic-based representation of belief (Braubach et al.

2004). Jadex uses object-oriented programming for belief representation, and

declarative and procedural approach for specifying and defining agent components.

The Jadex agent are able to run on Jade. Like Jade that is also a middleware

architecture, Jadex agents communicate by exchanging Agent Communication

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

54

Language (ACL) messages. This also make Jadex a suitable platform to implement

the pre-assessment system where agents can have autonomous control over their state.

3.9.7 Jade

Jade (Java Agent Development Framework) is a FIPA compliant software architecture

for developing agent applications and interoperable intelligent mulitiagent systems

(Bellifemine, Poggi, & Rimassa, 1999; Bellifemine, Caire & Greenwood, 2007). Jade

is considered to be agent middle-ware that implements an Agent Platform for

distributed systems across networks. Agent communication is through message

passing in textual form, and FIPA standard is that the Agent Communication Language

(ACL) which is close to KQML is the language for inter-agent interaction and

interoperability on Jade. Running Jason agent language on the infrastructure Jade

initialises the Jade Agent Management platform. Thus, Jade is a suitable platform in

which the pre-assessment system agents can be implemented.

3.9.8 AgentSpeak

AgentSpeak programming language is a natural extension of logic programming for

programming BDI agents. An AgentSpeak agent is created by the specification of a

set of beliefs which is a set of ground (first-order) atomic formulas and a set of plans

which forms its plan library. The set of beliefs are the initial state of the agent’s

knowhow of its world. The belief atoms in first-order predicate form are belief literals

(Bordini & Hubner, 2007; Bordini, Hubner & Tralamazza, 2006). For instance,

father(peter) (Baadar & Nutt, 2003) and member(sam, cs) (Gelfond, 2008) are unary

predicate and binary relations, respectively. An AgentSpeak plan has a head which

consist of a triggering event that indicates the event in which a plan will be relevant,

and conjunction of belief literals in predicate form representing a context, and a plan

body which is a sequence of actions or goals that the agent has to achieve or test.

3. 9.9 Jason Agent Language

Jason is an extended version of the AgentSpeak language. In other words, a Java based

interpreter of AgentSpeak. It is an agent-oriented logic programming language whose

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

55

syntax draws similarities with Prolog (Programming in logic) language (Bădică et al.

2011) for belief representation and query. Jason implements the operational semantic

of AgentSpeak in the programming of MAS. Jason allows programming of agents in

the BDI model, environment perception, belief updates, inter-agent messages or

communication, and use of knowledge on how to do things in the form of plans. Agents

are programmed using beliefs, intentions and sub-goals in plans to accomplish goals.

Beliefs representation in Jason is in FOL atomic facts.

Programming in Jason is procedural (plan by plan selection), declarative (initial

specification of beliefs and goals like in Prolog) (Bordini, Hubner & Wooldridge,

2007). In Jason, agents communicate with each other in high-level manner based on

the speech acts (Searle, 1979) theory. Jason is also tightly integrated with Java such

that Jason can be used to situate agents in an environment model that is developed with

Java. Jason is cross-platform API that can be configured and run on jEdit or Eclipse

IDE.

The type of Infrastructure determines the nature of environment in which a MAS will

run or situate. As Open Source software, Jason allows developers to program multi-

agent systems using the Centralised, or Jade Infrastructure.

 Centralised: This is the infrastructure that allows MAS to run within a

localised system or computer. The Centralised Infrastructure which is

specified as

Infrastructure: Centralised

runs Jason MAS Project on a local machine.

Recall that one of the objectives of this research is to investigate the communication

of ontological concept (i.e. FOL atomic formulas) in the process of identifying gaps in

students’ learning. Before logic based formulas are communicated or shared by

agents for the identification of gaps in a learning domain, structured knowledge is

represented in FOL in agent as beliefs. The beliefs in Jason agent programming

language are in FOL form. That is, beliefs can be unary predicate or binary predicate

relation such as p(a) or p(a, b), respectively. Also Jason is a speech act (Searle, 1979)

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

56

based language that supports inter-agent communication in a MAS paradigm. In Jason

KQML performatives such as tell, askOne, and achieve are used for communication

between agents. While KQML is adequate for simple message passing, Cost et al.

(1999) observed that it would however break down as the range of interaction that an

agent will partake increases. Nonetheless, KQML performatives such as tell support

semantic interoperability and knowledge sharing of concept and resource between

agents (Klapiscak & Bordini, 2009; Da Silva Vieira, 2007). The TABLE 3.1 below

presents a comparative analysis of the foregoing AOP languages and platforms, and

our informed choice of Jason for implementing this project.

TABLE 3. 1: COMPARISON OF AGENT ORIENTED PROGRAMMING (AOP) AND

PLATFORMS

AOP BDI Speech

acts

Logic

based

Declarative Procedural Java

based

Agent

interaction

Open

source

Agent0     

PLACA     

GOAL    

SOAR     

Jack    

Jadex      

Jade     

AgentSpeak       

Jason        

3.10 Agent Interaction in Jason

Communication in MAS is typically based on the speech act paradigm (Bordini,

Hubner & Wooldridge, 2007). For inter-agent communication, there must be a sender,

a receiver, the performative and the content as shown in the construct:

<sender, illoc_force, propositional_content>

where the sender is an AgentSpeak atom (i.e. a simple term), meaning the name of the

agent that sends the message; illoc_force is the performative, the intention of the

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

57

sender; and propositional_content, the act to accomplish (Bordini, Hubner &

Wooldridge, 2007). The above construct are only executable as part of a plan. Thus

the message structure of the sender agent is given in the format:

.send<receiver, illoc_force, propositional_content>

Before looking at the meaning of a plan, some agent oriented programming (AOP)

concepts as they pertain to Jason are first discussed.

3.10.1 Beliefs

Beliefs in Jason are logic based representation that holds the knowledge an agent has

about the world. One agent can perceive the world and another can update the world.

Every agent has a beliefbase (BB) that contains the beliefs or mental status of the agent

at a given point in time. In other words, BB are a knowledge base (KB). A KB is a set

of sentences (Russel & Norvig, 2010) or information—semantic literals that agents

can understand and communicate. Thus, beliefs are assertion of the agent’s knowledge

about its world or environment. They are represented in predicate logic in the form:

 predicate(object)

or

 predicate(subject, object).

Some of examples of beliefs representation are (Bordini, Hubner & Wooldridge,

2007):

blue(box1).

Stating that box1 has the colour blue, and

 fact(0, 1).

Which states that the factorial of 0 is 1. These are beliefs an agent programmer would

provide as initial beliefs.

3.10.2 Annotations

These are terms that provide detailed information that are strongly associated with a

particular belief, and they are enclosed in square brackets. Generally, they can be

represented with extended annotation given in the form:

 functor(term1, …, termn)[annotation1, …, annotationm] .

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

58

Where annotationi are first order terms. For example, (Bordini, Hubner & Wooldridge,

2007):

red(box1[source(percept)].

This type of annotation depicts to the agent that the information is perceived from the

environment.

Or
blue(box1)[source(ag1)].

which states that the belief source is the agent ag1.

Other kind of beliefs annotation is that which is appended to a set of related beliefs

that are initialised as a group of related terms that belongs to one knowledge domain.

This Klapiscak & Bordini (2008) called semantically enriched (SE) literal e.g.

hasRating(hilton, threeStarRating)[o(travel)].

isPartOf(wembly, london)[o(travel)].

that asserts that hilton which is an individual in the relation is related to

threeStarRating by the object property hasRating, and that the individual

wembly is related to the london individual by the isPartOf object property,

respectively; where the annotation specifies that both relations are of the travel

[o(travel)] ontology.

3.10.3 Goals

Goals can be considered as events that needs to be achieved. They are the part of a

plan that makes the entire plan to be fulfilled or completed. In other words, goals are

the post-condition of a plan (Bordini, Hubner & Wooldridge, 2007). Generally, in

Jason, there are two types of goals:

 Achievement Goals: Achievement goals are those prefixed by the ‘!’ operator

and they are goals to do. The syntax is

!achievement goal.

Example:

!write(book).

Which is assigning the goal to write a book.

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

59

 Test Goals: Test goals are those prefixed by the ‘?’ operator and are goals to

test the truthness of a belief in order to retrieve the information from BB. The

syntax form is

?test goal.

Example:

?publisher(P).

That tests whether P is a publisher.

3.10.4 Mental Notes

At runtime or MAS execution, agents are also able to create beliefs and add them to

their BB. These kinds of dynamically-created beliefs are referred to as mental notes

which may be updates as a result of the changes that has occurred in the environment

they are part of, arithmetic operations performed, or messages (also known as percepts)

passed by other agents. The operators -+ are used to make mental notes. An example

is

-+current_targets(NumTargets);

which updates the current number of targets NumTargets. The meaning of this logic

formula can be split into two: -current_targets(NumTargets); which is to

delete information about any previously stored beliefs (if there exists one) about

number of targets, and +current_targets(NumTargets); which is to add a

new number of targets to beliefs.

3.10.5 Internal Actions

These are actions that are executed from within the body part of an agent, not from the

environment. In this process, the whole action will be done as one step of the agent’s

reasoning cycle. Standard internal action has the full-stop, that is ‘.’ prefix to a

statement. A few standard internal actions are:

.send used for inter-agent knowledge communication.

.print for screen display of information.

.wait which suspends an intention for a specific time.

.date that gets the current date.

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

60

.concat which is used for concatenating (i.e. joining strings).

3.10.6 Plan

Each agent is an autonomous entity with several plans (list of courses of action). In

executing a plan, agents make a selective choice, each in turns. Upon the receipt of a

percept or message, a selection is made from amongst these plans for the appropriate

action to execute. A plan has three distinct parts: triggering_event, context, and body,

and structure as:

triggering_event : context < - body.

 The triggering_event defines the occurrence of an events that can initiate the

execution of a plan.

 The context is the pre-condition that states what the agent already knows,

which are beliefs in first order or predicate terms that must be true for a plan

body to be executed. It is the context that decides what plan is likely to succeed.

In technology enhanced learning (TEL) for recommendation systems, context

is also defined as any information that can be used to characterise the situation

of an entity such that the term entity refers to a person, place or object (Dey,

Abowd & Salber, 2001; Verbert et al. 2012).

 The body are series of atomic operations or set of actions that the agent can

perform. In the performance of these actions, beliefs are updated, environment

status are changed, and other agents are communicated. Internal actions as

listed above are carried out in the body of a plan. A plan body also have goals

and sub-goals that executes the intention of the plan.

An example is (Bordini, Hubner & Wooldridge, 2007):

@h3
+!has(owner, beer) : too_much(beer) & limit(beer, L)
 <- .concat("The Department of Health does not allow
 me ", "to give you more than ", L,

" beers a day! I am very sorry about that!" ,M);
.send(owner, tell, msg(M)).

where,

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

61

@h3 is the plan label that is giving a name to the plan. The +!has(owner, beer)

is the triggering_event adoption from a previously stated achievement goal

!has(owner, beer). The too_much(beer) & limit(beer, L) are

the pre-conditions in the plan context that needs to be true. A plan context can also

contain negated facts to test as a pre-condition. Or a comparison operator = = (for

equal) or \= = (for different) that is comparing two terms like in Prolog. The

.concat() predicate or functor is the agent action in the plan body, which is

concatenating the sentences in quotes, and to store in the variable M. The .send()

is another agent action that is communicating with the agent owner using a tell

performative to inform the agent of the content of M.

3.10.7 Why Jason Agent Language?

Agents are computational entities that can be situated in simulated environment or in

a real world. In this work, multiagents are meant to interact and to perceive the real

world. For instance, consider a MAS developed to control the temperature of a room

under the condition of observable number of people at any given time. When an agent

acts, the action will be effected by a heating device (i.e. the hardware) and its percepts

by a sensor also in the heating device. Such environment functionality can be

supported by Java in developing the software side of the agent interface that enables

the agent to continuously observe the environment.

To program a MAS for educational purposes, the choice of Jason was informed based

on the analysis of the preceding subsections and the Table 3.1 above. More so, in Jason,

agents can be programmed to have individual responsibility and cooperate on tasks

through inter-agent communication. As a reactive system, Jason agent language

applies practical reasoning approach to agent actions such that agents can continuously

monitor their environment, update their beliefs and take action according to the context

of their plans. Agents’ observation of their environment can be synchronous or

asynchronous. In this study and system research, agents’ observation of their

environment shall be asynchronous via the CartAgO artifact (Ricci, Piunti, Viroli,

2011).

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

62

3.11 Agent Environment Programming

One of the properties of agents as given earlier is that they reside in an environment

from where they get percept through sensors, and there-after act on them via actuators

(Wooldridge, 2009; Russell & Norvig, 2010). In a MAS, such an environment or

percepts from it are shared by agents (Bordini, Hübner, & Wooldridge, 2007). An

environment can be a real world (e.g. in manufacturing) or a simulated world (i.e.

virtual). Environments can either be fully observable or partially observable by the

agents. For instance, a world where an agent is directly situated and can observe the

dynamic changes in it is a fully observable environment e.g. the domestic cleaning

robot (Bordini, Hübner, & Wooldridge, 2007). But where agents cannot be directly

situated in an environment to observe it, yet can perceive inputs from such

environment is what Wang (2014) referred to as Partially Observable state. In Wang

(2014) development of an ITS students were termed as the partially observable

environment for agent observation. The environment in this research is as conceived

in Wang (2014), where the partially observable environment is not the natural

environment such as in the domestic cleaning robots, but an environment in the context

of AOSE where the environment is part of the software system: This, Ricci, Piunti &

Viroli (2011) called endogenous. From this viewpoint, Ricci, Piunti & Viroli (2011)

states that

Programming MAS = programming agents + programming environments

with the view that the two sides of the equation are programs, but with the environment

programming part strongly integrated to the agent part. This critically conforms to the

definition of an agent in Wooldridge (2009) that — an agent is a computer system that

is situated in some environment.

3.11.1 Artifacts and Human Interaction

The term artifact was first introduced by Ricci, Piunti, & Viroli (2011) as an interface

for human-agent interaction design, and state that artifacts are runtime devices

providing some kind of function or service which agents can fruitfully use both

individually as an agent and collectively as multiagents to achieve their individual as

well as social objectives. Artifacts can be generally conceived as function-oriented

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

63

computational devices in which function refers to the meaning that is generally used

in human sciences such as sociology and anthropology, as well as artificial intelligence

(AI) to depict the purpose for which the device has been designed. Which is to support

agent activities in observing percepts or inputs and display of outputs. Artifacts from

a MAS programmer point of view are a first-class abstraction that will target and

program a functional environment that agents can exploit at runtime. This includes

functionalities that concern observation, inter-agent interaction, and interaction with

the external environment. Artifacts are tools that supports agents and humans to

achieve their given goals and needs, respectively. This is achieved by the construction

and configuration of a common interface between agents and human users. Artifacts

are agent’s sensors for obtaining input states that can trigger the action of the agent or

MAS.

3.11.2 The CArtAgO Artifact

The CArtAgO framework (Common Art ifact infrastructure for Agent Open

environment) (Ricci, Piunti, Viroli, 2011) is a model for realising environment-

mediated interaction between agent and/or human. The MySimpleGUI interface (Ricci,

Piunti, & Viroli, 2011) is one example of an agent based graphical user interface (GUI)

implementation from the CartAgO framework. At the start of the MAS, the agent

creates the GUI which is the interface for the user and agent system to interact. During

operation, which are iterated numeric calculation, the agent-designate on the artifact

monitors events that are programmed in Java as input (from mouse click actions) and

output the processed results.

3.12 Summary of Chapter

As a continuation of the literature survey, this chapter presented the structure of the

simple reflex agent model, and an interactive tutor agent model. It presented and

described agents as computer system that react to events in their environment, and

cooperative through interaction to solving a problem, deliberative before the selection

of a plan for execution, and autonomous because they have control over their internal

actions. The chapter presented three categories of agent architectures and stated that

Chapter 3 Agents, Agent Oriented Methodologies and Interaction

64

the classical architecture comprises the logic-based, reactive, hybrid (which combines

both the reactive and deliberative models); and BDI architecture modelled after the

human cognitive status. The chapter went further and surveyed agent methodologies:

Gaia, Tropos and Prometheus in their phase to phase descriptive designs. Though all

three mentioned methodologies have their associated design tools, Prometheus Design

Tool (PDT) appears to be more detailed for developing agent based systems. The

speech acts as a theory of semantic (meaning) communication was stated to have

influenced agent communication or interaction languages. Different types of agent

programming languages were also covered and described in terms of their knowledge

representation model and their support for inter-agent communication, and their area

of application development. Because of Jason agent language support for logic based

representation and inter-agent communication of concepts which is one of the

objectives of this research, Jason syntax was analysed in details in its Prolog-like

beliefs representation, goals, and plan structures. The chapter introduced CArtAgO

artifact as a model for developing agent environment interface for observing percepts.

The next Chapter 4, presents the PDT AOSE graphical editor tool, chosen because of

its detailed engineering process as the software engineering tool for the analysis and

design of the Pre-assessment System of this study.

Chapter 4

Methodology: Agent Oriented

Analysis & Design and Classification

Method

4. Introduction

In Chapter 3, the literature of three types of agent oriented methodologies, namely:

Gaia, Tropos and Prometheus were presented according to their phase to phase

interactive design process. After the analysis of the methodologies, Prometheus was

chosen as the agent oriented design approach to apply in this research. This chapter,

therefore presents Prometheus in its step-by-step design process for designing agent

based system from the initial step of problem description, scenario development, goal

specification, agent roles and interaction, protocol analysis and agent capability

specification. The chapter then presents the parameters of a student model used in the

development of the Pre-assessment System as well the Pre-assessment Mechanism that

symbolises the strategy for identifying gaps in students’ learning, classifying students

and making recommendation for their learning. In addition, the chapter illustrates with

examples the modelled rules estimation formula that calculates the number of

classification rules for the classifier agent.

4.1 Prometheus Agent Oriented Software Engineering

Agents oriented software engineering (AOSE) is an approach to developing intelligent

agent systems. The methodology for analysing, designing and developing a multiagent

systems varies. For this research the Prometheus methodology was adopted. The

Prometheus method is an approach that engages its graphical editor in engineering the

design process. The tool is known as the Prometheus Design Tool (PDT). PDT is an

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

66

AUML tool that supports the step-by-step design process. In the following section the

range of notation symbols for the interactive design and detailed documentation are

introduced.

4.1.1 Notation Symbols of PDT

The Figure 4.1 present the PDT notation symbols and their functions in the design of

agent based systems.

Name Symbol Description

Agent

The agent symbol.

Action

This is what the agent does that has effect
on the environment or other agents.

Role

This symbolises roles or group of roles for
agents.

Protocol

Protocols specifies interaction between
agents. Protocols are specified using
textual notations that maps to AUML2.

Data

This is used to represent the belief (internal
knowledge model) or external data. It is
where functionalities that transcends to
agent read or write data or information.

Messages

This is used to symbolise a message
communication between agents.

BDI

Messages

This symbol is used to represent messages
that updates the beliefs of agents.

Percept

Represents the input coming from the
environment to the agent.

Scenario

This is an abstract description of a sequence
of steps taken in the development of a
system. It is usually the initial step that
starts for the breakdown of the “statement
of problem” or description of the problem
to solve.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

67

Goal

It is the realisable target or achievement set
for an agent.

Connection
Arrows

They are edges that connects entities (i.e.
symbols) together.

Fig.4. 1: PDT notation symbol.

The following section starts the design of the multiagent system for the pre-assessment

of students’ prior knowledge using the PDT tool. As a set of guidelines, the

Prometheus methodology proposes three major agent software development phases,

namely: System Specification, Architectural Design and Detailed Design, and PDT

supports design through these phases.

4.2 System Specification

The specification phase as described in Chapter 3 begins with a high level description

of the problem, then the identification of initial goals from the description.

a) Identifying initial goals:

As stated in Padgham & Winikoff (2004) initial goal specification always begin the

process of an entire system goal specification and functioning stages of a multi-agent

system (MAS). The following description states and identifies what the system is

going to do (Ehimwenma, Beer & Crowther, 2014b; 2015a):

A student desires to learn a concept. The student enters a concept on the

system. The system needs to ensure the student has understanding of

prerequisite concepts to the desired concept. The student is tested, learning

activities are aggregated and classified in continuous interactive feedback

process, and belief store updated all the way. In the end, appropriate learning

materials are recommended.

b) System goals

Based on the above stated description, the system goals are:

 Observe percept

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

68

 Understanding of prerequisite

 Testing

 Classifying

 Continuous feedback

 KB update

 Recommend materials

c) Goal specification

The question is how can each of these goals be achieved? Each of the goals had further

sub-goals developed as follows:

i) This step is where agent gets percept (e.g. desired_concept) and display it:

* Observe percept

- Receive user concept

- present concept

DESIRED_CONCEPT

ii) To the step where quizzes in belief based (BB) are retrieved and presented:

* Understanding of prerequisite

 - quizzes in BB

 - answers in BB

 - prerequisite assessment from quizzes and answers

UNDERSTANDING PREREQUISITE

NB: By further re-arrangement or refinement, the sub-goals in the Student has

understanding of prerequisite goal can become sub-goals of TESTING (below).

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

69

iii) This is the step of testing student knowledge:

*Testing

 - search BB for quizzes

- fetch (sub-concepts or) prerequisite quizzes

- receive answer

- fetch BB answer and compare with students’

 - make assessment decision

TESTING USER

iv) To the step where agent gets aggregated BB updates of messages communicated

about pre-assessment, matching beliefs in plan context, and classifying student

knowledge:

*Classifying

- aggregate learning activity

 - use predicate statement rules

 - classify students based on rules match

CLASSIFICATION

v) To the step where all learning activities are stored persistently:

*KB updating

 - store user learning activity persistently

PERSISTENT BELIEF STORE

vi) This step shows that the system is continuously interacting and communicating the

outcome of every activity to the student:

*Continuous user feedback

 -user friendly interaction from assessments

 -welcome and introduction to system

USER INTERACTION

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

70

vii) This is the step where learning materials are recommended for students:

*Recommend materials

 - concept ontology in BB

- search ontological relation

- fetch URL link

- present to user

RECOMMENDATION

4.2.1 Scenario Overview

Scenarios and system goals are complementary. In process of extracting the main goals

from the problem description, scenarios were also being developed. The Figure 4.2

shows the set of scenarios derived from the specified goals using the PDT Scenario

Overview diagram.

Fig.4. 2: System scenario view.

4.2.2 System Goal Diagram

The PDT System goal overview diagram enables the break-down of the set of derived

scenarios into units of achievable design steps. The Figure 4.3 is the system goal and

subgoals design and the interactions between them. The AND is a conjunction function

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

71

which indicates that, at that level of design, the agent must communicate both the

classify and the persistentBB update after its decision making function.

Fig.4. 3: System goals specification for the pre-assessment system.

In the Figure 4.3, the user interface goal is seen interacting with the understanding of

prerequisite goal which connects to the testing goal. Then to the make decision goal

that is linking both the classify and persistentBB update goals after its decision making

function; and the classify goal connects the recommend material goal. The solid arrow

lines are the connections between goals, while the dotted lines are the links between a

main goal and its subgoals.

4.2.3 Set of Functionalities

From system goals, a set of functionalities are derived as roles for the system. In the

step, these roles are grouped together. These roles later turned out to be set of

functionalities or roles for the agents.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

72

Fig.4. 4: System role overview showing structured Functionalities.

4.3 Architectural Design

In this phase, the different agent of the Pre-assessment System has been determined

and included in the design. The phase also consists of the system overall (static)

structure using system overview diagram, and the description of the dynamic

behaviour of the system using interaction diagram and interaction protocols.

4.3.1 Analysis Overview

From the system scenario step, interactions within the system is first established using

the analysis overview diagram (Figure 4.5). This involved including the agents.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

73

Fig.4. 5: Analysis overview from system scenarios.

4.3.2 Agent Role Ordering

Agent roles ordering is the design step for identifying and grouping roles for the

respective agents in the system. From the system role grouping of the preceding phase

in Figure 4.4, agent roles were ordered in Figure 4.6.

Fig.4. 6: Agent Role Grouping.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

74

4.3.3 System Overview

In this step, all the entities, that is, the agents, their percepts, type of messages, actions

and interaction in the design (Fig. 4.7). From the System Overview step, protocol

interactions between agents were derived using the AUML2 facility (Fig. 4.8). In the

system overview diagram, data are also coupled with agents to specify the type of data

being used. In this design, the data are quizzes, answers to quizzes, and URL data links

for each of the sub-topics (leafnodes) in the ontology. These data are modelled as

internal knowledge or beliefs in the agents.

Fig.4. 7: System overview diagram.

To specify protocols interaction design for agents, the AUML commands must be

issued. The Figure 4.8 presents the AUML protocol commands that produced the

protocol interaction diagram in Figure 4.9 and protocol interaction table in Figure 4.10.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

75

start Preassessment process protocol

agent St student

agent T agInterface

agent S agSupport

agent M agModel

agent C agModelling

agent O agMaterial

box alt

 message T St promptDesired_Concept

 message St T Desired_Concept

 message T S tell: Desired_Concept

 message S C tell: Desired_Concept

 message S M tell: Desired_Concept

 message M M permanentStore

end alt

box loop

 message S S fetchPre_Quiz

 message S St displayQuiz

 message St T tell: Answer

 message T S tell: Answer

box alt

guard [Answer Ok]

 message S St informPassed

 message S C tell: Passed

 message S M tell: Passed

 message M M storePassed

next

guard else

 message S St informFailed

 message S C tell: Failed

 message S M tell: Failed

 message M M storeFailed

end alt

end loop

box alt

 message C C classify

 message C O achieve: Classification

 message O O fetchMaterialURL

 message O St displayMaterialURL

end alt

finish

Fig.4. 8: FIPA-compliant AUML command protocol.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

76

Fig.4. 9: FIPA Compliant AUML protocol diagram analysis for inter-agent interaction. It shows the
dynamic interaction of agent message passing via performatives.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

77

The Figure 4.9 has a loop segment. The loop depicts the process where the agent

agSupport uses achievement goals to navigate from leafnode to leafnode in hierarchy

of concepts to retrieve quizzes which are represented as logic formulas in its BB to test

students’ knowledge.

Fig.4. 10: AUML Protocol Interaction table.

4.4 Detailed Design

This phase is focused on the description of responsibilities and capabilities of the

internal structure of the individual agent, and how they will achieve their task within

the system. Diagrammatically, these capabilities have been realised on the agent

overview canvass.

4.4.1 Agent Overview

In this section, individual agent internal details are presented. Using the plan notation

symbol, percept, triggering event, inter-agent messages and data are specified. At the

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

78

agent overview stage, inherited interfaces from e.g. the system overview phase are

adopted for specifying agents’ details. The inherited interfaces, that is, notation

symbols are those that appears greyish in colour.

a) Agent agInterface

In Figure 4.11 is a much refined detailed design where CArtAgO artifact is the medium

to get input from the user is specified.

Fig.4. 11: Detailed overview of agent agInterface.

The interface agent first creates the artifact in order to observe it. All inputs that are

observe are communicated as messages, in agent plan (shown with the plan diagram

or symbol), to the agent agSupport that is responsible for pre-assessing students.

b) Agent agSupport

Fig. 4. 12: Agent agSupport receiving the desired_Concept percept and retrieving quizzes.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

79

Fig.4. 13: Agent agSupport Overview: Using answer percept to make comparison. Taking pass or a
fail decision, and communicating all activities and decision reached to other agents of the MAS by its
agent plans. This agent also date and timestamp learning activities.

c) Agent agModelling

Fig.4. 14: The agent agModelling: The classifier agent Overview

 This agent gets message percepts from agent agSupport for every leafnode whose pre-

assessment is completed. It starts matching the right pre-conditions in plan context

with the messages received, and thereafter select the appropriate categorisation of

students.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

80

d) Agent agMaterial

Fig.4. 15: Agent agMaterial: The learning material agent Overview.

This is agent agMaterial keeps the URLs links of learning material as ontology. At

the receipt of an achieve performative message from the classifier agent (after

classification), the agent agMaterial then releases learning materials for students to

learn. These materials are dependent on the number of failed and passed prerequisite

assessment.

e) Agent agModel

Fig. 4. 16: Agent agModel (student) Overview

This agent uses the Java TextPersistentBB class to store all the learning activities in

the system. The TextPersistentBB is configured in the MAS at the point of declaring

or naming the agents .Mas2j project level of implementation. The activities stored are

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

81

messages to the agent, and they are desired concepts, answers (both correct or

incorrect) percept. This plan keeps other information such as desired_Concepts, and

quizzes apart from the SQL answer queries from students.

4.4.2 Roles and Capability Descriptors for Agents

In summary, the Figures 4.17 and 4.18 outlines the detailed Capability Descriptors of

the agents in the system. While Roles are the functionalities meant for agents to

achieve, Capabilities are a set of related plans used for realising goals. Goals are steps

through which agent fulfill their intentions.

Roles Goals Capability/plan

Obtain input percept

-Communicate percept

-Display percept

Capability

Pre-assessment

-Use input communicated

-Percept request from ontology

-Present prerequisite quizzes

-Compare answer percept with BB

-Take decisions

-Communicate decisions and

activities

-Date and timestamp activities

Capability

Obtain decisions made

-Aggregate updated decisions

-Use predicate statement rules

-Match rules

-Classify by rule match

Capability

Obtaining classified

information

-Search ontology BB

-Match URL ontological relations

-Present URL link

capability

Keep persistent information -Use persistentBB class

-Store persistently

Capability

Fig.4. 17: Capability descriptor.

Goals Plans Actions Percepts Internal

Action

Data

Communicate

percept

In a

plan

Performatives: tell,

achieve

Triggering event:

desired_Concept, SQL

answer queries

.send

 N/A

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

82

Display

percept

In a

plan

Screen print

Triggering event:

desired_Concept

.print

 N/A

Percept

request from

ontology

In a

plan

askOne request

Triggering event:

desired_Concept

Ontology

BB

Use input

communicated

In a

plan

 Triggering event:

desired_Concepts,

correct SQL answers,

incorrect SQL answers

 N/A

Present

prerequisite

quizzes

In a

plan

Goals, subgoals, and

screen print

Triggering event:

desired_Concept, SQL

answer queries

(correct/incorrect)

.print

Quizzes

BB,

Answers BB

Compare

answer

In a

plan

Feedback to student:

pass or fail

Triggering event: SQL

answer queries

(correct/incorrect)

 Quizzes

BB,

Answers BB

Take

decisions

In a

plan

Make a pass or a fail

decision

N/A N/A

Communicate

decisions

and

activities

In a

plan

Send answers logged

in by students,

[passed or failed]

predicate messages

N/A

.send

N/A

Aggregate

updated

decisions

 Update beliefs with

all the decisions

[Passed or Failed]

received

Passed or Failed

prerequisite decisions

 N/A

Match rules

Set of

plans

Match plan context

with updated beliefs

Triggering event:

desired_Concept, SQL

answer queries

(correct/incorrect)

 N/A

Classify by

rule match

By a

plan

Select the relevant

plan and communicate

recommendation

message

 N/A

 N/A

Match URL

ontology

relations

In a

plan

Match or unify plan

context

Triggering event:

Recommendation message

 N/A

Present URL

link

In a

plan

Release URL link N/A .print N/A

Store

persistently

Use persistentBB

class

Triggering event:

desired_Concept, SQL

answer queries

(correct/incorrect)

 Text

Persistent

BB

Goals Plans Actions Percept Internal

Action

Data

Fig.4. 18: Expanded summary of capability descriptor: percepts, triggering events, goals, plans and data
used by agents in the system.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

83

4.5 The Student Model

Baffes (1994) states that a student model involves the method used in representing the

knowledge of students. As given in Padayachee (2002), modelling a system for

learning purposes involves the use of interactive component and attributes of the

learner (i.e, the student). The Classical Four Model (Padayachee, 2002) architecture as

shown in Chapter 2 has a Tutoring Module that uses: a strategy for diagnosing

misconception and learner’s need, a module that stores a student’s current cognitive

status, a knowledge base module containing domain knowledge and the procedure of

learning, and a user interface for interactive dialog. The agent based Pre-assessment

System of this study mirrors this type of ITS architecture where a diagnostic strategy

is being employed to identify gaps in students’ learning in a system that can also collect

students’ learning activities, keep students’ learning attributes and classify students’

knowledge for learning materials.

Agents are designed to observe their environment. The environment to observe in this

research are not natural environments. Rather a student environment that is part of a

software system (Ricci, Piunti, Viroli, 2011). Wang (2014) called this environment a

partially observable environment. In this research, for agents to observe the student

environment, the environment needs to be modelled with the parameters that can elicit

and represent the inherent knowledge attributes of students with regards to identifying

gaps in their learning. To this effect, a student model was devised with five parameter

information from the viewpoint of the Tutoring Module (Padayachee, 2002) that can

diagnose misconception in students’ learning. In a tuple, the model is given as: M =

<D, C, P, F, V, S> (Ehimwenma, Beer & Crowther, 2015a; 2015b) where

 <M>: is the model.

 <D>: The desired_Concept is the set D = {C1, C2, ..., Ck-1, Ck} of observable

parent classes in an ontology tree that has leafnodes N such that �௜,௝ are the set

of leafnodes with respect to �௜.
 <C>: The set of prerequisite such as C = {C2}; C = {C2, C3}; or C = {C2, C3,

…, Ck-1, Ck} parent classes underneath a desired_Concept D. In general, a

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

84

prerequisite to a desired_Concept �௜ is �௜ - �௜−ଵ. For instance, let C1 be a

desired_Concept, then any other element of the set C can be a prerequisite(s)

to C1, respectively. That is, a D ≡ C.

 <P>: The set of passed predicate P = {p1, p2, ..., pk-1, pk} over the leafnodes N

of the prerequisites C to a desired_Concept D. The first order logic (FOL) form

is P(�௜,௝) for a given leafnode. Thus, for the prerequisite C, the index x in ��

represents the total number of individual leafnode N per �௜. Therefore, N C

i.e. N is subclassed by C, and C D i.e. C is subclassed by D. At start of pre-

assessment any D ≡ C. The P(�௜,௝) formula symbolises knowledge gain.

 <F>: The set of failed predicate F = {f1, f2, ..., fk-1, fk} over the leafnodes N of

the prerequisites C with respect to a desired_Concept D. In FOL formula this

is given as F(�௜,௝) for a given leafnode N per Ci. The F(�௜,௝) formula

symbolises knowledge gap.

 <V>: The set of observable inputs e.g. SQL answer queries V = {V1, V2, ..., Vk-

1, Vk} from students over the leafnodes N of the prerequisite C to a

desired_Concept D. For every correct answer input that is assessed, the atomic

formula P(�௜,௝) as the corresponding decision statement is taken and

communicated; for every incorrect answer input, the corresponding predicate

F(�௜,௝) decision statement is taken and communicated for appropriate

classification.

 <S>: The set of timespent S = {�ଵ, �ଶ, ..., �௞−ଵ, �௞} by a student on pre-

assessment activities; such that, �௞ is the time interval between a given question

on the system and the student answer. This is so because every activity and the

expected students’ response are timestamped by an agent.

The choice of the parameters <D>, <P> and <F> which are predicates for first-order

logic statements, a form of knowledge representation stated in Chapter 2 (e.g.

Father(peter) (Baader & Nutts, 2003)). In addition, the <D>, <P> and <F> are for

agents’ communication and for reasoning by the agent agModelling for the

categorisation of students for learning materials. This is in contrast to SmartTutor

(Gamalel-Din, 2002) where learning-by-experience was used. The use of these

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

85

parameters in this research is informed by their absence in literature as predicates in

logic based statements for multiagent systems development.

The <P> and <F> represents the predicates for the logic based decisions statements in

the agent agSupport plan after every pre-assessment. They represent boolean values.

While the <P> is the predicate in the logic statement that will communicate the

decision on correct answer response, the <F> is the predicate that would communicate

the decision on the incorrect answer response. From the model M, above, the

following outlines the purpose of the modelled parameters in the Pre-assessment

System:

 To fetch and communicate observed percepts (inputs) from the environment:

Consider <D> or desired_Concept as any topic or concept a human tutor, for

instance, wants to teach. The Pre-assessment System, like the tutor wants to

know whether students are prepared for <D>. Then the system pre-assesses

students on the past prerequisites <C>. To fetch quizzes of prerequisite

concepts, agent uses !achievement goals.

 To construct classification rules for agent: To classify students for

appropriate learning material, the classifier agent agModelling gets messages

from the pre-assessment agent agSupport with a tell performative. This

messages are the decisions reached after each pre-assessment. The decisions

statements that are communicated are logic based formulas with <P> and <F>

as predicates. After aggregating the messages, the plan context that is matched

in the agent agModelling would be triggered, and further message

communication is sent using the achieve performative to agent agMaterial

(Fig. 4.14).

 To support the release of URL links after classification: The message

expected by the agent agMaterial are recommendation triggers from agent

agModelling. When the agent agMaterial gets these messages, it also matches

the appropriate plan context and release the URL(s) for learning material(s)

(Fig. 4.15).

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

86

 To keep student learning history: In order for the tutor to unravel possible

difficulties facing his students in the domain context (i.e. SQL) of learning (of

this research), the TextPersistentBB class shall be configured in the MAS for

the agent agModel to keep the students’ learning history persistently. These are

information that includes: the <D>, <P>, <F>, and <V> attributes. The <V>

parameter are answers to be viewed by the tutor to support students in SQL.

The TextPersistentBB is a Jason TextPersistentBB class (a text database) (Fig.

4.16).

In addition, the parameters <P> passed or <F> failed are not chosen nor devised for

first-order logic statements for classification alone. But also to reinforce students (e.g.

Pavlov, 1960) in the course of pre-learning assessments.

4.6 The Pre-assessment Mechanism

The pre-assessment mechanism is a structure devised to present the picture of the

process of identifying gaps in students’ learning and making supplementary learning

materials recommendation. The function is to ascertain the true and accurate level of

students’ skills and knowledge and supporting them to start learning at the level

appropriate to their current level of knowledge because every student cannot afford to

start from the same learning block. This approach is similar to the PAT (Ritter et al.

1998) strategy that ensures that current skills set for students are attained before

promoting students to a new level of learning.

This structure (Fig. 4.19) depicts:

 How learning concepts are represented in hierarchy.

 The strategy for decision flow and navigation from leafnode concept to

leafnode concept for prerequisite question selection when a desired concept is

received; which would be released by the use of agent achievement goals

(Bordini, Hubner & Wooldridge, 2007).

 The communication of the decisions made within the system after every pre-

assessment.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

87

 The aggregation of decision statement.

 The classification of students learning using the aggregated decision statements

for learning materials recommendation.

In the Pre-assessment Mechanism (Fig. 4.19) learning concepts are given in a

hierarchy of inter-related concepts illustrated with the letters A, B, C, and D. Where A

represents the lowest class concept and D the highest class concept in a hierarchy of

learning structure. The A, B, C, and D represents any class nodes or topics in the SQL

domain of learning. Every class node has at least two leafnodes and a subclass node

that has its own leafnodes. The leafnodes are the concepts that represents the lessons

taught in the classroom.

Fig.4. 19: The Pre-assessment Mechanism (Ehimwenma, Beer & Crowther (2014b)

4.7 The Learner Component

The Learner component in the Pre-assessment Mechanism is dual purpose: i) as

students and ii) as a classifier. The first input into the system by students are the desired

concepts as symbolised with A, B, C or D in the Figure 4.19. Where A is the bottom

(or lowest concept) that has no prerequisite. As such A has no pre-assessment and

becomes the default concept to study when entered.

When a student enters a class node (i.e. desired_Concept), agent !achievement

goal is triggered to retrieve the quiz corresponding to a leafnode of the prerequisite

class, then pre-assessment is carried out, decision is taken based on the answers

D

C

B

A

C

B

A

Learner

(Student

&

Classifier)

Fail

Pass

Fail

Fail

Pass

Pass

Highest Concept

Lowest Concept

Input

Output

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

88

received; and then followed by the next !achievement goal according to the

number of leafnodes considered under the desired_Concept (see Fig. 4.9 for the loop

in the PDT AUML protocol diagram). As shown in Figure 4.19, a pass or a fail

decision is taken by the MAS for every quiz that is completed. While the student is

getting feedback about his/her performance, the beliefs of the classifier agent is also

being updated with the pass or fail decisions to match the relevant plan context, and

the student is classified for learning material(s). Thus, because of the need of a system

to gather students’ skills status (or decisions), classify them and make recommendation

for learning materials, a multi-agent system was considered as appropriate to provide

this capability. This is due to the fact that individual agent can handle specialised

functions. Case based reasoning (CBR) is a type of classification technique that was

combined with MAS in González, Burguillo & Llamas (2005). CBR is a method in

which concrete previous experience is applied to solve current and similar problem

situations. In contrast to CBR approaches where a current problem is interpreted as a

previous one based on similarities or differences (classification CBR), or where a new

solution is adapted based on past, stored or existing solutions (problem CBR) (de

Mantaras, 2001); the approach taken in this thesis is a rule-based approach to reasoning

by a classifier agent. This is where domain specific rules are specified as antecedents

for a body of conclusions that is applied in a classification process (Patterson, 1990,

Rifkin & Klautau, 2004; Marsland, 2014). This is because, we believe that the rule-

based approach is more decisive to address the errors that are liable to be made by

students in their responses to questions from the system that will in the end make

recommendation for their learning. In addition, because the answer input to the system

is open ended, so answers submitted by students to the system may also not be

similar. In this process, all pre-assessment activities will be communicated between

agents as specified in the PDT diagrams (e.g. Fig. 4.9). This process of pre-assessment

as regards the Pre-assessment Mechanism (Fig. 4.19) can be viewed in two ways for

implementation, namely: i) Pre-assessment by immediate prerequisite class, and ii)

Pre-assessment by multiple prerequisite classes.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

89

4.8 Pre-assessment By Immediate Next Prerequisite Class

This is the pre-assessment strategy that considers only the leafnodes of the immediate

prerequisite class to a desired concept that is intended for learning by a student (Fig.

4.20).

Fig.4. 20: Strategic diagram of the Pre-assessment by immediate next prerequisite class. Where C
represents the desired amongst the classes of concept and B the immediate prerequisite class to C.

The strategy of the testing process has been shown in the loop segment of the AUML

protocol and interaction diagram (Fig. 4.9), and detailed process of pre-assessment

rules formation is given in the following section using the Figure 4.21 for illustration.

The rule formation procedure is in logic based semantics. As mentioned in Chapter 2,

it is described in Dell'Acqua et al. (1999) as the use of symbolic representations in the

expression of rules, reasoning and knowledge preferences that reacts to several

alternative choices of action.

4.8.1 Logic Based Classification Specification for Pre-assessment in a
Regular Ontology Model

The Figure 4.21 is an ontology tree structure of equal number of leafnodes �� per

parent class node (�௜). The tree is a directed graph that shows the relations between a

parent class and its subclasses. Furthermore, it illustrates the process of navigation

between classes. For instance, let us choose C2 to be a �௜ then its means for its �௜,௝: N3

corresponds to �ଶ,ଵ; and N4 to �ଶ,ଶ

Now, given that C1 is a desired concept, a pre-assessment would be on the leafnodes

N3 and N4; and for C2 as a desired concept, pre-assessment would be on leafnodes N5

and N6. In the case where C1 is the desired concept, and leafnodes N3 and N4 are passed,

the student learns the leafnodes N1 and N2 which are leafnodes (or childnodes) of the

C

B

B

Fail

Pass

Output

Learner
Input

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

90

desired concept. Otherwise, the failed leafnodes N3 or N4 or both are learned. In the

case where C2 is the desired concept, and leafnodes N5 and N6 are passed, the student

learns the leafnodes N3 and N4 which are leafnodes (or childnodes) of the desired

concept C2. Otherwise, the failed leafnodes N5 or N6 or both are learned.

Fig.4. 21: A digraph of a regular ontology tree.

Applying first order logic (FOL) formulas, the classification and recommendation

rules for the classifier agent to classify students for learning are as stated:

desiredConcept(C1) N3 N4

[

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) => desiredConcept(C1).{N1, N2} . (1)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) => failed(N4) . . . (2)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) => failed(N3) . . . (3)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) => failed((N3) ꓥ (N4)) . . (4)

]

desiredConcept(C2) N5 N6

[

: ƎdesiredConcept(C2) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6) => desiredConcept(C2).{N3, N4} (5)

: ƎdesiredConcept(C2) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6) => failed(N6) . . . (6)

: ƎdesiredConcept(C2) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6) => failed(N5) . . . (7)

: ƎdesiredConcept(C2) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6) => failed((N5) ꓥ (N6)) . . (8)

]

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

91

The �௜,௝ in the passed(�௜,௝) and failed(�௜,௝) logic based notation are decision statements

about a student’s performance on the ontology leafnodes after pre-assessment on that

given node �௜,௝. The stated axioms are rules-based reasoning where each axiom

represents a case or a category in the pre-assessment of the leafnodes N3 and N4, and

N5 and N6, respectively, before a student learns a desired concept. The rules which are

8 in number defines the condition for the pre-assessment of immediate prerequisite

leafnodes, and also presents the rule structure for a two leafnode per class node in a

regular ontology as shown in Figure 4.21. Each rule is a parameter combination of the

<P> and <F> predicates in combination with the desired concept <D>. The <D>

parameter represents the concept entered by a student which is also part of the

conditions in the classifier agent plan context as implemented in Chapter 5.

Rule (1), for instance,

desiredConcept(C1) N3 N4 : ƎdesiredConcept(C1) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4)

=> desiredConcept(C1).{N1, N2}

depicts that for all  desired concept that is C1, for all leafnode N3, and for all leafnode

N4, such that, there exists Ǝ in the agent beliefs the desired concept C1 and there exists

a passed pre-assessment of the leafnode N3 and there exists a passed pre-assessment of

the leafnode N4, then the conclusion and recommendation for learning shall be the

leafnode N1 and N2 of the desired concept C1 which is the intended concept of learning

submitted by the student. This rule formation system also applies to the class node C1

whose pre-assessment would be on the leafnodes N5 and N6.

In the Figure 4.21 tree structure, there are four rule axioms per parent class node if and

only if the immediate class prerequisite to a desired concept is considered for pre-

assessment. This type of strategy implements Chunking (Casteel, 1988; Anderson,

2008) that was discussed in Chapter 2 as the breaking down of skills and learning

materials into smaller and more manageable units for students to succeed.

Knowing the number of expected classification rules prior to coding as observed in

this work is crucial so as to avoid misclassification or missing out a case of

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

92

classification. To estimate the number of expected rules needed, Ehimwenma, Beer &

Crowther (2015a; 2015b) devised the Initialisation equation:

R = C�� + 1

Systematically, in navigating from one parent class node C to another and to their

respective leafnodes N, the classified rules estimation process is expressed as

R = �1 + ࢐,࢏��࢏

where �௜ = number of prerequisite classes

T = the Boolean parameters <P> and <F> which equals 2 �௜,௝ = leafnodes with respect to class �௜
In a regular ontology where pre-assessment is on the immediate prerequisite to a

parent class node, the total number of rules R can be estimated such as illustrated with

the Figure 4.21. Given that the total prerequisite class node C = 2 (i.e. C2 and C3 in Fig.

4.21), and size of leafnode N = 2 across each parent class, then

R = 2 * 2**2 + 1

 R = 2 * 4 + 1

 R = 8 + 1

 R = 9

Where 1 represents the default rule that corresponds to the lowest concept A in the Pre-

assessment Mechanism that has no prerequisite, as mentioned earlier. The default rule

represents the release of the URL link of the lowest concept when entered.

Alternatively, our pre-assessment rules polynomial equation (Ehimwenma, Crowther

& Beer, 2016b):

R = 1 + ∑ �=࢐,�=࢏࢑� i��࢐,࢏

also estimates the accurate number of rules for the aforementioned regular ontology

such that each prerequisite class node �௜ (i.e. C2 and C3) upon which the pre-

assessment will be done takes a unit value of 1, the �௜,௝ per �௜ = 2; and T = 2 (the

passed and failed predicates). Thus, by isolating the node and then the summation, we

have

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

93

R = 1 + Σ[[C 2TNమ,భ , C2TNమ,మ], [C3TNయ,భ, C3TNయ,మ]]

R = 1 + C2T2 + C3T2

R = 1 + (1 * 2 ** 2) + (1 * 2 ** 2)

R = 1 + 4 + 4

R = 9

But the estimation of the expected number of rules and the corresponding number of

classification rules representation is however different when pre-assessment is of

multiple classes beneath a given desired concept as shown in the following section.

4.9 Pre-assessment By Multiple Prerequisite Classes

This is the strategy where pre-assessment is from prerequisite class to prerequisite

class under a desired concept. In this type of arrangement, the more the number of

leafnodes under a given desired concept, the more the complexity in the rule

representation process. This complexity extends to students in managing their learning

gaps having to deal with large amount of recommended URL links, particularly when

there is large amount of incorrect responses to pre-assessment quizzes. The loop

segment of the AUML protocol and interaction diagram (Fig. 4.9) also depicts this

strategic process of pre-assessment and does not specify any size. The Figure 4.22 is

non-regular ontology that is used to illustrate the rule formation process of ontology

of 5 leafnodes.

4.9.1 Logic Based Classification Specification for Pre-assessment in a
Non-Regular Ontology Model

The Figure 4.22 is non-regular ontology tree. As against a regular ontology tree that

has equal number of leafnodes �� across all parent class �௜, a non-regular ontology is

a tree with a varying of number of leafnodes across its parent class �௜ node.

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

94

Fig.4. 22: A digraph of non-regular ontology tree. A model where all the prerequisite classes under a
given parent class, in this case C1, are being considered for pre-assessment.

The parent classes �௜ in the tree (Figure 4.22) are C1, C2, and C3. C1 has a sub-parent

class C2 that has two leafnodes N1 and N2 and a sub-parent class C2, and C2 has three

leafnodes N3, N4, and N5. To consider all the prerequisite leafnodes N2 N3, N4, N5 and N6

for pre-assessment under the parent class C1 as the desired concept, the logic based

axioms for classification are stated as follows:

desiredConcept(C1) N2 N3 N4 N5 N6

[

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ

Ǝpassed(N6) => desiredConcept(C1).{ N1}. (1)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ

Ǝfailed(N6) => failed(N6) (2)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)

=> failed(N5) (3)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)

=> f(N4) (4)

: ƎdesiredConcept(C1) ꓥ Ǝpassed (N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ

Ǝpassed(N6) => f(N3) (5)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)

=> failed(N2) (6)

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

95

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed((N5) ꓥ (N6)) (7)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)

=> failed((N4) ꓥ (N6)) (8)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)

=> failed((N4) ꓥ (N5)) (9)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed(N4) ꓥ (N5) ꓥ (N6)) (10)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)

=> failed((N2) ꓥ (N6)) (11)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)

=> failed((N2) ꓥ (N5)) (12)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed(N2) ꓥ (N5) ꓥ (N6)) (13)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)

=> failed((N2) ꓥ (N4)) (14)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)

=> failed((N2) ꓥ (N4) ꓥ (N6)) (15)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)

=> failed((N2) ꓥ (N4) ꓥ (N5)) (16)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed((N2) ꓥ (N4) ꓥ (N5) ꓥ (N6)) (17)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)

=> failed((N3) ꓥ (N6)) (18)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)

=> failed((N3) ꓥ (N5)) (19)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed((N3) ꓥ (N5) ꓥ (N6)) (20)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)

=> failed((N3) ꓥ (N4)) (21)

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

96

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)

=> failed((N3) ꓥ (N4) ꓥ (N6)) (22)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)

=> failed((N3) ꓥ (N4) ꓥ (N5)) (23)

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed((N3) ꓥ (N4) ꓥ (N5) ꓥ (N6) (24)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)

=> failed((N2) ꓥ (N3)) (25)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)

=> failed((N2) ꓥ (N3) ꓥ (N6)) (26)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)

=> failed((N2) ꓥ (N3) ꓥ (N5)) (27)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed((N2) ꓥ (N3) ꓥ (N5) ꓥ (N6)) (28)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)

=> failed((N2) ꓥ (N3) ꓥ (N4)) (29)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)

=> failed((N2) ꓥ (N3) ꓥ (N4) ꓥ f(N6)) (30)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)

=> failed((N2) ꓥ (N3) ꓥ (N4) ꓥ (N5)) (31)

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed((N2) ꓥ (N3) ꓥ (N4) ꓥ (N5) ꓥ (N6)) (32)

]

For the five prerequisite leafnodes N2 N3, N4, N5 and N6 to the desired concept C1, the

number of classification rules to code for the classifier agent is 32 for all cases that

must be accurately captured. As established in literature and preceding section, for a

technical subject such as SQL considering a large number of leafnodes under a given

desired concept, would presents large materials to students such as stated in the last

axiom (32):

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

97

desiredConcept(C1) N2 N3 N4 N5 N6

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)

=> failed((N2) ꓥ (N3) ꓥ (N4) ꓥ (N5) ꓥ (N6))

which states for all  desired concept that is C1 and for the leafnodes N2, N3, N4, N5,

and N6, such that, there exists Ǝ in the agent beliefs the desired concept C1 and there

exists a failed pre-assessment of the leafnodes N2, N3, N4, N5, and N6, then the

conclusion and recommendation for learning shall be the leafnodes N2, N3, N4, N5 and

N6 underneath the desired concept C1 submitted by the student. This type of pre-

assessment of by multiple prerequisite classes that would involve a large number node

for a subject like SQL that is reported in literature to be difficult may not be supported

by Chunking (Casteel, 1988; Anderson, 2008): a theory that helps student to succeed.

While the strategy of pre-assessment by immediate prerequisite class supports

Chunking, it also allows students to complete knowledge diagnosis and get results

quickly. Skills status or classification of the student is dependent on the number of

prerequisite �௜ classes and leafnodes �௜,௝ in a given pre-assessment. Thus, at the

completion of pre-assessment by Chunking and having learned the materials as well,

a student can choose another desired concept for self-testing.

For a large size of knowledge graph or ontology, the following then summarises the

general form of the underlying reasoning in the pre-assessment process. Given that ⅅ

is the desired concept that subsumes some prerequisites �௜ which further subsumes

some leafnodes �௜,௝ i.e. �௜,௝ �௜ ⅅ; we then state that

ⅅ �௜ �௜,௝ hasPrerequisite(ⅅ, �௜) ꓥ hasKB(�௜ , �௜,௝)

 [

 : Ǝⅅ ꓥ passed(�௜,௝) => ⅅ.{ ��}

else

 : Ǝⅅ ꓥ Ǝfailed(�௜,௝) => failed(�௜,௝)

]

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

98

where �� represents the set of immediate leafnode instances of the desired concept as

specified in, for example, Rule (1) from Figures 4.21 and 4.22, respectively. Note that

the desired concept D ≡ C. This is defined in Chapter 5 using a DL language.

 Again, the devised rules estimation formula comes handy in estimating the required

number of classification rules. But since the ontology is non-regular, the prerequisite

class nodes �௜ takes a unit value, which is 1; and N2, N3, N4, N5 and N6 has the total size

of prerequisite leafnodes N = 5 underneath the desired concept. Thus the number of

classification R can be estimated as

R = �1 + ࢐,࢏��࢏

R = 1 * 2**5 + 1

R = 1 * 32 + 1

R = 32 + 1

R = 33

where 1 represents the default rule that corresponds to A in the Pre-assessment

Mechanism that has no prerequisite. The leafnodes �௜,௝ are the modules in which

students are tested on. On that premise, they are the nodes that counts when estimating

and formulating the required number of rules depending on the given �௜. To implement

the derived classification axioms above, each logical axiom has a corresponding plan

in the agent program in the MAS.

As encountered during the course of this work, mapping the boolean [P, F] predicates

to every leafnode N and generating the classified rules can be cumbersome. For a small

number of leafnodes N ≤ 3, the rules can be generated easily by hand. But for leafnodes

N ≥ 4, an algorithm had to be developed (Chapter 7, Section 7.7.1) for a program to

generate the rules. The use of a program (e.g. Python) for rule generation is to ensure

completeness or correctness for the rules that are deterministic: that is, exactly one rule

for each episode of action or pre-assessment on the number of leafnodes N.

Each logical axiom (above) practically corresponds to one agent plan at

implementation. While the rules are produced from the program written for the

algorithm, the logical axioms or rules satisfy the ontological structures that are

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

99

associated. In addition, our model equation estimates the number of expected rules,

for example, 8 +1, 16 +1, or 32 +1 number of rules. The model/math equation also

support rule checking and ensures no case (rule) of classification is missing. In the

derived logical axioms, no two axioms or rules are same. This correctness is certain

via the program of parameter combination from the algorithm: the algorithm returns

the expected outputs in finite steps.

4.9.2 Estimating The Number of Rules by Prerequisites �࢐,࢏ and
Leafnodes �࢑,࢐ Notation in a Tree

The Figure 4.23 is a multi-dimensional knowledge graph that extends the graphs

earlier presented in Figures 4.21 and 4.22, respectively. The structure presents a graph

of several nodes in the horizontal plain and inter-connected nodes in the vertical

traversal. All nodes are connected by a root or parent node C1. This is to illustrate the

required number of rules process. To estimate the needed number of rules, let the root

node C1 be the desired concept (at Level 1 where a student wants to be), and its

prerequisite concepts as C2, C3, C4, C5, and C6 (the non-termial nodes).

1 2

Level 2

Level 3

Level 4

Level 1

Fig.4. 23: A knowledge graph of multiple horizontal and vertical traversal

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

100

Below is the computation process of the number of classification rules for the

prerequisites �௜,௝ �௝,௞ . As a non-regular ontology, we shall apply our model equation

R = 1 + ∑ ࢐,࢏� ࢑,࢐��

Firstly, we isolate the nodes before summation:

 Number of Rules Estimation Via Horizontal Navigation

A) Node isolation at Level 2, prerequisite class C2 to C3, horizontal navigation

through leafnodes N2, N3, N5, N5 and N6:

1 + Σ[[�ଶ,ଵ��భ,భ , �ଶ,ଵ��భ,మ], [�ଶ,ଶ��మ,భ, �ଶ,ଶ��మ,మ , �ଶ,ଶ��మ,య],

B) Node isolation at Level 3, prerequisite C4 to C5, horizontal navigation through

leafnodes N7, N8, N9, and N10:

[�ଷ,ଵ��భ,భ , �ଷ,ଵ��భ,మ], [�ଷ,ଶ��మ,భ , �ଷ,ଶ��మ,మ],
C) Node isolation at Level 4, horizontal navigation through leafnode N11:

 [�ସ,ଵ��భ,భ]]

The Computation at the isolated Levels 2, 3 and 4, Horizontal navigation:

R = 1 + Σ[[�ଶ,ଵ�ଶ], [�ଶ,ଶ�ଷ], [�ଷ,ଵ�ଶ] + [�ଷ,ଵ�ଶ], [�ସ,ଵ�ଵ]]

R = 1 + [ͳ ∗ ʹଶ + ͳ ∗ ʹଷ + ͳ ∗ ʹଶ
 + ͳ ∗ ʹଶ + ͳ ∗ ʹଵ]

R = 1 + 4 + 8 + 4 + 4 + 2

R = 23

This is an estimation of the number of rules R for pre-assessment by immediate

prerequisite class in horizontal traversal of nodes.

 Number of Rules Estimation Via Vertical Navigation

A) Node isolation along prerequisites C2 through C4 to C6 vertical navigation to

leafnodes N2, N3, N7, N8 and N11:

R = 1 + Σ [[�ଶ,ଵ��భ,భ , �ଶ,ଵ��భ,మ], [�ଷ,ଵ��భ,భ , �ଷ,ଵ��భ,మ], [�ସ,ଵ��భ,భ],

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

101

B) Node isolation along prerequisites �ଷ to �ହ vertical navigation to leafnodes

N4, N5, N6, N9 and N10:

[�ଶ,ଶ��మ,భ, �ଶ,ଶ��మ,మ , �ଶ,ଶ��మ,య], [�ଷ,ଶ��మ,భ, �ଷ,ଶ��మ,మ]]

Computation along the vertictal traversals:

R = 1 + Σ [[�ଶ,ଵ�ଶ], [�ଷ,ଵ�ଶ], [�ସ,ଵ�ଵ], [�ଶ,ଶ�ଷ], [�ଷ,ଶ�ଶ]]

 R = 1 + [ͳ ∗ ʹଶ] + [ͳ ∗ ʹଶ] + [ͳ ∗ ʹଵ] + [ͳ ∗ ʹଷ] + [ͳ ∗ ʹଶ]

R = 1 + 4 + 4 + 2 + 8 + 4

R = 23

This illustrate the estimated number of rules for pre-assessment by immediate

prerequisite class in a vertical traversal of nodes as shown with the horizontal

traversal.

 Number of Rules Estimation for Multiple Prerequisite Classes

Now, lets consider the computation of the required number of rules R for the entire

prerequisite classes underneath the desired concept C1 (Fig. 4.23). Either by vertical

or horizontal traversal of the nodes as shown above, the result will be same. From the

formula R,

R = 1 + ∑ ࢐,࢏� ࢑,࢐��

and individual node isoloation, and summation:

R = 1 + Σ [�ଶ,ଵ��భ,భ , �ଶ,ଵ��భ,మ, �ଷ,ଵ��భ,భ, �ଷ,ଵ��భ,మ, �ସ,ଵ��భ,భ , �ଶ,ଶ��మ,భ, �ଶ,ଶ��మ,మ , �ଶ,ଶ��మ,య, �ଷ,ଶ��మ,భ , �ଷ,ଶ��మ,మ]

 R = 1 + Σ[�ଶ,ଵ�ଶ, �ଷ,ଵ�ଶ, �ସ,ଵ�ଵ, �ଶ,ଶ�ଷ, �ଷ,ଶ�ଶ]

 R = 1 + [ͳ ∗ �ଶ + 1 * �ଶ + 1 * �ଵ + 1 * �ଷ + 1 * �ଶ]

 R = 1 + ʹ ଵ଴

 R = 1025

Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification
Method

102

Thus, for a total of 10 leafnodes that may be considered under a desired concept D,

1025 is the number of classification rules that will be needed to be trained from the

passed and failed boolean predicates mapping with the 10 leafnodes. Note that the

value of C for all calculation for non-regular ontologies in this work equals 1.

4.10 Summary of Chapter

This chapter has presented the agent based Pre-assessment System as modelled with

the Prometheus methodology using the Prometheus Design Tool (PDT): a graphical

agent UML for specifying agent designs from scenario development, to goal

specification and refinement, to percept, message, data coupling, action, plans and

their interactions. The chapter presented a student model with parameters that can

obtain attributes from the student environment and then described a mechanism of pre-

assessment which is the underlying strategy for diagnosing learning gap, classifying

and making recommendation for students after their pre-assessments. While Gamalel-

Din (2002) applied learning-by-experience, this thesis uses a classification technique

via some classification rules. This is defined with first-order logic (FOL) as the

reasoning process about the decision messages reached over students’ skill tests. The

analysis has been shown in this chapter with ontology tree models and FOL formulas.

The FOL based rules are a conjunction of the <P> and <F> boolean parameter

combinations mapped to leafnodes N. To support students for effective learning,

Chunking was identified as a good educational strategy for pre-assessments and

supported learning of SQL. The chapter then illustrated how our modelled equations

does estimates the number of classification rules. While the Initialisation equation

estimates the number of classification rules for 1) batches of immediate prerequisite

class pre-assessment and 2) multiple class pre-assessment; the polynomial equation

has been used to estimate the number of classification rules for batches of multiple

prerequisite class pre-assessment as illustrated. In Chapter 5, the implementation of

the Pre-assessment System in Jason agent language shall be presented. The chapter

shall cover the real-time SQL domain ontology development with description logic,

ontology construction and visualisation; and its first-order representation for agents.

Chapter 5

A SQL Ontology and The Pre-

assessment System

5. Introduction

In Chapter 4, an AOSE graphical editing tool, the PDT which is an agent UML that

supports the Prometheus methodology was presented as employed in the specification

and design of the Pre-assessment System. The chapter described the Pre-assessment

Mechanism as a process for identifying gaps in student learning, and explained the

parameters of the Student Model of this research and their use as predicates for: inter-

agent messages, classification reasoning about students’ knowledge status and first-

order logic (FOL) formulas. This chapter presents the implementation of the agents of

the Pre-assessment System as specified in Chapter 4 for the pre-assessment of students

and inter-agent communication in the pre-assessment process. Firstly, the chapter

presents an SQL learning structure, then the SQL domain ontology definition in a

TBox using description logic (DL) syntax, and the different ontology models generated

from the TBox. It looks at concepts relationships in Jena API ontology model and the

Protégé ontology editor, then knowledge representation in FOL from the ABox

assertions for agents’ beliefs. The chapter also describes CArtAgO as the environment

artifact for percepts observation.

5.1 Contextual Learning Structure

The domain context of this system is Structured Query Language (SQL) which is

presented in a structured hierarchy in Figure 5.1. In a teaching-learning environment,

modules are taught in an order of sequence from simple to complex as specified in a

given curriculum. In a top-down approach, this is presented in the hierarchy of

Chapter 5 A SQL Ontology and The Pre-assessment System

104

complex to simple concept, namely: UNION, JOIN, UPDATE, DELETE, INSERT,

and SELECT where UNION is the complex concept and SELECT is the lowest.

Fig.5. 1: Hierarchy of six SQL Modules Learning Structure (extended version of Ehimwenma, Beer &
Crowther 2014b).

In this arrangement, a lower module is taught and learned before a higher one. Thus,

any immediate-lower concept is a prerequisite to its next higher concept. The topics in

this structure are the modules in which students would be pre-assessed on the Pre-

assessment System to identify gaps in their learning so as to make recommendation

for learning materials to assist them in closing the gaps. Thus, the Figure 5.1 presents

a:

 Hierarchy in which students are pre-assessed in structured sequence. This is

because in such an arrangement, one topic is taught before the next in a bottom-

up approach;

 Domain for formalising a definition of ontology in SQL using a DL TBox;

 Domain in which instances of classes (topics) will be named as ABox

assertions in FOL to represent knowledge structures for agents and inter-agent

communication.

5.2 Description Logic for SQL Ontology

Description logic (DL) is a family of knowledge representation (KR). KR is the set of

acquired experiences or background structure of knowledge that an intelligent system

is given to function: to reason, to query, to make judgement or prediction. This sort of

KR in artificial intelligence (AI) as ascertained in Baader et al. (2003) is usually on

Chapter 5 A SQL Ontology and The Pre-assessment System

105

methods for providing high-level description of the domain of interest or world in FOL

formalism for building intelligent applications.

In the following section, a formal definition of a SQL ontology is presented using a

DL syntax. The DL ontology describes the relationships between classes, classes and

individuals and the constraints or restrictions on individuals. KR based on DL consists

of two components: TBox and ABox (Obitko, 2007). The TBox describes terminology

for the SQL ontology and the ABox introduces the individuals and their relations for

representation in the Pre-assessment System.

5.2.1 TBox Description for a SQL Ontology

The Figure 5.2 is a TBox terminology (hierarchical) (Nardi & Brachman, 2003)

description of concept names for a SQL domain ontology. The concept names are the

named symbols on the left hand side of the equivalence ≡ symbol and are defined on

the right hand side as base symbols (Baader & Nutt, 2003) as explained in Chapter 2.

Given the DL syntax Ǝr.C that a thing has a role or relation with the concept C e.g.

ƎhasChild.Lawyer, and Ǝr.{x} that a thing has some relation with a some instances e.g.

ƎcitizenOf.{USA} (Baader, horrocks & Sattler, 2003); then from the Figure 5.2, the

axiom

Fig.5. 2: TBox Description of an SQL Domain.

 SqlNode ≡ SqlClassNode SqlSubClassNode

 LeafNode ≡ SqlSubClassNode (ƎhasQuiz.Quiz

 ƎhasAnswer.Answer

 ƎhasContent.WebUrl)

 ¬ SqlClassNode

PrerequisiteConcept ≡ SqlClassNode ≥ 2 hasKB.LeafNode

 ;;ƎhasPƌeƌeƋuisite.SqlSubClassNode

 ƎisPƌeƌeƋuisiteOf.SqlClassNode)

 ;ƎhasPrerequisite.SqlSubClassNode))

 DesiredConcept ≡ SqlNode ƎhasPrerequisite.PrerequisiteConcept

 isPrerequisiteOf ≡ hasPrerequisite¯

 SqlNode ≡ SqlClassNode SqlSubClassNode

Chapter 5 A SQL Ontology and The Pre-assessment System

106

defines a SqlNode as parent class nodes and subclass nodes in this SQL domain

ontology. This represents the class node concept that is required to be entered by a

student as a desired_Concept intended to be studied upon which some pre-assessments

will be conducted.

The following axiom

uses existential restriction Ǝ to define the term LeafNode as subclass nodes that have

some quizzes, answers and web URLs (universal resource locator) via their respective

hasQuiz, hasAnswer and hasContent relations, and also with the classical negation ¬

symbol that leafnodes are not parent class nodes per se. The terms Quiz, Answer and

WebUrl depicts the corresponding literals to the defined terms for every leaf node that

are used for pre-assessment and recommendation.

In the axiom that involves the use of a minimum cardinality restriction of 2

the PrerequisiteConcept is defined as class concepts that have at least two leaf nodes

and either a hasPrerequisite relation to a (sub)class and a isPrerequisiteOf inverse or a

hassPrerequisite relation to the (sub)class concept.

Then, the axiom

defines a DesiredConcept as nodes that have some prerequisite node via the

hasPrerequisite relation, and finally,

 LeafNode ≡ SqlSubClassNode (ƎhasQuiz.Quiz

 ƎhasAnswer.Answer

 ƎhasContent.WebUrl)

 ¬ SqlClassNode

 PrerequisiteConcept ≡ SqlClassNode ≥ 2 hasKB.LeafNode

 ;;ƎhasPƌeƌeƋuisite.SqlSubClassNode

 ƎisPƌeƌeƋuisiteOf.SqlClassNode)

 ;ƎhasPrerequisite.SqlSubClassNode))

 isPrerequisiteOf ≡ hasPrerequisite¯

DesiredConcept ≡ SqlNode ƎhasPrerequisite.PrerequisiteConcept

Chapter 5 A SQL Ontology and The Pre-assessment System

107

which states that the isPrerequisiteOf relation is the inverse of hasPrerequisite relation.

From the DL syntax, named symbols, for example DesiredConcept is defined. Roles

or relationships such as hasPrerequisite, hasKB (Ehimwenma, Beer & Crowther,

2014a), and isPrerequisiteOf are also defined. While the DesiredConcept is unary

predicate for a desired concept in a FOL statement for agents’ communication, the

hasPrerequisite, hasKB, and isPrerequisiteOf are binary predicates between classes

and individuals.

5.2.2 SQL Individuals in Description Language

Individuals values, as ascertained in Baadar & Nutts (2003) are not only meant to be

asserted in ABox. They can be instantiated also in a TBox. By implication, the DL

SQL ontology defined above can have instances of individuals defined within it, for

example, the DesiredConcept term can also be instantiated as:

which states, insert is a desired concept that has a hasprerequisite relation with select

that has a knowledge base with the hasKB relation with selectWhere that has a URL

link with the hasUrl relation.

5.2.3 ABox Assertion for a SQL Ontology

ABox contains assertion knowledge called ground fact which are individuals and their

properties (Rudolph, 2011). Based on the SQL learning structure (Fig. 5.1), the class

instances of the desired_Concepts can be declared as:

and the set of leaf node instances which are:

 DesiredConcept = {union, join, update, delete, insert, select}

 LeafNode = {unionAll, unionDistinct, selfJoin, fullJoin,
 innerJoin, UpdateSelect, updateWhere, deleteSelect,
 deleteWhere, insertSelect, insertWhere, selectWhere,
 selectAll,selectOrderBy, selectDistinct}

DesiredConcept = {insert} hasPrerequisite.{select}

 (hasKB.{selectWhere} hasContent.{http://…}Ϳ

Chapter 5 A SQL Ontology and The Pre-assessment System

108

Similar to the examples shown in literature as in C(a) that a belongs to the

interpretation of C e.g. father(peter), and R(b, c) that c is a filler for the role R for

b (Baadar & Nutts, 2003), the following ABox assertions are then stated, in their unary

and binary predicate e.g.

 desiredConcept(update)

that Update is a desired_Concept; and that

hasPrerequisite(update, delete)

Update has prerequisite Delete, an inverse relation

isPrerequisiteOf(delete, update)

which states Delete is a prerequisite of Update; and another hasKB connected

predicate relation

hasKB(update, updateSelect)

that Update has KB UpdateSelect

are ground (first-order) atomic formula for Jason agent language beliefs

representation. Such set of beliefs are the agent’s knowhow of its world (Bordini,

Hubner & Tralamazza, 2006).

5.3 Digraph analysis of the Description Logic SQL Ontology

Model

Based on the SQL TBox description, different ontology models were created to

visualise the knowledge modules in the domain of SQL and the modules relationships

to each other. Using graphical analysis, the models that are created from ABox

assertion are given below as: regular ontology and non-regular ontologies (section

5.3.1 and 5.3.2). The ontology models are directed graphs where the directed links

between nodes indicates navigation. The graphs contain six class node concepts

according to the SQL learning structure in Figure 5.1, with the hasPrerequisite relation

between class nodes, and hasKB relation between a class and its leaf nodes.

Chapter 5 A SQL Ontology and The Pre-assessment System

109

5.3.1 A Regular SQL Ontology

A regular ontology is an ontology with an equal number of leaf-nodes across all its

parent class nodes in its tree (Ehimwenma, Beer & Crowther, 2015a). The Figure 5.3

is a regular ontology of a linear configuration from top to bottom with two leaf nodes

across all parent class nodes. An immediate lower node is a prerequisite to its top node.

Fig.5. 3: A regular ontology of two leaf nodes per parent class node.

The relation linking two parent class nodes (top and immediate next) is the

hasPrerequisite binary relation. The desired concepts (which are parent class nodes)

has two leaf nodes with the hasKB relation, and other edge labelled the hasPrerequisite

relation linking other class nodes in the hierarchy which are themselves

DesiredConcept as defined in the DL syntax of Figure 5.2.

5.3.2 Non-Regular SQL Ontology Model

Recall that in the DL syntax (Fig. 5.2) a minimum cardinality constraint of at least two

leaf nodes per parent class node was defined. A varying amount of leaf nodes across

parent class nodes in an ontology constitutes a non-regular ontology. In the Figure 5.4,

Chapter 5 A SQL Ontology and The Pre-assessment System

110

the ontology has a parent class node that has more number of leaf nodes than other

parent nodes in the ontology.

Fig.5. 4: Linear ontological model from the TBox. SELECT is reflexive.

While other parent nodes have two leaf nodes, the select concept has four leaf nodes.

This is a valid representation as specified by the description in the TBox given the

minimum cardinality of leafnodes N ≥ 2.

Unlike the Figures 5.3 and 5.4 that has a single relation between a desired class concept

and its prerequisite class, in Figure 5.5 is a model with, for example, two

hasPrerequisite directed relations from a parent class to other parent classes. This

model places two parent classes at the level e.g. Union and Join. But in teaching

and learning, one unit of lesson must be taught before another. In that case, the Figure

5.5 model does not validate the ordered sequence of the concepts provided in Figure

5.1, but the model however satisfies the TBox definition in Figure 5.2. Which is also

true of the Figures 5.3 and 5.4 including Figure 5.5 that satisfies the axiom

 ≡ SqlClassNode ≥ 2 hasKB.LeafNode

 ;ƎhasPrerequisite.SqlSubClassNode))

Chapter 5 A SQL Ontology and The Pre-assessment System

111

As a type of formative assessment system that enables students to make a choice of

their desired learning concept, pre-assessment exercises that determines whether a

student should learn his or her desired concept or not must be in ordered sequence.

This is to avoid any gaps in the hierarchy of learning structure.

Fig.5. 5: A non-linear hierarchy of the SQL learning structure. But some parent class nodes are not
connected in sequence according to Fig. 5.1.

Another model of the TBox is that which is presented in Figure 5.6, a model where

two different property relations: hasPrerequisite and isPrerequisiteOf are used as

connected links between class nodes. While the hasPrerequisite shows the navigation

from a top level concept of learning to a lower-level concept, the isPrerequisiteOf

relation presents the connectedness from a lower-level knowledge concept to a top

level concept.

Chapter 5 A SQL Ontology and The Pre-assessment System

112

Fig.5. 6: A variant ontology model of the TBox description and its navigation. But not in the
structured sequence presented in Fig. 5.1

The isPrerequisiteOf is the inverse property or relation to the hasPrerequisite property.

The Figure 5.6 satisfies the axiom

option of the definition of the PrerequisiteConcept in the TBox, such that any class

node that has a hasPrerequisite must have a isPrerequisiteOf relation. The drawback

of the Figure 5.6 ontology model is the infinite loop traversal across parent class nodes

such that the knowledge engineer will need to determine a start point and an end point

that are connected for pre-assessment.

5.4 Navigation of Ontology Nodes

In a standard curriculum, teaching and learning is sequential and ordered, simple to

complex, from one concept to another, see Figure 5.1. The various graphical ontology

models visualised so far from the TBox has shown how a DL definition is used to

describe a body of knowledge and the relationships between concepts. Roles or binary

relations specified connection between nodes. In directed graphs, these relations

provide a sense of navigation from node to node. For instance, the binary property

 ≡ SqlClassNode ≥ 2 hasKB.LeafNode

 ;;ƎhasPƌeƌeƋuisite.SqlSubClassNode ƎisPrerequisiteOf.SqlClassNode)

 ;ƎhasPrerequisite.SqlSubClassNode))

Chapter 5 A SQL Ontology and The Pre-assessment System

113

relations (e.g. Fig. 5.1, 5.2), showed possible navigation path through which concepts

are linked for pre-assessment. This can be established either on the strategy of:

 Pre-Assessment By Immediate Prerequisite Class; or

 Pre-Assessment By Multiple Prerequisite Classes;

as described in Chapter 4. The directed links in the ontology models are the navigation

paths from one class node concept. In Pre-assessment System of this study, the binary

property depicts the manner in which agent !achievement goals are

programmed to carry out the pre-assessment of students’ SQL knowledge. For

example, the Figure 5.7 shows the hasPrerequisite relation navigation based on Figure

5.2, and Figure 5.8 navigation that comprise the hasPrerequisite and isPrerequisiteOf

relations based on Figure 5.6.

While the Figure 5.6 reflects a model of the TBox definition, it does not reflect the

sequence of the SQL learning structure in Figure 5.1; e.g.

update → delete → union

which implies that: with update as desired_Concept, pre-assessment is on the delete

and the union concepts. In ABox assertion for ontologies and pre-assessment, it should

1. insert → select

2. update → delete → insert

3. Join → Update → Delete

1. union → delete → update → insert

2. update → delete → union

3. join → select → update

4. update → insert → select

Fig.5. 7: Illustrating navigation strategy for agent !achievement goal.

Fig.5. 8: Illustrating navigation strategy based on directed links between class nodes. Yet
contrasts the structured sequence in Fig. 5.1.

Chapter 5 A SQL Ontology and The Pre-assessment System

114

follow the order of the specified curriculum, like the navigation of the Figure 5.7. But

not with the gap of a missing concept as in

update → insert → select

where the delete concept is not connected in that order. While item 1, in the Figure

5.7, is of the Pre_ Assessment By Immediate Prerequisite Class strategy, others are of

the Pre_ Assessment By Multiple Prerequisite Classes as outlined in Chapter 4.

Every parent class node has its leaf nodes. The insert concept for instance, has its leaf

node concepts named as: insertValue and insertSelect. These are the unit of lessons in

which SQL skills are tested to ascertain whether there is a gap in learning before

proceeding to the insert concept. As defined in the TBox,

all leaf nodes have their respective literals, which are the quizzes, answers and url data

that are specified with the: hasQuiz, hasAnwser and hasContent relations, respectively.

The LeafNode axiom is then explicitly expanded in Figure 5.9. The literals (quiz,

answer and url) in rectangular shapes are String data values that are used for the pre-

assessment, release of learning materials, and for inter-agent communication in the

MAS.

Fig.5. 9: The insert class example with its leaf node and literal (or data) nodes.

 LeafNode ≡ ƎhasQuiz.Quiz

 ƎhasAnswer.Answer

 ƎhasContent.WebUrl

 (¬ (SqlClassNode SqlSubClassNode))

Chapter 5 A SQL Ontology and The Pre-assessment System

115

The quiz and answer literals are beliefs initialised in the BB of the agent agSupport:

the agent that pre-assesses students, take decisions on their answer responses to

quizzes, and communicates the pass or fail predicate decision statement to the agent

agModelling (the classifier) for classification. The classification process which is the

categorisation of student learning and recommendation of appropriate learning

material(s) was represented in first order logic (FOL) formulas as the process of

reasoning by the classifier agent in Chapter 4.

5.5 Ontology Building Tools: Jena API and Protégé

Ontology Editor

An ontology is a description of things and their relationships (Gruber 1993; 1995).

Ontology is a way of organising and representing knowledge. The preceding sections

of this chapter has defined, and analysed a SQL learning structure. This section thus

presents the use of Jena ontology API and the Protégé ontology editor in building

ontologies. After the ontology construction, the OWL (web ontology language)

ontology is parsed in Jena RDF API to show the compatibility of OWL and RDF KR.

It is pertinent to state that the purpose is not to query ontology repository such as

Protégé or Jena ontology models, but to amongst other objectives depict the subject,

predicate, object format for FOL representation.

5.5.1 Constructing ontologies in Jena API

RDF is a graph database. RDF defines resources as connected graphs in their subject,

predicate, object form. A class (subject or object) and relation (i.e. predicate) are all

resources in RDF.

From the ontology models (i.e. Figure 5.3, 5.4 or 5.5), let us consider a cross-section

of class concepts that comprises Delete, Insert and Select and their relations to

illustrate an RDF ontology model. Using TURTLE as the output syntax in Jena (Fig.

5.10), the output shows that delete has a CLASS relation with Insert, and a ROLE

property or relation with deleteWhere and deleteSelect. Then Insert that also have a

CLASS relation with Select, and a ROLE relation with insertWhere and insertSelect.

Chapter 5 A SQL Ontology and The Pre-assessment System

116

RDF data structure does not support unary predicate relation. But a set of triple that is

expressed as logical formulas p(a, b) (see Chapter 2).

5.5.2 Protégé Ontology Tool

Like Jena, Protégé ontology editor constructs and renders ontology in different output

syntax. An example is the RDF/XML syntax. Using the same cross-section of class

concepts that comprise the Delete, Insert and Select; Protégé, an OWL tool is used to

visualise the classes and their relations (Fig. 5.11).

In furtherance, to establish the backward compatibility of OWL syntax to RDF, the

OWL ontology rendered in RDF/XML format is parsed in Jena using the Turtle format.

Fig.5. 11: A cross-section of the concepts: DELETE, INSERT and SELECT in structured of Figure 5.1.

<delete> <http://www.w3.org/2001/vcard-rdf/3.0#CLASS> <insert> ;
 <http://www.w3.org/2001/vcard-rdf/3.0#ROLE>
 "deleteWhere”, "deleteSelect" .

<insert> <http://www.w3.org/2001/vcard-rdf/3.0#CLASS> <select> ;
 <http://www.w3.org/2001/vcard-rdf/3.0#ROLE>
 "insertWhere", "insertSelect" .

<select> <http://www.w3.org/2001/vcard-rdf/3.0#ROLE>
 "selectOrderBy", "selectDistinct", "selectAll", selectWhere".

Fig.5. 10: Jena ontology rendered in Turtle syntax.

Chapter 5 A SQL Ontology and The Pre-assessment System

117

Ontologies rendered in RDF/XML or OWL/XML are in their fully qualified URI

(universal resource identifier). But in parsing the OWL file in Jena, TURTLE syntax

also output the ontology only in their given resource names, with additional

information such as the owl:class, and an rdfs:subclassof relation (Fig.5.12).

Fig.5. 12: Protégé OWL ontology using Turtle syntax from Jena API.

For instance, the statement

:insert a owl:Class ; rdfs:subClassOf :delete .

is a class to class relation that states insert is an owl class and by the rdfs

property it is an subclass of delete. This class to class relation also

applies to other class concepts in the learning structure (Fig. 5.1). Similarly, in the

following statement

:deleteSelect a owl:Class ; rdfs:subClassOf :delete .

the deleteSelect concept is an owl class and a subclass of the delete

concept. In the TBox (Fig.5.2) the leaf node is defined as a subclass of a class concept,

 <http://www.semanticweb.org/lette/ontologies/sql/delete>
 a owl:Ontology .
:delete a owl:Class .
:deleteSelect a owl:Class ;
 rdfs:subClassOf :delete .
:deleteWhere a owl:Class ;
 rdfs:subClassOf :delete .
:insert a owl:Class ;
 rdfs:subClassOf :delete .
:insertSelect a owl:Class ;
 rdfs:subClassOf :insert .
:insertValue a owl:Class ;
 rdfs:subClassOf :insert .
:select a owl:Class ;
 rdfs:subClassOf :insert .
:selectAll a owl:Class ;
 rdfs:subClassOf :select .
:selectWhere a owl:Class ;
 rdfs:subClassOf :select .
:selectOrderBy a owl:Class ;
 rdfs:subClassOf :select .
:selectDistinct a owl:Class ;
 rdfs:subClassOf :select .
:hasKB a owl:ObjectProperty ;
 rdfs:domain :delete , :select , :insert ;
 rdfs:range :insertSelect , :deleteSelect , :deleteWhere ,
 :selectOrderBy , :selectWhere , :selectAll ,
 :insertValue , :selectDistinct .
:hasPrerequisite a owl:ObjectProperty ;
 rdfs:domain :select , :insert , :delete ;
 rdfs:range :select , :insert .

Chapter 5 A SQL Ontology and The Pre-assessment System

118

but not amongst the PrerequisiteConcepts that has the hasPrerequisite property. In the

OWL ontology the relationship between classes is established with the

hasPrerequisite property, and that of a class node to leaf node by the hasKB

property. The hasPrerequisite and hasKB relations are ObjectProperty

(Horridge et al. 2004) relations that have their respect range and domain concepts

listed alongside in the illustrated TURTLE syntax (Fig. 5.12).

Fig.5. 13: A Regular SQL ontology

Having semantically analysed different ontology models from the TBox definition and

ABox assertions, the FOL representation of knowledge for the Pre-assessment System

(agents) given the ABox assertion in the hierarchy of the SQL learning structure (Fig.

5.1) is stated as follows (Fig. 5.13): which is a representation for a regular ontology

i.e. an ontology with equal number of leaf nodes per parent class across an ontology

tree with every statement annotated with [ont(sql)] as SQL ontology. In the following

section, the pre-assessment System is presented with its agents and CArtAgo

environment.

 hasPrerequisite(Union, Join)[ont(sql)].

hasKB(join, outerJoin)[ont(sql)].

hasKB(join, innerJoin)[ont(sql)].

hasPrerequisite(Join, Update)[ont(sql)].

hasKB(update, updateSelect)[ont(sql)].

hasKB(update, updateWhere)[ont(sql)].

hasPrerequisite(Update, Delete)[ont(sql)].

 hasKB(delete, deleteSelect)[ont(sql)].

 hasKB(delete, deleteWhere)[ont(sql)].

hasPrerequisite(Delete, Insert)[ont(sql)].

 hasKB(insert, insertSelect)[ont(sql)].

 hasKB(insert, insertWhere)[ont(sql)].

hasPrerequisite(Insert, Select)[ont(sql)].

 hasKB(select, SelectWhere)[ont(sql)].

hasKB(select, SelectAll)[ont(sql)].

hasPrerequisite(Select, Select)[ont(sql)].

Chapter 5 A SQL Ontology and The Pre-assessment System

119

5.6 The Pre-assessment System

The Pre-assessment System is a multiagent system (MAS) of five component agents.

The agent oriented programming (AOP) language for its implementation is Jason, a

variant of AgentSpeak language. The choice is based on the analysis in Chapter 3 that

Jason AgentSpeak is a:

 first-order logic (FOL) knowledge representation language, with beliefs in

Prolog-like data structure; and

 supports speech acts based inter-agent communication using performatives or

communicative acts.

Jason is a reactive AOP language. Thus, the Pre-assessment System is also a reactive

MAS. The Pre-assessment System obtains percepts from the student (environment)

with CArtAgO: the reactive interface, and communicates all percepts for the pre-

assessment and classification of students’ true state of learning. The agents of the Pre-

assessment System as configured in Jason AgentSpeak language are shown as follows

in Figure 5.14:

 Agent agInterface: The agent that creates the CArtAgO artifact and observes

it.

 Agent agSupport: The agent that pre-assesses students’ knowledge and make

either a pass or a fail decision.

 Agent agModelling: The agent that classifies students’ knowledge by matching

its classification rules to the pass or fail decision messages received.

 Agent agModel: The agent that keeps persistent beliefs of all pre-assessment

activities.

 Agent agMaterial: The agent that recommends learning materials.

As indicated in Chapter 2, these five cooperative agents are comparable to the

integrated multi-part components of a recommender system e.g. El Mabrouk, Gaou &

Rtili (2017); or the Padayachee (2002) Classical Four Model ITS architecture and

micro-society of agents for solving a problem, respectively. The five agents and their

functions were first identified and specified at the Architectural Design phase in

Chapter 4 (e.g. Figures 4.5, 4.6, and 4.7) along with their roles, percepts, actions,

messages, and plans specified at the Detailed Design phase in Figures 4.11 to 4.16.

Chapter 5 A SQL Ontology and The Pre-assessment System

120

Fig.5. 14: Snapshot of Agents creation and configuration in the Pre_asssessment MAS Project in Jason.

5.6.1 CArtAgO + Jason

Firstly, in Figure 5.14, the MAS project is declared to run on the Centralised

infrastructure of Jason. This infrastructure as stated in Chapter 3 enables Jason agents

to run on a local machine. The

environment: c4jason.CartagoEnvironment

is a declaration of a default workspace environment, meant for the agent agInterface

in the following declaration:

agInterface agentArchClass c4jason.CAgentArch

to create the CArtAgO (Ricci, Piunti, Viroli, 2011) environment for percept

observation at the start of the Pre-assessment MAS. This class is a Jason library file

that can be assigned to agent(s) to construct a CArtAgO environment. Also configured

are the:

1) cartago.jar and c4jason.jar libraries in the declared class path;

2) c4jason.Environment as the environment declaration.

These files are required for the MAS to work within the CArtAgO environment. The

Jason infrastructure selected to run the MAS is the Centralised infrastructure, and the

Student beliefBaseClass Jason.bb.TextPersistentBB

is a text persistent belief base (BB) for the agent agModel (student) to permanently

keep the pre-assessment activities of students. The IDE (integrated development

environment) used for developing the Pre-assessment System is the jEdit for coding

or programming agents in Jason.

 MAS pre_assessment {

 infrastructure: Centralised
 environment: c4jason.CartagoEnvironment
 agents:
 agInterface agentArchClass c4jason.CAgentArch;
 agSupport; //pre-assessment
 agModelling; //classifier
 student beliefBaseClass jason.bb.TextPersistentBB;//agModel
 agMaterial; //ontology

 classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar";

}

Chapter 5 A SQL Ontology and The Pre-assessment System

121

5.7 The Pre-assessment System Environment

In Monette (2014) model of designing an interactive agent system for human learning,

the system comprises four components, namely:

 Environment which implies a set of students;

 Sensor which is the keyboard;

 Actuator which implies the screen display (e.g. exercises, suggestions and

corrections);

 performance measure that evaluates student’s score.

Based on the Monette (2014), Figure 5.15 presents the description of the facilities in

the Pre-assessment MAS environment. The environment of the Pre-assessment System

is a partially observable environment (Wang, 2014). According to Wang,

environments where agent are not directly situated are partially observable to the

agent. In the Monette (2014) model for the design of an interactive tutor, students and

school are prescribed as an agent environment. The Sensor facility is enabled by the

CArtAgO workspace artifact for the MAS to observe events that are external to it. The

observable events are text-based SQL topics i.e. desired concept of students and their

SQL answer queries, where the answers (correct and incorrect SQL queries) are open-

ended inputs from the keyboard. The actuators are the output screen in which an agent

can display information to the environment, and the performance measure is the

accurate classification of students’ SQL knowledge status.

Fig.5. 15: Facility of the Pre-assessment System Agent (Based on Monette, 2014)

Chapter 5 A SQL Ontology and The Pre-assessment System

122

The Monette (2014) model emphasises the Russel & Norvig (2010) Structure of

Simple Reflex Agent by specifying the facilities that constitutes an agent based

system’s environment, sensors and actuators.

5.8 Programming CArtAgO for Open-Ended Percepts

An agent can be reactive (Wooldridge & Jenning, 1995; Chin et al. 2014, see Chapter

3): from the context of action and reaction, agents continuously perceive inputs from

their environment. In this view, agent activities are both perception and action. The

Pre-assessment System is a Vertical (one pass) Architecture such that the percept

received by an agent at the interface is communicated from agent to agent across the

MAS. Each agent is programmed with individual plans to carry out some specific

functions in the process of pre-assessment. From amongst its plans, an agent selects

the plan whose plan context satisfies the incoming percept(s), and react subsequently

to the actions in the body of plan.

The Pre-assessment System uses CArtAgO to observe desired concept and

corresponding SQL answer queries to quizzes as percepts from a real-time student.

Agents perceive events through sensors as collectors of environment stimuli. In

CArtAgO, sensors are program structures provided in the infrastructure that agents can

create, and use for directing information flow (Ricci, Viroli & Omicini; 2006). The

getObsProperty (Ricci, Viroli & Omicini; 2006) (Fig. 5.16) in CArtAgO is the

computational function in which an agent can perceive and take action that could

change its belief and the beliefs of other agents. The sensors used in CArtAgO for

obtaining input percepts are object-oriented programming methods in Java.

In this work, CArtAgO was configured and assigned to the agent agInterface. As a

goal, the agent agInterface would create artifact and monitor its states. Given the focus

function (Piunti, Ricci, Boissier & Hübner, 2009), agent agInterface is committed to

the long term activity of observation of that environment (see full listings in Appendix

C.2.2). The base artifact class provides basic functionalities to link GUI events to the

artifact operations. Figure 5.16 shows a snapshot definition of the String type of

percepts observable in the MAS.

Chapter 5 A SQL Ontology and The Pre-assessment System

123

5.9 The Agents of the Pre-assessment System

In the following sections, a detailed description and functions of the component agent

of the pre-assessment system is presented.

5.9.1 Agent agInterface and Percept Observation

In this system, the agent agInterface creates the GUI using the PreassessmentGUI class

that extends the GUIArtifact (Fig. 5.17) and observes the dynamic user inputs. In

Figure 5.18, the first plan with the triggering event !create_gui is the agent agInterface

achievement goal to create the artifact at the start of the MAS. The adoption of this

goal results in the creation of the GUI text interface shown in Figure 5.19.

Subsequently, the second plan with the triggering event + value(V) is the agent sensor,

and in its plan context is a number of selective inputs that are expected to be entered

from the artifact text area. This context is a pre-condition that contains the SQL

learning concepts that must be submitted or satisfied before the body of that plan can

be executed, in this case to communicate the percept to the agent agSupport. For

example, when agent agSupport receives a desired concept, it releases a quiz of the

prerequisite concept.

On the third plan with same triggering event +value(V) like the second plan, the agent

does not expect a null or empty input. A String data type must be entered for the plan

to be executed as defined in the PreassessmentGUI class. These Strings are both the

SQL concepts and their respective SQL queries to prerequisite assessments.

 …
 @OPERATION void setValue(String value){
 value = frame.getText();
 getObsProperty("value").updateValue(getValue());
 }
 private String getValue(){
 return frame.getText();

 }

…

Fig.5. 16: A Slice of the Java Code that gets Percept through human interaction in CArtAgO.

Chapter 5 A SQL Ontology and The Pre-assessment System

124

Fig.5. 18: A slice of Jason plans that creates observable artifact and percept communication

 // agent agInterface
!create_gui. //goal to create GUI artifact

/* plan */

//creating GUI
+!create_gui
 <- makeArtifact("gui", "c4jexamples.PreassessmentGUI",[],Id);
 .
 .
 .
 focus(Id). //long term focus on artifact observation

// perceiving student's desired concept from GUI
+value(V)[source(percept)] : value("SELECT") | value("INSERT") |
 value("DELETE") | value("UPDATE") | value("JOIN") | value("UNION")
 <-.println("The topic you have entered to learn is: ", V);
 .send(agSupport, tell, value(V));
 .println("").

// perceiving student's answer from GUI
+value(V)[source(percept)] : not value("")
 <-.println("The answer you have provided is: ", V);
 .println("");
 .send(agSupport, tell, value(V));
 .wait(600000).

 package c4jexamples;

import javax.swing.*;

import java.awt.event.*;

import cartago.*;

import cartago.tools.*;

/**

definition of the GUI artifact for the agent to create and observe
at run time.

*/

public class PreassessmentGUI extends GUIArtifact {

 private MyFrame frame;

 public void setup() {

 frame = new MyFrame();

 linkActionEventToOp(frame.submitButton,"submit");

 linkKeyStrokeToOp(frame.text,"ENTER", "updateText");

 linkWindowClosingEventToOp(frame, "closed");

 defineObsProperty("value", getValue());

 frame.setVisible(true);

 }

…

Fig.5. 17: Snapshot of the PreassessmentGUI CArtAgO Artifact

Chapter 5 A SQL Ontology and The Pre-assessment System

125

Fig.5. 19: CArtAgO artifact for Agent Percept and User Interaction. With overlapping MAS output or
display console. The output console prompts the user for inputs when the MAS is started (Ehimwenma,
Beer & Crowther, 2015a).

5.9.2 Agent agModelling and Classification

The agent agModelling is the Classifier agent of this system as specified with the PDT

systems design in Chapter 4. Classification in the context of this work is the reasoning

over the aggregate of decision messages from the agent agSupport after pre-

assessment for the accurate and selective categorisation of students for learning

materials. These messages are those predicated with the desiredConcept <D>, passed

<P> or failed <F> parameters as prescribed in the Student Model (Chapter 4). For

every pre-assessment quiz carried out by the agent agSupport (like the human teacher)

on a student, the classifier agent is always updated to begin the process of reasoning

over the messages based on the FOL pre-condition statements in its plan context. In

Jason, the format for adopting the plan, classifying, and making recommendation for

learning material is stated as (Ehimwenma, Beer & Crowther, 2016a):

+ !recommend_material : set_of_profile_parameters

 < - recommended_material.

where + !recommend_material represents the triggering message from the sender agent

agSupport with a tell performative; set_of_profile_parameters, the pre-conditions

Chapter 5 A SQL Ontology and The Pre-assessment System

126

that are matched with every updated beliefs received by a tell performative, and the

recommended_material as the message content with an achieve performative to the

learning material agent agMaterial to be committed to achieving and releasing URL

materials.

 One vs. All Multiple Classification

Classification as stated in Chapter 2 is predicting the correct class of an object or data

after the data goes through a classifier(s) (Rifkin & Klautau, 2004; Marsland, 2014).

In this research, each student skills data is proposed to belong to a single class

depending on the student’s desired_Concept and number of prerequisite leafnodes N.

One vs. All classification refers to the agent agModelling action of matching the rules

in a plan context with beliefs and selecting a plan from amongst the number of plans

to classify a student. That is, the agent decides a single accurate class and recommend

suitable learning material. This is after a collection of decision statements of many

observations (e.g. answer activities) from a sender agent. Then the student is presented

what to learn at the end of the pre-assessment session. The agent agModelling has a

number of first-order predicate (passed or failed) rules that are based on the number

of leaf nodes under a desired concept.

As mentioned earlier, two pre-assessment strategies have been identified given the pre-

assessment mechanism in Chapter 4: the pre-assessment by immediate-next

prerequisite class is supported by the educational theory of Chunking (Casteel, 1988;

Anderson, 2008) as discussed in Chapter 2. With a regular ontology structure, the pre-

assessment system was implemented. On observing the DELETE desired concept, a

slice of the rules or plans that classifies students are given in Figure 5.20. The literals

in the predicate statements are in natural language that clearly represents a student’s

performance on the leaf nodes insertSelect and insertValue concepts.

The classifier agent agModelling has no initial beliefs. But updated beliefs that are

communicated by the agent agSupport. From aggregated beliefs, plan context is

matched and the plan selected. The updated beliefs are an accumulation of <D>, <P>,

and <F> predicate statements in the course of a student’s engagement with the

MAS. They correspond (as shown in Figure 5.20) to the d(Cx), p(Nx) and f(Nx)

predicate combinations in the FOL rules formulated in Chapter 4, section 4.8.

Chapter 5 A SQL Ontology and The Pre-assessment System

127

Fig.5. 20: Agent plans based on the derived FOL syntax specified in Chapter 4 for classification of
student knowledge on the DELETE desired concept.

This set of rules can be explained further using the IF…THEN statement as condition-

action rule as indicated in Russell & Norvig (2010) simple reflex agent. The passed or

failed predicates of a FOL statement are categorical features for classification that is

decided by the agent agSupport. All the agent agModelling does is to take the inputs

and decide which of the number of classes (called N classes by Marsland, 2014) the

students belongs to. Thus, if a set of percepts or input attributes are all <passed> (e.g.

label @d1) then the student has positive ability to learn his desired concept, that is the

delete. That is,

IF

 desired_Concept(“delete”)
& passed(“The student has passed the insert with select question”)
& passed(“The student has passed insert with value question”)

THEN

Delete URL

 @d1

+!recommendMaterial[source(agSupport)] : desired_Concept("DELETE")[source(agSupport)]

 & passed("The student has passed the INSERT with SELECT question.")

 & passed("The student has passed the INSERT with VALUE question.")

 <- .send(agMaterial, achieve, hasPrerequisite(delete, insert)).

@d2

+!recommendMaterial[source(agSupport)] : desired_Concept("DELETE")[source(agSupport)]

 & passed("The student has passed the INSERT with SELECT question.")

 & failed("The student has NOT passed the INSERT with VALUE question.")

 <- .send(agMaterial, achieve, has_KB(insert, insert_value)).

@d3

+!recommendMaterial[source(agSupport)] : desired_Concept("DELETE")[source(agSupport)]

 & failed("The student has NOT passed the INSERT with SELECT question.")

 & passed("The student has passed the INSERT with VALUE question.")

 <- .send(agMaterial, achieve, has_KB(insert, insert_select)).

@d4

+!recommendMaterial[source(agSupport)] : desired_Concept("DELETE")[source(agSupport)]

 & failed("The student has NOT passed the INSERT with SELECT question.")

 & failed("The student has NOT passed the INSERT with VALUE question.")

 <- .send(agMaterial, achieve, hasPrerequisite(insert, select)).

Chapter 5 A SQL Ontology and The Pre-assessment System

128

But if the set of input is a mix of both <Passed> and <failed> (e.g. label @d2 then it

is partial ability. The student learns the failed concept insert_value:

IF

 desired_Concept(“delete”)
& passed(“The student has passed the insert with select question”)
& failed(“The student has NOT passed insert with value question”)

THEN

insert_value URL

But if the set is a mix of both <failed> and <passed> (e.g. label @d3) in reversed order

to @d2, then it is also partial ability. The student learns the failed concept

insert_select:

IF

 desired_Concept(“delete”)
& failed(“The student has NOT passed the insert with select question”)
& passed(“The student has passed insert with value question”)

THEN

insert_select URL

But if the set are all <failed> predicates (e.g. label @d4) then the student has negative

ability. Then the student learns all the failed concept insert_select, and

insert_value as shown below:

IF

 desired_Concept(“delete”)
& failed(“The student has passed the insert with select question”)
& failed(“The student has NOT passed insert with value question”)

THEN

insert_select URL, insert_value URL

On the pre-assessment system, all the set of predicate in the context part of the agent

plan corresponds to the student behaviour. Noticed that the parameter <D> is part of

all the predicate clauses in the classification plan context. The parameter, as part of the

decision clauses, identifies a student’s desired concept as well as the prerequisite leaf

nodes connected to the desired concept. In Jason, at the fulfilment of these conditions

(the ifs), the triggering_event is adopted for the execution of the plan body.

Chapter 5 A SQL Ontology and The Pre-assessment System

129

From the foregoing analysis, the process of the Input-communication-classification in

the Pre-assessment System MAS is presented in Figure 5.21:

Fig.5. 21: Inputs, communication and classification in the multiagent Pre-assessment System. Inputs
are serial, as students reaction to the System.

where the communication-classification stages are represented as h0 function that is

further broken down into a serial or asynchronous process of communication between

agents in Figure 5.22. This mirrors the one-pass vertical architecture (Chin et al. 2014)

of agents such that the agent agInterface obtains the sensor input, communicate the

input as messages through from agent to agent that all along the way performed their

roles according to design, and finally to the effector agent that releases the URL links

to the student. The three agents in Figure 5.22 are reactive agents with individualised

plans represented in decision symbols: that represents agent plans that are triggered

based on the percept received from incoming messages. The triggered plan is

dependent on the plan context that is satisfied. The end of a pre-assessment session is

at the time the ontology agent agMaterial releases learning material(s).

Fig.5. 22: One vs. All Multiple Classification (Ehimwenma, Beer & Crowther, 2016a)

Rules representations (plan context) are beliefs about the state of the world (student

learning). In communication, the agents are reactive and they use deliberation as a

DesiredConcept

Answer1

Answer2
h0 Output (URL)

Answern

⁝

Chapter 5 A SQL Ontology and The Pre-assessment System

130

means to an end: Deliberation here, involves (usually systematic) exploration of

alternative courses of action (Logan, 2014). The input becomes beliefs that are

matched with pre-conditions for plan selection. The output of one agent behaviour

becomes the input of another agent. In other words, there is a condition(s) match of

the representation of current state to previous percept or message; and each agent

output is a predicate statement to the next agent.

5.9.3 Agent agModel and Student History

The agent agModel is the Student agent. It is the agent that keeps track of the students’

pre-assessment history. This history is comprised of the desired concept <D> and

answers <V> to every question. This parameter information is also communicated by

the agent agSupport after every pre-assessment activity and are persistently stored in

the agent agModel text database using the Jason TextPersistentBB Class. The stored

information is meant for the course tutor to monitor students’ learning and their

technical difficulties in their SQL query constructs. Figure 5.23 illustrates some of the

information stored in the text database.

Fig.5. 23: A snapshot of the agent agModel (student) Mind Inspection of updated beliefs in Persistent
beliefs after some pre-assessments by the MAS.

Chapter 5 A SQL Ontology and The Pre-assessment System

131

5.9.4 The Agent agSupport and Pre-assessment

This is the teacher that pre-assesses students using!achievement goals for

questions retrieval from its beliefs. For instance, given that a desired concept is update,

agSupport first enquires from the agent agMaterial whether the update concept exists

in the ontology with the message (see Fig. 5.24):

.send(agMaterial, askOne, hasPrerequisite(V, delete));

The agent agMaterial replies back that the Update concept has prerequisite delete. The

askOne performative message does not update the belief of a receiver agent. Instead,

it triggers the agent agMaterial to reply to the sender with the content requested. On

receipt of the replied message, the sender agent agSupport belief is updated with the

new information. Based on the FOL logic information that is now available to the agent

agSupport, it then informs the student that the concept entered has a prerequisite in the

given code

.print(V, “hasPrerequisite delete”);

Thereafter, achievement goal

…
!quizDeleteSelect(DeleteSelectQuiz).

+!quizDeleteSelect(DeleteSelectQuiz):quizDeleteSelect(DeleteSelectQuiz)

<- …

as the next intention in the plan is adopted with the condition that the

quizDeleteSelect(DeleteSelectQuiz) in the plan contexts exists in the

agent BB, then the body of the plan is executed.

In the body of the plan, date and time are stamped to every activity of students. This

is from the stage of the desired concept to the stage of the materials recommended for

learning. The essence of this is to record time lapse on every event in order to make

comparison with the outcome of pre-assessment. Then the desired concept is sent to

the agent agModelling (the classifier). Afterwards, the quiz of the first or left most leaf

node to the delete concept i.e. deleteSelect is released to the student (Fig. 5.24). As

shown in the DL definition and in Figure 5.9, every leafnode has a corresponding

question. On receipt of the quiz, the student enters his answer. The agent agSupport

receives the answer from the agent agInterface, and sends an answer to agent

Chapter 5 A SQL Ontology and The Pre-assessment System

132

agModelling. At this stage the student is assessed on the answer and informed of the

outcome.

Fig.5. 24: Agent achievement goal for retrieving and displaying the deleteSelect quiz from BB.

 For a passed assessment, this the plan behaviour of the agent assessment, feedback

and communication of the decision process (Fig. 5.25). The agent takes decisions on

the answers received from agInterface and communicate the passed or failed decisions

statements, including feedbacks to students. Thereafter the quiz of the next leaf node

of the delete concept i.e. deleteWhere is released by agent agSupport through the

adoption of the next agent achievement goal. In the process of pre-assessment, the

agent agSupport uses achievement goals within plans to navigate from question to

question in its beliefs. At every stage of pre-assessment, the agents agModelling

(classifier) and agModel (or student) are directly communicated (see Fig.5.25). This

implementation has been with two leaf nodes per class node based on the principle of

Chunking (Casteel, 1988; Anderson, 2008).

 ...
.send(agMaterial, askOne, hasPrerequisite(V, delete));//Asking if relation

 exists in ontology

.println(V, " has prerequisite DELETE"); //action after getting reply

-value(V); //belief drop

.println("Question on DELETE with SELECT:");

.println;

!quizDeleteSelect(DeleteSelectQuiz).

+!quizDeleteSelect(DeleteSelectQuiz) : quizDeleteSelect(DeleteSelectQuiz)

 <-.date(YY, MM, DD);

 .time(HH, NN, SS);

 .println(DeleteSelectQuiz);

 .concat(DeleteSelectQuiz, ", date(",YY,"-", MM,"-", DD, ")", ", ",

 "time(",HH, "-", NN, "-", SS, ")", Qds);

 .send(student, tell, quizDeleteSelect(Qds));

 .println;

 .wait(6000000).

Chapter 5 A SQL Ontology and The Pre-assessment System

133

Fig.5. 25: Plan snapshot for a passed answer assessment, user feedback, communication and next quiz
display use of achievement goal by the agent agSupport

5.9.5 Agent agMaterial and Ontology

This is the agent that has the SQL ontological relation initialised as internal knowledge

beliefs in FOL ground facts. The agent take message percept, matches the concepts in

every relation as requested and directed, and retrieves the information or literal from

its BB. For example, an askOne request from the agent agSupport that confirms a

student’s desired concept when submitted at the interface. The agent holds the learning

materials in their URL (universal resource locator). At the end of a pre-assessment

session, the agent makes URL(s) available to students by matching a plan context to

the achieve performative message as directed (a directive, Searle, 1959) by the

 @p16

// Plan for correct answer to DELETE_SELECT the first prerequisite to UPDATE.

+value(V)[source(agInterface)] : value(V) == value("DELETE FROM TENNIS_PLAYERS

WHERE TOWN = (SELECT TOWN FROM TENNIS_PLAYERS WHERE PLAYERNO = 44 AND PLAYERNO <>

44)") & testCount(0)

 <-.date(YY, MM, DD); .time(HH, NN, SS);

 .println("Good. Your answer is correct.");

 ?testCount(Count); -+testCount(Count+ 1);

.concat(V, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN, "-

", SS, ")", Rds1);

 .send(student, tell, responseToDeleteSelect(Rds1)); //date and time appended

 PassedDS = "The student passed DELETE with SELECT question.";

 .concat(PassedDS, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-

", NN, "-", SS, ")", Pds);

 .send(student, tell, passed(Pds));

.send(agModelling, tell, passed("The student passed the DELETE with SELECT

question."));

 .println("Question on DELETE with WHERE clause:");

 !quizDeleteWhere(DeleteWhereQuiz); .println.

+!quizDeleteWhere(DeleteWhereQuiz) : quizDeleteWhere(DeleteWhereQuiz)

<- .date(YY, MM, DD); .time(HH, NN, SS);

.concat(DeleteWhereQuiz, ", date(",YY,"-", MM,"-", DD, ")", ", ",

"time(",HH, "-", NN, "-", SS, ")", Qdw);

 .send(student, tell, quizDeleteWhere(Qdw)); //date and time appended

 .wait(6000000); .println.

Chapter 5 A SQL Ontology and The Pre-assessment System

134

classifier agent—after the student is classified. An askOne performative from agent

agSupport and the achieve performative from agent agModelling is an order that

commits the agent agMaterial to the message content. The content of these

performatives were successfully executed by the agent agMaterial. In the agent

beliefs, ground facts are represented in FOL as:

 class to class with hasPrerequisite relation;

 class to leaf nodes (subclass) with hasKB relation;

 leaf node to data values with hasContent relation;

 class to class with isPrerequisiteOf relation

as defined in the SQL TBox.

The properties hasPrerequisite and hasKB relations are the ObjectProperty, and the

hasContent a DataProperty as in Protégé (Horridge et al. 2004). The Figure 5.26

present a snapshot of a plan with the hasKB predicate e.g.

+!has_KB(delete, deleteSelect)

that is adopted by the agent agMaterial when the sending agent agModelling has

concluded classification. Every plan in the agent agMaterial is for recommendation of

learning content to direct a suitable level(s) of learning material for student.

Fig.5. 26: Adoption of a hasKB predicate relation, and content query from BB with ?hasContent
test goal in a plan.

The agent agModelling uses the hasPrerequisite or hasKB predicate in its message

At the receipt and adoption of the plan with this message as the triggering event, the

agent agMaterial uses a test goal given in the form

?hasContent(x, y)

 @u_m3

+!has_KB(delete, delete_select)[source(agModelling)] // for failure of the

DELETE_SELECT of desired_Concept("UPDATE")

<- .println(" You will learn the DELETE_SELECT. Please use the text link below:");

 ?hasContentText(deleteSelect, DS_textURL)[o(sql)];

 .println("DELETE...SELECT query Text Link: ");

 .println(DS_textURL).

Chapter 5 A SQL Ontology and The Pre-assessment System

135

to query its BB for the release of learning material. The hasContent data property

relation is suffixed with Text, such as:

?hasContentText(updateWhere, UW_textURL)[o(sql)];

to depicts the type of learning material on the URL links.

5.10 Summary of Chapter

One of the objectives of this system is to unravel gaps in students learning and to

adequately support them to fill-in the gaps. The failure of any prerequisite concept

when a student intends to learn a top or higher concept means a gap in his learning.

This Chapter has presented the implementation of the Pre-assessment System and its

SQL ontology learning structure towards the objective of identifying gaps in learning.

Given Maedche & Staab (2001) 5-tuple [C, R, F, A, I], the SQL ontology was defined

using formal concepts. Firstly, the SQL ontology was defined with a description logic

TBox terminology and ABox assertion. While the TBox described the terms and

relations in the SQL domain ontology, the ABox asserted the individual members. The

terms in the TBox were analysed and different ontology models were constructed

given the role (or relation), the constraints and the minimum cardinality of ≥ 2

specified for leaf nodes. But since learning is sequential, the linear model was adopted

for implementation. The linear model has a regular model as well as a non-regular

ontology model. In furtherance, the chapter demonstrated the classes and relations

using the Jena API ontology model and Protégé ontology illustrations, and then parse

the Protégé OWL ontology in Jena (an RDF API) to observe: 1) the OWL class to

class relation, 2) OWL class to rdfs subclass relation, 3) the object properties that exists

between rdfs domain and range in TURTLE syntax in order to capture OWL

expressiveness over RDF(S). TURTLE outputs ontology listings in concepts’ given

names, and not in their fully qualified URI namespaces such as in RDF/OWL or

OWL/XML syntax. Based on concepts’ given names and their property, first-order

logic (FOL) representation was used to specify agent beliefs or ground facts in a

system that has been implemented in Jason AOP. The chapter then presented the Pre-

assessment System, and its detailed structure as specified with the PDT AUML tool in

Chapter 4. This covered the agents, their functions or role in the system, CArtAgO

and percept observation, agent localised or internal knowledge base in FOL, and inter-

Chapter 5 A SQL Ontology and The Pre-assessment System

136

agent communication of ontological knowledge. As presented in Chapter 4, two

strategies of pre-assessment were identified given the Pre-assessment Mechanism.

This chapter has implemented and tested the strategy of pre-assessment by immediate

prerequisite class and its classification process. While the results of this

implementation and evaluation shall be presented in Chapter 6, details of the pre-

assessment by multiple prerequisite classes (the second strategy) shall be presented in

Chapter 7.

Chapter 6

System Evaluation, Results and

Analysis of Data

6. Introduction

Chapter 5 started by introducing the learning structure of the SQL domain of this

thesis. Using a description logic language, the concepts of the SQL ontology and inter-

concept relationships was defined with a minimum cardinality specification of two

leafnodes per parent class. From the various ontology model analysis given the TBox

definition, this research adopted the linear model as the optimum model for

implementation on the Pre-assessment System. This is to allow students to progress

gradually from one level of pre-learning to the next without missing any concept.

Based on the linear model, beliefs or facts representation in first-order logic (FOL) and

speech acts (performatives) based inter-agent communication in the Pre-assessment

System was implemented using Jason AgentSpeak language. Afterwards, the System

was evaluated for fitness-of-purpose, which is, to identify gaps in students’ learning.

Thus, this Chapter 6 presents the evaluation of the Pre-assessment System, the data

collected and the analysis of the data. This includes students' skills data and their

experiential feedback after their pre-assessment exercise. From the results, the data

on students' real-time engagement with the Pre-assessment System reflects students’

understanding of SQL queries. In the post pre-assessment data which is qualitative,

students expressed their thoughts through questionnaire that was administered via the

SurveyMonkey (2017).

Chapter 6 System Evaluation, Results and analysis of Data

138

6.1 Sampling Technique

This section presents the process of sampling in the survey and the collection of data

in the research.

 Population: The population of the study is SQL/database students. This is

because the content of learning of the Pre-assessment System is SQL. With the

identified population sample, the system can be effectively evaluated for

fitness of purpose and results validation given that the population are

participants in the learning domain.

 Sampling Frame: The sampling frame are database students of the Sheffield

Hallam University. The is comprised of students that are in their first year

undergraduate, second year undergraduate course through to Master’s degree

level. They are students that have either studied database modules in their

recent past or in their current learning.

 Sampling Method: The method of sampling used for the chosen population is

the random sampling technique. Firstly, after consulting with the lecturers in

charge of the databases courses, emails were then sent out via the Sheffield

Hallam University Blackboard site to request for volunteer participants in the

study. Apart from the use of emails, the course lecturers also candidly

announced in the classrooms to remind students of participation. Due to the

imbalance of demographic representation such as ethnicity in the database

modules, demographic data was later dropped for consideration in the study.

 Sample Size: All the students who volunteered for the study also took part in

the survey which is about the identification of learning gaps in students' SQL

query skills. The sample size of 7 students that volunteered for the survey and

their course distribution in a survey that was conducted over four academic

semesters is shown in TABLE 6.1.

Chapter 6 System Evaluation, Results and analysis of Data

139

TABLE 6. 1: SAMPLE SIZE OF VOLUNTEERS AND RECRUITMENT
RECORDS

S/N Semester/Academic Year No. of Participants

1. Semester 1, 2014/15 2

2. Semester 2, 2014/15 2

3. Semester 1, 2015/16 0

4. Semester 1, 2016/17 3

 TOTAL 7

6.2 Experimental Setup

This section presents the different stages of the Pre-assessment System’s evaluation

exercise and the data collated in tables after analysis.

6.2.1 Recruitment for Evaluation Exercise

SQL is one of the technical fields of programming in computing science. It can be

tricky to learn and easily forgotten when learned. As described in Chapter 2, the skills

in SQL are challenging and students have many difficulties learning them (Mitrovic

1998). In Prior (2003) it was ascertained after their experimentation that the learning

and mastering of these (SQL) skills is a difficult process that requires considerable

amount of practice and effort on the part of students. Prior (2003) stated is not easy for

students. Therefore, to ease the difficulty in the learning of SQL, strategies that

supports the best learning practice was considered. This further informed the choice of

our linear ontology models of SQL concepts implementation in batches (chunks) and

class by class in a simple-to-complex order. This is to model learning path and resource

for students to succeed.

So having developed the System to test SQL previous knowledge gaps or gains,

sessions were organised for testing the focus group—computing students that have

taken modules in Databases. As students that have previous knowledge of SQL, it was

Chapter 6 System Evaluation, Results and analysis of Data

140

believed that students have the capability to holistically evaluate the system to address

their learning needs in the domain of SQL. With the necessary requirements of the

Research Ethics standards met, calls for volunteer-participants were made for the

evaluation of the system to:

 Pre-assess students’ skills in the domain of SQL (the context in which the

system has been developed).

 Evaluate the system’s fitness for purpose i.e. test of the underlying pre-

assessment mechanism, accurate classification, inter-agent communication and

overall system design goal.

6.2.2 Student Consent and Lesson Plan

As part of standard Research Ethics procedure, a Consent Form was designed for the

study in order to obtain the participating students’ consent (see Appendix B, B.2 for

consent form). As a duly conceived teaching-learning session, a Lecture Plan was also

designed. This was to guide students through their pre-assessment exercise.

Students were acquainted at the beginning of the pre-assessment sessions with the

objectives of the test exercise—which was to identify gaps in previously learned SQL

knowledge. Students were informed that the session was not a formal faculty

examination. Rather it was a research survey of a multi-agent Based SQL Pre-

assessment System developed to assist the learning of SQL. As such there was the

need to have some independent body (like them — students in Databases or SQL) that

could evaluate the system’s function or performance, and then make feedback to the

researcher. The essence is to support the learning and teaching of SQL. In doing so,

that their personal data or information obtained would not be divulged in any form.

In addition, the students were informed that, by no means, were they compelled to

participate in the exercise. They could accept to continue or opt out of the research

exercise at any moment. However, their participation in the evaluation exercise was

highly solicited and important to the study. On those grounds, the students gave and

signed their Consent, and the Lecture Plan were handed out to them for the

commencement of their pre-assessment exercise.

Furthermore, it was explained that the objective of the system was to find out whether

gaps exist in their SQL knowledge. That when they [students] enter a topic (among a

Chapter 6 System Evaluation, Results and analysis of Data

141

list of topics on the system) that they intend to learn, the system would present to them

some questions on the prerequisites to the topic that was entered: To ascertain whether

the students are ready for the new topic they intended to learn or whether there are

previously learned modules that needed to be revisited. Finally, that, while they would

engage the Pre-assessment System, the answers that were provided would be logged

in the system for the researchers’ review.

6.3 Pre-assessment Skills Data Collection and Analysis

The pre-assessment exercise took place in different academic sessions as shown in

TABLE 6.1. As students worked on the system they equally got feedback from the

System, their correct query constructs were adjudged as passed and the incorrect ones

as not passed (i.e. failed).

Recall that in Chapters 4 and 5, the pre-assessment System also keep the history of

students’ activities. Thus the following are examples of the pre-assessed data stored

permanently by the agent agModel (student) in the system (complete data in

Appendix A, A.1):

 Example Data 1

The

desired_Concept("INSERT, date(2017-1-26), time(12-10-

23)")[source(agSupport)].

is the INSERT desired concept entered by the student, and

quizSelectWhere("What query statement will return the player

number and address of each player living in Stratford? HINT:

order of address: STREET, HOUSENO, POSTCODE., date(2017-1-26),

time(12-10-23)")[source(agSupport)].

the quiz of SELECT_WHERE, the first leaf node prerequisite to INSERT; and

Chapter 6 System Evaluation, Results and analysis of Data

142

responseToSelectWhere("SELECT PLAYERNO, STREET, HOUSENO,

POSTCODE, date(2017-1-26), time(12-13-

54)")[source(agSupport)].

the student response to the quiz of SELECT_WHERE, then

failed("The student has NOT passed the SELECT...WHERE

question., date(2017-1-26), time(12-13-

4)")[source(agSupport)].

which is the failed predicate decision statement after assessment by the agent

agSupport. The message that is also sent to the agent agModelling (classifier). This

message is followed by the next quiz

quizSelectAll("State the SQL query that will output all the

data in TENNIS_TEAMS?, date(2017-1-26), time(12-13-

54)")[source(agSupport)].

is the quiz of SELECT_ALL, the second leaf node prerequisite to INSERT. Then

responseToSelectAll("SELECT PLAYERNO, STREET, HOUSENO,

POSTCODE, date(2017-1-26), time(12-13-

59)")[source(agSupport)].

which is the student response to the quiz of SELECT_ALL, and then the

failed("The student has NOT passed the SELECT_ALL question.,

date(2017-1-26), time(12-13-59)")[source(agSupport)].

which is the failed predicate decision statement that is also a message sent to the

agent agModelling (classifier).

After accumulating the two failed predicate decision statements, the agent

agModelling (classifier) classified the student for learning by sending an achieve

performative message to the agent agMaterial as specified with the Prometheus PDT

design tool in Chapter 4. The agent agModelling (classifier) does this by matching the

Chapter 6 System Evaluation, Results and analysis of Data

143

message content in their unary logic form to its array of plans, and triggering the plan

whose plan context is selected before communicating the agent agMaterial to release

the web URL link. This, the student placed on a browser to study the two failed

concepts in this case.

 Example Data 2

In this pre-assessment,

desired_Concept("UNION, date(2017-1-26),time(12-42-

14)")[source(agSupport)].

is the UNION desired concept entered by a student, and

quizFullOuterJoin("Give, for each player, the player number,

the name and the penaltiees incurred by him or her; order the

result by player number. (HINT: you need to use OUTER JOIN),

date(2017-1-26), time(12-42-14)")[source(agSupport)].

the quiz of FULL_OUTER_JOIN, the first leaf node prerequisite to UNION; and

responseToFullOuterJoin("SELECT P.PLAYERNO, P.NAME,

PEN.AMOUNT, date(2017-1-26), time(12-59-

10)")[source(agSupport)].

the student response to the quiz of FULL_OUTER_JOIN, then

failed("The student has NOT passed the FULL_OUTER_JOIN

question., date(2017-1-26), time(12-59-

10)")[source(agSupport)].

which is the failed predicate decision statement taken and as the message that is sent

to the agent agModelling (classifier). Then the next quiz

quizInnerJoin("For each player born after June 1920, find the

name and the penalty incurred by him or her? HINT: you need to

use INNER JOIN, date(2017-1-26), time(12-59-

10)")[source(agSupport)].

Chapter 6 System Evaluation, Results and analysis of Data

144

is the quiz of INNER_JOIN which is the second leaf node prerequisite to UNION.

Then

responseToInnerJoin("SELECT P.PLAYERNO, P.NAME, PEN.AMOUNT

FROM TENNIS_PLAYERS P INNER JOIN TENNIS_PENALTIES PEN ON

P.PLAYERNO = PEN.PLAYERNO, date(2017-1-26), time(13-1-

19)")[source(agSupport)].

which is the student response to INNER_JOIN, and then the

passed("The student has NOT passed the INNER_JOIN question.,

date(2017-1-26), time(13-1-19)")[source(agSupport)].

which is the passed predicate decision statement which is also a message to the agent

agModelling (classifier). In this pre-assessment, the student only failed one

prerequisite. Thus, the student was recommended to the Full_Outer_Join URL link

being the failed concept.

 Example Data 3

In contrast to Example 1 and Example 2 above, in Example 3, the two leafnode

prerequisites to the INSERT was passed by the student when

desired_Concept("INSERT, date(2015-10-16), time(11-11-

47)")[source(agSupport)].

INSERT was entered as the desired concept. The prerequisite quiz

quizSelectWhere("What query statement will return the player

number and address of each player living in Stratford? HINT:

order of address: STREET, HOUSENO, POSTCODE., date(2015-10-

16), time(11-11-47)")[source(agSupport)].

of SELECT_WHERE was displayed. The

Chapter 6 System Evaluation, Results and analysis of Data

145

responseToSelectWhere("SELECT STREET, HOUSENO, POSTCODE FROM

TENNIS_PLAYERS WHERE TOWN="Stratford";, date(2015-10-16),

time(11-12-57)")[source(agSupport)].

was the response from the student. Then the student was assessed to have passed

passed("The student has passed the SELECT...WHERE question.,

date(2015-10-16), time(11-12-57)")[source(agSupport)].

Then the next quiz

quizSelectAll("State the SQL query that will output all the

data in TENNIS_TEAMS?, date(2015-10-16), time(11-12-

57)")[source(agSupport)].

of the SELECT_ALL statement was released, and the student responded with

responseToSelectAll("SELECT * FROM TENNIS_TEAMS;, date(2015-

10-16), time(11-13-51)")[source(agSupport)].

which is the correct answer to SELECT_ALL, and the student was also assessed to

have

passed("The student has passed the SELECT_ALL question.,

date(2015-10-16), time(11-13-51)")[source(agSupport)].

the SELECT_ALL prerequisite leafnode quiz. In this case, the student was

recommended to learn the desired concept having passed the prerequisite quizzes.

 Example Data 4

There were occasions after a desired concept was entered and quiz released, because

students spent their time trying to work out their query statements, the system clocked

out. An example is,

 desired_Concept("INSERT, date(2015-10-16), time(11-8-

 32)")[source(agSupport)].

Chapter 6 System Evaluation, Results and analysis of Data

146

then the quiz

 quizSelectWhere("What query statement will return the player

 number and address of each player living in Stratford? HINT:

 order of address: STREET, HOUSENO, POSTCODE., date(2015-10-

16), time(11-8-32)") [source(agSupport)].

that was not responded to. In such cases, students had to restart the MAS. For the

complete data set that was stored in the agent agModel belief base (see Appendix A,

A.1). The TABLE 6.2 presents the data of the number of correct answers and that of

the incorrect answers entered in the system by all 7 participants who took part in the

survey.

TABLE 6. 2: PERCENTAGE OF CORRECT AND INCORRECT PRE-

ASSESSMENT ANSWERS
No of Students Percentage (%) Correct Percentage (%) Incorrect

7 22.7% 77.3%

In the TABLE 6.2 a total of 22.7% (passed) correct answers were entered for queries

as against incorrectly answered queries 77.3% (failed) pre-assessments, respectively;

(see Chapter 7 for breakdown).

6.4 Post Evaluation and Experiential Feedback Data

To gather students’ perception about their user experience on the Pre-assessment

System, a post-evaluation survey was conducted through a 17 item questionnaire. The

questionnaire was designed by the researcher, and was vetted and validated by the

supervisory team as suitably adequate for the collection of the relevant data with

respect to the system’s design and the SQL domain of learning. The questionnaire

contained both structured and unstructured items with 11 structured items that can be

ticked, and 6 unstructured items of open-ended entries that requires short textual

response. The TABLE 6.5 contains the structured data of 11 items, while the Tables

Chapter 6 System Evaluation, Results and analysis of Data

147

6.3, 6.4 and 6.6 – 6.9 have the unstructured data entries as obtained from the

administered questionnaires via SurveyMonkey (2017).

TABLE 6. 3: QUESTION 1. COURSE OF STUDY?

Course Percentage (%)
BEng (Hons) Software Engineering 29%

MSc Database Professional 14%
Enterprise System Professional 14%

BSc Info Tech with Business Studies 43%
Total 100%

TABLE 6. 4: QUESTION 2. YEAR OF STUDY?

Year Percentage (%)
First Year 14.3%

Second Year 71.4%
Masters 14.3%
Total 100%

TABLE 6. 5: QUESTIONS 3 – 13

Questions (Q) Strongly
agreed

Agreed Undecided Disagreed Strongly
disagreed

Q3: The system
was useful

14.29% 71.43% 14.29%

Q4: The system
helped me to recall
my previous
knowledge

42.86%

57.14%

Q5: The system
supports the learning
of SQL

28.57%

57.14%

14.29%

Q6: I am not
familiar with SQL

14.29% 57.14% 28.57%

Q7: The system
provided guidance
to learning materials

85.71%

14.29%

Q8: The system has
a use-able interface

 57.14% 14.29% 28.57%

Chapter 6 System Evaluation, Results and analysis of Data

148

Q9: I understood
the purpose of the
system

42.86%

57.14%

Q10: The tutor was
helpful in
introducing the
system

57.14%

42.86%

Q11: The tutor was
helpful in providing
assistance

57.14%

42.86%

Q12: The session’s
organisation was a
good learning
experience

14.29%

57.14%

14.29%

14.29%

Q13: The session
was well organised

28.57% 57.14% 14.29%

The following Tables 6.6 – 6.9 presents the open-ended responses from participants

of the Pre-assessment System and the pre-assessment sessions:

TABLE 6. 6: QUESTION 14. WHAT WAS MOST INTERESTING ABOUT THE

SESSION'S ORGANISATION?

Chapter 6 System Evaluation, Results and analysis of Data

149

TABLE 6. 7: QUESTION 15. WHAT WAS LEAST INTERESTING ABOUT THE
SESSION'S ORGANISATION?

TABLE 6. 8: QUESTION 16. WHAT IS MOST INTERESTING ABOUT THE

SQL SYSTEM?

TABLE 6. 9: QUESTION 17. WHAT WAS LEAST INTERESTING ABOUT THE

SQL SYSTEM?

Chapter 6 System Evaluation, Results and analysis of Data

150

6.5 Summary of Chapter

The Pre-assessment System has been evaluated, and data was collected in this chapter.

The data collected from a small sample size of 7 database students was presented. The

sample size is the number of participants that volunteered to partake in the survey. Of

no doubt, participant recruitment for the study has been a challenge. Nonetheless, from

the available sample size and system evaluation, it is found that the system has been

able to identify gaps in students’ SQL query constructs. This is on the strategy of Pre-

assessment by Immediate Prerequisite Class using a regular ontology model of two

leaf nodes to a class node (Chapter 5, Fig. 5.3) that was implemented. The chapter also

presented the pre-assessment data and showed how students were pre-assessed as the

System navigated from one leaf node concept to another underneath their desired

concept. Altogether, the data collected and analysed reflects students’ know-how of

SQL query skills, quantitative and as well as qualitative data analysis. From the SQL

knowledge or skills related data, the difficulty faced by a cross section of students have

been unravelled. This can enable the course tutor to meet the learning needs of

students. This knowledge data as presented conforms to Prior (2003) assertion that

SQL is not easy to learn and that students are faced with challenges and difficulties in

writing SQL queries. At the end of the pre-assessment sessions, open ended views

were collected as feedback from students via SurveyMonkey. This was for the

elicitation of facts about their user experience. In next Chapter 7, further discussion is

presented about the pre-assessment data, and its implications for the teaching of SQL.

Also discussed is the strategy of Pre-assessment by Multiple Prerequisite Classes as

well the process involved in the development and operations of the Pre-assessment

System.

Chapter 7

Discussions

7. Introduction

The aim of this research was to identify gaps in students’ learning in order to provide

assistance in filling those gaps by pointing students to the materials of the concepts or

unit of lessons that they needed to know. To that effect, the agent based Pre-assessment

System was proposed and developed to use a classification approach that can

categorise students’ skills and recommend materials that would help to close the gaps

in students’ learning.

In a formal school curriculum i.e. universities, schools (e.g. Manouselis et al. 2011),

learning is sequential and ordered from known (learned concepts) to the unknown

(higher concepts). As a formative type (Conole &Warburton, 2005) of prior knowledge

assessment system, the Pre-assessment System has its concept of learning structured

in an ordered sequence. In this arrangement, diagnosis of students’ understanding of

prior SQL domain concepts is carried out so that support can be provided for further

learning through the planned pre-assessment strategies earlier described in Chapters 4.

7.1 Dealing with The Research Question

The purpose of this research was to identify gaps in students’ learning: between a target

learning concept of the student (a higher concept) called the “desired_Concept” and

some previously learned concepts (the lower level concept). To achieve this aim, a

research question RQ was formulated towards the development and realisation of a

formative type of assessment system as:

How can students be helped to identify gaps in their current learning so that

they can be fully prepared for the next stage in their learning?

Chapter 7 Discussions

152

The approach to answering this RQ has been through: the development of the Pre-

assessment System, evaluation of the system, and the collection of students' activities

and skills data from the agent agModel persistent beliefs after the agent Mind

inspection (Bordini, Hubner & Wooldridge, 2007). Agent Mind inspection is a view

into an agent belief update by the programmer or researcher, see Chapter 5, Figure

5.3.

7.1.1 How System Identified Gaps and Material Recommendation

The System has helped students to self-diagnose their SQL skills. This has been

through a process in which students are prompted to enter a desired_Concept from a

hierarchy of SQL class concepts or topics (See Figure 5.19). Thereafter, pre-

assessment on some prerequisite leafnodes to their chosen concept is carried out. This

is because every student cannot start in the same learning block, as such, there has to

be a different choice-levels of pre-assessments. While a student may desire to study a

higher concept, the research wanted to ascertain whether the student has a good

knowledge of prerequisites to the desired_Concept. In that perspective, pre-assessment

or pre-learning diagnosis needs to take students from one lower-level to the next

higher-level concept after assessment. This is when students have demonstrated an

appropriate level of skills at the lower level. On one hand, this is similar to the strategy

used in the PAT Algebra System (Ritter et al. 1998) that promote students to a higher

level-learning after completing a task at a lower level. In contrast to the PAT Algebra

System and also a number of SQL systems that provides tutorials e.g.

"SQLCourse.com" (see Chapter 2), but not assistance for errors, the Pre-assessment

System makes material recommendation for the learning of unlearned i.e. the failed

concepts after pre-assessment. The act of making recommendations for the learning of

failed concepts makes the Pre-assessment System different from the systems identified

in literature (see Chapter 2) by the strategies of pre-assessment and classification

employed in this thesis.

As presented in Chapter 6, the Pre-assessment System evaluated students’ skills prior

to learning a higher or desired_Concept. During pre-assessment sessions, as

prerequisite questions were presented to the participants (students) in the study,

http://sqlcourse.com/

Chapter 7 Discussions

153

students responded by entering SQL answer queries from question to question:

questions that corresponded to the prerequisite class concepts whose leafnodes N have

been defined to have N ≥ 2 minimal cardinality in the TBox, see Chapter 5, Figure

5.2. As described in Chapter 5, implementation of an ontology of learning concepts in

the Pre-assessment System can be of at least leafnodes N = 2 per parent class which

has been implemented and evaluated, and of leafnodes N ≥ 2 per parent class

implementation that is presented in this chapter.

While student participants engaged with the System, the System continuously

interacted with students, informing them of the questions they have answered correctly

or incorrectly. From the assessment on incorrect answers, students were able to

identify their own learning gaps. After pre-assessment exercises, some students

realised they were not ready for their higher and intended desired_Concept. At the end

of each pre-assessment exercise in which students were classified based on their skills,

learning material URLs were presented, and students viewed materials on the web that

provided assistance for their learning: That way the system provided assistance to

students to close their learning gaps.

The Pre-assessment System is one that has been developed to be adaptable to students'

level of learning of SQL. As stated in Michalski, Carbonell & Mitchell (2013) the

level of adaptability provided by a system should be that which must present learning

materials suitable to the state of knowledge of the student. Thus, the materials that

were presented to students after their pre-assessments were tailored by the System to

either the leafnodes of the desired_Concept they intended to learn or to the failed

leafnode(s) of the prerequisite concepts as defined in Chapter 4. See sections 4.7.1 and

4.7.2 for the FOL rules definition. The learning materials for a desired_Concept were

provided when a student passed all prerequisite questions considered and programmed

under the desired_Concept.

7.1.2 Initial System Development Stages

The Pre-assessment System has been developed using Jason AgentSpeak language, a

first order logic (FOL) based language. During the early system developmental stages,

Chapter 7 Discussions

154

questions that Zhang, Kendall & Jiang (2002) described when developing an agent

based system arose, namely: what agent does what, what agent interacts, and how?

By further decomposing the aforementioned steps, subsequent questions ensued:

 What is the MAS going to observe?

 How will it observe?

 How will the MAS make decisions?

 How will it assist students to close the gaps in their learning?

 How and in what performative can agent communicate messages to

understandably fulfil the goal of pre-assessment, see Chapter 4, Figure 4.2.

As described in Chapter 4, the approach is that the MAS observe a student’s

desired_Concepts, present leafnode prerequisite questions and receive answer

responses to the leafnodes prerequisite questions. The means, with which, this was

done was through the CArtAgO artifact.

Jason AOP is language where beliefs representation and message content are in FOL.

Given the beliefs in belief base (BB), agents make decisions by selecting the plan

whose plan context matches the beliefs in their FOL representation. As stated in

Chapter 3, Jason agent plan structure is of the form

triggering_event-condition-action.

When the condition part of a plan is satisfied after some percept or accumulated

messages in beliefs, the triggering_event is adopted and the action(s) in the plan body

is executed.

7.2 Reactive System

In Chapter 5, the Pre-assessment System was described as a system of five agents that

is holistically a reactive system. This is because each agent reacts to perceived input(s)

at appropriate trigerring of an event. The agent agInterface can be referred to as the

first reactive layer as it is the agent that observes the CArtAgo artifact. This is followed

by others i.e. agents agModelling, agSupport, and agMaterial that takes individual

decisions based on their individual plans and expected percepts. The agent

Chapter 7 Discussions

155

agModel(student) is the only agent whose function is to receive and keep persistent

beliefs of all activities.

7.2.1 Agent Long term and Short term memory

Agents can possess both long-term and short-term memory. While the modelled facts

that are initialised as beliefs in the agent is long-term memory, the updated knowledge

as a result of inter-agent messages, can be said to be the short-term memory. As a

reactive system, the short-term beliefs is the knowledge from which the agent

recognises, matches and unifies with the long-term beliefs to perform a designated

task. In convention as with volatile storage, agents' short-term beliefs are ephemeral

or short-lived: They are lost when the MAS system is Stopped. The long-term belief

is the agent permanent store that keeps updated beliefs, this beliefs or text knowledge

base uses the TextPersistentBB class to keep track of all student activities during pre-

assessment.

7.3 Agents Communication in The Pre-assessment System

In the Pre-assessment System, the essence of communication is for the agents to co-

operate in the process of identifying gaps in students’ learning and to assist in filling

the gaps. In communication, there is a sender and a hearer, and the content of

communication i.e. the message (Searle, 1969, Wooldridge, 2002, Labrou & Finin,

1998). Starting from the student user of the system down to all the agents of the Pre-

assessment System, communication precedes reaction. Within the SQL Pre-

assessment MAS, agents have engaged in communicative actions in order to share or

transfer knowledge. This is carried out through speech acts performatives (Searle,

1969) in agent plans. Examples of the performatives in Jason AOP for developing the

Pre-assessment System are tell, achieve, and askOne.

In the Pre-assessment System, agents communicate both unary literal in the form of

p(a), such as

 value(V)

 desired_Concept(V)

where V is the percept from environment, and also with binary literals p(a, b), such as

Chapter 7 Discussions

156

 hasPrerequisite(X, insert)

where agents mapped variables in their predicate statement using the predicate and a

variable in a unary representation e.g. desired_Concept(V), or a predicate and one

named literal in the statement e.g. hasPrerequisite(X, insert) in a binary

representation. Based on the problem being addressed in this research that comprises

the strategy of learning and understanding some lower concepts of a SQL domain

before progressing to a higher class concept. The hasPrerequisite and hasKB are the

predicates used for the set of semantic communications of facts between agents. While

the hasPrerequisite is a link to individuals from a “domain” to a “range” (Horridge et

al. 2004), the isPrerequisiteOf is the inverse relation from a range to a domain

individual. As part of, for example, the agent agMaterial action, when the

representation hasPrerequisite(high_concept, low_concept) is received, the agent

uses the inverse relation ?isPrerequisiteOf(low_concept, high_concept) as a test goal

to verify the relationship between the given concepts, see Chapter 5, section 5.2.

Thereafter to the ?hasContentX (a, a_URL) test goal (where X represents one of Text

or Video) that ascertains the existence of a belief fact before the release of a learning

material URL.

In the work of Klapiscak & Bordini (2009) every property or predicate relation

between concepts in their FOL representation were not shared among the ontological

statements. So the predicates were used in the unification of semantic literal tracking

and mappings of atomic facts or literals in the ontology. But our approach to ontology

concept matching or unification is quite different from this work. This is because the

predicates are shared amongst many relations. That is, the predicates are related to

several unary or binary literals, respectively. For example, the desired_Concept

predicate is in multiple concept relations, and in Prolog-like syntax are:

desired_Concept(delete)

desired_Concept(insert)

desired_Concept(select)

or the hasPrerequisite predicate in their binary relations

Chapter 7 Discussions

157

hasPrerequisite(delete, insert)

hasPrerequisite(insert, select)

that are similar to Gelfond (2008) and Zini & Sterling (1999) KB facts collection for

a system. Thus, to ensure the right search and match of predicate statement in the

collection of beliefs (i.e. the updated beliefs and initial beliefs representation) within a

hearer agent BB, one of the literals, that is, either the subject or object as in

predicate(subject, object) had their named-literal specified. For example

 hasPrerequisite(X, insert)

which made ontological representation and communication more explicit for agents.

This also facilitated the execution of the right plans, which includes the appropriate

achievement goals, and other actions in the plan body as well as right replies to a

sender agent where replies are required from the use of the askOne performatives. In

contrast to the foregoing, it was realised that where two variables X and Y are given

such as in

 hasPrerequisite(X, Y)

binary relation, the hearer agents executed the wrong plan: because of the several

relations in the ontology with the same predicate hasPrerequisite and same subject X.

Consider the following representation and its inter-agent communication. In a situation

where both atomic literals are named in the relation

.send(agMaterial, askOne, hasPrerequisite(insert, delete))

the hearer agent (e.g. agMaterial) clearly distinguished the fact in its beliefs and made

the appropriate and required reply. But the following message

.send(agMaterial, askOne, hasPrerequisite(X, Y)) . .(i)

gave room for ambiguity as the agent could not exactly map X to insert and Y to delete

for instance, due to multiple representation with the same predicate

hasPrerequisite. Thus, for the agent to unify its relational representations

Chapter 7 Discussions

158

appropriately during communication, the binary relation such as in (i) above was then

structured to have at least a named-literal or concept such as in (ii) below:

.send(agMaterial, askOne, hasPrerequisite(X, delete)) . (ii)

where variable X is the desired concept of the student. The emphasis is that with at

least one named literal in a binary relation, the actual fact needed to be unified were

matched by the agent and the appropriate plan also selected for execution. The binary

relations such as explained in (ii) was then adopted for all message communication to

the agent agMaterial. For example, see the message with the achieve performative in

(iii) below:

.send(agMaterial, achieve, hasPrerequisite(delete, Y))..(iii)

in which Y is an atomic variable that are instantiated by the agent easily without

confusion about the appropriate plan. It is of importance to state that, on receipt of the

message (ii), the hearer agent agMaterial initiates a reply message back to the sender

agent. This reply, updated and created additional fact to the beliefs of the sender agent

thus causing changes to the sender agent’s mental state. The semantic operability of

the achieve performative as given in message (iii) does not form a belief addition to

the hearer’s beliefs.

Communication in a MAS can be Assertive, Directive, commissive or Declarative

(Searle, 1969). The achieve performative is thus a directive (Searle, 1969) that gives a

command to the hearer agent. At the message reception, the hearer agent adopts this

performative message as a goal to execute—having got the plan to execute it.

Effective communication is bidirectional—between two entities that are either similar

or dissimilar. In a MAS, communication is established when the message content of

the sender is understood and utilised by the hearer, see Chapter 3. Some messages

form belief addition, and some do not. This is dependent on the performative acts.

Chapter 7 Discussions

159

7.4 Agent agInterface: The Interface Agent

The process of communication in the MAS begins at the CArtAgO artifact when the

agent agInterface observes percepts. A system that observes percepts or that takes

inputs must have a reactive layer. The agent agInterface is the first reactive agent to

the external world (of the user). In the process of fulfilling its functions within the

MAS, the actions undertaken by the agent agInterface is described as both Assertive

and Directive (Searle, 1969). The agent agInterface exercises its Assertive property,

which is to inform, by observing and telling other agent in the MAS about the state of

the environment—the partially observable environment (Wang, 2014): a non-natural

environment since agents are not directly situated in the student. From Assertive, a

Declarative act which is bringing changes by utterances is performed. This is

actualised by belief change in the world (other agents) due to their belief updates from

percept communication.

7.4.1 Percept Observation

Using the Pre and Post condition (Labrou & Finin, 1998), the task of observing by the

agent agInterface is outlined as:

Pre: value(V)[source(percept)] //environment percept

Post: send observed value(V) percept

The Pre condition is the fact that must exist prior to the act of utterance. This is the

percept obtained by the agent. The value predicate in the value(V) is the observation

property configured in the CArtAgO environment (Ricci, Piunti & Viroli, 2011, see

Figure. 5.16). The Post is the fact established after the act (utterance) is performed.

This is an action performed in the plan body of the agent. Going by the nature of the

pre-assessment MAS application that is meant to support teaching and learning, the

use of the single predicate value as in

 Value(V)

by the agent agInterface in the collection of percepts has been applied to all percepts.

This includes the desired concepts and all SQL sentences (i.e. correct and incorrect

answer queries) from students.

Chapter 7 Discussions

160

For example, consider the DELETE concept is the chosen desired_Concept of a

student that was submitted and perceived by the agent. From amongst the altenatives

of desired_Concepts (Fig.7.1 below) represented in FOL in the plan context (i.e. pre-

condition), the value(“DELETE ”) satisfied one of the specified conditions for the

agent agInterface to adopt the plan. The adoption +value(“DELETE ”) of this plan,

triggers the execution of the plan body and the content is communicated to the named

agent agSupport.

Fig.7. 1: List of desired SQL concepts contained in a plan context and a tell Performative as means of
Communication.

This percept in the predicate value(V) is communicated to the agent agSupport—

the pre-assessment agent, and received in its FOL logic form with the source as

annotation

 value(“DELETE”)[source(agInterface)].

In Figure 7.2 is the plan that receives students’ SQL query answers. For students to

learn SQL query construct professionally, assessment should be open-ended, not in

multiple-choice alternatives. Thus the expected SQL answer queries to the System are

open-ended. While the correct answers to SQL questions can be predetermined to

compare with students’ correct answer, the incorrect answers of students cannot be

predetermined as there are bound to be varying answers from students to the same

questions which signals a gap in learning. To gauge the level of skills and

competencies, the queries expected in the system are made open-ended. But with one

 // agent agInterface perceive student's desired concept via percept

+value(V)[source(percept)] : value("SELECT") | value("INSERT") |

value("DELETE") | value("UPDATE") | value("JOIN") | value("UNION")

<-.println("The topic you have entered to learn is: ", V);

 .send(agSupport, tell, value(V));

 .println("").

Chapter 7 Discussions

161

condition that the values submitted to the system must not be empty by the use of a

negation not value(“”).

Fig.7. 2: Plan for Perceiving the SQL Answer Queries from the student environment.

As agents communicate messages, their belief states are updated leading to

experiential knowledge increase. From amongst the updated knowledge, a receiver

agent becomes committed—a commissive act—to execute intentions which are

contained in its plans. The plan which is executed is determined by the specified

context in the plans.

7.5 Agent agSupport: The Pre-assessment Agent

This is the agent responsible for the executive functions of the pre-assessment process.

The agent agSupport is the agent in the MAS that interrogates students’ learning and

the agent with most number of communications, see Chapter 4, Figure 4.7 for the

System Overview Diagram.

At the observation of value(V) by the agent agInterface, if the content of the variable

V that is communicated to the agent agSupport is a desired_Concept; the variable V

is substituted for the variable in the predicate statement desired_Concept(V) in the

agent plan (Fig. 7.3) that is contained in the.send() statement to the agModel, and

agModelling to start the process of classification. After testing students, agSupport

communicates the decision statement reached in every plan to the agent agModelling

(classifier) that applies the principle of learning by being told to classify students.

From Labrou & Finin (1998), the following are the Pre that describes the FOL data

structure and the necessary beliefs that must hold before the agent agSupport proceeds

with the Post conditions:

 // agent agInterface perceive student's answer via percept

+value(V)[source(percept)] : not value("")

<-.println("The answer you have provided is: ", V);

 .println("");

 .send(agSupport, tell, value(V));

 .wait(600000).

Chapter 7 Discussions

162

Pre: quizOfLeafnodes(X)[source(self)] //B

Pre: value(V)[source(sender)] //percept

Post: Adopt a desired_Concept in the predicate value(V) [source(sender)]

Post: inter-communicate the desired_Concept

Post: adopt an achievement goal in a plan to retrieve quiz from beliefs and display

Post: adopt a SQL query answer in the predicate value(V) [source(sender)]

Post: check whether SQL query answers in predicate value(V)[source(sender)]

Post: [passed or failed] decision

Post: send a passed or failed predicate message

The representation

Pre: quizOfLeafnodes(X)[source(self)]

that is annotated with [source(self)] (see Chapter 3, section 3.12.1) are a

collection of initial knowledge of questions from which students are pre-assessed by

the agent. Jason agent knowledge can be of source(self), source(percept),

or source(sender) (Bordini, Hubner & Wooldridge, 2007). The Post are the

actions undertaken by the agent as given. Aside these, some other Post condition

actions are the concatenation of date i.e. date(YY, MM, DD) and time i.e.

time(HH, NN, SS) functions to all the percepts received before their

communication to other agents. The .concat() is a Jason internal action that co-

joins strings in a specified variable.

7.5.1 The Agent Pre-assessment Process

The agent agSupport receives the concept value(“DELETE”)[source(agInterface)]

communicated by source: [source(agInterface)]. The agent agSupport has been

initialised with the beliefs of prerequisite questions as knowledge in unary predicate,

as shown with the Pre condition, from where it can fetch or instantiate the required

facts during pre-assessments sessions. Based on the current knowledge state of the

agent e.g. +value(“DELETE”) percept, the perceived communicative message triggers

the plan to display the prerequisite questions when the pre-condition is matched. The

Chapter 7 Discussions

163

Figure 7.3 depicts this process including other detailed communication protocol and

date and time stamping of users’ activities through to the !achievement goal (or desire

w.r.t. BDI)

!quizInsertSelect(InsertSelectQuiz) //D

that the agent wants to realise with a variable InsertSelectQuiz that is matched

with the unary representation in the agent beliefs when the agent adopts this goal (e.g.

Fig. 7.6).

Fig.7. 3: Adoption of the DELETE desired Concept.

As the variable name InsertSelectQuiz indicates, the first leaf-node question

corresponding to the InsertSelect of the immediate prerequisite class to Delete

is released, see Figure 5.3. The unit of lessons or learning are the leafnodes that

contains the SQL queries. Hence, the programming of !achievement goals of the agent

agSupport to the leafnodes of the SQL ontology structure.

On receipt of the SQL query answer i.e. percept to the first prerequisite question from

the agent agInterface, the agent agSupport selects the relevant plan to assess the

student’s SQL query skill using the passed or failed boolean predicate states given in

the agent respective plans. For a given leafnode, each plan compares all SQL query

answers. While the plan for the passed predicate decision compares student correct

 @plan15_Delete_desiredConcept

+value(V)[source(agInterface)] : value(V) == value("DELETE")

<-.date(YY, MM, DD); .time(HH, NN, SS);

 .send(agModelling, tell, desired_Concept(V));

 .send(student, tell, desired_Concept(V));

.concat(V, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-",

NN, "-", SS, ")", MsgD);

 .send(student, tell, desired_Concept(MsgD)); //date and time appended

.send(agMaterial, askOne, hasPrerequisite(V, insert));//Asking if

relation exists in ontology

 .println(V, " has prerequisite INSERT");

 -value(V); //belief drop

 .println("Question on INSERT SELECT:");

 !quizInsertSelect(InsertSelectQuiz);

 .println.

Chapter 7 Discussions

164

answer with the use of equality == operator; the plan for the failed predicate decision

compares the incorrect SQL answer using the different \== Prolog operator, (as

described in Chapter 3). This type of comparison operators also applies to Jason AOP.

 With the \== operator, the agent returns true for all its perceived inputs. The

implication of this is that the agent was unable to navigate or move from one incorrect

SQL answer plan to another. Now to aid the agent navigation from plan to plan

selection and execution, Jason FOL iterative statements were introduced as part of the

constraints in the agent plan context. The Figure 7.4 and Figure 7.5 code snippets are

two examples of plans: one each for a correct and incorrect SQL query answer,

respectively; with respect to the Insert_Select. Notice the !achievement goal

 !quizInsertValue(InsertValueQuiz) //D

at the end of the plans in the Figures 7.4 and 7.5.

Fig.7. 4: Plan for a Passed Pre-assessment of InsertSelect

 @plan14_InsertSelect_correct

// Plan for correct answer to INSERT with SELECT of the DELETE desired_Concept.

+value(V)[source(agInterface)] : value(V) == value("INSERT INTO

TENNIS_RECR_PLAYERS (PLAYERNO, NAME, TOWN, PHONENO) SELECT PLAYERNO, NAME, TOWN,

PHONENO FROM TENNIS_PLAYERS WHERE LEAGUENO IS NULL") & countForDeletePre(0)

<- .date(YY, MM, DD); .time(HH, NN, SS);

 .println("Good. Your answer is correct.");

 ?countForDeletePre(Count); -+countForDeletePre(Count+ 1);

.concat(V, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN, "-",

SS, ")", Ris);

 .send(student, tell, responseToInsertSelect(Ris)); //date and time appended

 PassedIS = "The student has passed the INSERT with SELECT question.";

.concat(PassedIS, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN,

"-", SS, ")", Pis);

 .send(student, tell, passed(Pis));

 .send(agModelling, tell, passed(PassedIS));

 .println("Next question on INSERT VALUE:"); .println;

 !quizInsertValue(InsertValueQuiz); .println.

Chapter 7 Discussions

165

Fig.7. 5: Plan for a Failed Pre-assessment of InsertSelect, and giving agent the subgoal
!quizInsertValue(InsertValueQuiz)

This is the agent sub-goal to be realised and it represents the next prerequisite question

on the InsertValue (the second leafnode and neighbour to the InsertSelect).

When achievement goals are adopted e.g. + !quizInsertValue(InsertValue), questions

are presented to students. The Figure 7.6 shows the adoption of the achievement goal

that actualises the release of the InsertValue question. As visibly shown in Figure

7.6, the pre-condition in the agent plan context is a necessary condition that must exist

in its beliefs for the agent to decide or be committed this intention w.r.t. BDI (see

Bordini, Hubner & Wooldridge, 2007).

 @plan12_InsertSelect_incorrect

// INSERT with SELECT question of the DELETE desired_Concept.

+value(V)[source(agInterface)] : value(V) \== value("INSERT INTO

TENNIS_RECR_PLAYERS (PLAYERNO, NAME, TOWN, PHONENO) SELECT PLAYERNO, NAME, TOWN,

PHONENO FROM TENNIS_PLAYERS WHERE LEAGUENO IS NULL") & countForDeletePre(0) & not

value("UNION")

& not value("JOIN") & not value("SELECT") & not value("INSERT")

<- .date(YY, MM, DD); .time(HH, NN, SS);

 ?countForDeletePre(Count); -+countForDeletePre(Count+ 1);

.concat(V, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN, "-", SS,

")", Ris);

 .send(student, tell, responseToInsertSelect(Ris)); //date and timestamp

 .println("You have NOT passed the INSERT with SELECT question.");

 FailedIS = "The student has NOT passed the INSERT with SELECT question.";

.concat(FailedIS, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN,

"-", SS, ")", Fis);

 .send(student, tell, failed(Fis));

 .send(agModelling, tell, failed(FailedIS));

 .println("NEXT Question on INSERT VALUE:");

 !quizInsertValue(InsertValueQuiz).

Chapter 7 Discussions

166

Fig.7. 6: Adoption of +!quisInsertValue achievement goal, display and communication.

The number of plans for pre-assessment in the agent agSupport has been determined

by the number of leafnodes considered under a given desired_Concept such that every

leafnode has two pre-assessment plans: one for a passed pre-assessment and other for

a failed pre-assessment. In the DL ontology (Chapter 5), the number of leafnode per

parent class has been defined to have leafnode N ≥ 2 minimum cardinality.

Also note that in the Figure 7.3 that, the .send() internal action has the tell and

askOne performatives. These performatives have been used by the agent agSupport

to communicate knowledge and to make enquiries, respectively. The tell sends

messages e.g. a student desired_Concept, correct, and incorrect answers; to other

agents such as the agent agModel (student, or TextPersistent agent). However the

askOne in

.send(agMaterial, askOne, hasPrerequisite(V, insert));

is a message that requests the receiver agent agMaterial whether the variable V unified

with a literal in the statement hasPrerequisite(V, insert) in the agent’s ontological

beliefs.. This is a communication that does not add beliefs to the receiver agent

agMaterial, but makes the agent agMaterial reply to the content that matched the

binary representation. The reply to the agent agSupport caused belief addition, and in

turn was used by the agent to display the information to the student user that

delete hasPrerequisite insert

where insert is the prerequisite to be pre-assessed.

 +!quizInsertValue(InsertValueQuiz) : quizInsertValue(InsertValueQuiz)

<- .date(YY, MM, DD); .time(HH, NN, SS);

 .println("Question on INSERT VALUE:");

 .println(InsertValueQuiz);

.concat(InsertValueQuiz, ", date(",YY,"-", MM,"-", DD, ")", ", ",

"time(",HH, "-", NN, "-", SS, ")", Qiv);

 .send(student, tell, quizInsertValue(Qiv));

 .wait(6000000).

Chapter 7 Discussions

167

Jason is an extension of the AgentSpeak language which is BDI programming

language (Bordini, Hubner & Wooldridge, 2007; Bădică et al. 2011). As noticed in the

plan context of Figures 7.5 for example, the use of constraints for controlling the

selection of plans in agent programs is not uncommon. Padgham & Singh (2013) state

that to make sure that a preferred plan is selected by an agent, most BDI programs are

often filled with constraints that narrows down the selection of a plan. This accounts

for the number of constraints in the agents agSupport and agModelling in this thesis.

As stated earlier in Chapter 3, plans are a list of courses of action that are executed in

turns. In the Pre-assessment System, just as one agent plan triggers another agent plan

through inter-message communication, so, within the agent agSupport, one plan has

triggered another plan through the use of achievement goals adoption. This is done

until the agent navigates through the questions corresponding to all the leafnodes

considered under a given desired concept, (as first described in Figures 4.21 and 4.22).

7.6 Strategies of the Pre-assessment System Development

As earlier mentioned, leafnodes are the concepts which students are pre-assessed on,

not the parent class concepts. Pre-assessment on a leafnode is either a passed or failed

outcome; such as in

IF (answer is correct)

THEN (actions for correct answer)

 !acheivement goal

IF (answer is incorrect)

 THEN (actions for incorrect answer)

 !acheivement goal

where the !acheivement goal of the pair of the correct and incorrect answers to a given

leafnode is towards this same leafnode.

7.6.1 Pre-assessment By Immediate Prerequisite Class Program
Development

Given the regular ontology (Figure 5.3), in the agent agSupport program, there are two

pre-assessment plans per leafnode, and one agent plan each per desired_Concept that

Chapter 7 Discussions

168

begins the pre-assessment process. Then it means that, in the ontology, each parent

class and its two leafnodes has a sub-total of 5 plans. In the ontology, the Union class

concept has no super class. Therefore, as shown in the agent plans, pre-assessment

begins with the leafnodes of the immediate lower class i.e. the Join. Underneath the

Union class, there are 5 parent classes which are the Join, Update, Delete,

Insert and Select where each parent class and their leafnodes have 5 plans,

respectively. Therefore, the total number of pre-assessment plans in the agent

agSupport amounts to 25 + 1 = 26 plans, where 1 is the plan that represents the lowest

class concept that has no prerequisite as symbolised with the letter A in the Pre-

Assessment Mechanism, Figure 4.18. This excludes any plan for the leafnodes

UnionAll and UnionDistinct because the parent class has no superclass.

 Iterative Control Statement

This section describes the iteration that has been used to enable the agent agSupport

to navigate between its own plans. This began by first initialising the iteration

statement to zero in the agent agSupport beliefs i.e. testCount(0) (Fig. 7.7). For

the ontology of equal leafnodes, the same predicate (also known as functor)

“testCount()” was applied to all iterative control statements in agent agSupport

pre-assessment plans in the strategy of Pre-assessment By Immediate Prerequisite

Class.

Fig.7. 7: Initialising an iteration belief.

Fig.7. 8: Testing and updating the iteration in a plan body.

 //agent agSupport in project preassessment.mas2j

/* initial belief and facts */

testCount(0).

 ?testCount(Count);
-+testCount(Count + 1);

Chapter 7 Discussions

169

Because the ontology being considered is a regular ontology of two leafnodes per

parent class, the iteration is also equal to 2, with 1 iteration e.g. testCount(1)

being shared by the plans of both a correct SQL query answer and incorrect SQLquery

answer that corresponds to a leafnode concept. In that light, the execution of the

iteration is thus dependent on either of the answers that is entered by a student. Recall

that the number of leafnodes determines the Boolean parameter [P or F] combinations

and number of classification rules, see Chapter 4, section 4.8 and 4.9. Thus, based on

a regular ontology of 2 leafnodes, a total of four possible classification categories per

parent class was drawn for the agent agModelling. On the receipt of answer percept

and execution of a plan by the agent agSupport, the Jason iterative statement is updated

as shown in Figure 7.8. The decision tree in Figure 7.9 diagrammatically presents how

students are classified into one of the following categories: <PP>, <PF>, <FP> or

<FF> given, for instance, the DELETE concept.

Fig.7. 9: Classified Decision Tree Flow for DELETE Pre-assessment

7.6.2 Pre-assessment By Multiple Prerequisite Classes Program
Development

The strategy of Pre-assessment By Multiple Prerequisite Classes is that in which

additional leafnodes of two more prerequisite classes underneath a given

desired_Concept is considered for pre-assessment. This strategy involves the

Chapter 7 Discussions

170

navigation of agent plans and its achievement goals from one plan to another in the

order of SQL learning concepts in Figure 5.1 and also across multiple classes. To

demonstrate the multiple prerequisite assessment and classification process, the Figure

5.4 which is a non-regular ontology has been considered for the application of this

strategy. The ontology model is non-regular because the number of leafnodes across

its parent class nodes are not equal in number. To be precise, the Select class node

has leafnodes N = 4 as against Join that has N = 3, and others have N = 2. The

TABLE 7.1 presents an order of multiple class pre-assessment from a given desired

class concept, through its prerequisites classes, down to all leafnodes N.

TABLE 7. 1: DESIRED_CONCEPT AND ORDER OF MULTIPLE PREREQUISITES CLASS
FOR PRE-ASSESSMENTS BASED ON FIGURE 5.4

Desired_Concept Prerequisite classes Prerequisite
leafnodes

No. of leafnodes N

Select No prerequisite Nil Nil

Insert ƎhasPrerequisite.{select} selectOrderBy,

selectDistinct,

selectWhere,

selectAll

4

Delete ƎhasPrerequisite.{insert,

select}

insertSelect,

insertValue,

selectOrderBy,

selectDistinct,

selectWhere,

selectAll

6

Update ƎhasPrerequisite.{delete,

insert, select}

deleteSelect,

deleteWhere,

insertSelect,

insertValue,

selectOrderBy,

selectDistinct,

selectWhere,

selectAll

8

Join ƎhasPrerequisite.{update,

delete, insert, select}

updateSelect,

updateWhere,

deleteSelect,

deleteWhere,

Chapter 7 Discussions

171

insertSelect,

insertValue,

selectOrderBy,

selectDistinct,

selectWhere,

selectAll

10

Union ƎhasPrerequisite.{join,

update, insert, select }

selfJoin,

fullOuterJoin,

innerJoin,

updateSelect,

updateWhere,

deleteSelect,

deleteWhere,

insertSelect,

insertValue,

selectOrderBy,

selectDistinct,

selectWhere,

selectAll

12

Desired_Concept Prerequisite classes Prerequisite
leafnodes

No. of leafnodes N

For example, on the Union desired_Concept with the leafnodes (or units of lessons)

as the UnionAll and UnionDistinct that a student intends to learn; the student

would need to be pre-assessed on all prerequisite leafnodes underneath the Union as

shown in the TABLE 7.1. This type of arrangement is at variance with the educational

principle of Chunking (Casteel, 1988; Anderson, 2008) in which the presentation of

classified learning materials is prescribed in “smaller quantities” for students to

succeed. This theory is required in the design of a formative assessment system for

SQL: a subject area that has been adjudged as challenging and difficult to learn

(Mitrovic, 1998; Prior, 2003). Thus the Pre-assessment MAS is a formative

assessment system that has engaged the principle of Chunking in its design to facilitate

effective learning in students. Based on the background literature on the difficulty

experienced by students in SQL, and the results obtained so far from the Pre-

Chapter 7 Discussions

172

assessment System evaluation, managing this units of learning in smaller quantities

would enable students to be more successful in their learning of SQL.

To demonstrate the strategy of Pre-assessment By Multiple Prerequisite across parent

classes with respect to the Chunking educational principle of learning, the Figure 5.4

was remodelled into Figure 7.10. The following illustration 1, 2, and 3 presents this

strategy over a non-regular ontology in the pre-assessment process. In the Figures 7.10

- 7.13, the red arrows indicate the link between two classes, and the black arrows, the

link between a class and its subclasses.

Chapter 7 Discussions

173

Fig.7. 10: A non-regular ontology tree.

F

ig. 7.10: A
 no

n
-re

g
ula

r o
nto

lo
g

y

Chapter 7 Discussions

174

 Illustration 1

As already mentioned, Jason AOP is language that uses Prolog-like syntax. Prolog is

a FOL language for demystifying complex DL formula (Almendros-Jemenez, 2011)

for separating assertions from DL defined concepts. From the R(b, a) or p(a, b)

binary expression, the Join concept and its relationships with other classes (Fig. 7.11)

considered for multiple prerequisites are stated in FOL to produce some initial belief

(see TABLE 7.2) for the pre-assessment MAS.

In the Figure 7.11, Join is a main topic (that represents a desired_Concept) with

SelfJoin, FullOuterJoin and InnerJoin as its unit of lessons (i.e. the

leafnodes). Under Join are multiple prerequisite parent classes C that comprises the

Update and Delete concepts, both with a total number of leafnode N = 4; namely:

UpdateSelect, UpdateWhere, DeleteSelect and DeleteWhere. In

the TABLE 7.2 we show the relationship between these classes and their leafnode

concepts. In the TABLE are agent initial beliefs of the named concepts (as represented

in the system), agent achievement goals and the pre-assessment process for the Join

learning target. The achievement goals e.g. !quizUpdateSelect are the goals

given to the agent to quiz a student. From plan to plan, they serve as links that connects

the ontological nodes in a tree for pre-assessments. Like in Prolog programs,

navigation between plans in Jason ends with full stops “.”, which implies the logical

OR between plans. Also, inside agent plans are statements that breaks with semi colon

“;” that implies the logical AND.

Fig.7. 11: Semantic relations of a total of 4 prerequisite leafnode of two prerequisites parent classes
under Join.

Chapter 7 Discussions

175

TABLE 7. 2: THE JOIN PRE-ASSESSMENT PROCESS ILLUSTRATION

Initial ontology belief state Pre-assessment
process:
IF…THEN

Agent achievement goal

hasPre(join, update)

hasKB(update, pdateSelect)

hasKB(update, pdateWhere)

hasPre(update, delete)

hasKB(delete, deleteSelect)

hasKB(delete, deleteWhere)

IF Join

 THEN updateSelect

 updateWhere

 deleteSelect

 deleteWhere

!quizUpdateSelect

!quizUpdateWhere

!quizDeleteSelect

!quizDeleteWhere

 Illustration 2

In the Figure 7.12 is the desired_Concept Insert with InsertSelect and

InsertValue as its unit of lessons (leafnodes). But under Insert is one

prerequisite Select with leafnodes N = 4, namely: SelectOrderBy,

SelectDistinct, SelectWhere, and SelectAll that also represents the

Select unit of lessons. In TABLE 7.3 are agent initial beliefs, agent achievement

goals and the pre-assessment process when the Insert is a student’s target of

learning.

Fig.7. 12: Semantic relations of a total of 4 prerequisites leafnode for pre-assessment under the
Insert.

Chapter 7 Discussions

176

TABLE 7. 3: THE INSERT PRE-ASSESSMENT PROCESS ILLUSTRATION

Initial ontology belief state Pre-assessment process:
IF…THEN

Agent achievement goal

hasPre(insert, select)

hasKB(select, selectOrderBy)

hasKB(select, selectDistinct)

hasPre(select, selectWhere)

hasKB(select, selectAll)

IF insert

 THEN selectOrderBy

 selectDistinct

 selectWhere

 selectAll

!quizSelectOrderBy

!quizSelectDistinct

!quizSelectWhere

!quizSelectAll

 Illustration 3

Pre-assessment based on UNION as desired_Concept in which its unit of lessons

(leafnodes) are UnionAll and UnionDistinct is over the instances of the

Join prerequisite that has prerequisite leafnode N = 3, namely: SelfJoin,

FullOuterJoin and InnerJoin (Fig. 7.13). TABLE 7.4 also illustrates the

relations between these unit of lessons and the process of agent goal achievement.

Fig.7. 13: Semantic relations of a 3 prerequisite leafnodes under the Union desired_Concept.

Chapter 7 Discussions

177

TABLE 7. 4: THE UNION PRE-ASSESSMENT PROCESS ILLUSTRATION

Initial ontology belief

state

Pre-assessment
process:
IF…THEN

Agent achievement goal

hasPre(union, join)

hasPre(join, selfJoin)

hasKB(join, fullOuterJoin)

hasKB(join, innerJoin)

IF union

 THEN selfJoin

 fullOuterJoin

 InnerJoin

!quizSelfJoin

!quizFullOuterJoin

!quizInnerJoin

By analogy the arrangement of plans for both the Pre-assessment By Multiple

Prerequisite Classes strategy and that of the Pre-assessment By Immediate

Prerequisite Class strategy in the agent agSupport follows the same procedure. This

is shown in the pseudo-algorithm in Figure 7. 14. The Multiple Prerequisite Classes

strategy involves the process of given agent !achievemtn goals to navigate more plans

to cover additional prerequisite leafnodes as shown in the Illustrations 1, 2 & 3 based

on Figure 7.10 non-regular ontology. As a result of the variation in the leafnodes, plans

for the respective desired_Concept class were programmed to use a different functor

in their iterative statement: one per parent class, where

 Each iterative statement is initialised to 0, and begins at the first plan that

corresponds the (passed or failed) answers of first leafnode prerequisite to the

desired_Concept;

 A correct and incorrect plan equally shared one iteration; and

 The iterations as constraints in a plan content and pre-conditions.

The iterative statements in Figure 7.15 are the initialised iterations for the answers of

the prerequisite plan for the Union, Join, Update, Delete, and Insert

desired_Concepts, respectively. The iterations are aids for the agent to navigate down

its plan. This was introduced during development, because the agent would

continuously execute only the first plan of the plans corresponding to the incorrect

SQL query answers. This approach provided a solution.

Chapter 7 Discussions

178

Fig.7. 15: Initialisation of iterations as beliefs in agent agSupport

 /* initial belief and facts */

countForInsertPre(0).

countForDeletePre(0).

countForUpdatePre(0).

countForJoinPre(0).

countForUnionPre(0).

Pseudocode of pre-assessment and interaction in the multiagent system

1. initial beliefs: predicate(Class, Class)

2. initial beliefs: predicate(Class, Leafnode)

3. initial beliefs: predicate(Leafnode, URL)

4. initial beliefs: quiz(PrerequisiteLeafnode)

5. Given a desired concept that has N leafnodes prerequisite

6. IF

7. Percept ← desiredConcept
8. THEN

9. .send(receiver, tell, desiredConcept)

10. fetch the next quiz(Prerequisite_Leafnode)
11. .send(receiver, tell, quiz(Prerequisite_Leafnode)
12. output quiz(Prerequisite_Leafnode)
13. Percept ← answer(X)
14. IF
15. answer(X) == answer(Prerequisite_Leafnode)
16. THEN
17. passed(Prerequisite_Leafnode) decision
18. .send(receiver, tell, passed(Prerequisite_Leafnode)
19. IF
20. answer(X) \== answer(Prerequisite_Leafnode)
21. THEN
22. failed(Prerequisite_Leafnode) decision
23. .send(receiver, tell, failed(Prerequisite_Leafnode)
24. IF
25. N number of leafnodes have been pre-assessed on
26. THEN
27. .send(receiver, achieve, recommendMaterial)
28. Else
29. repeat 10 to 27

Fig.7. 14: Pseudo-algorithm of the pre-assessment process that depends on the number of leafnodes N
considered under a desired_Concept

Chapter 7 Discussions

179

7.6.3 Open_Ended Answers Assessment

Programming a MAS for the recognition of negative facts (i.e. incorrect answers) can

pose some difficulty for agent plan selection and execution of goals when the expected

inputs are limitless in scope, unbounded or open-ended texts. It is quite different when

it is of positive facts i.e. the correct answers.

With positive facts, the expected input answers were represented in the agent such that

when the perceived percept was matched in a plan, relevant plans were selected and

actions in the body of the plan executed. This is because positive facts are information

whose representation are known and can be represented or given to agent for

comparison with incoming percepts. But negative facts are unknown and as such

cannot be pre-determined for representation, yet database student needs to program

SQL like professionals (Prior, 2003). In order for database students (in this study) to

program like professionals, they needed to code their resultset queries on the Pre-

assessment System. This was aimed at revealing their line of thoughts and unravelling

the technical difficulty faced in SQL by pointing them to relevant materials, and to

better inform teaching strategy.

So, with the open-ended nature of SQL queries, comparisons of perceived incorrect

SQL answer inputs are assessed with the different \== operator. But this was without

inconsistency in the agent behaviour at the time of System development. This was

when an answer input does not match the positive fact or correct answer. The \==

operator caused previous or existing beliefs to trigger irrelevant plans. To enable the

agent agSupport to select the plans that uses the \== operator, iterative statements such

as countForDeletePre(X) (Fig. 7.15) were introduced in the agent plan context.

This was also coupled with some negated predicate statement such as not

value(“INSERT”) to block existing or incoming percept from soliciting un-

required plans.

7.7 Agent agModelling: The Task of Classification

Classification in this thesis is the technique used in categorising students' skill status

in order to recommend learning materials that meets their learning needs. The task of

classification is that of the agent agModelling (the classifier). The process of

Chapter 7 Discussions

180

classification starts with the inter-agent communication of the desired_Concept of

students to this agent, as shown in the Prometheus PDT diagrams in Chapter 4, e.g

Figure 4.9, and Figure 4.14. This marks the beginning of the search for a student’s

class for material recommendation that ends with the last of the prerequisite leafnodes

under a desired_Concept.

To classify, the agent combines a set of predicate statements such as

desired_Concept(X), passed(N) and failed(N) to make a decision for the right level of

skill. The process of rule formation which was described in Chapter 4 with the use of

FOL syntax is the conjunction of the desired_Concept(X), passed(N) and failed(N)

predicate decision messages received by this agent, where N in the FOL formulas

passed(N) and failed(N) as in

passed(“The student has passed the UPDATE with SELECT question”)
and

failed(“The student has NOT passed the DELETE with WHERE

question”)

are not of the same leafnode in the same agent plan. These messages which are updated

beliefs are the premise in which the classifier agent matches its plan contexts as well

as adopts its triggering_event before proceeding to execute the actions in the plan.

Engaging the use of the Pre and Post conditions, the task of classifying is stated as:

 Pre: desired_Concept(X) [source(sender)] //percept

Pre: passed(N)[source(sender)] //percept

Pre: failed(N) [source(sender)] //percept

Post: Adopt a plan where all Pre are satisfied, and classify

Post: send an achieve performative message

During the Pre-assessment System evaluation and participants skills' test sessions,

students’ SQL pre-skills status to a desired_Concept were evaluated, classified, and

appropriate recommendations made. When a plan context amongst its list of plans is

satisfied, all that is contained in the plan body are actions of messages conveyed by

the achieve performative. These actions are executed through the .send() internal

Chapter 7 Discussions

181

action to the agent agMaterial for the release of learning material URL(s). One

.send() internal action with hasKB predicate represents one material

recommendation, while that of hasPrerequisite predicate contains a collection of all

the leafnodes of a desired_Concept, or that of all the failed leafnodes of a prerequisite,

see Figures 7.16 and 7.17 respectively. Thus, from logic based semantics, for a 4

leafnodes N underneath a desired_Concept, the classification rule for the Fig. 7.16 can

be explicitly stated as

desiredConcept(C) N4 N5 N6 N7

: ƎdesiredConcept(C) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6) ꓥ Ǝpassed(N7)

=> desiredConcetp(C).{ N1, N2, N3}

where the conclusion N1, N2, and N3 are the prescribed leafnodes of the

desired_Concept that is recommended for learning for all the passed prerequisites

leafnodes passed(N4), passed(N5), passed(N6) and passed(N7) in the context or

condition part of the rule.

Fig.7. 16: Two multiple prerequisite classes of 4 leafnodes classification. Agent agModelling sending
hasPrerequisite predicate message.

Similarly, for the Fig. 7.17, the applied logic based classification syntax is

desiredConcept(C) N4 N5 N6 N7

: ƎdesiredConcept(C) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6) ꓥ Ǝfailed(N7)

 => failed(N5 ꓥ N6 ꓥ N7)

 /* A classification rule for pre-assessments under the JOIN concept */

@joinRule1

+!recommendMaterial[source(agSupport)] : desired_Concept("JOIN")[source(agSupport)]

 & passed("The student has passed the UPDATE with SELECT question.")

 & passed("The student has passed the UPDATE with WHERE question.")

 & passed("The student has passed the DELETE with SELECT question.")

 & passed("The student has passed the DELETE with WHERE question.")

 <- .send(agMaterial, achieve, hasPrerequisite(join, update)).

Chapter 7 Discussions

182

where N5, N6, N7 are the prescribed and recommended leafnodes of the failed

prerequisites, namely, failed(N5), failed(N6) and failed(N7) in the context or condition

part of the rule. Given that context is any information that can be used to characterise

the situation of an entity: where an entity is a person, place or object (Dey, Abowd &

Salber. 2001; Verbert et al. 2012). The stated axioms as implemented are the modelled

learning paths (Bañeres, 2017) for individual students for a given desired_Concept.

Fig.7. 17: Two multiple prerequisite classes of 4 leafnodes classification. Agent agModelling sending
hasKB predicate message.

During pre-assessment, the number of .send() internal action that is communicated

to the agent agMaterial is determined by the performance of the student. But the

number of classification rules and the parameters passed and failed combinations are

determined by the number of leafnodes under a given desired_Concept programmed

at design time. The content of the .send() message of this agent agModelling are

binary relation e.g.

.send(agModelling, achieve, has_KB(X, select_orderby))

in their FOL representations. These .send() internal action messages ranges from

1 to 4 action according to the strategies of the Pre-Assessment By Immediate

Prerequisite Class and the Pre-Assessment By Multiple Prerequisite Classes explained

earlier. At the end of pre-assessment, the classifier agent classifies students into one of

the classified categories, namely:

 The desired_Concept when all prerequisites are passed correctly,

 /* A classification rule for pre-assessments under the JOIN concept */

@joinRule4

+!recommendMaterial[source(agSupport)] : desired_Concept("JOIN")[source(agSupport)]

 & passed("The student has passed the UPDATE with SELECT question.")

 & failed("The student has NOT passed the UPDATE with WHERE question.")

 & failed("The student has NOT passed the DELETE with SELECT question.")

 & failed("The student has NOT passed the DELETE with WHERE question.")

 <- .send(agMaterial, achieve, has_KB(X, update_where));

 .send(agMaterial, achieve, has_KB(X, delete_select));

 .send(agMaterial, achieve, has_KB(X, delete_where)).

Chapter 7 Discussions

183

 The failed leaf-node when some prerequisite is answered incorrectly, or

 All of the failed leaf-nodes when all prerequisites are answered incorrectly

with-respect-to the number of leaf-node N considered under a preferred

desired_Concept.

7.7.1 Generating Parameter Combination for Classification

Each leafnode �௜,௝ has two possible boolean states [passed or failed] upon which a

student is pre-assessed. For a large number of leafnodes, say leafnode N ≥ 4 under a

desired_Concept, the process of estimating the required number of classification rules

R has been given in Chapter 4. But the process of generating the rules via parameters

[passed or failed] combinations for accurate classification for a number of leafnode N

can also be tedious to derive, see the FOL notation in Chapter 4. Thus to combine the

[passed or failed] parameters for accurate classification with respect to leafnodes ��,

the Figure 7.18 presents the algorithm for the classifier agent.

 Fig.7. 18: Classification rules generation algorithm

In the algorithm, there is a number of leafnodes N given or considered under a

desired_Concept. Firstly, the first leafnode is mapped to the two given boolean

parameters P and F (i.e. passed and failed): an operation that generates the first two

rules. Subsequently, to obtain further rule combinations, the outcome of the previous

mapping is mapped to the outcome of a current mapping to produce the new

classification rules. This process is graphically shown in Figure 7.19.

Algorithm for Generating Classification Rules

1. Initialise T = [P, F] /** pass or fail boolean parameter */
2. 1 ≤ x ≤ k
3. While x != k
4. N ← N1, … , Nx + 1 /** number of leafnodes */
5. Initial_Rule = T * (Nx) /** leafnode(s) and parameter mapping */
6. Current_Rule ← Current_Rule * Initial_Rule /** rule formation */
7. Output Current_Rule

Chapter 7 Discussions

184

Fig.7. 19: Classification rules formation process

The classification rule formation process is found to be suitable for generating the rules

for the two strategies of pre-assessment, which are:

 Pre-assessment By Immediate Prerequisite Class, and

 Pre-assessment By Multiple Prerequisite Classes

 as outlined in this research.

Given the Figure 7.10, now to estimate the total number of classification rules R for

the agent agModelling (the classifier) based on the strategy of Pre-assessment by

Multiple Prerequisite Classes, let us apply the equation as earlier stated in Chapter 4:

R = 1 + ∑ �=࢏࢑� i��࢐,࢏

Since, the strategy is for a non-regular ontology, the variable Ci (of the prerequisite

parent classes to the desired_Concept) takes a unit value i.e. 1. Thus

 for the desired_Concept Union, C = 1 and N = 3

 for the desired_Concept Join, C = 1 and N = 4

 for the desired_Concept Update, C = 1 and N = 4

 for the desired_Concept Delete, C = 1 and N = 2

 for the desired_Concept Insert, C = 1 and N = 4

P

F

P

F

PP

FP

PF

FF

P

F

PPP

FPP

PFP

FFP

PPF

FPF

PFF

FFF

P

F

PPPP

FPPP

PFPP

PFFP

FFPP

PPFP

FPFP

PFFPFFFP

PPPF

FPPF

PFPF

FFPF

PPFF

FPFF

PFFF

FFFF

ʎ
N1

N2
N3 N4

Chapter 7 Discussions

185

therefore, on a vertical traversal

 R = 1 + [�ଶ,ଶ�ସ + �ଷ,ଷ�ଶ + �ଶ,ଷ�ସ + �ଶ,ସ�ସ + �ଶ,ହ�ଷ]

R = 1 + (1 * 2 ** 4) + (1 * 2 ** 2) + (1 * 2 ** 4) + (1 * 2 ** 4) + (1 * 2 ** 3)

R = 1 + 16 + 4 + 16 + 16 + 8

R = 1 + 60

R = 61 number of classification rules

This estimate R = 61 is the number of [passed or failed] predicate statement that have

been combined for the non-regular ontology. multiple class pre-assessments with

respect to the number of leafnodes N considered for the system. Given the equation,

the of classification rules R is determined by the number of leafnodes N underneath

some desired concepts.

7.8 Agent agModel: The Store Agent

Updated beliefs are data that are perceived and stored by agents. As mentioned earlier,

beliefs can be short-term or long-term for storage of percepts or activities in the

system. While other agents in the MAS has short-term beliefs by reason of the fact that

perceived percepts are lost when the MAS is stopped, the agent agModel (student)is

the long-term belief base agent configured at the point of the agents’ creation, see

Chapter 5, Figure 5.14. This is for the MAS to store all students’ activities which

comprised the SQL skills data presented in some part of Chapter 6 and Chapter 7.

7.9 Agent agMaterial

This agent performs the last function of the MAS, which is the release materials for

students at the end of pre-assessment sessions. As already mentioned, material URLs

are released after classification by the classifier agent agModelling. Employing the Pre

and Post conditions (Labrou & Finin, 1998), the following are the Pre and Post

conditions of this agent:

Pre: hasPrerequisite(x, y)[source(self)] //B

Pre: hasKB(y, z)[source(self)] //B

Chapter 7 Discussions

186

Pre: hasContent(z, url)[source(self)] //B

Post: Adopt a plan with hasPrerequisite(x, y)[source(sender)] ,

 Or adopt a plan with hasKB(y, z)[source(sender)]

Post: ?hasContent(z, url)

Post: release material url

The Pre conditions are the ontological binary relations that are initialised as beliefs B.

They are the premise in which the classified students’ message content from the

classifier agent agModelling is matched for a plan(s) to be triggered before the release

of materials. In the Post conditions are test goals in the form ?hasContent(a,

url) in the plan body, (Fig. 7.20). Prior to the release of the materials, the test

goals are used by the agent to query its belief base whether a relation exist that

contains the URL links for students after a plan is triggered. From the semantics of

speech acts (Labrou & Finin, 1998), the completion condition is the effect the learning

materials will have on students. As asserted in Manouselis et al. (2011), Chapter 2,

recommended learning is an effort and time taking activity; for students to acquire the

requisite skills, the Pre-assessment System was programmed to identify relevant skill

needs of students with support on how to achieve them.

Fig.7. 20: Agent agMaterial use of test goal ?hasContent before the retrieval URL materials for
students.

 //learning material

@inner_joinURL

+!has_KB(X, inner_join)[source(agModelling)] : true

 <-.println;

 .println(" You will learn INNER JOIN query statements.

 Please use the link for materials:");

 ?hasContentText(innerJoin, IJ_textURL)[o(sql)]; //Test goal

 .println("INNER JOIN query Text Material: ");

 .println(IJ_textURL); .println.

Chapter 7 Discussions

187

7.10 The Pre-assessment Sessions

The following section presents and discusses the results gathered from the evaluation

of the Pre-assessment System. It comprises the analysis of students’ SQL input queries,

and students’ post-evaluation feedback.

7.11 Analysis of SQL Query Statements at Pre-assessment

Sessions

From the inspection of the agent TextPersistent beliefs, the gaps that existed in

students’ construct of SQL query were identified. In a step-by-step analysis, this

Section presents students’ interaction with the system starting from the submission of

their desired_Concept, to the questions they responded to and their SQL query

statements, and down to the recommendations made. The analysis looked critically at

two selected Case Studies, and tried to unravel the possible factors that may be

responsible for the learning gaps. Also discussed is the inherent implications of these

Cases for the teaching of SQL.

7.11.1 Case Study I: The UPDATE Desired_Concept

The student learning target was the Update topic as shown in (TABLE 7.5, S/N. 6).

Thus,

1. Student’s desired_Concept: UPDATE.

2. Inter-agent Communication: desired_Concept("update, date(2015-
4-7), time(11-3-17)")[source(agSupport)].

3. Prerequisite 1: Delete all penalties who live in the same
town as player 44, but keep the data for player 44

4. Inter-agent Communication: quizDeleteSelect("Delete all
penalties who live in the same town as player 44, but
keep the data for player 44., date(2015-4-7), time(11-3-

17)")[source(agSupport)].

5. Student’s query response: DELETE FROM (SELECT * FROM
TENNIS_PENALTIES WHERE PLAYERNO = 44

Chapter 7 Discussions

188

6. Inter-agent Communication: responseToDeleteSelect("DELETE FROM
(SELECT * FROM TENNIS_PENALTIES WHERE PLAYERNO = 44),

date(2015-4-7), time(11-9-27)")[source(agSupport)].

7. MAS Feedback: you have NOT Passed the DELETE_SELECT

8. Inter-agent Communication: failed("The student has NOT passed
the DELETE with SELECT question.")[source(agSupport)].

9. Prerequisite 2: Delete all penalties incurred by player 44 in
1980

10. Inter-agent Communication: quizDeleteWhere("Delete all
penalties incurred by player 44 in 1980., date(2015-4-

7), time(11-9-27)")[source(agSupport)].

11. Student’s query response: DELETE FROM SELECT * FROM
TENNIS_PENALTIES WHERE PLAYERNO = 44

12. Inter-agent Communication: responseToDeleteWhere("DELETE FROM
SELECT * FROM TENNIS_PENALTIES WHERE PLAYERNO = 44,

date(2015-4-7), time(11-9-58)")[source(agSupport)].

13. MAS Feedback: you have NOT passed the DELETE with WHERE.

14. Inter-agent Communication: failed("The student has NOT passed
the DELETE with WHERE question.")[source(agSupport)].

15. MAS Recommendation: URL recommendation to learn both
prerequisite concepts in DELETE.

7.11.2 Case Study II: The JOIN Desired_Concept

In this Case Study, the student’s intended learning concept was the Join (TABLE

7.5, S/N. 10). Thus,

1. Student’s desired_Concept: JOIN.

2. Inter-agent Communication: desired_Concept("JOIN, date(2015-9-
16), time(11-01-15)")[source(agSupport)].

3. Prerequisite 1: Set the number of sets won to zero for all
players resident in Stratford.

4. Inter-agent Communication: quizUpdateSelect("Set the number of
sets won to zero for all players resident in Stratford.,

date(2015-9-16), time(11-01-15)") [source(agSupport)].

Chapter 7 Discussions

189

5. Student’s query response: SELECT * FROM TENNIS_MATCHES

6. Inter-agent Communication: responseToUpdateSelect("SELECT *
FROM TENNIS_MATCHES, date(2015-9-16), time(11-3-16)")

[source(agSupport)].

7. MAS Feedback: you have NOT Passed the UPDATE_SELECT.

8. Inter-agent Communication: failed("The student has NOT passed
the UPDATE with SELECT question.")[source(agSupport)].

9. Prerequisite 2: Change the value F in the SEX column of the
PLAYERS table to W (women).

10. Inter-agent Communication: quizUpdateWhere("Change the value F
in the SEX column of the PLAYERS table to W (women).,
date(2015-9-16), time(11-3-16)") [source(agSupport)].

11. Student’s query response: UPDATE SEX FROM P WHERE SEX = 'F' TO
SEX = 'W'

12. Inter-agent Communication: responseToUpdateWhere("UPDATE SEX
FROM P WHERE SEX = 'F' TO SEX = 'W'

13. MAS Feedback: you have NOT passed the UPDATE with WHERE.

14. Inter-agent Communication: failed("The student has NOT passed
the UPDATE with WHERE question.")[source(agSupport)].

15. MAS Recommendation: URL recommendation to learn both
prerequisite concepts in UPDATE.

TABLE 7. 5: SUMMARY OF CORRECT AND INCORRECT ANSWER RESPONSES

NB: Passed ≡ 1 and Failed ≡ 0

S/N Desired
Concept

Prerequisite leafnode N &
Time of Quiz Display
(HH -MM -SS)

Time Student
Responded
(HH -MM -
SS)

Time Spent
on Task
(HH -MM -
SS)

Classification
of Students'
Skills [0 or 1]

1.

INSERT

SELECT_WHERE
12-10-23

12-13-54

00-03-31

0

SELECT_ALL
12-13-54

12-13-59

00-00-05

0

Chapter 7 Discussions

190

2.

INSERT

SELECT_WHERE
12-14-40

12-14-46

00-00-06

1

SELECT_ALL
12-14-46

12-15-30

00-00-44

1

3.

DELETE

INSERT_SELECT
12-17-38

12-22-18

00-04-44

0

INSERT_VALUE
12-22-18

12-22-37

00-00-19

0

4.

INSERT

SELECT_WHERE
12-29-43

12-32-04

00-02-21

0

SELECT_ALL
12-32-04

12-33-06

00-01-02

0

5.

UNION

FULL_OUTER_JOIN
12-42-14

12-59-10

00-16-56

0

INNER_JOIN
12-59-10

13-01-19

00-01-29

1

6. UPDATE DELETE_SELECT
11-08-54

11-09-27

00-00-33

0

DELETE_WHERE
11-09-27

11-12-10

00-02-33

0

7. UPDATE DELETE_SELECT
11-11-31

11-12-10

00-00-39

0

DELETE_WHERE
11-12-10

11-14-14

00-02-24

0

8. UNION FULL_OUTER JOIN
11-28-48

11-28-56

00-00-08

0

INNER_JOIN
11-28-56

11-29-35

00-00-39

0

9. UNION FULL_OUTER_JOIN
11-29-48

11-31-43

00-01-55

0

INNER_JOIN
11-31-43

11-34-04

00-02-21

0

10. JOIN UPDATE_SELECT
11-01-15

11-03-16

00-03-01

0

UPDATE_WHERE
11-03-16

11-05-01

00-01-45

0

11. INSERT SELECT_WHERE
11-11-47

11-12-57

00-01-10

1

SELECT_ALL
11-12-57

11-13-51

00-00-54

1

Chapter 7 Discussions

191

7.12 Findings from The Pre-assessment Exercise

From the Case Studies, it is apparent that there are learning gaps in the students’ SQL

query knowledge which might not have been known to the students themselves. This

is evident from the fact that they thought they were prepared for the desired_Concept

they entered to learn. They believed that they could answer the prerequisite questions

to the(ir) desired_Concepts. These were assessed to have NOT Passed the prerequisites

in both Case Studies I and II (see lines 7 & 13), respectively. These are irrespective of

the time spent on tasks or by the number of attempts (e.g. twice) made. In all of the

pre-assessment cases, the System recommended the learning of the appropriate

materials according to the performance of each of the student.

7.13 Implications for Teaching

Programming is not an easy subject to study (Lahtinen, Ala-Mutka & Järvinen, 2005;

Ala-Mutka, 2004). Particularly for this study, SQL programming can be very difficult

because of the activity involved in translating a natural language question into a

semantically correct SQL expression (Sadiq et al, 2004). Such underlying factors have

influenced a number of systems research on ways to improving students’ SQL coding

skills (e.g. Wang & Mitrovic, 2002; Kenny & Pahl, 2005; Sadiq et al, 2004). As given

in Prior (2003) mapping from a problem statement describing what information is

required from the database into an appropriate SQL statement is not easy.

From the analysis of results and findings in students’ SQL query constructs from the

cases being reviewed in the preceding sections, students may have inherent gaps in

SQL query constructs from previously learned SQL concepts without realising it.

Tutors need to understand this: To handle courses with uttermost diligence so as to

take students through learning with emphasis on the difficult or technical constructs

(such as the use of operators, SQL query keywords, and subqueries) where

misconception may arise.

Considering the Case Study I (Section 7.11.1), the pre-assessment problem that was

posed to the student was a sub-query problem — a DELETE SELECT (line 3 or 4).

The student was able to decipher that the problem was a sub-query task but

encountered difficulty in the process of organising the query statement. From the

student’s SQL query statement, the main part of the query missed out on:

Chapter 7 Discussions

192

 the table-name,

 the where clause,

 the column_name, and

 the operator.

On the sub-query part, the Select All (“SELECT * …”) query expression was the

student’s response (line 5) in the case studies, sections 7.111 and 7.11.2 respectively.

Though on the question (line 3 or 4), there was the term “all penalties”. This does not

imply all fields in the table. So this may have put the student in a tight situation to infer

that this meant all the columns or fields in the table. But this only refers to the penalties

field. Further, on prerequisite 2 (line 9 or 10) where the problem was a Delete

Where task, the student was aware that this is not a sub-query task. However, the

query (line 11 or 12) also missed out on the following information:

 table-name, and

 specified column_name;

instead the (“SELECT *…”) was also used to “select all” the column-names.

In Case Study II (Section 7.11.2), the first pre-assessment task was also a sub-query

problem (line 3 or 4). Unlike in Case Study I where the student was able to decipher

that the problem was a subquery problem (even when the system supported some pre-

assessment problems with hints on the type of problem), in this Case Study, the student

was unable decipher this. The SQL query submitted by the student was as Select

All (“SELECT * …”) statement (line 5 or 6). Further to the next prerequisite

assessment (line 9 or 10), the student had difficulty by submitting the UPDATE query

statement that had a field or column_name before the supposed table_name (which the

student stated as “P”) and also using the word “TO” in the query (line 11 or 12). Shown

below is the student’s answer:

UPDATE SEX FROM P WHERE SEX = 'F' TO SEX = 'W'

Chapter 7 Discussions

193

against the correct and expected answer in the System

UPDATE TENNIS_PLAYERS SET SEX = 'W' WHERE SEX = 'F'

As shown above in the student’s query, the statement missed out on the SET keyword

for the UPDATE query.

This analysis has revealed in detail the area of difficulties faced by students. It also

underscores the area in which tutors of SQL can give greater attention. From the Case

Studies, it could be stressed that some students are yet to have a good grasp of SQL

query syntax. SQL syntax has a defined format and structure that can be adhered to

when constructing queries. This format gives the order of precedence of SQL

keywords, table_names, column_names and their operators in a query statement.

The Pre-assessment MAS has not only identified gaps in learning but has also

identified skills gained by student as described by the modelled parameters and the

logic of classification in Chapter 4. Knowledge gain was identified in some of the pre-

assessment cases based on the regular ontology of 2 leafnodes across all parent class

nodes (see TABLE 7.5). In one of the data stored, the student’s desired_Concept was

the INSERT topic. After the pre-assessments on the Select Where and the

Select All query, the student was adjudged “Passed” and recommended to study

the INSERT desired topic entered.

The TABLE 7.5 is a collection of all the data of the activities that took place in the

System. This include the desired concepts, the time spent on each task, and the class

of the answers submitted as assessed by the Pre-assessment System. From the data in

TABLE 7.5 two cases of recommendation for the desired_Concept occurred in the

survey (described as positive ability in Chapter 5); one case of a passed pre-assessment

(described as partial ability); and all others cases of failed pre-assessment, described

as negative ability.

As defined in the FOL syntax (Chapter 4) during the specification of the classification

process, every failed concept is recommended for learning via a URL link to the

relevant material; and for all passed concepts, the student learns his desired concept

(which are the leafnodes to the class node) from relevant URL links too. The failed

concepts are equivalent to the class of 0s and the passed concepts the class of 1s as

Chapter 7 Discussions

194

analysed in TABLE 7.5. From the data, the percentage summary of the Passed

leafnodes concepts against the Failed leafnode concepts is shown in Figure 7.21.

Fig.7. 21: Percentage of number of passed vs. failed leafnode concepts

As stated in Chapter 5, abilities of students can be further classified into: 1) positive

ability when all SQL answer queries are all passed; 2) partial ability when there is a

mix of both Passed and failed SQL query constructs; and 3) negative ability when all

SQL queries are assessed as failed. The Figure 7. 22 represents the details of these

abilities.

Fig.7. 22: Percentage of students’ abilities.

Chapter 7 Discussions

195

Recall that the Pre-assessment MAS also keep records of time spent on tasks by

students in its TextPersistent BB agent. These beliefs were examined to understand

whether time was a factor and had any influence on students’ performances, on each

pre-assessment task. In the TABLE 7.6 is the boolean values [1 or 0] to visualise the

classification of pre-assessment outcomes against the time spent on tasks by students

using linear regression. From the data, students' performances have not been

influenced by time: the longer time-length spent on tasks did not increased students’

chances of remembering or overcoming their difficulties in SQL code constructs. The

visualisation of the binary classification is given in Fig. 7.23 after the data was split:

50% training and 50% test, respectively.

TABLE 7. 6: TIME- INDEPENDENT VARIANT STUDENTS’ PERFORMANCE ANALYSIS

Time spent
(mm.ss)

Boolean classification Time spent
(mm.ss)

Boolean classification

3.31 0 2.33 0
0.05 0 0.39 0
0.06 1 2.24 0
0.44 1 0.08 0
4.44 0 0.39 0
0.19 0 1.55 0
2.21 0 2.21 0
1.02 0 3.01 0
16.56 0 1.45 0
1.29 1 1.10 1
0.33 0 0.54 1

Fig.7. 23: Time-Independent Variant Student Performance Regression Analysis based on the data in
TABLE 7.6.

Chapter 7 Discussions

196

Based on the Figure 7.23 the average time spent on the tasks that were passed and

those failed are largely between 0 and 5 minutes, with one outlier on the 0 class. One

of the objectives of this regression analysis was to make predictions, but based on the

small of amount of data collected, reliable prediction cannot be projected.

Recall that in Chapter 4 it was stated that the passed and failed predicate parameters

were devised not only for the agent classification of students but to also provide

increased reinforcements to students during their pre-assessment feedbacks. From the

experimental survey with students and the observations made during the pre-

assessment sessions, negative reward i.e. a failed feedback does increase

reinforcement. When some students noticed they had negative feedbacks due to

incorrect SQL queries, they immediately wanted to have another attempt, to get their

SQL queries right. Like positive rewards for correct answers, negative rewards for

incorrect incorrect can instigate reinforcement and did provide positive

reinforcements.

7.14 Relevance of Chunking in the Pre-assessment System

Students learn best by Chunking of unit of lessons (Casteel, 1988; Anderson, 2008).

From the evidence in the students' skill data and the time lapse spent by some students

on task, this thesis concurs to the assertion of Prior (2003) that SQL is difficult, and

not easy to learn. As stated in Sadiq et al. (2004), and as clearly observed, this was

because of having to translate a natural language problem into the logic of SQL

queries. Thus, the optimal strategy to organise formative assessment materials for

students in SQL is by applying the principle of Chunking that will enable students to

focus more time and attention to the smaller units of the recommended learning

materials after their pre-assessments. Because organising a very large number of units

of lessons for pre-assessments can potentially lead to task overload from large amount

of learning materials being recommended in the event that several pre-assessments are

failed. From the survey, students stayed on tasks and studied their recommended

materials, as well as having repeated attempts on already failed attempts.

Chapter 7 Discussions

197

7.15 System’s Post-Evaluation Survey

The aim of the Pre-assessment System of this study as stated earlier was to identify

gaps in students’ learning and to devise a strategy through agent classification learning

on how to assist students in filling the gaps. From the data presented in Chapter 6,

Section 6.3 and the analysis of the preceding Sections 7.11 – 7.14, the study has

revealed that 77.3% of students in the survey have inherent skills gap in their

construction of SQL queries. In the following Section, the Pre-assessment System

post-evaluation survey data is presented and discussed. The data covered students’

perception of the Pre-assessment System, the pre-assessment sessions, and about

students previous SQL studies. A 17 item structured questionnaire was used to collect

data, including demographic data.

7.15.1 Student Course Distribution Data

With questions 1 and 2 (Q1 & Q2, see Chapter 6, and Appendix B.B1) course

distribution and the level of study of the student participants that took part in the

survery was collected. As shown in the TABLEs 6.2 and 6.3 of Chapter 6, 29%

represented students in Software Engineering; 43% in BSc Information Tecnology with

Business Studies; and 14% in MSc Database Professional and Enterprise System

Professional, respectively. The survey comprised of students from both undergraduate

and postgraduate studies with 71.4% being Second Year students; and 14.3% First

Year and MSc students, respectively (TABLE 6.4).

7.15.2 User Perception of The Pre-assessment System and Sessions

Questions 3 – 9 (Q3 -Q9) investigated students’ view about the System’s fitness-for-

purpose and responses were gathered as qualitative data (TABLE 6.5, Chapter 6).

Question Q3 sought students’ opinion on whether the system was useful. Responses

showed that 14.3% Strongly Agreed, 71.4% Agreed, while 14.3% were Undecided. In

Question Q4, it was asked whether the System helped to recall previous SQL learning

experiences. The responses received are 57.1% Agreed and 42.9% Strongly Agreed.

Q5 sought to find out whether the system supported their learning of SQL, 28.6% of

the participants Strongly Agreed, 57.1% Agreed while 14.3% were Undecided. The

Chapter 7 Discussions

198

survey also wanted to know whether the participants were not familiar with SQL. The

response gathered revealed that participants have studied SQL previously: with 14.3%

Strongly Agreed, but 57.1% Disagreed and 28.6% strongly disagreed respectively

that they are “NOT familiar with SQL”. By implication, 85.7% Agreed and believed

they were well acquainted with the concept of SQL and database queries. In terms of

MAS system directing the course of the pre-learning assessment, 85.7% of the

participants Agreed that they were guided by the system, while 14.3% were

Undecided.

From Questions Q9 – Q11, with 42.9% Strongly Agreed and 57.1% Agreed, it was

made known that participants understood the design purpose of the system, and

acknowledged the role of the researcher in facilitating the pre-assessment sessions.

The latter is for the researcher’s reflection on the part he took at the sessions.

In Q12, while the data revealed that 14.3% Strongly Agreed, 57.1% Agreed that the

session was a good learning experience; 14.3% Disagreed. In Q13, 28.6% Strongly

Agreed and 57.1% Agreed that the sessions were well organised; 14.3% were

Undecided.

7.15.3 Open-Ended User Feedback

Using open-ended entries from questions 14 to 17 (Q14 – Q17), diverse views about

the pre-assessment sessions or the System that could not possibly be captured by the

closed-item questions in Q3 -Q13 were elicited. From these responses, some student

users found the pre-assessment sessions and system satisfactory while others made

comments on important issues that are salient enough to improve usability design and

usage experience in further work.

In TABLE 6.7 students’ view were sought on: what was least interesting about the

sessions? One view was that

The AOP language for developing the Pre-assessment System is Jason AgentSpeak, a

logic based programming language. So, prior to the various pre-assessment sessions,

volunteer participants were scheduled for different times to evaluate the System. But

“Lack of equipment available. Session was slow.”

Chapter 7 Discussions

199

in the course of a participant’s use of the system, some participants encroached into

the time schedule of another participant. This was due to the time some participants

needed to understand their questions, understand the data on the MySQL database

server, and construct their SQL queries.

Initially, the agent based Pre-assessment System was developed to connect to the

MySQL Workbench database server. Review of System development after the

prototype had the Pre-assessment System disabled from the database server. This is

because of the need for one system to host the database, and another for the Pre-

assessment System. Thus, in the course of the participants’ usage of the System, two

systems were made available: one opened for the data on the TENNIS_DATABASE

and the other for taking the pre-assessment exercises. In that regard, the issue of

“We only had one monitor to do the work on.”

was addressed.

Also on the view in TABLE 6.7 that

Like most formative assessment or self-diagnostic systems that assesses knowledge,

the Pre-assessment System is programmed to take in an input or percept when

submitted, then assessment, and then next question. As result, some participants in the

study who felt the need to retake their assessment, did so as many times as they needed.

The Pre- assessment System is flexible and will allow the pre-assessment about a given

desired_Concept to take place over and over again. This is recorded in the skills data

collected and showed some students took their assessment twice on the same module.

The views from the TABLE 6.9 that participants

“The system is not quite flexible and does not allow trial and
error terms. One small error led into decision that we need to
learn the module. …”

“Having to switch between three different
windows to operate the system”

Chapter 7 Discussions

200

has to do with the built-in MAS output console and the input window for participants

SQL queries answers. Recall that, agents are components that can be situated in some

[student] environment in order to fetch or observe percepts. As a result, the input

window was configured for open-ended SQL queries using the CArtAgO artifact.

Participants’ text-inputs are percieved by the MAS through this artifact, and after

processing by the MAS, outputs are displayed through the Jason built-in MAS output

console. Future work will consider one window for both input and output. One other

important view from TABLE 6.9, is that

This is what the strategy of Pre-assessment By Multiple Prerequisite Classes has

addressed. Where more unit of lessons are added to parent class nodes or modules (Fig.

5.4, Fig. 7.10), and also, pre-assessment across multiple class nodes as specified in the

ontology tree.

In TABLEs 6.6 and 6.8, participants expressed satisfaction on the concepts of pre-

learning and teaching through the Pre-assessment System where they have to learn

what is appropriate. This is one view from TABLE 6.6, entry no. 3, which states

This aligns with one of the objectives of this System: To avoid putting every students

in the same starting block on the learning ladder. At any given level the student can

build up the ladder. While this System would allow students that has solid

understanding of some concepts already to progress to the next or higher level of

learning. Those with misconception and difficulty would be assisted by the System to

identify the weaknesses in their learning, and be assisted to fill those gaps in the

absence of the tutor. When what is already known by say Student X is being taught all

over again with Student X present, this becomes “redundant” to that student.

“The system covered limited SQL statements so when
more are added I think it will be more interesting.”

“It is actually a good objective, we will learn what exactly we
need to learn. Because sometimes tutor[s] teach something
which is redundant since some people already understand it
well.”

Chapter 7 Discussions

201

The purpose of modelling students’ skills for adaptive learning in this work is for the

intelligent system and the course tutor to give optimum support for improved

performances. As required of a typical system of diagnosis and fault detection (in

students’ cognition), the Pre-assessment System through classification reasoning has

identified and recommended learning appropriate for participants in this evaluation

exercise.

7.16 Summary of Chapter

The Pre-assessment System, its broad goal, which is to identify gaps in learning and

classification process of learning has been presented in this Chapter. The Chapter

described the Pre-assessment System as a reactive system of five interacting agents.

Where the agent agSupport is the pre-assessment agent that uses !achievement goals

– the state an agent wants to accomplish – for the pre-assessment of knowledge. Each

!achievement goal corresponds to each leafnode in a given ontology tree. For the

recommendation of appropriate learning materials, classification is first carried out

based on the passed or failed boolean parameters predicate decision statements from

agent agSupport. The agent agModelling classifies students before the release of

learning material by agent agMaterial. This Chapter also discussed algorithms, and

generation of classification rules. The generation of the classification is based on the

FOL rules: the formal reasoning representation (from Chapter 4) and its application

for the realisation of the classification plans in the agent agModelling.

Two strategies, namely: Pre-assessment By Immediate Prerequisite Class and Pre-

assessment By Multiple Prerequisite Classes that evolved from the Pre-assessment

Mechanism were also presented. While the data collected from the implementation of

the former was analysed and discussed; the chapter had the implementation of the latter

discussed. Based on the results from the experimentation and background literature on

the learning of SQL, the position of this thesis is that the educational theory of

Chunking (Casteel, 1988; Anderson, 2008) which is to present tasks of learning to

students in smaller units, can support students to succeed in their learning of SQL. This

is based on the data gathered in Chapter 6 in which 77.3% of the unit of lessons

(leafnodes) were not passed, (see TABLE 6.2, and Fig. 7.21). Yet students stayed on

Chapter 7 Discussions

202

tasks to study recommended materials. From the foregoing, organising and allocating

units of lessons in smaller quantities has enabled students to remain on tasks to study

recommended materials. When one desired learning concept is successfully

completed, another desired concept can be attempted for learning. In the next Chapter

8, the conclusions for this study shall be presented along with its contribution to

knowledge, and future work.

Chapter 8

Conclusions and Future Work

This study has demonstrated pre-assessment and learning path recommendation

strategies like a face-to-face tutor would do so as to boost competency level of students

before the start of a new lesson. The thesis covered two strategies of pre-learning

assessment using an agent based approach in order to fill the gaps in learning and

support further learning. In this work, the multiagent Pre-assessment System was

investigated, developed and evaluated: as a System aimed at identifying gaps in

students’ learning and making learning materials recommendation to fill-in the gaps.

From this implementation and evaluation of data, it has been shown that the Pre-

assessment System can perform its classification function in accordance to its rule

based knowledge representation process in which students’ prior learning is pre-

assessed and materials are recommended for learning. This has followed a Pre-

assessment Mechanism that depicts the process or strategy of pre-assessment of lower

concepts in order to measure what has been learned successfully by a student before

the start of a higher or desired_Concept intended for learning. The Pre-assessment

System’s investigation began by identifying the research problem as a classification

problem in a learning domain in which students’ skills set would be collected and

categorised for learning material recommendation.

8.1 Research Development Approach

The research approach to this study is dual in nature, namely: rule based classification

procedure, and agent oriented software engineering through the Prometheus

methodology (Padgham & Winikoff, 2004) for the Pre-assessment System design.

Prometheus is a methodology for developing intelligent agent systems and has a

customised tool known as the Prometheus Design Tool (PDT) for designing BDI

agents. The PDT has been used in the design specification and analysis of the pre-

assessment multiagent system as well as its rule based representation, as outlined in

Chapter 8 Conclusions & Future Work

204

Chapter 4. The agents were developed with individual responsibility and to function

as components that make up a whole sum. As with an organisation, its organisational

parts must be able to interact cooperatively, with individualised roles in order to realise

its design objective.

To solve and answer the research question, a structured hierarchy of learning was

outlined in the domain of SQL. The domain was then analysed after its definition as a

TBox with a description logic (DL) language. The analysis presented the inter-

relations between the ABox instances i.e. concepts, individuals and roles in accordance

to the given learning structure (Fig. 5.1) which enabled students to have their prior

knowledge assessed. Thereafter, they can progress from one lower level of learning to

the next higher level, see Chapter 5. After implementation, the System evaluation

showed that the system diagnosed students’ state of SQL knowledge, captured their

areas of difficulty and pointed them to learning material to close the gaps in their

learning. Another benefit of the of the Pre-assessment System is that the learning

activities are stored, especially the SQL queries, and these can be teaching resource

for the tutor. The tutor can use this resource to unravel the the technical difficulties or

challenges faced by students, and also, pay greater attention to these challenges during

teaching.

The following is a recap of the objectives of this research as stated in Chapter 1 and

how they have been addressed:

 To investigate a systematic way of identifying gaps in students’ knowledge

which may hinder them in their next stage of learning. This is to allow students

to self-diagnose any gaps on their previous learning before the start of a new

module. In that regard, the research team deciphered that gaps could be

identified between two ends: which are a start-point and an end-point of pre-

assessment. This led to the flow-chart of the Pre-assessment Mechanism

(Chapter 4, Fig. 4.19) in which a student could enter a desired_Concept (i.e.

the start-point), go through some prerequisite assessments to the end of the

leafnodes N, get result(s), and have learning recommended.

Chapter 8 Conclusions & Future Work

205

 To build a domain ontology of related concepts and use declarative logic based

representation in the system in the process of learning gap identification prior

to the start of a higher and desired learning by students. A domain subject of

learning was needed as the content of the system. The SQL learning domain

was chosen. The choice of SQL was based on the good enrolment records of

students in DB. Which was also envisaged would produce a good number of

volunteer participants for the survey. Then a hierarchy of topics (concepts) as

a learning structure was developed based on the teaching notes of DB lecturers

in the department of computing. This led to the definition of the ontology:

concepts, individuals and their relations using a DL language (Chapter 5).

 To investigate the communication of ontological concepts in the system in the

process of identifying gaps in students’ learning. As a multiagent based system,

agent must communicate. The thesis looked into the communication of

knowledge: from environmental percepts, to decision statements, and to the

ABox assertive knowledge in their unary and binary predicates. Then chose the

tell, askOne and achieve performatives for inter-agent communication in

system using the .send() standard internal action (see MAS implementation in

Chapter 5, and discussion in Chapter 7). This is against the .broadcast()

standard internal action whose message in some occasions didn’t trigger agent

to fire their plans .

 To develop the tools that allow the system to recommend supplementary study

materials to close the gaps in their current learning. This covers the design

(Chapter 4) and implementation (Chapter 5 & 7) of the Pre-assessment

System.

 To evaluate the effectiveness of the system by assessing how effective it is in

helping real students improve their learning. This is where the Pre-assessment

System was assessed for fitness of purpose by students. Students used the

system, and self-diagnosed their learning. Where students made errors and

failed a concept, material URLs were recommended. But where all pre-

assessments are passed, students were recommended for their

desired_Concept, (See data in Chapter 6). They opened the links and studied

materials.

Chapter 8 Conclusions & Future Work

206

8.2 Contributions to Knowledge

In summary, the following are the contributions of this research:

1. Identifying gaps in students’ learning using a devised Pre-assessment

Mechanism: As stated in the objectives, Chapter 1, the study has investigated

systematic strategies to identifying gaps in students’ learning. The realisation

of this objective comprised two identified strategies: Pre-assessment By

Immediate Prerequisite Class, and Pre-assessment By Multiple Prerequisite

Classes that originated from the Pre-assessment Mechanism in Chapter 4. The

educational principle of Chunking (smaller unit of lessons) was applied as the

underlying principle and optimal strategy in developing the agent based e-

learning system. The System has supported students to identifying gaps or

gains in their current learning and also making recommendation to close the

gaps. This is in a subject domain that is ascertained by researchers in literature

as “difficult and challenging”.

2. Goal specification using agent oriented software engineering for developing

e-learning system. This is from requirement specification, to agent goals, to

functionality specification, to agent role grouping, interaction, protocols and

capabilities in the development of the intelligent agent based e-learning system,

see Chapter 4.

3. Use of description logic syntax for defining an ontology of a learning domain.

The study developed an ontology in a learning domain as the content of the

agent based multiagent system using a DL language. The DL defined the TBox

terminology and named the ABox instances in the domain of SQL. Given the

form of a unary predicate p(a) and binary relation R(a, b) or p(a,b), a collection

of agent beliefs (also known as knowledge in first order logic) were modelled

as ground facts. These facts have been used by agents in the system for

communication of knowledge in the diagnosis of students’ prior skills and

during recommendation for appropriate learning materials, see Chapter 5.

4. Modelling classification features with logic based representation (or

architecture) for agent plans for the recommendation of appropriate

Chapter 8 Conclusions & Future Work

207

knowledge-level learning materials. Based on the boolean state: passed(N) and

failed(N) parameters and the desired_Concept(D), first order logic notations

were used to define the classification rules that categorised students’ skills. The

classification rules are a collection of axioms that is dependent on the number

of leafnodes underneath a given desired_Concept(D), see Chapter 4, and

discussion on implementation in Chapter 5 & 7.

8. 3 Limitation of The Study

As with most research, this study is not without any challenges. This centres around

the small number of volunteer-participants in the survey, and the system constraints

with the Jason AgentSpeak language.

8.3.1 Volunteer Population Sample of the Study

This is the aspect of this study where only 7 volunteer participants were recruited for

the system evaluation in a survey exercise that spanned across four academic

semesters. This number is well below the recruitment projection made at the early

stage of this study by the research team.

8.3.2 System Constraint with Jason AgentSpeak Language

Aside from keeping to the educational principle of Chunking (Casteel, 1988;

Anderson, 2008) in the development of the Pre-assessment System, it was also

observed that Jason AgentSpeak language had some limitation in completing the

execution of the plan corresponding to the fifth or more leafnodes N ≥ 5 in the

sequence of prerequisite assessment, e.g. Figure 5.4. This is where the agent plan that

needed to assess SQL query answer of the fifth pre-assessment leafnode i.e. N = 5 was

not triggered. This constraint halted the adoption of the next !acheivement goal by pre-

assessment agent. Yet the agent’s Mind Inspection revealed that the agent received the

required percept for such agent plan to be triggered from the sending agent.

Chapter 8 Conclusions & Future Work

208

8.3.3 Alternative Languages of Implementation

Jason has been used in this work to the test our model theory of agent based system

for pre-assessments in students’ learning after the analysis of a number of agent

oriented programming languages (AOP) and platform (see Section 3.9 and Table 3.1).

This is because Jason was readily available as open source language that met all our

implementation requirements. From implementation, our model theory of logic based

rules for classification reasoning in pre-assessment were verified and validated.

Nonetheless, the following highligts a few AOP languages and platforms that are

suitable alternatives to Jason:

 Jack: Jack is a language with a BDI mental model. With its integrated

graphical environment, the Jack Development Environment can be used to

develop the pre-assessment multiagent systems or distributed agent

application across multiple network devices. As shown in Figure 3.9, the

Prometheus agent analysis and design methodology supports the

generation of skeletal Jack code for straight-forward implementation on

JackTM.

 Jade middleware architecture: Jason runs on Jade based on the “Jade”

infrastructure. As a middleware platform, Jade can be used to develop and

distribute the pre-assessment system on different network hosts. Jade

supports semantic web languages such as XML.

 Jadex language and middleware platform: Jadex can also be applied in the

development of distributed intelligent agents on the BDI paradigm.

Besides, Jadex framework is realised when agents sit on the Jade

middleware infrastructure, use it and run on it. Like Jade, Jadex also

supports the XML web semantic technology.

8.4 Further Work

The Pre-assessment System has been developed with a group of five agents, but with

one agent in charge of the pre-assessments of all the leafnodes. Depending on the

number of concepts and leafnodes, future research intends to look into the

development of more number of agents (swarm of agents), so as to have one agent per

Chapter 8 Conclusions & Future Work

209

concept or leafnode in the conduct of pre-assessment. This is likely to resolve the

system constraint encountered in Jason.

Two strategies of pre-assessments have been identified in this study. Further work will

be to conduct more surveys, collect more data, and then compare both strategies so as

to evaluate which is the better strategy supporting students through prerequisite

assessment for further successful learning.

The Pre-assessment System has operated a single tasking mode. Further investigation

would be to look into multi-tasking approach for parallel percept observation, pre-

assessments and classification. One way to achieve this is through a web launch of the

Pre-assessment System.

Hard-coding training examples for skills classification can be cumbersome when a

large number of nodes are considered for pre-assessments. Basically, this is when the

boolean predicate parameters are being mapped to every leafnode concept that are

included in a pre-assessment activity. In future work, multi-agent learning would be

an area to be investigated in order to have agents compute and produce their own

classification plans or rules.

Students’ performance score was not considered in this system development. In future

work use of performance score is an area to be considered. Thus, using the outcome [0

or 1] of students’ performance on every leafnode, performance scores could be rated

against certain threshold values. Below a given threshold, agents could direct students

to revisit a previously attempted leafnode question.

The data drawn from the System survey has been small. Future work will look to gather

more data over a large population sample of databases SQL students, so that further

regression analysis can be carried out in order to predict the trend of SQL learning by

students from time to time.

Jason is a programming language with syntax structure in a Prolog-like syntax. Jason

agent communicates semantic literals (unary or binary) as demonstrated in this

Chapter 8 Conclusions & Future Work

210

research. These are literals that are in first-order logic representation. To this effect,

further work will be to explore the connection of agent based system to ontology

repositories from where agents can make sense of the data to query and update the

repository.

8.4.1 Recommendation

The recommendation for future implementation in order to support students’

successful learning of SQL are:

1. SQL formative assessment systems should be developed for practice such that

DB tutors can have access to students query constructs in order to inform

improved teaching methods when tutors see the difficulties faced by students

in their queries.

2. Prior learning diagnosis should become part of intelligent learning systems.

That is, there should be pre-learning diagnosis before the commencement of a

new or desired learning by students.

3. Students should not be overloaded with practice of prior learning assessments.

This means, the educational principle of Chunking should be considered and

employed in the organisation of prior learning assessments.

4. Learning of SQL syntax structure, relational algebra and natural language

processing should be prerequisites to SQL coding. Where necessary students

should be well acquainted with the maths of set theory and its operators, and

decomposition of natural sentence into FOL form or notation.

5. The strategy of prior learning assessments, classification and recommendation

of learning materials to fill- in the gaps in students’ learning should be adopted

in the development of SQL intelligent tutoring and recommender systems

before the learning of a relatively desired or higher concepts.

References
Abelló, A., Rodríguez, M. E., Urpí, T., Burgués, X., Casany, M. J., Martín, C., & Quer,
C. (2008, July). LEARN-SQL: Automatic assessment of SQL based on IMS QTI
specification. In Advanced Learning Technologies, 2008. ICALT'08. Eighth IEEE
International Conference on (pp. 592-593). IEEE.

Abdullah, A. L., Malibari, A., & Alkhozae, M. (2014). Students’ performance
prediction system using multi-agent data mining. International Journal of Data Mining
& Knowledge Management Process (IJDKP) Vol.4, No.5. Pp.1-20.

 Ala-Mutka, K. (2004). Problems in learning and teaching programming–a literature
study for developing visualizations in the Codewitz-Minerva project. Codewitz Needs
Analysis, 1-13.

Alexakos, C. E., Giotopoulos, K. C., Thermogianni, E. J., Beligiannis, G. N., &
Likothanassis, S. D. (2006). Integrating e-learning environments with computational
intelligence assessment agents. World Academy of Science, Engineering and
Technology, 19, 117.

Almendros-Jiménez, Jesús M. "A prolog-based query language for OWL." Electronic
Notes in Theoretical Computer Science 271 (2011): 3-22.

Anderson, T. (2008). The theory and practice of online learning. Athabasca University
Press.
http://biblioteca.ucv.cl/site/colecciones/manuales_u/99Z_Anderson_2008-
Theory_and_Practice_of_Online_Learning.pdf (accessed: 06.06.2017).

Andronico, A., Carbonaro, A., Casadei, G., Colazzo, L., Molinari, A., & Ronchetti,
M. (2003). Integrating a multi-agent recommendation system into a mobile learning
management system. Proceedings of artificial intelligence in mobile system, 123-
132. Chicago

AOS (2015). Jack. Autonomous Decision Making System.
http://aosgrp.com/products/jack/ AUML-2 Tool. AUML-2 & Interaction Diagram
Tool. http://waitaki.otago.ac.nz/~michael/auml/ (Accessed 31st October 2016).

Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard UP.

Bădică, C., Budimac, Z., Burkhard, H. D., & Ivanović, M. (2011). Software agents:
Languages, tools, platforms. Computer Science and Information Systems, ComSIS,
8(2), 255-296.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P.,
(Editors). (2003). The description logic handbook: theory, implementation, and
applications. Cambridge university press.

http://biblioteca.ucv.cl/site/colecciones/manuales_u/99Z_Anderson_2008-Theory_and_Practice_of_Online_Learning.pdf
http://biblioteca.ucv.cl/site/colecciones/manuales_u/99Z_Anderson_2008-Theory_and_Practice_of_Online_Learning.pdf
http://aosgrp.com/products/jack/
http://waitaki.otago.ac.nz/~michael/auml/

References

212

Baader, F., Horrocks, I., & Sattler, U. (2007). Description logics. Foundations of
Artificial Intelligence, 3, 135-179.

Baader, F., & Nutt, W. (2003, January). Basic description logics. In Description logic
handbook (pp. 43-95).

Baffes, P. T. (1994). Learning to model students: Using theory refinement to detect
misconceptions. Technical Report, Artificial Intelligence, University of Texas at
Austin.

Baral, C., & Gelfond, M. (1994). Logic programming and knowledge representation.
The Journal of Logic Programming, 19, 73-148.

Bañeres, D. (2017). A Personalized Summative Model based on Learner’s Effort.
International Journal of Emerging Technologies in Learning (iJET), 12(06), 4-21.

Bañeres, D., & Conesa, J. (2017). A Life-long Learning Recommender System to
Promote Employability. International Journal of Emerging Technologies in Learning
(iJET), 12(06), 77-93.

Beginner SQL Tutorial (2017). Learn SQL Programming. http://beginner-sql-
tutorial.com/sql.htm (Accessed: 2nd July 2017)

Bellifemine, F., Poggi, A., & Rimassa, G. (1999, April). JADE–A FIPA-compliant
agent framework. In Proceedings of PAAM (Vol. 99, No. 97-108, p. 33).

Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing multi-agent
systems with JADE John Wiley & Sons.

Bench-Capon, T. J. (1998). Specification and implementation of toulmin dialogue
game. Proceedings of JURIX, 98. pp. 5-20.

Bordini, R. H., Hübner, J. F., & Tralamazza, D. M. (2006, May). Using Jason to
implement a team of gold miners. In International Workshop on Computational Logic
in Multi-Agent Systems (pp. 304-313). Springer Berlin Heidelberg.

Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). Programming multi-agent
systems in AgentSpeak using jason John Wiley & Sons.

Bratko, I. (2001). Prolog programming for artificial intelligence (3rd Ed.). Pearson
education, England.

Braubach, L., Pokahr, A., & Lamersdorf, W. (2004, September). Jadex: A short
overview. In Main Conference Net. ObjectDays (Vol. 2004, pp. 195-207).

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004).
Tropos: An agent-oriented software development methodology. Autonomous Agents
and Multi-Agent Systems, 8(3), 203-236.

http://beginner-sql-tutorial.com/sql.htm
http://beginner-sql-tutorial.com/sql.htm

References

213

Brewka, G., Eiter, T., & Truszczyński, M. (2011). Answer set programming at a
glance. Communications of the ACM, 54(12), 92-103.

Bull, J. & McKenna, C. (2004) Blueprint for computer-assisted assessment.
RoutledgeFalmer, London.

Casteel, C. (1988). Effects of chunked reading among learning disabled students: An
experimental comparison of computer and traditional chunked passages. Journal of
Educational Technology Systems, 17(2), 115-21.

Castelfranchi, C. (1995). Commitments: From individual intentions to groups and
organizations. Icmas, 95. pp. 41-48.

Cernuzzi, L., & Zambonelli, F. (2009). Gaia4E: A Tool Supporting the Design of MAS
using Gaia. In ICEIS (4) (pp. 82-88).

Chadli, A., Bendella, F., & Tranvouez, E. (2015). A Two-Stage Multi-Agent Based
Assessment Approach to Enhance Students' Learning Motivation through Negotiated
Skills Assessment. Journal of Educational Technology & Society, 18(2), 140-152.

Chin, K. O., Gan, K. S., Alfred, R., Anthony, P., & Lukose, D. (2014). Agent
Architecture: An Overviews. Transactions on science and technology, 1(1), 18-35.

Conole, G., & Warburton, B. (2005). A review of computer-assisted assessment.
Research in learning technology, 13(1).

Cossentino, M. (2005). From requirements to code with the PASSI methodology.
Agent-oriented methodologies, 3690, 79-106.

Cossentino, M., & Potts, C. (2002, June). A CASE tool supported methodology for the
design of multi-agent systems. In International Conference on Software Engineering
Research and Practice (SERP'02).

Cost, R. S., Chen, Y., Finin, T., Labrou, Y., & Peng, Y. (1999). Modeling agent
conversations with colored petri nets. Working Notes of the Workshop on Specifying
and Implementing Conversation Policies, pp. 59-66.

Da Silva, D. M., & Vieira, R. (2007). Argonaut: Integrating jason and jena for context
aware computing based on owl ontologies. Agent, Web Services, and Ontologies
Integrated Methodologies (AWESOME’007), p.19.

DAML (2006). The DARPA Agent Markup Language Homepage.
http://www.daml.org/ (accessed: November 17th, 2016).

de Bruijn, J., Polleres, A., Fensel, D., & Motik, B. (2004). OWL lite. WSML
Deliverable D20 v 0.1.

http://www.daml.org/

References

214

de Mantaras, R. L. (2001). Case-based reasoning. In Machine Learning and Its
Applications (pp. 127-145). Springer Berlin Heidelberg.

De Silva, L. (2009). Planning in BDI agent systems. PhD Thesis.

Dekeyser, S., de Raadt, M., & Lee, T. Y. (2007, March). Computer assisted assessment
of SQL query skills. In Proceedings of the eighteenth conference on Australasian
database-Volume 63 (pp. 53-62). Australian Computer Society, Inc..

Dell'Acqua, P., Sadri, F., Toni, F., & Toni, F. S. F. (1999). Communicating agents.
Citeseer.

DeLoach, S. A. (2001). Analysis and Design using MaSE and agentTool. Air force inst
of tech wright-patterson afb oh school of engineering and management.

Dey, A. K., Abowd, G. D., & Salber, D. (2001). A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications. Human-
computer interaction, 16(2), 97-166.

Dogac, C., & Cingil, I. (2003). B2B e-commerce technology: frameworks, standards
and emerging issues. Addison Wesley.

DuCharme, B. (2013). Learning Sparql. O'Reilly Media, Inc. Beijing.

Dutchuk, M., Muhammadi, K. A., & Lin, F. (2009). QuizMASter-A multi-agent game-
style learning activity. In Learning by playing. game-based education system design
and development (pp. 263-272). Springer Berlin Heidelberg.

Ehimwenma, K. E., Beer, M. & Crowther, P. (Feb, 2016). Computational Estimate
Visualisation and Evaluation of Agent Classified Rules Learning System. International
Journal of Emerging Technologies in Learning (IJET). Vol.11(1). Pp. 38-47.

Ehimwenma, K. E., Beer, M., & Crowther, P. (2015). Student Modelling and
Classification Rules Learning for Educational Resource Prediction in a Multiagent
System. 7th Computer Science and Electronic Engineering Conference (CEEC2015),
IEEE. Pp. 59-64.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2008).
Combining answer set programming with description logics for the semantic web.
Artificial Intelligence, 172(12), 1495-1539.

El Mabrouk, M., Gaou, S., & Rtili, M. K. (2017). Towards an Intelligent Hybrid
Recommendation System for E-Learning Platforms Using Data Mining. International
Journal of Emerging Technologies in Learning (iJET), 12(06), 52-76.

Finlay, J., & Dix, A. (1996). An introduction to artificial intelligence. Crc Press.

References

215

FIPA (2000) (Foundation for Intelligent and Physical Agents). FIPA Ontology Service
Specification. http://www.fipa.org/.

Gamalel-Din, S. (2002, June). The smart tutor: Student-centered case-based adaptive
intelligent e-tutoring. In the Proceedings of the 1st International Conference on
Informatics and Systems, Cairo (Vol. 17, p. 20).

Gelfond, M. (2008). Answer sets. Foundations of Artificial Intelligence, 3, 285-316.

Gelfond, M., & Lifschitz, V. (1988, August). The stable model semantics for logic
programming. In ICLP/SLP (Vol. 88, pp. 1070-1080).

Genesereth, M. R., & Ketchpel, S. P. (1994). Software agents. Commun.ACM, 37(7),
48-53.

Gladun, A., Rogushina, J., Martínez-Béjar, R., & Fernández-Breis, J. T. (2009). An
application of intelligent techniques and semantic web technologies in e-learning
environments. Expert Systems with Applications, 36(2), 1922-1931.

GOAL. (2016) The GOAL Programming Language Home.
https://goalapl.atlassian.net/wiki/

Goodwin, R. (1995). Formalizing properties of agents. Journal of Logic and
Computation, 5(6), 763-781.

González, C., Burguillo, J. C., & Llamas, M. (2005). Case-Based student modeling in
multi-agent learning environment. In Multi-Agent Systems and Applications IV (pp.
72-81). Springer Berlin Heidelberg.

Graesser, A. C., Hu, X., & McNamara, D. S. (2005). Computerized learning
environments that incorporate research in discourse psychology, cognitive science,
and computational linguistics. Experimental Cognitive Psychology and its
Applications: Festschrift in Honor of Lyle Bourne, Walter Kintsch, and Thomas
Landauer.Washington, DC: American Psychological Association.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for
knowledge sharing? International Journal of Human-Computer Studies, 43(5), 907-
928.

Gruber, T. (1993). Gruber, T. R. (1993). A translation approach to portable ontology
specifications. Knowledge acquisition, 5(2), 199-220.

Hölldobler, S., & Schweizer, L. (2014, April). Answer Set Programming and CLASP
A Tutorial. In Young Scientists’ International Workshop on Trends in Information
Processing (YSIP) (p. 77).

http://www.fipa.org/
https://goalapl.atlassian.net/wiki/

References

216

Horridge, M., Knublauch, H., Rector, A., Stevens, R., & Wroe, C. (2004). A Practical
Guide To Building OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE
Tools Edition 1.0. University of Manchester.

Horrocks, I., Patel-Schneider, P. F., & Van Harmelen, F. (2003). From SHIQ and RDF
to OWL: The making of a web ontology language. Web semantics: science, services
and agents on the World Wide Web, 1(1), 7-26.

Hutchinson, A. (1994). Algorithmic learning. Oxford University Press, Inc.

Jena. An Introduction to RDF and Jena RDF API.
https://jena.apache.org/tutorials/rdf_api.html (accessed: 27th, March 2017)

Jennings, N. R., & Wooldridge, M. (1995). Applying agent technology. Applied
Artificial Intelligence an International Journal, 9(4), 357-369.

Jennings, N. R., Wooldridge, M., & Kinny, D. (1998). A methodology for agent-
oriented analysis and design. In Proc. 3rd Int Conference on Autonomous Agents.

Jiang, H., & Huhns, M. N. (2005). An approach to broaden the semantic coverage of
ACL speech acts (pp. 162-171). Springer Berlin Heidelberg.
Johnson, W. L., & Rickel, J. (1997). Steve: An animated pedagogical agent for
procedural training in virtual environments. ACM SIGART Bulletin, 8(1-4), 16-21.

Kenny, C., & Pahl, C. (2005). Automated tutoring for a database skills training
environment (Vol. 37, No. 1, pp. 58-62). ACM.

Klapiscak, T., & Bordini, R. H. (2009). JASDL: A practical programming approach
combining agent and semantic web technologies. Declarative agent languages and
technologies VI (pp. 91-110) Springer.

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A
review of classification techniques. Emerging Artificial Intelligence Applications in
Computer Engineering in I. Maglogianis et al (Eds.). IOS Press, pp. 3-24.

Labrou, Y., & Finin, T. (1998). Semantics and conversations for an agent
communication language. Readings in Agents, 235-242.

Labrou, Y., & Finin, T. (1998). Semantics for an agent communication language (pp.
209-214). Springer Berlin Heidelberg.

Laclavik, M., Balogh, Z., Babik, M., & Hluchý, L. (2012). Agentowl: Semantic
knowledge model and agent architecture. Computing and Informatics, 25(5), 421-439.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005, June). A study of the difficulties
of novice programmers. In ACM SIGCSE Bulletin (Vol. 37, No. 3, pp. 14-18). ACM.

https://jena.apache.org/tutorials/rdf_api.html

References

217

Laird, J. E. (2008). Extending the Soar cognitive architecture. Frontiers in Artificial
Intelligence and Applications, 171, 224.

Laird, J. E. & Congdon, B. C. (2015). The Soar User's Manual Version 9.5.0.
http://web.eecs.umich.edu/~soar/downloads/Documentation/SoarManual.pdf

Lans, R. F. (2006). Introduction to SQL: Mastering the relational database language.
Addison-Wesley Professional

Lifschitz, V. (2008, July). What Is Answer Set Programming?. In AAAI (Vol. 8, pp.
1594-1597).

Logan, b. (2014). Designing Intelligent Agents [Lecture Slides].
http://www.cs.nott.ac.uk/ (Accessed: November 11th, 2015.)

Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE
Intelligent Systems, 16(2), 72-79.

Maes, P. (1991). The agent network architecture (ANA). Acm sigart bulletin, 2(4),
115-120.

Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2011).
Recommender systems in technology enhanced learning. Recommender systems
handbook, 387-415.

Marsland, S. (2009, 2014). Machine learning: an algorithmic perspective. CRC press.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (2013). Machine learning:
An artificial intelligence approach. Springer Science & Business Media.

Mitrovic, A. (1998): Learning SQL with a computerized tutor. In SIGCSE’98
pp. 307 - 311.

Monette, D. (2014). Introduction to Agents and Multi-agent Systems [presentation
slides]. Europe Week, 3rd – 7th March 2014, University of Hertfordshire, Hatfield.
http://www.monettdiaz.com/ (accessed: October 30th, 2015).

Morandini, M., Nguyen, D. C., Penserini, L., Perini, A., & Susi, A. (2011). Tropos
Modeling, Code Generation and Testing with the Taom4E Tool. In iStar (pp. 172-
174).

Nardi, D. & Brachman, R. J. An Introduction to Description Logics (Chapter 1). In F.,
Baader, D. L., McGuinnes, D. Nardi & P. F., Patel-Schneider. (Ed.), (2003).
Description logic handbook. (pp. 1-40).

O’Reilly, M. & Morgan, C. (1999) Online assessment: creating communities and
opportunities, in: S. Brown, P. Race & J. Bull (Eds) Computer-assisted assessment in
higher education (London, Kogan Page), 149–161.

http://www.cs.nott.ac.uk/
http://www.monettdiaz.com/

References

218

Obitko, M. (2007). Ontologies of the Semantic Web.
https://www.obitko.com/tutorials/ontologies-semantic-web/description-logics.html
(accessed: Februery, 19th 2017).

Oishi, E. (2006). Austin’s speech act theory and the speech situation. Esercizi
Filosofici, 1(2006), 1-14.

Padayachee, I. (2002). Intelligent tutoring systems: Architecture and characteristics.
University of Natal, Durban, Information Systems & Technology, School of
Accounting & Finance.

Padgham, L and Singh, D 2013, 'Situational preferences for BDI plans', in Takayuki
Ito, Catholijn Jonker, Maria Gini, Onn Shehory (ed.) Proceedings of the 12th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2013), New York, NY, USA, 6-10 May 2013, pp. 1013-1020.

Padgham, L., & Winikoff, M. (2005). Developing intelligent agent systems: A
practical guide John Wiley & Sons.

Padgham, L., Thangarajah, J., & Winikoff, M. (2008, July). Prometheus Design Tool.
In AAAI (Vol. 8, pp. 1882-1883).

Patterson, D. (1990). Introduction to artificial intelligence and expert systems.
Prentice-Hall, Inc..

Pavlov, I. P. (1960). Conditioned reflexes : an investigation of the physiological
activity of the cerebral cortex. Oxford University Press, London.

Peredo, R., Canales, A., Menchaca, A., & Peredo, I. (2011). Intelligent web-based
education system for adaptive learning. Expert Systems with Applications, 38(12),
14690-14702.

Pipitone, A., Cannella, V. & Pirrone, R. (2012). Cognitive Models and their
Application in Intelligent Tutoring System (Chapter 2). In Gigliola Paviotti, Pier
Giuseppe Rossi & Dens Zarka (Ed.). Intelligent Tutoring Systems: An Overview.

Pitkäranta, T. (2004). Software Agents in Semantic Web Environment. Doctoral
Dissertation, Helsinki University of Technology, Finland.

Piunti, M., Ricci, A., Boissier, O., & Hübner, J. F. (2009). Embodied organisations in
MAS environments. In Multiagent System Technologies (pp. 115-127). Springer
Berlin Heidelberg.

Prior, J. C. (2003, January). Online assessment of SQL query formulation skills. In
Proceedings of the fifth Australasian conference on Computing education-Volume 20
(pp. 247-256). Australian Computer Society, Inc..

https://www.obitko.com/tutorials/ontologies-semantic-web/description-logics.html

References

219

Prior, J. C., & Lister, R. (2004). The backwash effect on SQL skills grading. ACM
SIGCSE Bulletin, 36(3), 32-36.

Python (2016). Enthought Canopy. https://www.enthought.com/products/canopy/.
Enthough Inc.

Ricci, A., Piunti, M., & Viroli, M. (2011). Environment programming in multi-agent
systems: An artifact-based perspective. Autonomous Agents and Multi-Agent Systems,
23(2), 158-192.

Ricci, A., Viroli, M., & Omicini, A. (2006). CArtAgO: An infrastructure for
engineering computational environments in MAS. In D. Weyns, H.V.D. Parunak, &
M. Fabien, editors. Second International Workshop on Environments for Multi-Agent
Systems, volume 4389 of Lecture Notes in Computer Science, Utrecht, The
Netherlands, 2006. Springer-Verlag.

Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of
machine learning research, 5(Jan), 101-141.

Ritter, S., Anderson, J., Cytrynowicz, M. & Medvedeva, O. Authoring Content in the
Published PAT Algebra Tutor. Journal of Interactive Media in Education, 98 (9) 8
Oct. 1998 [www-jime.open.ac.uk/98/9]

Rosbottom, J., & Moulin, C. (1998). Using intelligent agents to change the delivery of
education (poster). ACM SIGCSE Bulletin, , 30. (3) pp. 303.

Rossi, P. G.& Fedeli, L. (2012). Intelligent Tutoring Systems: a short History and New
Challenges (Chapter 1). Intelligent Tutoring Systems (ITS). In Gigliola Paviotti, Pier
Giuseppe Rossi & Dens Zarka (Ed.). Intelligent Tutoring Systems: An Overview. Pp.
13-56.

Rudolph, S. (2011). Foundations of description logics. In Reasoning Web. Semantic
Technologies for the Web of Data (pp. 76-136). Springer Berlin Heidelberg.

Russell, S. J., & Norvig, P. (2010). Artifial intelligence: A novel approach. Pearson
Education, New Jersey.

Sadiq, S., Orlowska, M., Sadiq, W., & Lin, J. (2004, June). SQLator: an online SQL
learning workbench. In ACM SIGCSE Bulletin (Vol. 36, No. 3, pp. 223-227). ACM.

Schiffer, S. R. (1972). Meaning. Clarendon Press, Oxford.

Searle, J. R. (1969). Speech acts: An essay in the philosophy of language Cambridge
university press.

Shoham, Y. (1991, July). AGENT0: A Simple Agent Language and Its Interpreter. In
AAAI (Vol. 91, p. 704).

https://www.enthought.com/products/canopy/
http://www-jime.open.ac.uk/98/9

References

220

Skinner, B. F. (1938). The behavior of organisms: An experimental analysis.
Appleton-Century. New York.

SQLCourse.com (2017). Interactive Online SQL Training.
http://www.sqlcourse.com/table.html (Accessed: 2nd July 2017)

SQLzoo (March 2017). https://sqlzoo.net/wiki/SELECT_Quiz (Accessed: 2nd July
2017)

STEM (2013). Pre-Assessment. http://www.stemresources.com/index.php?id=51&
(Accessed January 08, 2014).

SurveyMonkey (2017). SurveryMonkey. https://www.surveymonkey.co.uk/

Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., &
Duval, E. (2012). Context-aware recommender systems for learning: a survey and
future challenges. IEEE Transactions on Learning Technologies, 5(4), 318-335.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological
processes. Harvard university press.

W3C (2004). OWL Web Ontology Language. https://www.w3.org/TR/webont-req/
(accessed: November 17th, 2016).

W3C Recommendation. (Feb, 2004). RDF/XML Syntax Specification (Revised).
https://www.w3.org/TR/REC-rdf-syntax/#figure2 (Accessed: March 28th, 2016).

W3C (2014). Resource Description Framework RDF https://www.w3.org/RDF/
(accessed: December, 22nd 2016).

w3Schools.com (2017). https://www.w3schools.com/sql/sql_intro.asp (Accessed: 2nd
July 2017).

Wang, F. (2014). POMDP Framework for Building an Intelligent Tutoring System.
Computer Supported Education (CSEDU2014). SCITEPRESS, pp. 233-240.

Wooldridge, M. (2002). An introduction to multiagent systems. First Ed. John Wiley
& Sons.

Wooldridge, M. (2009). An introduction to multiagent systems. Second Ed. John Wiley
& Sons.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice.
Knowledge engineering review, 10(2), 115-152.

Wooldridge, M., Jennings, N.R. and Kinny, D. (2000). The Gaia methodology for
agent-oriented analysis and design. Autonomous Agents and multi-agent systems, 3(3),
pp.285-312.

http://www.sqlcourse.com/table.html
https://sqlzoo.net/wiki/SELECT_Quiz
http://www.stemresources.com/index.php?id=51&
https://www.surveymonkey.co.uk/
https://www.w3.org/TR/webont-req/
https://www.w3.org/TR/REC-rdf-syntax/#figure2
https://www.w3.org/RDF/
https://www.w3schools.com/sql/sql_intro.asp

References

221

Wu, X., Zeng, G., & Yang, G. (2008, October). A Novel Approach for Describing
Goals with DLs in Intelligent Agents. In 2008 Fourth International Conference on
Natural Computation (Vol. 6, pp. 226-230). IEEE.

Yu, S., & Zhiping, L. (2008, December). Intelligent pedagogical agents for intelligent
tutoring systems. In Computer Science and Software Engineering, 2008 International
Conference on (Vol. 1, pp. 516-519). IEEE.

Zhang, T. I., Kendall, E., & Jiang, H. (2002). An agent-oriented software engineering
methodology with application of information gathering systems for LCC. In for LLC,
Procs AOIS-2002.

Zhang, Z., Thangarajah, J., & Padgham, L. (2008, May). Automated unit testing
intelligent agents in PDT. In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems: demo papers (pp. 1673-1674).
International Foundation for Autonomous Agents and Multiagent Systems.

Zini, F., & Sterling, L. (1999, September). Designing Ontologies for Agents. In
APPIA-GULP-PRODE (pp. 29-42).

Appendix A

Appendix A

A.1 Pre-assessment Data

This is the student skills data, recorded and stored by the agent agModel (student) in

the Pre-assessment Sytem. Appended to each data is the date and time of each pre-

assessment exercise. The time between each event was analysed and used to plot the

binary classification graph in Chapter 7.

//The INSERT desired concept data

desired_Concept("INSERT, date(2017-1-26), time(12-10-

23)")[source(agSupport)].

quizSelectWhere("What query statement will return the player number

and address of each player living in Stratford? HINT: order of

address: STREET, HOUSENO, POSTCODE., date(2017-1-26), time(12-10-

23)")[source(agSupport)].

responseToSelectWhere("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE,

date(2017-1-26), time(12-13-54)")[source(agSupport)].

failed("The student has NOT passed the SELECT...WHERE question.,

date(2017-1-26), time(12-13-54)")[source(agSupport)].

quizSelectAll("State the SQL query that will output all the data in

TENNIS_TEAMS?, date(2017-1-26), time(12-13-54)")[source(agSupport)].

responseToSelectAll("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE,

date(2017-1-26), time(12-13-59)")[source(agSupport)].

failed("The student has NOT passed the SELECT_ALL question.,

date(2017-1-26), time(12-13-59)")[source(agSupport)].

Appendix A

223

//The INSERT desired concept data

desired_Concept("INSERT"), date(2017-1-26), time(12-14-

40)")[source(agSupport)].

quizSelectWhere("What query statement will return the player number

and address of each player living in Stratford? HINT: order of

address: STREET, HOUSENO, POSTCODE., date(2017-1-26), time(12-14-

40)")[source(agSupport)].

responseToSelectWhere("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE

FROM TENNIS_PLAYERS WHERE TOWN = 'Stratford', date(2017-1-26),

time(12-14-46)")[source(agSupport)].

passed("The student has passed the SELECT...WHERE question.,

date(2017-1-26), time(12-14-46)")[source(agSupport)].

quizSelectAll("State the SQL query that will output all the data in

TENNIS_TEAMS?, date(2017-1-26), time(12-14-46)")[source(agSupport)].

responseToSelectAll("SELECT * FROM TENNIS_TEAMS, date(2017-1-26),

time(12-15-24)")[source(agSupport)].

passed("The student has passed the SELECT_ALL question., date(2017-

1-26), time(12-15-30)")[source(agSupport)].

//The DELETE desired concept data

desired_Concept("DELETE, date(2017-1-26), time(12-17-

38)")[source(agSupport)].

quizInsertSelect("Enter into the table: TENNIS_RECR_PLAYERS; the

number, name, town, and telephone number of each non-competition

player? HINT: INSERT and SELECT., date(2017-1-26), time(12-17-

38)")[source(agSupport)].

responseToInsertSelect("SELECT * FROM TENNIS_RECR_PLAYERS,

date(2017-1-26), time(12-22-18)")[source(agSupport)].

failed("The student has NOT passed the INSERT with SELECT question.,

date(2017-1-26), time(12-22-18)")[source(agSupport)].

Appendix A

224

quizInsertValue("A new team has enrolled in the league. The third

team will be captained by player 100, and will compete in the third

division. Add the team to the database?, date(2017-1-26), time(12-

22-18)")[source(agSupport)].

responseToInsertValue("INSERT , date(2017-1-26), time(12-22-

37)")[source(agSupport)].

failed("The student has NOT passed the INSERT with VALUE question.,

date(2017-1-26), time(12-22-37)")[source(agSupport)].

desired_Concept("SELECT, date(2017-1-26), time(12-28-

10)")[source(agSupport)].

//The INSERT desired concept data

desired_Concept("INSERT, date(2017-1-26), time(12-29-

43)")[source(agSupport)].

quizSelectWhere("What query statement will return the player number

and address of each player living in Stratford? HINT: order of

address: STREET, HOUSENO, POSTCODE., date(2017-1-26), time(12-29-

43)")[source(agSupport)].

responseToSelectWhere("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE

FROM TENNIS_PLAYERS WHERE TOWN = 'STRATFORD';, date(2017-1-26),

time(12-32-4)")[source(agSupport)].

failed("The student has NOT passed the SELECT...WHERE question.,

date(2017-1-26), time(12-32-4)")[source(agSupport)].

quizSelectAll("State the SQL query that will output all the data in

TENNIS_TEAMS?, date(2017-1-26), time(12-32-4)")[source(agSupport)].

responseToSelectAll("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE,

date(2017-1-26), time(12-33-6)")[source(agSupport)].

failed("The student has NOT passed the SELECT...WHERE question.,

date(2017-1-26), time(12-33-6)")[source(agSupport)].

Appendix A

225

//The UNION desired concept data

desired_Concept("UNION, date(2017-1-26),time(12-42-

14)")[source(agSupport)].

quizFullOuterJoin("Give, for each player, the player number, the

name and the penaltiees incurred by him or her; order the result by

player number. (HINT: you need to use OUTER JOIN), date(2017-1-26),

time(12-42-14)")[source(agSupport)].

responseToFullOuterJoin("SELECT P.PLAYERNO, P.NAME, PEN.AMOUNT,

date(2017-1-26), time(12-59-10)")[source(agSupport)].

failed("The student has NOT passed the FULL_OUTER_JOIN question.,

date(2017-1-26), time(12-59-10)")[source(agSupport)].

quizInnerJoin("For each player born after June 1920, find the name

and the penalty incurred by him or her? HINT: you need to use INNER

JOIN, date(2017-1-26), time(12-59-10)")[source(agSupport)].

responseToInnerJoin("SELECT P.PLAYERNO, P.NAME, PEN.AMOUNT FROM

TENNIS_PLAYERS P INNER JOIN TENNIS_PENALTIES PEN ON P.PLAYERNO =

PEN.PLAYERNO, date(2017-1-26), time(13-1-19)")[source(agSupport)].

failed("The student has NOT passed the INNER_JOIN question.,

date(2017-1-26), time(13-1-19)")[source(agSupport)].

//The JOIN desired concept data (SECOND ATTEMPT KEN)

desired_Concept("JOIN, date(2015-10-16), time(11-0-

15)")[source(agSupport)].

quizUpdateSelect("Set the number of sets won to zero for all players

resident in Stratford., date(2015-10-16), time(11-0-

15)")[source(agSupport)].

responseToUpdateSelect("SELECT * FROM TENNIS_MATCHES, date(2015-10-

16), time(11-3-16)")[source(agSupport)].

Appendix A

226

failed("The student has NOT passed UPDATE with SELECT question.,

date(2015-10-16), time(11-3-16)")[source(agSupport)].

quizUpdateWhere("Change the value F in the SEX column of the PLAYERS

table to W (women)., date(2015-10-16), time(11-3-

16)")[source(agSupport)].

responseToUpdateWhere("UPDATE SEX FROM P WHERE SEX = 'F' TO SEX =

'W', date(2015-10-16), time(11-5-1)") [source(agSupport)].

failed("The student has NOT passed UPDATE with WHERE question.,

date(2015-10-16), time(11-5-1)")[source(agSupport)].

//The INSERT desired concept data

desired_Concept("INSERT, date(2015-10-16), time(11-11-

47)")[source(agSupport)].

quizSelectWhere("What query statement will return the player number

and address of each player living in Stratford? HINT: order of

address: STREET, HOUSENO, POSTCODE., date(2015-10-16), time(11-11-

47)")[source(agSupport)].

responseToSelectWhere("SELECT STREET, HOUSENO, POSTCODE FROM

TENNIS_PLAYERS WHERE TOWN="Stratford";, date(2015-10-16), time(11-

12-57)")[source(agSupport)].

passed("The student has passed the SELECT...WHERE question.,

date(2015-10-16), time(11-12-57)")[source(agSupport)].

quizSelectAll("State the SQL query that will output all the data in

TENNIS_TEAMS?, date(2015-10-16), time(11-12-

57)")[source(agSupport)].

responseToSelectAll("SELECT * FROM TENNIS_TEAMS;, date(2015-10-16),

time(11-13-51)")[source(agSupport)].

passed("The student has passed the SELECT_ALL question., date(2015-

10-16), time(11-13-51)")[source(agSupport)].

Appendix A

227

//Other data are with no response from the student:

desired_Concept("INSERT, date(2015-10-16), time(11-8-

32)")[source(agSupport)].

quizSelectWhere("What query statement will return the player number

and address of each player living in Stratford? HINT: order of

address: STREET, HOUSENO, POSTCODE., date(2015-10-16), time(11-8-

32)")[source(agSupport)].

//Another data, also with no response from the student:

desired_Concept("UPDATE, date(2015-10-16), time(11-7-

10)")[source(agSupport)].

quizDeleteSelect("Delete all penalties who live in the same town as

player 44, but keep the data for player 44., date(2015-10-16),

time(11-7-10)")[source(agSupport)].

//The UPDATE desired concept data

desired_Concept("UPDATE, date(2015-3-7), time(11-3-

17)")[source(agSupport)].

desired_Concept("UPDATE, date(2015-3-7), time(11-8-

4)")[source(agSupport)].

quizDeleteSelect("Delete all penalties who live in the same town as

player 44, but keep the data for player 44., date(2015-3-7),

time(11-8-54)")[source(agSupport)].

responseToDeleteSelect("DELETE FROM (SELECT * FROM TENNIS_PENALTIES

WHERE PLAYERNO = 44), date(2015-3-7), time(11-9-

27)")[source(agSupport)].

failed("The student has NOT passed the DELETE with SELECT

question.")[source(agSupport)].

Appendix A

228

quizDeleteWhere("Delete all penalties incurred by player 44 in

1980., date(2015-3-7), time(11-9-27)")[source(agSupport)].

responseToDeleteWhere("DELETE FROM SELECT * FROM TENNIS_PENALTIES

WHERE PLAYERNO = 44, date(2015-3-7), time(11-12-

10)")[source(agSupport)].

failed("The student has NOT passed the DELETE with WHERE

question.")[source(agSupport)].

//The UPDATE desired concept data

desired_Concept("UPDATE, date(2015-5-7), time(11-11-

31)")[source(agSupport)].

quizDeleteSelect("Delete all penalties who live in the same town as

player 44, but keep the data for player 44., date(2015-5-7),

time(11-11-31)")[source(agSupport)].

responseToDeleteSelect("DELETE FROM TENNIS_PENALTIES(SELECT * FROM

TENNIS_PENALTIES WHERE PLAYERNO = 44), date(2015-5-7), time(11-12-

10)")[source(agSupport)].

failed("The student has NOT passed the DELETE with SELECT

question.")[source(agSupport)].

quizDeleteWhere("Delete all penalties incurred by player 44 in

1980., date(2015-5-7), time(11-12-10)")[source(agSupport)].

responseToDeleteWhere("DELETE * FROM TENNIS_PENALTIES WHERE PLAYERNO

= 44 AND PAYMENT_DATE LIKE '1980', date(2015-5-7), time(11-14-

4)")[source(agSupport)].

failed("The student has NOT passed the DELETE with SELECT

question.")[source(agSupport)].

Appendix A

229

//The UNION desired concept data

desired_Concept("UNION, date(2015-3-7),time(11-19-

4)")[source(agSupport)].

//Re-entering of desired_Concept after studying quiz and database

desired_Concept("UNION, date(2015-3-7),time(11-28-

48)")[source(agSupport)].

quizFullOuterJoin("Give, for each player, the player number, the

name and the penaltiees incurred by him or her; order the result by

player number. (HINT: you need to use OUTER JOIN), date(2015-3-7),

time(11-28-48)")[source(agSupport)].

responseToFullOuterJoin(SELECT * FROM TENNIS_PLAYERS (alias) P OUTER

JOIN TENNIS_PENALTIES (alias) PEN ON P.PLAYERNO = PEN.PLAYERNO,

date(2015-3-7), time(11-28-56)")[source(agSupport)].

failed("The student has NOT passed the FULL_OUTER_JOIN

question.")[source(agSupport)].

quizInnerJoin("For each player born after June 1920, find the name

and the penalty incurred by him or her? HINT: you need to use INNER

JOIN, date(2015-3-7), time(11-28-56)")[source(agSupport)].

responseToInnerJoin(SELECT * FROM TENNIS_PLAYERS (alias) P INNER

JOIN TENNIS_PENALTIES (alias) PEN ON P.PLAYERNO = PEN.PLAYERNO,

date(2015-3-7), time(11-29-35)")[source(agSupport)].

failed("The student has NOT passed the INNER_JOIN

question.")[source(agSupport)].

//The UNION desired concept data (SECOND ATTEMPT KEN)

desired_Concept("UNION, date(2015-3-7),time(11-29-

48)")[source(agSupport)].

quizFullOuterJoin("Give, for each player, the player number, the

name and the penaltiees incurred by him or her; order the result by

Appendix A

230

player number. (HINT: you need to use OUTER JOIN), date(2015-3-7),

time(11-29-48)")[source(agSupport)].

responseToFullOuterJoin(SELECT P.PLAYERNO, P.NAME,

PEN.PLAYERNO FROM TENNIS_PLAYERS (alias) P OUTER JOIN

TENNIS_PENALTIES (alias) PEN ON P.PLAYERNO = PEN.PLAYERNO,

date(2015-3-7), time(11-31-43)")[source(agSupport)].

failed("The student has NOT passed the FULL_OUTER_JOIN

question.")[source(agSupport)].

quizInnerJoin("For each player born after June 1920, find the name

and the penalty incurred by him or her? HINT: you need to use INNER

JOIN, date(2015-3-7), time(11-31-43)")[source(agSupport)].

responseToInnerJoin(SELECT P.PLAYERNO, P.NAME,

PEN.PLAYERNO FROM TENNIS_PLAYERS (alias) P INNER JOIN

TENNIS_PENALTIES (alias) PEN ON P.PLAYERNO = PEN.PLAYERNO,

date(2015-3-7), time(11-34-04)")[source(agSupport)].

failed("The student has NOT passed the INNER_JOIN

question.")[source(agSupport)].

Appendix A

A.2 The MySQL Tennis_Database Tables

The Tennis Database tables in the MySQL database that students used during their

pre-assessment sessions.

Fig. 1: Snapshot of The Tennis_Players Table

Fig. 2: The Tennis_Teams Table

Fig. 3: The Tennis_Penalties Table

Appendix A

232

Fig. 4: The Tennis_Matches Table

Fig. 5: The Tennis_Committee_Members Table

Fig. 6: The Tennis_Recr_Players Table

Appendix B

Appendix B

B.1 Students’ Feedback Questionnaire

Appendix B

234

Appendix B

235

Appendix B

236

Appendix C

B.2 Consent Form

Introduction to SQL: Evaluation of SQL Based Multiagent Pre-assessment
System

Your Consent:

This session is about the evaluation of a system we are designing. The learning content on this
system is SQL: structured query language. The system is to check whether a student is ready
to learn the topic he/she desires to learn. This readiness is checked by first asking you questions
on the next immediate-lower topic to the one you would enter. Each topic has two questions.
If the answers you provide are correct, you will learn the topic you have entered. But if both
answers are incorrect, you will be required to learn both. And if one is answered correctly and
the other incorrectly, the incorrectly answered will be the one to be learnt.

We kindly request that you help to participate in this system’s test and survey. Your response
are anonymous and will be used to improve the design, content and performance of this system.
Your consent and participation is significant to us. We won’t take much of your time.

NB: Please, kindly complete the questionnaire when you finish with the system.

Thank you.

Objectives of the System:

Are to:

1) identify whether you are ready to learn the SQL topic you entered;

2) ensure that you have mastered an immediate-lower topic before learning a higher one;

3) direct you to the appropriate URL link that you can place on a browser.

I agree to participate (a tick please):

Email: …………………………………………………………………………………………

Sign:…………………………………….......

Yes No

Appendix B

238

B.3 Research Ethics Approval

Howson, Tracey D <T.D.Howson@shu.ac.uk>
To
Ehimwenma, Kennedy K (student - 55002)
CC
Crowther, Paul
Today at 10:30 AM

Hi Ken

Please see the message below form the Ethics Committee Chair regarding your SHUREC1,
please keep this safe.

He seems to be researching other computing students on learning in computing so will not
need a SHUREC2A and so does not need formal ethical approval. However, please would
you feed back to him that he needs to make sure that he gives each of his research
participants an information sheet telling them about the research and gets them to sign a
consent form to ensure they have consented to the research. He needs to offer participants the
chance to withdraw from the research at any time up to the submission of his thesis. He
should also confirm that participants’ data is anonymised and kept securely. He should send
in a copy of his consent/information sheet and we will file it with his SHUREC1.

Kind regards

Tracey Howson

Admin Officer

Cultural, Communication & Computing Research Institute (C3RI)

9104 Cantor Building, 153 Arundel Street, Sheffield, S1 2NU

Tel +44 (0)114 225 6741

Fax +44 (0)114 225 6702

Email t.d.howson@shu.ac.uk

Web http://www.shu.ac.uk/research/c3ri/

My web profile http://www.shu.ac.uk/research/c3ri/people/tracey-howson

Appendix B

239

B.4 Certificate of Volunteer Participants in the Survey

