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Abstract 

Diagnostic assessment is an important part of human learning. Tutors in face-to-face 
classroom environment evaluate students’ prior knowledge before the start of a 
relatively new learning. In that perspective, this thesis investigates the development of 
an-agent based Pre-assessment System in the identification of knowledge gaps in 
students’ learning between a student’s desired concept and some prerequisites 
concepts. The aim is to test a student's prior skill before the start of the student’s higher 
and desired concept of learning. This thesis thus presents the use of Prometheus agent 
based software engineering methodology for the Pre-assessment System requirement 
specification and design. Knowledge representation using a description logic TBox 
and ABox for defining a domain of learning. As well as the formal modelling of 
classification rules using rule-based approach as a reasoning process for accurate 
categorisation of students’ skills and appropriate recommendation of learning 
materials. On implementation, an agent oriented programming language whose facts 
and rule structure are prolog-like was employed in the development of agents’ actions 
and behaviour. Evaluation results showed that students have skill gaps in their learning 
while they desire to study a higher-level concept at a given time. 
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Glossary 

Atomic formula : This is a formula of the form p(t1, …, tn). For example, the expression 
p(a, b) is an atom or atomic formula where a and b are terms or literals, and p predicate. 
 
Base symbol in DL: Are primitive concepts that only occur on the right-hand-side of 
axioms. 
 
Body of a Plan: is the course of action to be used to handle events if the plan contexts 
(or pre-conditions) are believed true at the time an agent plan is chosen to handle an 
event. 
 

Classification: Classification in the pre-assessment system is the act by which an 
agent applies a set of pre-conditions in its plan context to match belief updates so as to 
categorise a student and trigger the release of learning materials, for either a pass or a 
fail pre-assessment. 
 
Context: Represents the circumstances or conditions in which a plan can be selected 
for execution. They are constraints that are expected to be true before the action in a 
plan.  
 
Curriculum : This refers to the knowledge and skills students are expected to learn. 
They are specific course or lessons taught by a teacher in a school. 
 
Desired_Concept: This is any of the class node concept in the SQL ontology tree that 
a student is expected to enter before the commencement of pre-assessment. 
 
Events: Are what happens as a consequence to changes in an agent’s beliefs or goals.  
 
Named symbol in DL: Are the concepts being defined that occurs on the left-hand-
side of axioms. 
 
Percepts: Are events that are observable by agents.  
 
Plans: A plan is an option of the action that an agent can select and perform. In other 
word, they are recipe for action or some given courses of actions. They represent 
agents’ know-how. 
 
Predicate: In logic based statements, the expression p(a) or p(a, b) is an atomic 
formula where p is a predicate. A predicate can be unary or binary.  
 
Protocols: Are simple sequence of agents’ communication using directed arrows. 
 
Swing: Is a java library that provides GUI components for developing user interface. 
 
Triggering_event: Denotes the events that a plan is meant to handle. 
 
 



 

 

Chapter 1 

Introduction and Pre-Learning 

Diagnosis 
 

1. Introduction 

Concepts of learning are interdependent and chronological. In human learning the 

successful learning of a target concept may be dependent upon relative and previously 

learned concepts in a given sequence of learning. Pre-learning assessment or pre-

assessment as a process of learning is an enquiry into previous learning and an 

invitation of prerequisite knowledge into a new and higher-level concept learning. This 

could enhance new concept learning and improve performance. In teaching-learning 

environments, this process is frequently carried out by human tutors. But how can this 

process be replicated in an agent based system, such as, the Pre-assessment System 

that is designed in this study?  

 

1.1 Motivation for Study 

In a learning domain, tutors teach concepts in the order of simple-to-complex or from 

known-to-unknown. Before a higher concept or topic is taught, lower topics in the 

hierarchy of learning ought to be understood. In a teaching-learning session, a tutor 

may probe students’ prerequisite topic related to the topic that is about to be taught. In 

such scenarios, when the tutor asks questions, students’ responses may be right or 

wrong. Based on this diagnosis of knowledge, the tutor is informed of the cognitive 

status of his students and how to begin his new teaching. Therefore, the motivation of 

this thesis is to investigate a strategy on an agent based system that can imitate the 

action of the human tutor. The system makes decisions and assembles students’ 

knowledge status, and then recommend supplementary materials so as to close any 

gaps.  
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1.2 Research Question 

The research problem of this work is stated in the question:  

How can students be helped to identify gaps in their current learning so that they can 

be fully prepared for the next stage in their learning? 

 

1.3 Purpose of The Research 

The purpose of this research is to identify gaps in students’ learning via a pre-learning 

or pre-assessment strategy, and develop a conceptual ontology to apply in the pre-

assessment process on a multiagent system platform. Before the commencement of 

learning, students are first and foremost pre-assessed on the relative prerequisite 

concepts to a desired concept: where the desired concept is the intended and chosen 

concept of learning. This is to ascertain strengths or weaknesses, whether students 

possess the background knowledge to proceed to learn the chosen concept 

successfully. 

 

1.4 Aim of The Study  

The aim is to develop a model of Pre-assessment System that can pre-assess students’ 

learning in a given domain and to use logic based rules in specifying the classification 

of skills and recommendation of suitable learning materials for students.  

 

1.5 Objectives of The Study  

The objectives of this study are as follows:  

1. To investigate a systematic way of identifying gaps in students’ knowledge 

which may hinder them in their next stage of learning. This is to allow students 

to self-diagnose any gaps on their previous learning before the start of a new 

module. 

2.  To build a domain ontology of related concepts and use declarative logic based 

representation in the system in the process of learning gap identification prior 

to the start of a higher and desired learning by students. 
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3. To investigate the communication of ontological concepts in the system in the 

process of identifying gaps in students’ learning.   

4. To develop the tools that allow the system to recommend supplementary study 

materials to close the gaps in their current learning.  

5. To evaluate the effectiveness of the system by assessing how effective it is in 

helping real students improve their learning. 

 

1.6 Defining The Pre-assessment System 

The Pre-assessment System is an agent based elearning system that perceive the 

knowledge of students, communicate such knowledge, make decisions, categorise 

students according to knowledge assembled, and finally recommend suitable learning 

materials. This aforementioned processes are functionalities that are handled by a 

group of agents.  

 

The domain content of the system is Structured Query Language (SQL). The system 

uses the example of SQL learning structure from the Introduction to SQL (Lans, 2006). 

The concepts of learning are interdependent on each other and shall be arranged in an 

ontology tree structure that is modelled after the SQL teaching materials that were 

made available for this work by database tutors in Sheffield Hallam University. The 

system keeps activities of students’ during the course of pre-assessment. This is for 

the tutor’s view so as to provide optimal assistance to students that may be facing 

difficulties in their SQL query constructs. In this research, the problem is a 

classification of students’ learning activity for learning materials recommendation. 

  

1.7 What is Learning? 

Learning can be categorised as a change in the mental state of humans or machines 

after a sequence of acquired experiences. But whether these experiences have caused 

any changes in the ‘knower' is normally determined by some form of assessment. 

Inclusively, learning is search and find, recognising, classifying, grouping, separating, 

sorting, drawing similarities, taking instruction, or making prediction using existing 

knowledge. Learning is a display of intelligence which comprises information 
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gathering, fault detection, diagnosis and prognosis. Bratko (2001) describes learning 

as having to recognise a concept: If C is a concept, to learn the concept C means to 

learn to recognise objects [or features] in C. In artificial intelligence (AI), a concept 

is a class or object.  

 

Learning can be permanent or temporary — meaning that a concept or process can be 

learned or unlearned. In a teaching-learning process, one way to determine the 

occurrence of learning is through some form of assessment: To ascertain whether a 

concept is learned or has been unlearned. In this work, the process is dichotomous, and 

comprises of:  

 Classification of students’ learning. 

 Student Learning. 

 

1.7.1 Classification of Students’ Learning 

In this work, classification refers to the selective decision making and grouping of 

students’ responses to the quizzes, based on the desired concept entered by a student. 

Classification is the ability of the agent based system to recognise and classify features 

according to its given rules (or plans) where agents have their knowledge or beliefs 

represented in logic based structure. At the match of some beliefs (whether initial 

beliefs or update beliefs), messages are communicated interchangeably and a trigger 

for classification is performed to fulfill the overall goal of the agent based system.  

 

1.7.2 Human Learning 

Assessment is a critical catalyst for student learning (Conole & Warburton, 2005), and 

this is used to measure the outcome of learning. At any given stage in a learning 

process, this is imperative because of the need to improve students’ performance. As 

such, assessment can be administered through one or a combination of the test 

techniques:  

summative -- for grading purposes at the end of study term;  

formative -- for immediate feedback during course of learning; 

diagnostic – for evaluating students’ prior knowledge;  
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self-assessment – for students’ reflection of own experiences and 

 understanding. (O’Reilly & Morgan, 1999; Bull & McKenna, 2004, Conole 

 & Warburton, 2005) 

 

Using a schematic diagram, Figure 1.1 can be used to depict the processes of learning, 

unlearning and forgetting under some hypothetical activity represented as stimulus (S) 

(e.g. question) and response (R) (e.g. answer) activity. The Figure 1.1 maps learning, 

unlearning and relearning processes to some states S0 and St, and possible reward 

factors that influences learning. 

  

 

 

 

Particularly for humans, the schematic representation shows the transition states in 

metacognitive activities from initial state s0 to a new learning state st and vice versa 

coupled with the effect of rewards ─ positive or negative. This is a view from the 

studies of classical conditioning (Pavlov, 1960) and operant conditioning (Skinner, 

1938) where positive and negative rewards were shown to influence learning. 

 

To determine the occurrence of learning, one process to employ is the use of pre-

learning diagnosis. This is vital and effective in assessing students whether the 

foundation is already laid for higher concept learning. In that view, skills diagnosis 

provides the opportunity for a pre-learning assessment of a learner’s state of knowing 

with regard to a given target concept. Tutors in contemporary classroom practice make 

S0 = Initial state (i.e. a start or previous state).  
St = Transition state (i.e. new learning state) where t =  1, 2, 3, …, n. 
 

… , n.

Fig.1. 1: Transition State Diagram of Learning and Unlearning Processes. Fig.1.1: Transition State Diagram of Learning and Unlearning Processes. 
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enquiries into students’ prior knowledge before teaching some relatively higher 

concepts. This is to determine the background knowledge readiness for the new 

concept. When teachers give students the opportunity to explore their prior knowledge 

and beliefs, and then thoughtfully look and listen at what is revealed; they are gathering 

information for responsive instruction. This style of teaching intentionally connects 

what students already know with the desired outcomes (STEM, 2013).  

 

With intelligent learning systems, students themselves can embark on self-diagnosis 

without the tutor’s intervention in their own time, space and comfort before proceeding 

on the learning ladder. But most e-learning systems still do not use effective strategies 

for evaluating students’ existing knowledge before teaching a new concept. Since 

knowledge is building blocks that are sequentially planned from known-to-unknown, 

the existence of gaps or zone of proximal development (Vygotsky, 1978) would inhibit 

the successful learning of further concept(s). 

 

1.8 Need for Pre-assessment in Learning 

Pre-assessment is the inquiry into relevant pre-existing knowledge at the start of a 

learning process to identify whether a student has the necessary background to enable 

them to move forward with the new material that they wish to learn. Thus pre-learning 

assessment creates a synergy between previous learning and the start of new learning. 

In the process of inquiry, pre-assessment prompts related prior learning. In the views 

of Conole & Warburton (2005) diagnostic assessment is used by tutors to determine 

students’ prior knowledge. Andronico et al. (2003) state that diagnostics begins before 

a course of learning with the purpose of identifying what learning resources are needed 

by students. This is quite different from other forms of assessment. For example, 

formative assessment that is designed to provide students with feedback on progress 

and development whether the student understands the current teaching. Or summative 

that is used to identify the students approximate level and giving the right score or 

grades (Conole & Warburton, 2005; Andronico et al. 2003). By deduction, pre-

assessment leads to better formative assessment leading to the best summative 

evaluation.                       
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As the tutor in a face-to-face classroom context may perform a pre-learning or 

diagnostic assessment concerning a particular knowledge concept before teaching a 

higher level concept, so should intelligent tutoring systems (ITS) be modelled to assist 

a learner. In a virtual learning environment, one of the major problems in deploying 

materials for learning is ensuring that students have sufficient prior knowledge at the 

start of a new study session.  This is made more complicated by the range of different 

routes that they may have taken to reach this point in their study.   

 

Our effective approach to remedy this situation is self-assessment or self-diagnosis on 

prerequisite concepts to the higher concept that is desired. This way, gaps that may 

inhibit further knowledge may be detected and appropriate recommendation made to 

fill any gaps by intelligent learning systems. In so doing, students will have greater 

preparedness for higher or desired learning activities.  

 

Thus this research demonstrates a pre-assessment procedure in a multiagent system 

(MAS) that can identify gaps in learning. The chosen tool for developing the 

multiagent Pre-assessment System is Jason AgentSpeak Language (Bordini, Hübner 

& Wooldridge, 2007). This is due to the language support for: belief structure in logic 

based representation, inter-agent communication via speech acts performatives, and 

persistent beliefs.  

 

The domain content of the pre-assessment system is the SQL database. The database 

which is called the TENNIS_DATABASE was modelled and hosted on the MySQL 

server. SQL quizzes and queries are dependent on this database, and students shall 

have access to the database in order to provide answers to the pre-assessment quizzes. 

The TENNIS_DATABASE is made up of five data tables.  

 

The Figure 1.2 presents an overview of the pre-assessment system and the interaction 

amongst the agent components. The system interacts with the user through the 

CArtAgO (Common ART ifact for Agent Open environment) artifact.  The CArtAgO 

is the artifact (Ricci, Piunti, & Viroli; 2011) in which the multiagent system observes 

its input or percepts.  
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All composite agents have their individualised tasks in their Condition-Action rules 

otherwise known as plans. These plans constitute various agent functions as designated 

duties within the MAS. The agents are cooperative through knowledge communication 

so as to achieve the overall design goal of pre-assessment, which is, to identify learning 

gaps in students’ learning and make recommendation for learning materials via 

universal resource locator (URL) links.  Thus the strategic purpose and functions of 

the Pre-assessment System are:  

 

1) Perceive events.  

2) Communicate messages via performatives.  

3) Process perceived events (e.g. SQL concepts, query statements, logic based 

statement), feedback to the student, and carry out pre-assessment.  

4) Assemble updated beliefs, match the plan that satisfies the given set of updated 

beliefs from an array of agent plans, and trigger classification. 

5) While doing 4) above, dynamically keep students' activity-history for the 

course tutor access to unravel the technical difficulties confronting his students.  

6) Make suitable recommendation for learning materials.  

 

1.9 Contribution to Knowledge 

The findings and significant contributions of this research study are: 

1. Identifying gaps in students’ learning using a devised Pre-assessment 

Mechanism. 

  

Student 

  

Interface Agent 
  

(Classifier)  
Modelling Agent 

  
  

       
Support 

  Agent 
  

(Ontology)       

Material Agent 
  

  

Student Model 
  

Agent 
  

  

MAS 

CARTAGO Artifact 

(Pre-assessment) 

Fig.1. 3: Overview of The Pre-assessment System (adapted from Ehimwenma, Beer & Crowther 2015a) 
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2. Goal specification for agents using Agent oriented software engineering 

methodology for developing e-learning system.   

3. Use of description logic syntax for defining an ontology of a learning domain. 

4. Modelling classification features with logic based representation for agents for 

the prediction of appropriate knowledge-level learning materials. 

1.10 Overview of Thesis 

This thesis has been structured into eight Chapters. Chapter 2 explores the literature 

of knowledge representation; description logic (DL) language, DL notation and 

symbols for knowledge modelling. This include the TBox and ABox components. The 

Chapter also present intelligent tutoring systems, assessment systems and multi-

agents. Chapter 3 continues with the literature on agents, agent properties, 

architectures and methodologies. In furtherance, the chapter discusses speech acts 

theory as a protocol for knowledge sharing in agent based systems, agent 

communication and agent oriented programming. In Chapter 4 the conceptual 

development of the Pre-assessment System is presented using the Prometheus 

methodology. This is followed by a devised Pre-assessment Mechanism for the pre-

assessment process, the Student Model parameters, and first order logic formula 

specification of the classifier agent reasoning process. Also discussed in the chapter is 

our model equation that can calculate the number of classification rules in a given 

ontology tree. Chapter 5 describes the implementation of the Pre-assessment System. 

This include the various agent components, ontology models from the DL definition, 

and the classification procedure. In Chapter 6 the Pre-Assessment System is evaluated 

by volunteer participants, and the data collected analysed. Chapter 7 is discussion and 

explanation of findings. Chapter 8 is conclusions and direction of further research 

work.  

 

1.11 Publications from this Work 

Elements of this work have been published and have been referenced in this thesis. 

Note that the terminologies and notations used in this thesis supersedes those used in 

the publications. 
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Chapter 2 

Knowledge Representation and 

Intelligent Tutoring Systems 
 

2. Introduction 

This chapter presents the background literature of description logics (DL) and 

knowledge representation (KR). It deals with the various forms of KR and DL support 

for ontology languages and development. This includes DAML + OIL, RDF(S), and 

OWL. The chapter describes the unary predicate, and binary predicate relation as 

triples in RDF and its Prolog-like ground facts equivalence for representing knowledge 

in a system. This herald a DL language into a TBox and its ABox counterpart, and the 

condition-action rule for symbolising a classification process for programming. The 

chapter also looks at intelligent tutoring systems (ITS) architectures, ITS and their 

strategies for supported learning. This covers multiagents in the development of ITS 

and analysis of some student models. The chapter also looks at some SQL assessment 

systems, and Chunking: an educational learning theory for supporting effective 

learning in a challenging educational environment and why it is important in this study.  

 

2.1 Knowledge Representation and Ontology 

An ontology is a description of things and their relationships. It represents knowledge 

organisation. Ontologies define objects, properties and the relationships that exists 

between objects (Gruber 1993; 1995), and information about an object itself 

(Horrocks, Patel-Schneider & Van Harmelen, 2003) in a given domain of interest.   

Ontologies specifies the classes of objects that exist, the relationships amongst those 

classes, the possible relationships amongst instances of the classes, and constraints 

over those instances (Gruber 1993; 1995). In formal concepts, Maedche & Staab 

(2001) defined ontology as a 5-tuple O = <C; R; F; A; I> where: 



Chapter 2 knowledge Representation and Intelligent Tutoring Systems 

 

12 
 

       C: finite set of named concepts organisation. 

       R: finite set of binary relations among concepts. 

       F: functions that relates concept and relations 

       A: set of axioms that are valid in the conceptualisation. 

       I: set of individuals belonging to a domain. 

 

2.2 Description Logic and Ontology Languages 

Description Logic (DL) is a family of formal description languages for the 

representation of concepts (or classes) and their roles (known as properties or 

relationships) and literals (also known as individuals). Different formalisms or data 

structures exists for the representation of ontologies, and examples of these are OIL, 

OIL + DAML, RDF, OWL and answer set prolog. As a way of defining knowledge 

for systems, Baader, Horrocks & Sattler (2007) states that DL are the basis for 

ontology languages such as OIL, DAML + OIL and OWL for knowledge 

representation. In the following section, the various forms of knowledge representation 

models are presented. 

 
2.2.1 SHOE: Simple HTML Ontology Extension 

Frame-based languages or systems were first developed in the mid-1970s. Frame 

describes Classes, and a set of Slots in which slots may consist of property-value pairs, 

or a constraint on the value (i.e. an individual or data value). Frame was subsequently 

adopted by SHOE: a frame-based language with XML syntax. SHOE then became one 

of the earliest attempts at defining an ontology language for the web. SHOE used URI 

(Universal Resource Identifier) references for names that became the convention in 

both DAML-ONT and DAML+OIL languages (Horrocks, Patel-Schneider & Van 

Harmelen, 2003). SHOE was not based on RDF, and as such had lesser influence on 

the syntactic and semantic design of OWL. 

 

2.2.2 DAML-ONT: DARPA Agent Markup Language-ONTology 

The DARPA Agent Markup Language (DAML) was initiated in the year 2000 with 

the goal to develop a language and tool to enable the realisation of the Semantic Web 
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(DAML, 2006). The semantic web is the idea to represent basic fact, information or 

data (e.g. in document) and connect them together on the web. It is different from the 

connectivity of document of the hyperlink technology.  

RFDS, a language that was already adopted by the World Wide Web Consortium 

(W3C) was to be the starting point, but lacked the much needed power of 

expressiveness for knowledge representation.   This led to the development of DAML-

ONT that extended RDF with language constructors from object-oriented and frame-

based knowledge representation languages (Horrocks, Patel-Schneider & Van 

Harmelen, 2003). DAML-ONT was tightly integrated with RDFS. But DAML-ONT, 

like RDFS, was not without semantic specification issues. With DAML-ONT, it was 

realised that there could be disagreements, in the precise meaning of terms, both 

amongst human and machines in a DAML-ONT ontology.  

 

2.2.3 OIL: Ontology Inference Layer 

OIL is one of the languages in which OWL (Web ontology language) is based. At 

around the same time that DAML-ONT was developed, a group of researchers from 

Europe had designed the OIL language. OIL became the first ontology language to 

combine elements from Description Logics, frame languages and web standards such 

as XML and RDF (Horrocks, Patel-Schneider & Van Harmelen, 2003).  

 

2.2.4 DAML+OIL 

The merger of DAML-ONT and OIL efforts produced DAML+OIL. Though, heavily 

influenced by OIL, DAML+OIL received additional influence from DAML-ONT and 

RDFS. DAML+OIL adopted a Description logic (DL) style axiom and retained and 

used the DL language constructors developed in OIL. But not the frame structure that 

could easily integrate with RDF syntax. Nonetheless, DAML+OIL, provided a 

meaning for those parts of RDF which were consistent with its own syntax and DL 

style model theory (Horrocks, Patel-Schneider & Van Harmelen, 2003). 
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2.2.5 RDF: Resource Description Framework 

RDF is a graph database. It is a standard model for data interchange on the Web (W3C, 

2014). RDF extends the linking structure of the Web to use URIs to name the 

relationship between things as well as the two ends of the link (known as “triple”) 

(Fig.2.1). This linking structure forms a directed, labelled graph, where the edges 

represent the named link between two resources, represented by the graph nodes 

(W3C, 2014). RDF are triples (a, P, b) or set of triples which are expressed as logical 

formulas P(a, b): This is a binary statement in which the binary predicate P relates 

the subject a to object b. RDF are binary predicates only. The relationships or 

graphical connectedness between a node subject a and a node object b via a predicate 

P is a semantic net. RDF has been given the syntax of XML (W3C, 2004).  RDF is 

very scalable, but is not very expressive and does not provide support for semantics 

(W3C, 2004). RDF is not data format, but a data model with a choice of syntaxes for 

storing data (DuCharme, 2013). 

 

 
Fig.2. 1: Graph for RDF/XML Example: RDF resources are represented in ovals and literals in 
rectangles. 
Source: https://www.w3.org/TR/REC-rdf-syntax/ 

 

The edges (arrow-head lines) go from a resource to any other resource or to a literal, 

and never from a literal to a resource or another literal. So in RDF representation, 

literals are the terminal values of a resource. Simply put, RDF resources and edges are 

URIs, literals are not, but simply values e.g. universal resource locator (URL).  

All web URLs are URIs but not all URIs are URLs.  
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Thus RDF vocabulary is the set of URIs for the edges that make up the RDF graphs─so 

the use of common URIs is synonymous to act of communicating in an understandable 

language─hence the term vocabulary. For two semantic webs to share data there needs 

to exist a common vocabulary or keyword. Similarly, the model of agent 

communication in FIPA is also based on this assumption that two agents, who wish to 

converse, must share a common knowledge of the ontology for the domain of 

discourse. That is the agents must ascribe the same meaning to the symbols used in the 

message (FIPA, 2000).  

 

2.2.6 RDFS : Resource Description Framework Schema 

RDFS is expressed as RDF. RDFS is object oriented in its nature. That is, it is 

fundamentally about describing classes of objects. Its supports semantics of data by 

class and properties descriptions, class hierarchies and inheritance, and property 

hierarchy. RDFS gives flexibility to the definition of data in that a data of a particular 

class may be expressed to have various type declaration i.e. RDFS:type or different 

property declaration i.e. RDFS:property. 

 

2.2.7 OWL  

The development of OWL has been influenced by several ontology languages. For 

example, RDFS, SHOE, OIL, DAML-ONT and DAML+OIL. But DAML+OIL has 

heavily influenced the emergence of OWL (Horrocks, Patel-Schneider & Van 

Harmelen, 2003).  OWL is an increasingly expressive language. For example, one of 

such expressiveness is its power to specify property values and validate relationships 

while maintaining upward compatibility with RDF and RDFS. OWL has three 

sublanguages, which are Owl Lite, OWL DL and OWL Full. 

  
 Owl Lite 

OWL Lite is termed as the simpler OWL DL expression language. The language is 

based on the SHIF(D) version of description logic language which allows complex 

class descriptions, specification of conjunction, disjunction, negation, existential and 

universal value restrictions, role hierarchies, transitive roles, inverse roles and 

restricted form of cardinality constraints (cardinality 0 or 1) and support for concrete 
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domains (Horrocks, Patel-Schneider & Van Harmelen, 2003, de Bruijn et al. 2004). 

Its support for constraint features are simple (Laclavik et al. 2012).  

 

 OWL DL 

This is the SHOIN(D) variant of description logic language (Horrocks and Patel-

Schneider, 2003; de Bruijn et al. 2004). OWL DL is more expressive than OWL Lite. 

It provides additional support for individual names in class descriptions (also called 

nominals) and allow arbitrary cardinality restrictions (de Bruijn et al. 2004). OWL DL 

is equivalent to DAML + OIL. OWL DL constructs are with restrictions such as: 

o a class cannot be both an individual (instances) and property 

o a property cannot be an individual as well as a class (Laclavik et al. (2012).    

 

 OWL Full 

OWL Full gives greater freedom for expressiveness by allowing the syntax and 

semantics use of both OWL DL and RDFS languages (de Bruijn et al. 2004). For 

example, while a class cannot be both individual and property in OWL DL as stated 

above; in OWL Full, a class can be both. OWL Full is not restricted to DL, and it is 

also very close to first-order logic (FOL).  

In the Fig. 2.2 a comparison and the relationship between RDF, RDFS and OWL 

languages is given. There are different approaches for building the agent knowledge 

model, but the internal knowledge model of agents is left for an agent programmer 

(Laclavik et al. 2012).  

 

2.3 TBox Terminology  

Knowledge representation system based on DLs consists of two components - TBox 

and ABox (Obitko, 2007). TBox is a knowledge representation (KR) formalism that 

represents the knowledge of an application domain (the world) by defining relevant 

concepts (expressions) in that domain and then using these concepts to specify 

properties of individuals occurring in the domain (the world description). Nardi and 

Brachman (2003) state that TBox contains intensional knowledge in the form of a 

terminology or taxonomy and is built through declarations that describe general 

properties of concepts. The “terminology” denotes hierarchical structure built to 
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provide an intensional representation of the domain of interest (Nardi and Brachman, 

2003).  

 

 

Fig.2. 2: Comparison of RDF, RDFS and OWL languages (based on Horrocks, Patel-Schneider & Van 
Harmelen, 2003). 
 

 
A DL system is a combination of a TBox and ABox. The term ABox and TBox which 

are used to describe two-different but-related kinds of statements for ontologies 

together make up a knowledge base. The Figure 2.3 is a table showing the DL syntax 

notations for expressing logical axioms or statements in DL.  A TBox describes the 

vocabulary or the classes of objects that make up a KB in an application domain. 

Basically this vocabulary are the concepts (set of individuals) plus the roles 

(relationship between concepts). The Figure 2.4 is a TBox description of some 

modelled axioms in a family domain (Baader & Nutt, 2003). The left hand side of the 

equality sign is where the named symbol (defined concepts) known as the atomic 

RDF RDFS OWL 

 

 

 

* Domain 

independent. 
 

* States fact in 

triple and 

establishing the 

relation between 

two ends. 

 

 

 

 

 

* provide mechanism for defining 

specific domain. 

 

* States class and property 

relation. 

 

 

 

* Declares class and subclasses in 

subsumption hierarchy, supports 

property and subproperty, domain 

and range restriction. 

 

* Logical combinations beyond its 

use. 

 

 

* Compatible with several existing 

ontology languages e.g. OIL, DAML + OIL. 

 

* Extends RDF fact stating ability, and 

RDFS class and property structure ability. 

 

* Declares class and subclasses in 

subsumption hierarchy 

 

 

 

* Classes can be logical combinations 

(intersection, union, negation) of other 

classes. Or as enumeration of other 

specified object.  

 

* Extends RDFS by declaring properties as 

transitive, symmetric, functional or 

inverse. 

 

* Expresses disjoint, equivalence, 

individuality of object, quantification and 

value restriction. 
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concept occurs, and on the right hand side is the base symbol also known as the 

primitive concepts.  

 

 
Fig.2. 3:  OWL constructors and DL notation (Baader, Horrocks & Sattler, 2003). C is a class, P is a 
role (property), n is the number of cardinality, r is the relation. 
 

 

 
Fig.2. 4: A TBox hierarchy about family relationships. 

 

 

From the TBox terminology in Figure 2.4, the axiom 
 

 
 

 then defines the concept of “A man that is married to a doctor, and all of whose 

children are either doctors or professors” (Baader, Horrocks & Sattler, 2003). 
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2.4 ABox World Description 

The term ABox (Assertion Box) which complements the TBox are assertions about 

named individuals in terms of the vocabulary described in a TBox. Precisely, the ABox 

contains assertional knowledge called ground fact (Rudolph, 2011) which is a 

description of world. It asserts and introduces named individuals of the world, and 

their properties. Properties can be unary and binary. A unary property specifies what 

class a named individual belongs while the binary property specifies the relationships 

also known as role between two named individuals. Given that C is an atomic concept, 

R as role concept, and a, b, and c as individuals, it follows that (Baader & Nutts, 2003; 

Rudolph, 2011):  

 

1. C(a) – concept assertions implies a belongs to C,  

2. R(b, c) – role assertions implies c is a filler of the role R for b. 

 
According to Baader & Nutts (2003), if Peter, Paul and Mary are individuals, the 

following are constituents of an ABox assertions from the TBox in Figure 2.4: 

 
   MotherWithoutDaughter(mary) 

   Father(peter) 

   hasChild(mary, peter) 

   hasChild(peter, harry) 

hasChild(mary, paul) 

 
2.5 Answer Sets Prolog 

Answer Set Programming or Prolog (ASP) is a language for knowledge representation 

and reasoning based on the answer set logic programs (Gelfond, 2008; Baral & 

Gelfond, 1994). ASP or language allows domain and problem-specific knowledge, 

including incomplete knowledge, defaults, and preferences, to be represented in an 

intuitive and natural way (Brewka, Eiter, & Truszczyński, 2011). ASP is an approach 

to declarative programming whereby in a declarative style, a problem or the world 

description are specified declaratively. ASP has its roots in deductive databases, logic 
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programming, logic based knowledge representation and reasoning, constraint [rules] 

solving, and satisfiability testing (Hölldobler & Schweizer, 2014). 

 
A logic program is a set of rules of form, and ASP models are declarative and consist 

of rules likened to those in Prolog (Gelfond, & Lifschitz, 1988; Lifschitz, 2008) such 

as: 

A ← L1, …, Lm 

 
where A is an atom and head of the rule, and L1, …, Lm are literals and body of rule.  

Thus  

    p(1), 
    q( 2), 
    q(x) ← p(x). 
 
can be a model of a program. 

 

More so,  

    q(a, 1). 
    q(b, 2). 
    p(X) ← K + 1 < 2, 
    q(X, K). 
    r(X) ← not p(X). 

 
is a program of Answer Set Prolog containing two facts, and two rules, where p, q, and 

r are predicates; and X and K are variables. A program is called ground if its terms, 

literals and rules are ground. That is, if the program contains no variable and no 

symbol for arithmetic function (Gelfond, 2008). A fact being ground is contained and 

used in the program. 

In the description of knowledge bases (KB), answer set models as a knowledge 

representation language can be combined with description logic to represent facts and 

to reason about facts. This is a situation where ABox and Answer Set program models 

draw on some similarities. In Gelfond (2008), a basic methodology for representing 

knowledge was described using open-ended signatures which are names, courses, and 

departments to constitute some KB facts (a collection of departmental record): 

    member(sam, cs). 
member(bob, cs). 
teaches(sam, cs). 
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course(java, cs). 
course(c, cs). 
course(ai, cs). 
course(logic, cs). 

 
together with the closed-world assumptions expressed by the rules: 
 

teaches(P, C) ← member(P, cs), 
Course(C, cs), 
teaches(P, C). 

 
Which states that  

if  the variable P is a member of cs,  

and the variable C is a cs Course,  

and the variable P does teach C;  

then conclude that the variable P that matches sam 

teaches a Course in cs.    

Thus, teaches(sam, cs) is returned because the conditions which are contained in the 

ground facts are satisfied in the program. Like ABox, ASP allows the expression of 

KR in both both unary and binary form. This form of KR formalism that constitute 

atoms (or constants) have also been expressed in prolog-like rules for program 

execution, for example (Eiter et al. 2008, p.1501; Zini & Sterling, 1999; Brewka, Eiter, 

& Truszczyński, 2011).  

 
In Zini and Sterling (1999) for instance, the knowledge represented was for multiagent 

system that comprised of four agents. The KB which are a representation of a Sports 

ontology (Zini and Sterling 1999) were specified as follows:  

 
sport(cycling) 
sport(soccer) 
 

which are unary declaration stating that cycling and soccer are types of sports; and  
 
competition_of(seriea; soccer) 
 

a binary declaration which states that seriaa is a league competition of soccer. Wu, 

Zeng & Yang (2008) state that in DLs, the conceptual knowledge of an application 

domain is represented in terms of concepts (unary predicates) that are interpreted as 

sets of individuals, and roles (binary predicates) that are interpreted as binary relations 
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between individuals.  Thus, in the Sports ontology, the unary predicate sport is 

property of both cycling and soccer, respectively, while the binary predicate 

competition_of is a relation between seriea and soccer literals. 

 
2.6 Classification  

Classification is feature, instance or attribute learning. It is when features (inputs or 

training set) that are symbolised in a system have corresponding class labels (i.e. 

outputs) to predict. These features can be continuous, categorical or boolean 

(Kotsiantis, Zaharakis & Pintelas, 2007). Classification consists of taking input vectors 

or data and deciding which N classes they belong to after running them through a 

classifier(s) (Rifkin & Klautau, 2004; Marsland, 2014). While most classification 

system is the support vector machine, this thesis considers an agent based classifier for 

students’ learning.  

Having looked at the various ontology languages for representing knowledge for 

systems, the act of classification in this research is not about the grouping of nodes in 

an ontology tree. But the collection of information about the knowledge status of 

students and the recommendation of the appropriate or a set of appropriate learning 

materials based on the available information to the system.   The decision process in 

which students are categorised is through condition-action rules.  

 

2.7  Condition-Action Rule 

In a classification system, decision rules are the fundamental knowledge that are 

compared and matched with available information or known facts, and subsequently 

utilised by the system to perform the act of classification or conclusions. Rules of this 

nature have two component parts: the left-hand side known as the antecedent, 

condition, premise or situation, and the right-hand side part referred to as the 

consequent, action, conclusions, response, or prediction (Patterson, 1990). This is the 

logical structure of a rule based system where a classification system is given a 

reasoning task about some available knowledge or concepts in order to draw 

conclusions about some incoming data. In Hutchinson (1994) such methods can be 

used for learning concepts: In AI (artificial intelligence), a concept is treated as a 
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formal definition or predicate. For most of these systems to work, Hutchinson (1994, 

p.310) states that in a learning system the following assumptions are valid: 

 Conditions which are basic predicates for testing a state must be specified in 

advance: This is preparing rules that must be satisfied as pre-conditions for the 

system or a component of the system.   

 The predicates are the essential part of the language or formalism for task 

representation: All the variables in the environment should be gathered for 

adequate representation in the system. 

 There must be something―set of rules―to learn: For a system to make 

decisions, a set of rules must be specified according to the environment and 

variables in the problem.   

 The training set is clean or devoid of noisy relations: In that case, the data used 

for preparing the rules for the system must be unambiguous to be suitable to 

match the incoming unknown data or information. 

 The training set should contain counter-examples: All examples (or facts) that 

may be available to a system may not be similar. Some may be positive and 

others negative. Rules should be stated to cover both positive and negative 

facts.  

 Basic predicates can be partitioned into independent group: Different 

variables that are related can be grouped in one rule. 

 Within each group, the predicates are mutually exclusive and cover all cases: 

No case of classification much be missed. Otherwise, this would result in the 

misclassification of an object. 

 

The rule based systems are IF  <conditions>  THEN  <actions> rules, where the set of 

<conditions> are needed to be matched and satisfied before the <actions> part is 

triggered.  

 

2.8 Intelligent Tutoring and Learning Systems 

Intelligent Tutoring Systems (ITS) are applications that employ AI: artificial 

intelligence to education and instructional design (Rossi & Fedeli, 2012), or AI 

techniques in computer programs to facilitate [human] learning (Padayachee, 2002). 
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ITS are computerised learning environments that incorporate computational models in 

the cognitive sciences, learning sciences, computational linguistics, artificial 

intelligence, mathematics, and other fields that develop intelligent systems that are 

well-specified computationally (Graesser, Hu & McNamara, 2005). ITSs are cognitive 

architectures that interact heavily with humans when supporting them in one of the 

hardest cognitive process i.e. learning (Pipitone, Cannella & Pirrone, 2012). Several 

ITS exist with support for a given level of adaptability but must be able to present 

material at a level of difficulty and detail suited to the state of knowledge of the student, 

and to do so, the system must know and follow the student’s changing knowledge 

(Michalski, Carbonell & Mitchell, 2013). This is achieved by a set of carefully planned 

rules (Hutchinson (1994) where a set of outputs are provided for some given set of 

inputs.  Integrating supervised classification technique into ITS development is aimed 

at making accurate class predictions that suits an individual student’s need and level 

of knowledge.  

 

2.9 SQL Assessment and Learning System 

A database is a repository of information organised in such a way that it can be 

accessed, managed and updated easily. A database is created, stored and maintained 

on a database management system (DBMS). DBMS interacts with a user, connects 

with other application or other databases. Examples of DBMS are MySQL, 

PostgreSQL and HyperSQL to mention a few.  

SQL (Structured Query Language) is the dominant database language (Abelló et al. 

2008). In Kenny & Pahl (2005) SQL is a formal declarative database programming 

language that comprise data manipulation keywords such as select, from, where, 

delete, insert, into, update, set, on, and join to mention a few. The skills in SQL are 

challenging and students have many difficulties learning them (Mitrovic, 1998). In the 

perspective of Prior (2003) learning and mastering of these skills is a difficult process 

that requires considerable practice and effort on the part of the student. One of the 

challenges is mapping a statement of problem given in natural language into the 

information that is required from the database in an appropriate SQL statement; this 

Prior (2003) stated is not easy. Another difficulty is students’ misunderstanding of the 
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basic elements of SQL and first order logic and the relational data model in general 

(Dekeyser, de Raadt & Lee, 2007). 

 

To support students with the learning of SQL and determine individual students’ SQL 

query formulation skills, the AssesSQL (Prior, 2003; Prior, & Lister, 2004) was 

developed. The research examined the difficulty faced in the assessment of students’ 

SQL query skills, and encourage students to use structured query language as SQL 

professions. For assessment, the system present questions to student, and expects 

students to enter query solution to the question. The AssesSQL query content covers 

only the SELECT statements.  

 

In the LEARN-SQL tool, Abelló et al. (2008) implemented a strategy that objectively 

allows the evaluation of the correctness of the solution to a question given by a student 

by providing automatic correction to queries by comparing the students’ solution to all 

existing valid solutions in the system. The system, tests, feedback and grade students 

in their learning of SQL. The LEARN-SQL was developed and comprised statements 

such as the SELECT and UPDATE queries. This is from the backdrop of previously 

development SQL systems whose content only covered the SELECT statements 

(Abelló et al. 2008). 

 

There also exists a number of sites that provides tutorial to students on SQL learning. 

Examples are " w3schools.com/sql ", "Beginner SQL Tutorial" and "SQLCourse.com" 

that have lists of modules from which a student can make a choice in order to start 

learning;  and the "SQLzoo.net" that provides support through multiple choice 

(objective type) quizzes. While they provide ability for students to run queries or take 

quizzes, they do not provide assistance or recommendation for errors and requisite 

learning. 

 

2.10 Chunking: An Educational Theory of Learning 

In learning and learning technologies, the basic goal of instruction is to ensure 

materials are learned and understand for the advancement of learning. But students 

often face difficulty in their learning. Managing skills in smaller components known 

http://sqlcourse.com/
http://sqlzoo.net/
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as Chunking has helped to facilitate effective learning (Casteel, 1988; Anderson, 

2008). Chunking is a procedure of breaking skills, learning materials or information 

into smaller, more manageable units for students to succeed.   

 

2.11 Approaches to Agent Based Learning and Formative 

Assessment Systems  

In Abdullah, Malibari & Alkhozae (2014), Adaptive Boosting (AdaBoost) multiagent-

based system was used to mine students’ historical data to classify and predict 

students’ progress. Based on the current data, the prediction agent would receive a 

communication request, and would then make a grade prediction. Experimental results 

obtained showed that with accurate classification, students who got low performance 

prediction had the reasons for this analysed by the system, and were subsequently 

motivated by the system to achieve high performances (Fig. 2.5). 

 
Fig.2. 5: System prediction and motivation to achieve higher performance. 

 

In González, Burguillo & Llamas (2005) case-based reasoning approach was used to 

model students in a multiagent systems for learning. Case-Based Reasoning (CBR) is 

a problem-solving paradigm that is able to utilise the specific knowledge gained from 

previous experiences in similar situations (cases) to solve a new problem. At the start, 

a student new to the system is asked to take some tests. The system then analyses the 

tests results to gather information about the student. This approach categorises students 
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according to knowledge level and their learning preferences, however it was devoid of 

the assessment question selection strategy.  

 

Chadli, Bendella & Tranvouez (2015) addressed how students should be evaluated 

using multiagent system simulation. The approach employed fuzzy set theory and 

agents’ negotiation, and was based on an evaluation model that: identifies skills in the 

domain, student skills comparison with the background skill, and evaluation of student 

ability. From the experimental results, it was stated that the simulated model provided 

assessments similar to that of an expert and significantly improved learners’ 

performance.  

In Rosbottom & Moulin (1998) a different approach was proposed for student 

assessment and presentation of materials for learning in a multi-agent adaptive course 

delivery system on Euclidean Geometry.  The approach was based on probabilistic 

models in which student behaviours at the interface of the system were interpreted, 

and prediction for the next stage of learning was made.  

The application of multiagent system for educational games in learning has been 

reported as well. Dutchuk, Muhammadi & Lin (2009) presented work on the 

development of Multi-Agent System-based educational game called QuizMASter for 

e-learning. The game helped students learn their course material through friendly 

competition. Their research explored the use of perceptive pedagogical agents that 

would determine the learners’ attitudes and emotional states by examining their: 

understanding, response timing, history, banter [humour]; and provide appropriate 

feedback to students in order to motivate them for learning.  

 

Using two different computational intelligent techniques, Alexakos et al. (2006) 

addressed e-learning assessment on the platform of a multiagent system. The agents 

provided intelligent assessment services based on Bayesian Networks and Genetic 

Algorithms. Based on the Bayesian Networks’ techniques, the system managed the 

questioners of an e-learning system using Bayesian Networks of probabilities that 

capture the probabilistic relationship between variables, as well as historical 

information about their relationship. From the report, results indicate that the agent 

platform provided assessment services.  
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In Wang (2014) a Partially Observable Markov Decision Process (POMDP) 

framework combined with reinforcement learning (RL) for building an ITS was 

proposed. The systems main component state comprised of: actions, observations and 

a policy. The POMDP intelligent technique was chosen on the premise that the agent 

cannot fully observe the knowledge state of students for it [agent] to take action. On 

the system, the agent partially observes students’ input, and the system takes actions. 

To practically use the system, a student would ask a question (about a concept), the 

system would choose an answer and present to the student; then another question is 

asked, and the system would answer, and so on. The responses from the student thus 

determines the agent policy i.e. the teaching strategy. In this approach, the students are 

not assessed. The ITS teaches based on the questions asked by students. In this type of 

strategy, though, students’ skills were not categorically measured, but the system 

provided support to students’ learning. This is viewed in such way that, the questions 

asked by students are the issues bordering around their learning. Despite the assistance 

rendered by this ITS, a formal or formative assessment would still be required for 

formal qualification or higher concept learning.  

 

Yu & Zhiping (2008) proposed intelligent pedagogical agent for evaluating prior 

knowledge based on the selective categorisation of learners as: novice, beginner, 

intermediate, or advanced learners where the learners themselves make the decision 

in selecting the group they think they fit-in before they start learning. Issues with this 

strategy is that students may misjudge the best learning category that may suit their 

own learning needs.  

 

In an approach to meet learners’ needs, Gamalel-Din (2002) proposed the development 

of the SmartTutor. As an agent based approach to support learning, SmartTutor was 

prescribed with two major models: student model and teacher model. The teacher 

model uses the concepts of Case-based reasoning for representing instructor past 

experience (i.e. teaching strategy & capability) where each case represents an approach 

for teaching a certain concept. The student model uses inductive learning-by-

experience component to adapt to expected student prerequisite profile and group 

students together for tutors according to the different tutors teaching strategy and 
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capability. In SmartTutor, the instructor defines the prerequisite skills he believes the 

student can follow to gain new skills. While the strategy can effectively keep track of 

the lectures visited and content presented, SmartTutor would not identify the technical 

skill gaps required by students. The strategy is more tailored towards the instructors’ 

advantage rather than the students because the identified group of students are tutored 

together, thereby reducing the tutors’ workload. 

 

2.12 Recommender Systems in Education  

Recommendation systems in adaptive learning propose and prescribe content and 

items that centres around the learning needs of students. This is quite different from 

recommender systems for buying products because learning is an effort intensive task 

that requires more time and interaction on the part of students compared to commercial 

transactions (Manouselis et al. 2011). Furthermore, that learners rarely achieve a final 

end state. Based on the fact that there are levels in learning. Instead of buying a product 

and owning it, learners achieve different levels of competences that have various levels 

in different domains. Thus in such situation, what is important is identifying the 

relevant learning goals and supporting learners in achieving them (p.6).  

 

In the views of Bañeres (2017) adaptive or personalised learning tends to model 

learners' learning path, activities and educational resource. To this end, several e-

learning recommender systems have been proposed.  In Bañeres (2017) for instance, a 

standalone quasi-summative assessment model was proposed to boost instruction 

process and customisation of learning path. In the model, students are graded based on 

some learning activities using a model of equation, and the adaption on the students’ 

preferences and effort spent on course. Should a learner fail an activity, it means the 

competence needed has not been completely acquired; and this could hinder further 

learning. 

 

El Mabrouk, Gaou & Rtili (2017) also proposed a recommender system that can 

recommend the most appropriate content for learning. The system architecture 

comprises four interactive modules, namely: i) data collection part that is based on 

users’ profiles and interest; ii) information processing unit for the learning model, user 
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classification and content classification; iii) recommendation module; and iv) log file 

component for the recommended classes meant for use in future reclassification. The 

system matches users' interests with content categories and classify users according to 

e.g. content submitted, subjects, and item ratings, respectively. Like El Mabrouk, Gaou 

& Rtili (2017) proposed recommender system, several classification systems employ 

the use of multiple components with different functions in order to fulfil the task of 

classification or recommendation. Thus multi-components in a recommender system 

draws similarity with multiagents to solve a problem. However, the aforementioned 

proposed system is not the kind that would assess students’ skills before making 

recommendation. This is similar to the recommender system proposed in Bañeres & 

Conesa (2017) in which the system supports users to tick through a set of checkboxes 

such as Completed Courses or Not Completed Courses so as to classify users whether 

they possess the requisite skills for a given job. Though the system is geared towards 

employability skills classification, it could assist users in recognising their areas of 

skills limitation and then focus on the desirable skills. The system does not provide 

any form of skills assessment.  

One other assessment and learning tool is the PAT Tutor (Ritter et al 1998) -- an ITS 

for teaching introductory algebra. In PAT, learning task and exercises are arranged in 

sections at different skills level as specified in a standard mathematics curriculum. 

When students demonstrate mastery of a section (by achieving a level of competence 

on all underlying skills), the Tutor system promotes the student to a new section, which 

includes some new skills (Ritter et al 1998). In this strategy, students’ knowledge is 

assessed before moving to a higher level. Which means that the system can ascertain 

that a set of competences have been achieved before promotion to other skills.    

2.13 Student Modelling 

Students modelling components or attributes determines the effectiveness of 

intelligent tutoring systems. The method used in representing the knowledge of 

students is referred to as the Student Model (Baffes, 1994). Since the 1970s, several 

programmed learning methods have been used in modelling the components of 

students in learning. Padayachee (2002) states that ITS architectures can be classified 
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into three categories, namely: traditional three-model, classical four-model and new-

generation architectures.  

 

2.13.1 Traditional Three-Model  

These ITSs models comprise three major components in their design, namely: 

  Domain Model: This is the component that contains the knowledge relating 

to the subject matter or content. It answers student arbitrary questions, and 

provide alternative explanations to the same concept. 

 Student Model: This is the component that holds the students emerging 

knowledge and skills. 

 Tutoring Model : Is the component that provide the knowledge towards the 

learning goals and has control over the sequence and selection of subject 

materials. It can diagnose misconception and learning needs. 

 

2.13.2 Classical Four-Model  

As well as maintaining the components of the Traditional Three-Model, an additional 

User Interface as a fourth component is added to this model. Systems of this 

architectural type have integrated modules named as:  

 Knowledge Base: This component is similar to the domain model of the Three 

Model Architecture. In this model, the subject tutor puts together declarative 

knowledge (what to learn), and the procedural knowledge (how to learn) in the 

system. 

 Student Model: Stores information about student knowledge and skills, and 

student cognitive processes. It maintains strategy that helps students to learn 

from errors. 

 Pedagogical Module: This module is similar to the Tutoring component of the 

Three Model Architecture. This component uses the current learner’s state to 

select an appropriate learning path to accomplish a learning goal. 

 User Interface: This is the user interface where dialog between the system and 

the user are ensured. 
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2.13.3 New-Generation Architectures  

A prominent model of this type of architecture are those such as proposed on the 

platform of multi-agent systems (MAS) for learning purposes. As modular entities that 

are created to form a group of cooperative components, a MAS developed. Within the 

systems, Padayachee (2002) states that the ITS architecture comprises an interface 

agent with a function to interface between the learner and system, a communication 

agent that ensures interaction between agent components, and a “micro-society” of 

agents that may cooperate to solve a problem activity in a formal and well-structured 

knowledge domain. Agents are computational entities that are modelled after the 

human cognitive framework. Each ITS agent or micro-society of agent have their 

micro-specialities or functions. To achieve the overall function of the system, agents 

uses structured knowledge and communicative means. This is emphasised by the social 

organisational perspective of the Gaia methodology (Wooldridge et al. 2000) that is 

presented in Chapter 3. 

 

2.14 Summary of Chapter 

This chapter has presented knowledge representation (KR) and various representation 

languages. It discussed description logic as the language that supports the development 

of KR languages such as OIL, DAML + OIL, RDF, RDFS, OWL, TBox, ABox and 

answer set prolog (ASP). The chapter analysed ASP as a KR language in unary and 

binary predicates. While the unary predicate is of the form p(a), the binary predicate 

is the form p(a, b) which is synonymous to RDF like triple and first-order logic 

representation. A type of data representation form in agent based systems. Due to 

OWL DL power of expressiveness, in Chapter 5, the ontology of the content of 

learning of this thesis shall be presented in DL language.   

The chapter also discussed intelligent tutoring systems (ITS), categories of student 

model ITS, SQL learning and assessment systems, recommender systems, and agent 

based systems for assessments and learning. The literature unveiled that recommended 

learning is an effort and it is time consuming on the part of students, and of particular 

interest to this thesis, SQL is not a language that is easy to learn. It is one that requires 

considerable effort from students to understand, and one of the significant challenges 
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faced by students is the interpretation of a statement of problem in natural language 

into its SQL equivalent query statement. Then, a few examples of SQL system were 

examined. Each with different strategies for evaluating students SQL queries, but with 

a similar process of testing students queries which involves the comparison of 

students’ queries with the system underlying predefined answers to questions. It was 

gathered from literature that SQL is challenging and difficult. Then one of the 

educational design principles of learning known as Chunking was looked into. This is 

in view of how Chunking could be applied in the design of an SQL system so as to 

allow students pay attention to the small units of skills recommended for learning 

within a given assessment; and not on a long waiting lists of recommended materials 

to learn. This way, Chunking prevents fatigue, and boosts enthusiasm in learning.  

The literature then surveyed some strategies that have been combined with multiagent 

development for supported learning. But with a few actually targeted at the 

misconception, misunderstanding or gaps in students’ learning. For instance, in the 

QuizMASter system, the system supports student to learn through friendly 

competition. But this is only by examining the learner’s attitude and emotional states. 

An approach that provide motivation to learning and appropriate feedback, but not 

content of learning. A similar approach is accounted for in the multi-agent adaptive 

course delivery system on Euclidean Geometry, where prediction for next stage of 

learning is by agents’ monitoring of physical behaviour of students at the interface. 

This approach will certainly not gauge the appropriate material for next learning. 

Alexakos et al. (2006) and González, Burguillo & Llamas (2005) case-based reasoning 

approaches to support learning with the application of agent based systems assessed 

students for learning. But the strategy for question selection was not reported. Question 

selection strategy is determined by the kind of assessment being considered. The 

AdaBoost (Abdullah, Malibari & Alkhozae, 2014) approach used historical data to 

learn current data for the classification and prediction of students’ grade. The system 

compares grades to gauge students’ progress, not giving attention to the critical 

cognitive areas that can cause low performances. The best strategy for supporting real 

time learning is the identification of skills. This was addressed in Chadli, Bendella & 

Tranvouez (2015) by identifying domain skills in the system, comparison of students’ 

skill and evaluation of student ability. This type of model was targeted at unravelling 
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the skills set of students in that domain, and would inform the tutor where the strengths 

and weaknesses lies. The chapter also presented three categories of student model 

architectures for designing intelligent tutoring systems. From Padayachee (2002) the 

new generation student model architecture was stated as those models that supports 

multiagent system development. Looking at the models, components of the Classical 

Four-Model architecture can be integrated into the new model architecture of 

multiagent systems. This involves the knowledge base which holds the target 

knowledge, the student module that store students’ cognitive states, pedagogical 

module that has the teaching strategy or sequence for efficient selection of learning 

path; and user interface for interactive dialog. The next Chapter 3 continues with 

literature survey on agents and multiagents. 

 

 

 



 

 

Chapter 3 

Agents, Agent Oriented 

Methodologies and Interaction 
 

3. Introduction 

In Chapter 2, the history of different knowledge representation (KR) languages for 

specifying knowledge was presented as well as intelligent tutoring systems, their 

architectures and multiagent systems for educational purposes. This Chapter 3 

continues with the literature on agents, agent properties and architectures, their 

methodologies and communication. As defined in Chapter 1, the Pre-assessment 

System is an agent based system. In view of that, this chapter looks at the various 

phases of agent oriented analysis and design for a choice of a suitable methodology 

for the design of the agent based pre-assessment system of this research. Also, the 

chapter discusses the speech acts theory (Searle, 1969) and its influence on agent 

communication languages, some agent oriented programming languages, and Jason 

AgentSpeak Language (Bordini, Hubner & Wooldridge, 2007) in the communication 

of logic based representation. 

 

3.1 Agents  

The term agent, otherwise known as agent based computing, agent based system or 

multiagent system, are increasingly used within information technology to describe a 

broad range of computational entities (Jenning & Wooldridge, 1995). An agent is an 

autonomous computer system that is situated in some environment (Wooldridge, 

2009). In that environment agents exhibits properties of autonomy, sociability, 

reactivity and deliberation in order to meet their design objectives. Agents can observe 

and perceive the state of their environment, and can perform actions intended to change 

it (Fig. 3.1) (Russel & Norvig, 2003). The Figure 3.1 depicts the structure of an agent 
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model. In the model, agents have knowledge about the state of their environment, with 

sensors, agents can observe percepts or inputs, and select condition-action rules to act 

in that environment.   

 

 
Fig.3. 1: The Structure of a Simple Reflex Agent (Russell & Norvig, 2010). 

 

In Peredo et al (2011) agents are tools that independently perform various tasks on 

behalf of human user(s) or other software agents. Agent based system may not be 

stand-alone entities but a system consisting of a group of agents in the same 

environment otherwise known as a multi-agent system (Gladun et al, 2009). As 

applicable in other fields such as supply chain, autonomous vehicles, online trading, 

and healthcare delivery, multiagent systems are gaining wider recognition for 

educational applications. 

 

Monett (2014), elaborated examples of agents’ environment with features that are 

associated with teaching and learning. In Monett’s illustration of the interactive tutor 

(Fig. 3.2), the environment that the agent will observe is specified as a set of students, 

the keyboard as sensors; and academic exercises, suggestion for materials and 

corrections as actuators on a display screen.  
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Fig.3. 2: Designing Intelligent Agents: An example (Monett, 2014). 

 

3.2 Properties of Agent 

Since agents independently perform different tasks on behalf of humans (Peredo et al, 

2011), they also possess and exhibit some human attributes as described in literature. 

For example, Genesereth & Ketchpel (1994), Castelfranchi (1995), Goodwin (1995) 

Woodridge & Jennings (1995), Woodridge (2009), Padgham & Winikoff (2004), and 

Bordini, Hubner & Woodridge (2007) have all proposed that agents are: 

 

 Situated: That agents exist in a world in which it has sufficient knowledge 

about, and can perceive and make changes to the world. 

 Reactive: This is when an agent can perceive and respond to actions and 

changes in its world. This property become successful if the agent can respond 

quickly enough to the event. Failure to react leads to failure of subsequent 

goals. Reactivity of agents can be dual: response to percepts on a graphical user 

interface and/or response to shared messages. 

 Deliberative: This is the application of practical reasoning mechanism on how 

to achieve a state of the world. A deliberative agent has an internal model of 

the world and uses its model to reason about the effects of perceived inputs in 

order to select appropriate intentions that it predicts will accomplish the task. 

 

3.3 Agent Architectures 

An architecture proposes a methodology for building an autonomous agent [system]; 

and explains how the system can be decomposed into the construction of a set of 

component modules [i.e. behaviours] and how these behaviours should be made to 

interact (Maes, 1991).  In Wooldridge & Jennings (1995) agent architecture represents 
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the move from specification to implementation. The decomposition process in the 

views of Wooldridge & Jennings (1995) involves analysing the agent property to be 

satisfied, perception of input data, internal knowledge representation, and the 

programming language for implementation.  

 
While Wooldridge & Jennings (1995) identified the different agent architectures, Chin 

et al. (2014) categorised the architectures into three broad groups, namely: cognitive 

architecture, semantic agent architecture and classical architecture. The classical agent 

architecture that comprise the logic-based architecture, reactive architecture, hybrid 

architecture, and BDI architecture are explained as follows: 

 
3.3.1 Logic-based Architecture 

This architecture uses symbolic representation for modelling agent behaviour and 

reasoning. This involves the definition of agent capability using logic based semantics 

for expression of: rules, reasoning, knowledge preferences to react to several 

alternative choices of actions, and retrieval of information for a user’s best interest 

(Dell'Acqua et al. 1999). De Silva (2009) asserted that logical formulas are used to 

represent agent beliefs, and from the deductions made from the logical formulas, agent 

behaviours are derived. That the deductions from the formulas are through a set of 

rules whose predicates or antecedents correspond to executable actions. 

 

3.3.2 Reactive Architecture  

This is a direct stimulus-response approach. That is, percept-to-action that may change 

the state of the environment, and the dynamic beliefs of the actors or agents. Stimulus-

response are agent behaviours i.e. plans which are used for decision making processes 

and for effecting changes in the agent environment for selective actions.  

 

3.3.3 Hybrid Architecture 

This architecture is also known as layered architecture. It is a hybrid of the reactive 

and deliberative architectures. The subcomponents of the layered architecture are 

decomposed into hierarchies of layers to handle different behaviours that interacts. 
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There are two different modes of the layered architecture, namely; 1) horizontal layer, 

where all layers are directly connected to the input sensor and action output in the 

environment, and every layer functions concurrently (Fig. 3.3); and 2) vertical 

architecture, where the layers are arranged in sequence such that the data from the 

input sensor is transmitted from layer-to-layer until the final layer for action output 

(Fig. 3.4 and Fig. 3.5). 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

3.3.4 BDI Architecture  

This is a deliberative agent architecture based on mental states characteristic of agents 

which have belief, desire, and intention. Beliefs are the set of information an agent has 

about the world e.g. itself and the environment. Desires are the agent’s motivation or 

possible options to carry out actions. Desires corresponds to goals, and are post-

conditions executed in plans (Bordini, Hübner & Wooldridge, 2007). Intentions are 

the agent’s commitments towards its desires and beliefs. Intentions are the executable 

 

 

 

  
Fig.3. 4: Vertical architecture: two pass 

 

 

  Fig.3. 3: Horizontal Architecture 

Fig.3. 5: Vertical architecture: one pass 
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statements contained in an agent plan, and an unexecuted statement is a failed 

intention. 

3.4 Agent Oriented Methodologies 

A Software methodology is a set of guidelines covering the entire life-cycle of a 

software development process. The set of guidelines that make up the software 

development stages have shared abstraction in both the Object Oriented Programming 

(OOP) methodology and Agent Oriented Software Engineering (AOSE) paradigm. 

The OOP developmental stages are Requirements, Analysis, Design, Development, 

Testing and Maintenance. While the AOSE process subsumes the steps in OOP 

methodologies, the concepts for developing objects (in OOP) are different from those 

in agent based systems. The OOP covers concepts such as objects, classes and 

inheritance. AOSE design concepts are terms that view agents as autonomous, situated, 

reactive, and social. 

 

Several AOSE methodologies have been proposed and tested for application purposes. 

Amongst them are Gaia (Wooldridge et al. 2000), Tropos (Bresciani et al. 2004), 

MaSE (DeLoach et al. 2001), PASSI (Cossentino, 2005; Cossentino, & Potts, 2002), 

and Prometheus (Padgham & Winikoff, 2004). Though these methodologies show 

similarities, there are varying degree of differences in their respective design process: 

From requirements analysis through functionality modelling for agents to 

implementation. In the following section, the Gaia, Tropos and Promethous are 

discussed. 

 

3.4.1 Gaia 

Gaia is a methodology that is based on the OOP analysis and design principles for 

modelling agent based system from the framework of a social organisation.  From its 

organisational perspective, analysts can develop complex systems using a model that 

includes interacting entities and roles to achieve some set of organisational goals. A 

tool that supports the Gaia methodology is Gaia4E (Cernuzzi & Zambonelli, 2009).  
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The Gaia model is made of two major phases which are analysis and design. But with 

its concepts divided into two main categories: Abstract and Concrete concepts 

(Jennings, Wooldridge, & Kinny, 1998; Wooldridge, Jennings & Kinny, 2000). While 

the Abstract concepts are those used during the analysis stage to conceptualise the 

system, they do not have direct realisation within the system; the concrete components 

are those used in the design process, and do have direct counterpart during 

implementation.  

 

Firstly, to begin the Gaia model, Statement of Requirements must be obtained before 

the analysis and design phase (Fig. 3.6). The statement of requirement is the 

identification of the domain problem of the system.  

 
Fig.3. 6: The Gaia model (Wooldridge, Jennings & Kinny, 2000) 

 

 Analysis  

This is the phase where the structure of the systemic organisation needs to be 

understood given the requirement needs. Without details, roles (like offices) in an 

organisation, interaction between roles, and organisational goals are identified. The 

roles are defined by responsibilities, permissions, activities, and protocols 

(Wooldridge, Jennings & Kinny, 2000). In the analysis phase, the aim is to identify 

what (number of) agents will be part of the organisation given the decomposition of 

roles. Roles may be combined, and an agent can have multiple roles. 
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 Design 
This is the stage where the roles, responsibility and interaction protocols that have been 

identified in the analysis phase are outlined between agents. What agent does what, 

what agent interacts, and how? At this stage abstraction starts to turn into concrete 

analysis that can transform into implementation. The design phase is made up of three 

models, namely: Agent Model, Services Model, Acquaintance Model (Wooldridge, 

Jenning & Kinny (2000):  

1. Agent Model:  The model that identifies and specifies the agents or agent types 

in the system. An agent type is a set of agent roles. 

2. Agent Services: The model that identifies the main services of an agent role. 

A service is a coherent block of activity in which an agent will engage. Each 

service contains input, output, pre- and post-conditions. 

3. Acquaintances Model: This is the description of the communication protocol 

(or links) between agent types.  In this model, nodes represent agents while 

links which are directed graphs represent communication between nodes. For 

example, a → b which means agent a is sending message to agent b. 

 

3.4.2 Tropos 

Tropos is an agent oriented programming (AOP) methodology that strongly emphasise 

two key notions: The use of mentalistic features such as goals and plans from the BDI 

model, and Early requirement analysis (Bresciani et al. 2004). The tool, Taom4E 

(Morandini et al. 2011) is a graphical modelling editor that supports the Tropos 

methodology development phases. In Tropos, there are five main development phases 

(Bresciani et al. 2004): 

 

 Early Requirement  

This is the first phase of requirement analysis held to be crucial compared to the Later 

prescriptive requirement phase. In this phase, the ideas developed are used in the later 

requirement phase. The domain stakeholders (or entities) are identified, conceptual 
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models are developed, and social actors are modelled so as to achieve organisational 

goals, furnish resource, and execute plans.  

 Later Requirement 

The analysis from the Early phase are engaged at this phase. Conceptual models are 

also extended. The aim of the requirement phases is to provide functional requirements 

for the system. 

 Architectural Design 

At this stage, the system underlying architecture is defined in terms of subsystems (i.e. 

components or actors), and inter-connected through control flow. The system actors 

are mapped to set of agents, each with their specified functions. 

 Detailed Design 

This phase specifies agent capabilities and interactions between agents. At this stage 

the implementation platform can be chosen where detailed design can be mapped 

directly to the code. 

 Implementation 

This is the step-by-step activity carried out for the realisation of the system on the 

programming or development platform. 

  

3.4.3 Prometheus 

Prometheus (Padgham & Winikoff, 2004) is an AOSE methodology designed for the 

realisation of BDI agent systems with the use of goals and plans. It supports 

development activities from requirements specification through to detailed design for 

implementation. Prometheus has three inter-connected design phases which are System 

Specification, Architectural Design, and the Detailed Design (Fig. 3.7). Prometheus 

Design Tool (PDT) (Padgham et al. 2008; Zhang et al. 2008) is a graphical editor that 

supports the Prometheus methodology. 
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Fig.3. 7: The phases of the Prometheus methodology (Padgham  & Winikoff, 2004) 

 
 

The PDT is an AUML (Agent Unified Modelling Language) tool and graphical editor 

that supports the development and documentation of the major phases of the 

Prometheus methodology for building agent based systems.  

 

 System Specification 

This is a major phase that characterises the definition of the scenarios, goals, roles and 

the expected interactions within the system. This phase also identifies the interface of 

the system, incoming percepts, and actions or outgoing information. In the PDT tool, 

some of the facilities for realising the specification phase are Scenario Diagram, 

System Goal Diagram, and System Role Diagram. 

 

 Architectural Design 

This is the phase where the agent types, their roles, the data and the kind of 

communication and messages that the agents will involve in are identified. At this 

phase, the system overall structure is already constructed and scenarios are developed 

into goals, then to roles and interactive protocols. When developing goals, Zhang, 

Kendall, & Jiang (2002) states that the question to ask is: what is to be done and how 
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they can be done? The PDT tool supports the architectural design phase with the 

System Overview Diagram. 

 

 Detailed Design 

This phase defines the design of individual agent and their internal structure in terms 

of Capabilities descriptors which are a set of related plans used for achieving a 

common goal or common set of goals. Other descriptors are for data, events and plans. 

At this phase, much finer details from the architectural phase are established. The PDT 

tool supports the detail design phase with facilities such as Agent Overview Diagram 

(Fig 3.8).  

 

 
Fig.3. 8: Major models of Prometheus (Padgham and Winikoff, 2002) 

 
 
PDT support for implementation, testing, and debugging is still limited (Padgham & 

Winikoff, 2004). Thus, interaction design accomplished with the PDT tool have had 

their implementation carried out on different agent oriented programming (AOP) 

platforms.  For instance, the Electronic_Bookstore system (Padgham & Winikoff, 

2004) was implemented on JACK(TM) (AOS, 2015), Bordini, Hubner & Wooldridge 

(2007) version of the Electronic_Book was implemented using Jason, and the Gold 

Miners robot (Bordini, Hubner & Tralamazza, 2006) implementation using Jason. The 

PDT also supports JackTM skeletal code generation in Java (Fig. 3.9).  
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Fig.3. 9: Jack code generation screen shot. The code generated are in Java, which is not  the language 
chosen for the execution of one of the objectives of this research.  
 

3.5 Comparison of AOSE Methodology 

The Figure 3.10 is the highlights of the Gaia, Tropos and Prometheus AOSE 

methodologies. The Figure depicts the similarities and differences in their design 

phases. The similarities centres around the use of a customised design tool for MAS 

development, but all differ in the design steps.  The Tropos concept of Softgoals which 

is equivalent to Subgoals in Prometheus is a breakdown of Hardgoals and Initial goal 

of agents (or actors) functionalities, respectively.  

 

Methodologies Phases Comparison 

Gaia  

* statement of requirement 

* analysis 

* design 

* Lack detailed step-by-step breakdown. 

* No details on how requirement statements may be 

acquired.  

* View agent system as an organisational model.  

* Roles are similar to functionalities in Prometheus.  

* Editor tool Gaia4E supports design.  

Tropos *early requirement phase 

* later requirement phase 

* architectural design 

* Emphasises the Early Requirement Analysis, then 

the Later Requirement Phase.  



Chapter 3 Agents, Agent Oriented Methodologies and Interaction  

 

47 
 

*detailed design 

* implementation 

* Specialisation of Goals into subclasses of Hardgoal, 

and Softgoals for actors of system.  

* No general architecture containing all the phases of 

design as in Gaia, MaSE, or Prometheus.  

* Has a design support tool called Taom4E. 

Prometheus  

* system specification 

* architectural design 

* detailed design phase 

* No Early Requirement phase as in Tropos. But this 

can be adapted. 

* Uses Initial goals, that are refined or broken down 

into Subgoals for agents.  

* Very detailed design activity from System 

Specification phase to other phases.  

* Reliance on expert knowledge on domain subject for 

requirement acquisition. 

* Has a customised PDT, a AUML tool that supports 

design process. 

Methodologies Phases Comparison 

Fig.3. 10: Comparative summary of Gaia, Tropos & Prometheus. 

 

3.6 The Speech Acts Theory      

When we use utterances in a language our intention is often to achieve a specific goal 

that is reached by a set of actions (Finlay & Dix, 1996). The acts that we perform with 

language are called speech acts (Austin 1962; Searle 1969). Speech acts theory treats 

communication as actions. This is on the premise that speech actions are performed by 

agents just like other action in realising their intentions (Woodridge, 2009).  

 

3.6.1 John Austin: 1962  

In the use of words which make up sentences, there is a meaning (i.e. semantics) as a 

result of the relationship between the words (i.e. structure or syntax). Every utterance 

has the characteristics of actions (things we do) (Woodridge, 2009). A speaker 

performs a speech act by uttering a sentence with an associated intention to the hearer 

(Oishi, 2006). The actions performed could change our state of belief, the physical 

world or environment.  

This concept of speech acts is recognised to have begun with John Austin in 1962. 

Austin (1962) investigated three different aspects of speech acts that can form 
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performative verbs, namely: lucotionary, illocutionary, and perlocutionary acts which 

are known as the stages of sentence transition. A sentence starts with locution (an 

utterance), goes through illocution (the performative action) and end with perlocution 

(the effect of the action). The illustrations are given as: 

 

 Act (A) or Locution (Utterance): He said to me ‘make some cake’. The act of 

saying something i.e. the utterance is heard. 

 Act (B.a) or Illocution (Request): He ‘urged me to make me some cake’. The 

act performed in saying something, i.e. belief addition.  

 Act (B.b) or Illocution (Command): He ‘ordered me to get some cake’. Also 

the act performed in saying something i.e. also belief addition. 

 Act (C) or Perlocution (Effect): ‘He got me to make cake’. The act performed 

after the Saying.  

 

In agent technology and programming in general, locution (e.g. giving information) is 

the act of variable initialisation, declaration or a tell performative; and illocution, the 

request by message passing or input statements such as get, askOne, achieve; while 

perlocution is the output after processing.  The performative begins from the issuing 

of utterances to the performing of the action. Thus in utterances, the performative verb 

is action or doing words succinctly denoted and are capable of instigating a course of 

action or changing the state of things. Examples are broadcast, tell, askOne, and 

achieve in agent communication technology.   

For successive completion of performatives, three “felicity condition” conditions are 

required (Austin, 1962:14; Woodridge, 2002:165): 

 

1. There must be an accepted conventional procedure for the performative, and 

the circumstances and the actors (or agents) must be as specified in the 

procedure. 

2. The procedure must be executed correctly and completely. 

3. The act must be sincere, and any uptake required must be completed, insofar 

as is possible.   
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Austin (1962) then classifies illocutionary acts into five types, namely: 

i) Verdictive: one can exercise judgment;  

ii)  Exercitive:  exert influence or exercise power;  

iii)  Commissive: assume obligation or declare intention;  

iv) Behabitive: adopt attitude, or express feeling; and  

v) Expositive: clarify reasons, argument, or communication.  

 

Although it is often argued that Austin’s classification is not complete and that those 

coined categories are not mutually exclusive (Oishi, 2006). In other words, they are 

overlapping categories (Jiang & Huhns, 2005). 

 

3.6.2 John Searle: 1969 

John Searle, who inherited his idea from John Austin, elaborated on the Speech Acts 

Theory; and proposed five but varied classification of illocutionary speech acts to 

Austin’s (1962), namely:  

i) Assertives: Telling people how things are; 

ii)  Directives: getting them to do things; 

iii)  Commissives: committing ourselves to do things; 

iv) Expressives: expressing our feelings and attitude; and  

v) Declaratives: bringing changes into the world by our utterances. 

 

Searle (1969) points out that, to perform an illocutionary act is to express an 

illocutionary intention (Searle 1969) using performative verbs such as state, request, 

command, order, and promise (Searle, 1969:23). This is a variation from Austin’s 

(1962) that in the performative: the issuing of utterances is the performing of an action 

(Austin, 1962:6). In actual fact, not all actions are performed after perceiving or 

hearing of the utterance. Humans and agents are alike, they have autonomy─To or Not 

To─over their behaviour. 

 

From the foregoing, let a speaker S utters a sentence T to a hearer H, ACTION A can 

only be performed by H after the occurrence of T if and only if H understands the 
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sentence or message from S, and H has the capability to act (Searle, 1969, 57:61; 

Woodridge, 2002:165). 

 

If intelligent systems are to interact with humans or other agents, then speech acts 

performatives must be part of their program designs, and the acts treated as physical 

actions (Woodridge, 2009). The sender’s [e.g. a user] intention must produce certain 

response r in the receiver [e.g. situated agent in the artifact], and a value [e.g. concept] 

of r [when received] (Schiffer, 1972) that would change its mental state. With speech 

acts performatives, agents would share the knowledge contained in a message. 

 

3.7 Pre, Post & Completion Conditions 

The speech acts theory of John Austin and John Searle have predominantly influenced 

the development of Agent Communication Language (ACL) such that current speech-

act based ACLs specify domain knowledge representation and perfomative 

communication acts. Labrou & Finin (1998) semantics of speech acts shed more light 

on the locutionary, illocutionary and perlocutionary acts. These three performative 

conditions for agents’ communication have been represented as preconditions, 

postconditions and completion conditions (Labrou & Finin, 1998; Bench-Capon, 

1998): 

 

 Preconditions: The fact that is established before an act is performed (i.e. 

utterance). 

 Postconditions: The fact that is established after the act is performed (i.e. 

action). 

 Completion: The fulfilment of the intention of the act performed (i.e. effect). 

 

3.8 Agent Communication Languages 

Communication between entities comes by interaction of information when there is an 

utterance of a concept i.e. word, phrase, or sentence at one end and perception at 

another. In a MAS environment, communication is a rational behaviour between 

agents using a conventional language (Russell & Norvig, 2003). Thus, communication 
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is realised by a set of syntactic definition and semantic rules specified in a given 

programming language, used in a program.  

According to Pitkäranta (2004) agent communication can be divided into two 

fundamental parts. Firstly, that agents have to agree on a common agent 

communication language, which defines the types of the message performatives and 

their meanings. Secondly, agents must have a common understanding of the 

knowledge that is exchanged within the messages. In that regard, Dogac & Cingil 

(2003) asserted that smooth MAS communication broadly depends on three composite 

layers (Fig. 3.11), namely:  

 

 Agent Communication Language e.g. Knowledge Query and Manipulation 

Language (KQML) which uses performatives such as the tell, achieve, and 

askOne;  

 Content Interchange Format i.e. the content language e.g. KIF, Prolog; and  

 Ontology i.e. the knowledge domain of interest for the system. 

 

   

 

Fig.3. 11: Components of Agent Communication Language (Dogac & Cingil, 2003) 

 

3.9 Agent Oriented Programming languages and Platforms  

Agents are developed or programmed from a variety of different programming 

languages or platforms. The following section presents a range of agent oriented 

programming (AOP) and platforms for developing agent, their support capability for 

building and implementing agent based systems.  

ACL 

Content language 

Ontology 
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3.9.1 Agent0 

Agent0 is a simple agent oriented programming (AOP) language for implementing a 

multiagent system (Shoham, 1991). In agent0, an agent is defined to have four parts: 

i) a set of capabilities (describing what the agent can do: a relation between an agent’s 

mental state and environment), ii) a set of beliefs, iii) a set of commitments or 

intentions, and iv) a set of commitment rules containing a message condition, a mental 

condition and an action (Bădică et al. 2011). Agent0 agents communicate via request 

to performing an action, unrequest to stop an action, and inform that changes the 

agent’s belief.  

 
3.9.2 PLACA 

PLACA is the improved version of Agent0. PLACA was the first language to 

introduced the concept of plans in agents. Both Agent0 and PLACA were designed for 

experimental use, not for practical applications. 

 
3.9.3 GOAL  

GOAL is an agent programming language that uses declarative knowledge to specify 

what the agents wants to achieve. GOAL provides building blocks to design and 

implement rational agents. An agent beliefs and goals are used for action selection 

and structured decision making. Agents use knowledge representation language 

(symbolic, logic language) to represent information they have, their belief, or 

knowledge in the environment in order to achieve their goals. Programming an agent 

in GOAL means to program with the mental state of the agent and providing a coding 

strategy for action selection. A mental state consists of declarative knowledge, beliefs 

and goals (GOAL, 2016). Applications developed on GOAL has been in transportation 

and logistics domain. Goal has no support for inter-agent communication via speech 

acts.  

 
3.9.4 Soar 

Soar (Laird, 2008; Laird, 2015) is an architecture for developing general intelligent 

systems. Soar represents and uses declarative knowledge (i.e. known facts). In the area 
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of teaching and learning, Soar has been used as a platform for the development of 

STEVE (Soar Training Expert for Virtual Environments) an animated pedagogical 

agent (Johnson & Rickel, 1997). STEVE teaches students procedural tasks, for 

example, how to operate controls in an engine room. The capabilities of STEVE 

include observing the state of the world, monitors students’ requests and questions 

posed by students. The STEVE system has specified knowledge which it uses to 

execute actions in the form of a hierarchy of plans. Each plan includes a set of steps, a 

set of ordering constraints, a set of casual links of steps that leads to the achievement 

of goals that is either an end goal or a set of pre-condition for another subtask. The 

Soar architecture does not support the BDI model and speech-acts based 

communication in agent based applications. 

 

3.9.5 JACK  

JACKTM is a commercial agent framework for developing autonomous decision 

making system by the Agent Oriented Software (AOS). JACK is a BDI based language 

that is based on Java (Busetta et al. 1999). JACK supports the development of 

multiagent and agents exchange messages interchangeably in a peer-to-peer mode. 

JACK agents are not bound to any specific agent communications language (Howden 

et al. 2001). In Jack, plans constitute reasoning methods that provides agent the 

capability to act. Examples of applications developed on JACK are in decision support, 

and defence operations. As a commercial agent development platform, Jack is a costly 

software; and it is suitable alternative to implementing the pre-assessment system. 

 
3.9.6 Jadex  

Jadex is a Java- based agent middleware architecture that implements the BDI agent 

model: beleifs, desires (goals in JADEX) and intensions (plans in Jadex) (Bădică et al. 

2011). Jadex does not enforce a logic-based representation of belief (Braubach et al. 

2004). Jadex uses object-oriented programming for belief representation, and 

declarative and procedural approach for specifying and defining agent components. 

The Jadex agent are able to run on Jade. Like Jade that is also a middleware 

architecture, Jadex agents communicate by exchanging Agent Communication 
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Language (ACL) messages. This also make Jadex a suitable platform to implement 

the pre-assessment system where agents can have autonomous control over their state. 

 

3.9.7 Jade 

Jade (Java Agent Development Framework) is a FIPA compliant software architecture 

for developing agent applications and interoperable intelligent mulitiagent systems 

(Bellifemine, Poggi, & Rimassa, 1999; Bellifemine, Caire & Greenwood, 2007). Jade 

is considered to be agent middle-ware that implements an Agent Platform for 

distributed systems across networks. Agent communication is through message 

passing in textual form, and FIPA standard is that the Agent Communication Language 

(ACL) which is close to KQML is the language for inter-agent interaction and 

interoperability on Jade.  Running Jason agent language on the infrastructure Jade 

initialises the Jade Agent Management platform. Thus, Jade is a suitable platform in 

which the pre-assessment system agents can be implemented. 

 

3.9.8 AgentSpeak  

AgentSpeak programming language is a natural extension of logic programming for 

programming BDI agents. An AgentSpeak agent is created by the specification of a 

set of beliefs which is a set of ground (first-order) atomic formulas and a set of plans 

which forms its plan library. The set of beliefs are the initial state of the agent’s 

knowhow of its world. The belief atoms in first-order predicate form are belief literals 

(Bordini & Hubner, 2007; Bordini, Hubner & Tralamazza, 2006). For instance, 

father(peter) (Baadar & Nutt, 2003) and member(sam, cs) (Gelfond, 2008) are unary 

predicate and binary relations, respectively. An AgentSpeak plan has a head which 

consist of a triggering event that indicates the event in which a plan will be relevant, 

and conjunction of belief literals in predicate form representing a context, and a plan 

body which is a sequence of actions or goals that the agent has to achieve or test. 

 
3. 9.9 Jason Agent Language 

Jason is an extended version of the AgentSpeak language. In other words, a Java based 

interpreter of AgentSpeak. It is an agent-oriented logic programming language whose 
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syntax draws similarities with Prolog (Programming in logic) language (Bădică et al. 

2011) for belief representation and query. Jason implements the operational semantic 

of AgentSpeak in the programming of MAS. Jason allows programming of agents in 

the BDI model, environment perception, belief updates, inter-agent messages or 

communication, and use of knowledge on how to do things in the form of plans. Agents 

are programmed using beliefs, intentions and sub-goals in plans to accomplish goals. 

Beliefs representation in Jason is in FOL atomic facts. 

 

Programming in Jason is procedural (plan by plan selection), declarative (initial 

specification of beliefs and goals like in Prolog) (Bordini, Hubner & Wooldridge, 

2007). In Jason, agents communicate with each other in high-level manner based on 

the speech acts (Searle, 1979) theory. Jason is also tightly integrated with Java such 

that Jason can be used to situate agents in an environment model that is developed with 

Java. Jason is cross-platform API that can be configured and run on jEdit or Eclipse 

IDE. 

 

The type of Infrastructure determines the nature of environment in which a MAS will 

run or situate.  As Open Source software, Jason allows developers to program multi-

agent systems using the Centralised, or Jade Infrastructure.  

 Centralised: This is the infrastructure that allows MAS to run within a 

localised system or computer. The Centralised Infrastructure which is 

specified as  

Infrastructure: Centralised  

runs Jason MAS Project on a local machine. 

 

Recall that one of the objectives of this research is to investigate the communication 

of ontological concept (i.e. FOL atomic formulas) in the process of identifying gaps in 

students’ learning.   Before logic based formulas are communicated or shared by 

agents for the identification of gaps in a learning domain, structured knowledge is 

represented in FOL in agent as beliefs. The beliefs in Jason agent programming 

language are in FOL form. That is, beliefs can be unary predicate or binary predicate 

relation such as p(a) or p(a, b), respectively. Also Jason is a speech act (Searle, 1979) 
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based language that supports inter-agent communication in a MAS paradigm.  In Jason 

KQML performatives such as tell, askOne, and achieve are used for communication 

between agents. While KQML is adequate for simple message passing, Cost et al. 

(1999) observed that it would however break down as the range of interaction that an 

agent will partake increases. Nonetheless, KQML performatives such as tell support 

semantic interoperability and knowledge sharing of concept and resource between 

agents (Klapiscak & Bordini, 2009; Da Silva Vieira, 2007). The TABLE 3.1 below 

presents a comparative analysis of the foregoing AOP languages and platforms, and 

our informed choice of Jason for implementing this project. 

 

TABLE 3. 1: COMPARISON OF AGENT ORIENTED PROGRAMMING (AOP) AND 

PLATFORMS 

AOP BDI Speech 

acts 

Logic 

based 

Declarative Procedural Java 

based 

Agent 

interaction 

Open 

source 

Agent0            

PLACA            

GOAL           

SOAR            

Jack           

Jadex             

Jade           

AgentSpeak             

Jason             

 

 

3.10 Agent Interaction in Jason 

Communication in MAS is typically based on the speech act paradigm (Bordini, 

Hubner & Wooldridge, 2007). For inter-agent communication, there must be a sender, 

a receiver, the performative and the content as shown in the construct:  

<sender, illoc_force, propositional_content> 

where the sender is an AgentSpeak atom (i.e. a simple term), meaning the name of the 

agent that sends the message; illoc_force is the performative, the intention of the 



Chapter 3 Agents, Agent Oriented Methodologies and Interaction  

 

57 
 

sender; and propositional_content, the act to accomplish (Bordini, Hubner & 

Wooldridge, 2007). The above construct are only executable as part of a plan. Thus 

the message structure of the sender agent is given in the format: 

.send<receiver, illoc_force, propositional_content> 

Before looking at the meaning of a plan, some agent oriented programming (AOP) 

concepts as they pertain to Jason are first discussed. 

 

3.10.1 Beliefs 

Beliefs in Jason are logic based representation that holds the knowledge an agent has 

about the world. One agent can perceive the world and another can update the world. 

Every agent has a beliefbase (BB) that contains the beliefs or mental status of the agent 

at a given point in time. In other words, BB are a knowledge base (KB). A KB is a set 

of sentences (Russel & Norvig, 2010) or information—semantic literals that agents 

can understand and communicate. Thus, beliefs are assertion of the agent’s knowledge 

about its world or environment. They are represented in predicate logic in the form:  

   predicate(object) 

or  

   predicate(subject, object). 

Some of examples of beliefs representation are (Bordini, Hubner & Wooldridge, 

2007):  

blue(box1). 

Stating that box1 has the colour blue, and  

    fact(0, 1).  

Which states that the factorial of 0 is 1. These are beliefs an agent programmer would 

provide as initial beliefs. 

 

3.10.2 Annotations 

These are terms that provide detailed information that are strongly associated with a 

particular belief, and they are enclosed in square brackets. Generally, they can be 

represented with extended annotation given in the form: 

  functor(term1, …, termn)[annotation1, …, annotationm] .  
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Where annotationi are first order terms. For example, (Bordini, Hubner & Wooldridge, 

2007): 

red(box1[source(percept)].  

This type of annotation depicts to the agent that the information is perceived from the 

environment.  

Or  
blue(box1)[source(ag1)]. 

which states that the belief source is the agent ag1.  

 

Other kind of beliefs annotation is that which is appended to a set of related beliefs 

that are initialised as a group of related terms that belongs to one knowledge domain. 

This Klapiscak & Bordini (2008) called semantically enriched (SE) literal e.g. 

hasRating(hilton, threeStarRating)[o(travel)]. 

isPartOf(wembly, london)[o(travel)]. 

that asserts that hilton which is an individual in the relation is related to 

threeStarRating by the object property hasRating, and that the individual 

wembly is related to the london individual by the isPartOf object property, 

respectively; where the annotation specifies that both relations are of the travel 

[o(travel)] ontology.   

 

3.10.3 Goals 

Goals can be considered as events that needs to be achieved. They are the part of a 

plan that makes the entire plan to be fulfilled or completed. In other words, goals are 

the post-condition of a plan (Bordini, Hubner & Wooldridge, 2007). Generally, in 

Jason, there are two types of goals:  

 Achievement Goals: Achievement goals are those prefixed by the ‘!’ operator 

and they are goals to do. The syntax is  

!achievement goal.  

Example:  

!write(book).  

Which is assigning the goal to write a book. 
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 Test Goals: Test goals are those prefixed by the ‘?’ operator and are goals to 

test the truthness of a belief in order to retrieve the information from BB. The 

syntax form is  

?test goal. 

Example:  

?publisher(P). 

That tests whether P is a publisher. 

 

3.10.4 Mental Notes 

At runtime or MAS execution, agents are also able to create beliefs and add them to 

their BB. These kinds of dynamically-created beliefs are referred to as mental notes 

which may be updates as a result of the changes that has occurred in the environment 

they are part of, arithmetic operations performed, or messages (also known as percepts) 

passed by other agents. The operators -+ are used to make mental notes.  An example 

is  

-+current_targets(NumTargets); 

which updates the current number of targets NumTargets. The meaning of this logic 

formula can be split into two: -current_targets(NumTargets); which is to 

delete information about any previously stored beliefs (if there exists one) about 

number of targets, and +current_targets(NumTargets); which is to add a 

new number of targets to beliefs. 

 

3.10.5 Internal Actions 

These are actions that are executed from within the body part of an agent, not from the 

environment. In this process, the whole action will be done as one step of the agent’s 

reasoning cycle. Standard internal action has the full-stop, that is ‘.’ prefix to a 

statement. A few standard internal actions are:  

.send used for inter-agent knowledge communication.  

.print for screen display of information. 

.wait which suspends an intention for a specific time.  

.date that gets the current date. 
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.concat which is used for concatenating (i.e. joining strings). 

    

3.10.6 Plan  

Each agent is an autonomous entity with several plans (list of courses of action). In 

executing a plan, agents make a selective choice, each in turns. Upon the receipt of a 

percept or message, a selection is made from amongst these plans for the appropriate 

action to execute. A plan has three distinct parts: triggering_event, context, and body, 

and structure as:  

triggering_event : context < - body.  

 

 The triggering_event defines the occurrence of an events that can initiate the 

execution of a plan. 

 The context is the pre-condition that states what the agent already knows, 

which are beliefs in first order or predicate terms that must be true for a plan 

body to be executed. It is the context that decides what plan is likely to succeed. 

In technology enhanced learning (TEL) for recommendation systems, context 

is also defined as any information that can be used to characterise the situation 

of an entity such that the term entity refers to a person, place or object (Dey, 

Abowd & Salber, 2001; Verbert et al. 2012).   

 The body are series of atomic operations or set of actions that the agent can 

perform. In the performance of these actions, beliefs are updated, environment 

status are changed, and other agents are communicated. Internal actions as 

listed above are carried out in the body of a plan. A plan body also have goals 

and sub-goals that executes the intention of the plan. 

An example is (Bordini, Hubner & Wooldridge, 2007): 

 

@h3  
+!has(owner, beer)   : too_much(beer) & limit(beer, L)  
    <- .concat("The Department of Health does not allow 
 me ", "to give you more than ", L,  

" beers a day! I am very sorry about that!" ,M);     
.send(owner, tell, msg(M)). 

 

where,  
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@h3 is the plan label that is giving a name to the plan. The +!has(owner, beer) 

is the triggering_event adoption from a previously stated  achievement goal 

!has(owner, beer). The too_much(beer) & limit(beer, L) are 

the pre-conditions in the plan context that needs to be true. A plan context can also 

contain negated facts to test as a pre-condition. Or a comparison operator = = (for 

equal) or \= = (for different) that is comparing two terms like in Prolog. The 

.concat() predicate or functor is the agent action in the plan body, which is 

concatenating the sentences in quotes, and to store in the variable M. The .send() 

is another agent action  that is communicating with the agent owner using a tell 

performative to inform the agent of the content of M. 

 

3.10.7 Why Jason Agent Language? 

Agents are computational entities that can be situated in simulated environment or in 

a real world. In this work, multiagents are meant to interact and to perceive the real 

world. For instance, consider a MAS developed to control the temperature of a room 

under the condition of observable number of people at any given time. When an agent 

acts, the action will be effected by a heating device (i.e. the hardware) and its percepts 

by a sensor also in the heating device. Such environment functionality can be 

supported by Java in developing the software side of the agent interface that enables 

the agent to continuously observe the environment.  

 

To program a MAS for educational purposes, the choice of Jason was informed based 

on the analysis of the preceding subsections and the Table 3.1 above. More so, in Jason, 

agents can be programmed to have individual responsibility and cooperate on tasks 

through inter-agent communication. As a reactive system, Jason agent language 

applies practical reasoning approach to agent actions such that agents can continuously 

monitor their environment, update their beliefs and take action according to the context 

of their plans. Agents’ observation of their environment can be synchronous or 

asynchronous. In this study and system research, agents’ observation of their 

environment shall be asynchronous via the CartAgO artifact (Ricci, Piunti, Viroli, 

2011). 
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3.11 Agent Environment Programming 

One of the properties of agents as given earlier is that they reside in an environment 

from where they get percept through sensors, and there-after act on them via actuators 

(Wooldridge, 2009; Russell & Norvig, 2010). In a MAS, such an environment or 

percepts from it are shared by agents (Bordini, Hübner, & Wooldridge, 2007). An 

environment can be a real world (e.g. in manufacturing) or a simulated world (i.e. 

virtual). Environments can either be fully observable or partially observable by the 

agents. For instance, a world where an agent is directly situated and can observe the 

dynamic changes in it is a fully observable environment e.g. the domestic cleaning 

robot (Bordini, Hübner, & Wooldridge, 2007). But where agents cannot be directly 

situated in an environment to observe it, yet can perceive inputs from such 

environment is what Wang (2014) referred to as Partially Observable state. In Wang 

(2014) development of an ITS students were termed as the partially observable 

environment for agent observation. The environment in this research is as conceived 

in Wang (2014), where the partially observable environment is not the natural 

environment such as in the domestic cleaning robots, but an environment in the context 

of AOSE where the environment is part of the software system:  This, Ricci, Piunti & 

Viroli (2011) called endogenous. From this viewpoint, Ricci, Piunti & Viroli (2011) 

states that 

Programming MAS =  programming agents +  programming environments 

with the view that the two sides of the equation are programs, but with the environment 

programming part strongly integrated to the agent part. This critically conforms to the 

definition of an agent in Wooldridge (2009) that — an agent is a computer system that 

is situated in some environment.  

 

3.11.1 Artifacts and Human Interaction 

The term artifact was first introduced by Ricci, Piunti, & Viroli (2011) as an interface 

for human-agent interaction design, and state that artifacts are runtime devices 

providing some kind of function or service which agents can fruitfully use both 

individually as an agent and collectively as multiagents to achieve their individual as 

well as social objectives. Artifacts can be generally conceived as function-oriented 
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computational devices in which function refers to the meaning that is generally used 

in human sciences such as sociology and anthropology, as well as artificial intelligence 

(AI) to depict the purpose for which the device has been designed. Which is to support 

agent activities in observing percepts or inputs and display of outputs. Artifacts from 

a MAS programmer point of view are a first-class abstraction that will target and 

program a functional environment that agents can exploit at runtime. This includes 

functionalities that concern observation, inter-agent interaction, and interaction with 

the external environment. Artifacts are tools that supports agents and humans to 

achieve their given goals and needs, respectively. This is achieved by the construction 

and configuration of a common interface between agents and human users. Artifacts 

are agent’s sensors for obtaining input states that can trigger the action of the agent or 

MAS.  

 

3.11.2 The CArtAgO Artifact 

The CArtAgO framework (Common Art ifact infrastructure for Agent Open 

environment) (Ricci, Piunti, Viroli, 2011) is a model for realising environment-

mediated interaction between agent and/or human. The MySimpleGUI interface (Ricci, 

Piunti, & Viroli, 2011) is one example of an agent based graphical user interface (GUI) 

implementation from the CartAgO framework. At the start of the MAS, the agent 

creates the GUI which is the interface for the user and agent system to interact. During 

operation, which are iterated numeric calculation, the agent-designate on the artifact 

monitors events that are programmed in Java as input (from mouse click actions) and 

output the processed results.  

 

3.12 Summary of Chapter 

As a continuation of the literature survey, this chapter presented the structure of the 

simple reflex agent model, and an interactive tutor agent model. It presented and 

described agents as computer system that react to events in their environment, and 

cooperative through interaction to solving a problem, deliberative before the selection 

of a plan for execution, and autonomous because they have control over their internal 

actions.  The chapter presented three categories of agent architectures and stated that 
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the classical architecture comprises the logic-based, reactive, hybrid (which combines 

both the reactive and deliberative models); and BDI architecture modelled after the 

human cognitive status.  The chapter went further and surveyed agent methodologies: 

Gaia, Tropos and Prometheus in their phase to phase descriptive designs. Though all 

three mentioned methodologies have their associated design tools, Prometheus Design 

Tool (PDT) appears to be more detailed for developing agent based systems. The 

speech acts as a theory of semantic (meaning) communication was stated to have 

influenced agent communication or interaction languages. Different types of agent 

programming languages were also covered and described in terms of their knowledge 

representation model and their support for inter-agent communication, and their area 

of application development. Because of Jason agent language support for logic based 

representation and inter-agent communication of concepts which is one of the 

objectives of this research, Jason syntax was analysed in details in its Prolog-like 

beliefs representation, goals, and plan structures. The chapter introduced CArtAgO 

artifact as a model for developing agent environment interface for observing percepts. 

The next Chapter 4, presents the PDT AOSE graphical editor tool, chosen because of 

its detailed engineering process as the software engineering tool for the analysis and 

design of the Pre-assessment System of this study.  

 

 

 

 



 

 

Chapter 4 

Methodology: Agent Oriented 

Analysis & Design and Classification 

Method 
 

4. Introduction 

In Chapter 3, the literature of three types of agent oriented methodologies, namely: 

Gaia, Tropos and Prometheus were presented according to their phase to phase 

interactive design process.   After the analysis of the methodologies, Prometheus was 

chosen as the agent oriented design approach to apply in this research. This chapter, 

therefore presents Prometheus in its step-by-step design process for designing agent 

based system from the initial step of problem description, scenario development, goal 

specification, agent roles and interaction, protocol analysis and agent capability 

specification. The chapter then presents the parameters of a student model used in the 

development of the Pre-assessment System as well the Pre-assessment Mechanism that 

symbolises the strategy for identifying gaps in students’ learning, classifying students 

and making recommendation for their learning. In addition, the chapter illustrates with 

examples the modelled rules estimation formula that calculates the number of 

classification rules for the classifier agent. 

 

4.1 Prometheus Agent Oriented Software Engineering  

Agents oriented software engineering (AOSE) is an approach to developing intelligent 

agent systems. The methodology for analysing, designing and developing a multiagent 

systems varies. For this research the Prometheus methodology was adopted. The 

Prometheus method is an approach that engages its graphical editor in engineering the 

design process. The tool is known as the Prometheus Design Tool (PDT). PDT is an 
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AUML tool that supports the step-by-step design process. In the following section the 

range of notation symbols for the interactive design and detailed documentation are 

introduced.  

 

4.1.1 Notation Symbols of PDT 

The Figure 4.1 present the PDT notation symbols and their functions in the design of 

agent based systems. 

 

Name Symbol Description 

Agent 
 

The agent symbol.  

 

Action 
 

This is what the agent does that has effect 
on the environment or other agents. 
 

Role 

 

This symbolises roles or group of roles for 
agents. 
 

Protocol 

 

Protocols specifies interaction between 
agents.  Protocols are specified using 
textual notations that maps to AUML2. 
 

Data 
 

This is used to represent the belief (internal 
knowledge model) or external data. It is 
where functionalities that transcends to 
agent read or write data or information.  
 

Messages 
 

This is used to symbolise a message 
communication between agents. 
 

BDI 

Messages 
 

This symbol is used to represent messages 
that updates the beliefs of agents. 

Percept  
 

Represents the input coming from the 
environment to the agent.   
 

Scenario  

 

This is an abstract description of a sequence 
of steps taken in the development of a 
system.  It is usually the initial step that 
starts for the breakdown of the “statement 
of problem” or description of the problem 
to solve. 
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Goal  
 

It is the realisable target or achievement set 
for an agent. 
 

Connection 
Arrows  

They are edges that connects entities (i.e. 
symbols) together. 
 

Fig.4. 1: PDT notation symbol. 

 

The following section starts the design of the multiagent system for the pre-assessment 

of students’ prior knowledge using the PDT tool. As a set of guidelines, the 

Prometheus methodology proposes three major agent software development phases, 

namely: System Specification, Architectural Design and Detailed Design, and PDT 

supports design through these phases. 

 

4.2 System Specification 

The specification phase as described in Chapter 3 begins with a high level description 

of the problem, then the identification of initial goals from the description.  

 

a) Identifying initial goals: 

As stated in Padgham & Winikoff (2004) initial goal specification always begin the 

process of an entire system goal specification and functioning stages of a multi-agent 

system (MAS). The following description states and identifies what the system is 

going to do (Ehimwenma, Beer & Crowther, 2014b; 2015a): 

 

A student desires to learn a concept. The student enters a concept on the 

system.  The system needs to ensure the student has understanding of 

prerequisite concepts to the desired concept. The student is tested, learning 

activities are aggregated and classified in continuous interactive feedback 

process, and belief store updated all the way. In the end, appropriate learning 

materials are recommended.  

 

b) System goals 

Based on the above stated description, the system goals are: 

 Observe percept 
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 Understanding of prerequisite 

 Testing 

 Classifying 

 Continuous feedback 

 KB update 

 Recommend materials 

 

c) Goal specification 

The question is how can each of these goals be achieved? Each of the goals had further 

sub-goals developed as follows: 

i) This step is where agent gets percept (e.g. desired_concept) and display it: 

 

* Observe percept 

- Receive user concept 

- present concept 

DESIRED_CONCEPT 

 

ii)  To the step where quizzes in belief based (BB) are retrieved and presented:  

 

* Understanding of prerequisite 

    - quizzes in BB 

    - answers in BB 

    - prerequisite assessment from quizzes and answers 

UNDERSTANDING PREREQUISITE 

 

NB: By further re-arrangement or refinement, the sub-goals in the Student has 

understanding of prerequisite goal can become sub-goals of TESTING (below). 

 

 

 



Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification 
Method 

 

69 
 

iii)  This is the step of testing student knowledge: 

 

*Testing 

    - search BB for quizzes 

- fetch (sub-concepts or) prerequisite quizzes 

- receive answer  

- fetch BB answer and compare with students’ 

    - make assessment decision 

TESTING USER 

 

iv) To the step where agent gets aggregated BB updates of messages communicated 

about pre-assessment, matching beliefs in plan context, and classifying student 

knowledge: 

*Classifying 

- aggregate learning activity 

    - use predicate statement rules 

    - classify students based on rules match 

CLASSIFICATION 

 

v) To the step where all learning activities are stored persistently:  

 

*KB updating 

    - store user learning activity persistently 

PERSISTENT BELIEF STORE 

 

vi) This step shows that the system is continuously interacting and communicating the 

outcome of every activity to the student: 

 

*Continuous user feedback 

    -user friendly interaction from assessments 

    -welcome and introduction to system 

USER INTERACTION 
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vii)  This is the step where learning materials are recommended for students: 

 

*Recommend materials 

    - concept ontology in BB 

- search ontological relation 

- fetch URL link 

- present to user 

RECOMMENDATION 

 

 

4.2.1 Scenario Overview 

Scenarios and system goals are complementary. In process of extracting the main goals 

from the problem description, scenarios were also being developed.  The Figure 4.2 

shows the set of scenarios derived from the specified goals using the PDT Scenario 

Overview diagram. 

 

 
Fig.4. 2: System scenario view. 

 

4.2.2 System Goal Diagram 

The PDT System goal overview diagram enables the break-down of the set of derived 

scenarios into units of achievable design steps. The Figure 4.3 is the system goal and 

subgoals design and the interactions between them. The AND is a conjunction function 
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which indicates that, at that level of design, the agent must communicate both the 

classify and the persistentBB update after its decision making function.  

 

 

 
Fig.4. 3: System goals specification for the pre-assessment system. 
 

In the Figure 4.3, the user interface goal is seen interacting with the understanding of 

prerequisite goal which connects to the testing goal. Then to the make decision goal 

that is linking both the classify and persistentBB update goals after its decision making 

function; and the classify goal connects the recommend material goal. The solid arrow 

lines are the connections between goals, while the dotted lines are the links between a 

main goal and its subgoals.  

 

4.2.3 Set of Functionalities 

From system goals, a set of functionalities are derived as roles for the system. In the 

step, these roles are grouped together. These roles later turned out to be set of 

functionalities or roles for the agents. 
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Fig.4. 4: System role overview showing structured Functionalities. 

 

 

4.3 Architectural Design 

In this phase, the different agent of the Pre-assessment System has been determined 

and included in the design. The phase also consists of the system overall (static) 

structure using system overview diagram, and the description of the dynamic 

behaviour of the system using interaction diagram and interaction protocols. 

 

4.3.1 Analysis Overview 

From the system scenario step, interactions within the system is first established using 

the analysis overview diagram (Figure 4.5). This involved including the agents. 
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Fig.4. 5: Analysis overview from system scenarios. 

 

4.3.2 Agent Role Ordering 

Agent roles ordering is the design step for identifying and grouping roles for the 

respective agents in the system. From the system role grouping of the preceding phase 

in Figure 4.4, agent roles were ordered in Figure 4.6. 

 
Fig.4. 6: Agent Role Grouping. 
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4.3.3 System Overview 

In this step, all the entities, that is, the agents, their percepts, type of messages, actions 

and interaction in the design (Fig. 4.7). From the System Overview step, protocol 

interactions between agents were derived using the AUML2 facility (Fig. 4.8). In the 

system overview diagram, data are also coupled with agents to specify the type of data 

being used. In this design, the data are quizzes, answers to quizzes, and URL data links 

for each of the sub-topics (leafnodes) in the ontology. These data are modelled as 

internal knowledge or beliefs in the agents. 

 

 

  

 
Fig.4. 7: System overview diagram. 

 

 

To specify protocols interaction design for agents, the AUML commands must be 

issued. The Figure 4.8 presents the AUML protocol commands that produced the 

protocol interaction diagram in Figure 4.9 and protocol interaction table in Figure 4.10. 
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start Preassessment process protocol 

agent St student 

agent T agInterface 

agent S agSupport 

agent M agModel 

agent C agModelling 

agent O agMaterial 

box alt 

   message T St promptDesired_Concept 

   message St T Desired_Concept 

   message T S tell: Desired_Concept 

   message S C tell: Desired_Concept 

   message S M tell: Desired_Concept 

   message M M permanentStore 

end alt 

box loop 

   message S S fetchPre_Quiz 

   message S St displayQuiz 

   message St T tell: Answer 

   message T S tell: Answer 

box alt  

guard [Answer Ok] 

   message S St informPassed 

   message S C tell: Passed 

   message S M tell: Passed 

   message M M storePassed 

next 

guard else 

   message S St informFailed 

   message S C tell: Failed 

   message S M tell: Failed 

   message M M storeFailed 

end alt 

end loop 

box alt 

   message C C classify 

   message C O achieve: Classification 

   message O O fetchMaterialURL 

   message O St displayMaterialURL 

end alt 

finish 

 

Fig.4. 8: FIPA-compliant AUML command protocol. 
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Fig.4. 9: FIPA Compliant AUML protocol diagram analysis for inter-agent interaction. It shows the 
dynamic interaction of agent message passing via performatives.  
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The Figure 4.9 has a loop segment. The loop depicts the process where the agent 

agSupport uses achievement goals to navigate from leafnode to leafnode in hierarchy 

of concepts to retrieve quizzes which are represented as logic formulas in its BB to test 

students’ knowledge. 

 

Fig.4. 10: AUML Protocol Interaction table. 

 

4.4 Detailed Design 

This phase is focused on the description of responsibilities and capabilities of the 

internal structure of the individual agent, and how they will achieve their task within 

the system. Diagrammatically, these capabilities have been realised on the agent 

overview canvass.  

 

4.4.1 Agent Overview 

In this section, individual agent internal details are presented. Using the plan notation 

symbol, percept, triggering event, inter-agent messages and data are specified. At the 
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agent overview stage, inherited interfaces from e.g. the system overview phase are 

adopted for specifying agents’ details. The inherited interfaces, that is, notation 

symbols are those that appears greyish in colour. 

a) Agent agInterface 

In Figure 4.11 is a much refined detailed design where CArtAgO artifact is the medium 

to get input from the user is specified. 

 
Fig.4. 11: Detailed overview of agent agInterface. 

 

The interface agent first creates the artifact in order to observe it. All inputs that are 

observe are communicated as messages, in agent plan (shown with the plan diagram 

or symbol), to the agent agSupport that is responsible for pre-assessing students. 

 

b) Agent agSupport 

 
Fig. 4. 12: Agent agSupport receiving the desired_Concept percept and retrieving quizzes. 
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Fig.4. 13: Agent agSupport Overview: Using answer percept to make comparison. Taking pass or a 
fail decision, and communicating all activities and decision reached to other agents of the MAS by its 
agent plans. This agent also date and timestamp learning activities. 
 
 

c) Agent agModelling 

 
Fig.4. 14: The agent agModelling: The classifier agent Overview 

 
 

 This agent gets message percepts from agent agSupport for every leafnode whose pre-

assessment is completed. It starts matching the right pre-conditions in plan context 

with the messages received, and thereafter select the appropriate categorisation of 

students. 
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d) Agent agMaterial 

 
Fig.4. 15: Agent agMaterial: The learning material agent Overview. 

 

This is agent agMaterial keeps the URLs links of learning material as ontology. At 

the receipt of an achieve performative message from the classifier agent (after 

classification), the agent agMaterial then releases learning materials for students to 

learn. These materials are dependent on the number of failed and passed prerequisite 

assessment. 

 

e) Agent agModel 

 
Fig. 4. 16: Agent agModel (student) Overview 

 

This agent uses the Java TextPersistentBB class to store all the learning activities in 

the system. The TextPersistentBB is configured in the MAS at the point of declaring 

or naming the agents .Mas2j project level of implementation. The activities stored are 



Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification 
Method 

 

81 
 

messages to the agent, and they are desired concepts, answers (both correct or 

incorrect) percept. This plan keeps other information such as desired_Concepts, and 

quizzes apart from the SQL answer queries from students. 

 

4.4.2 Roles and Capability Descriptors for Agents  

In summary, the Figures 4.17 and 4.18 outlines the detailed Capability Descriptors of 

the agents in the system. While Roles are the functionalities meant for agents to 

achieve, Capabilities are a set of related plans used for realising goals. Goals are steps 

through which agent fulfill their intentions. 

  

Roles Goals Capability/plan 

 

Obtain input percept 

-Communicate percept 

-Display percept 

 

Capability 

 

 

 

 

Pre-assessment 

-Use input communicated 

-Percept request from ontology 

-Present prerequisite quizzes 

-Compare answer percept with BB 

-Take decisions 

-Communicate decisions and 

activities 

-Date and timestamp activities 

 

 

 

Capability 

 

 

 

Obtain decisions made 

-Aggregate updated decisions 

-Use predicate statement rules 

-Match rules 

-Classify by rule match 

 

 

Capability 

 

Obtaining classified 

information 

-Search ontology BB 

-Match URL ontological relations 

-Present URL link 

 

capability  

Keep persistent information -Use persistentBB class 

-Store persistently 

Capability  

Fig.4. 17: Capability descriptor. 

 

 

Goals Plans Actions Percepts Internal 

Action 

Data 

Communicate 

percept 

In a 

plan 

Performatives: tell, 

achieve 

Triggering event: 

desired_Concept, SQL 

answer queries 

 

.send 

 

   N/A 
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Display 

percept 

In a 

plan 

 

Screen print  

Triggering event: 

desired_Concept 

 

.print 

 

   N/A 

Percept 

request from 

ontology 

 

In a 

plan 

 

askOne request 

Triggering event: 

desired_Concept 

  

Ontology 

BB 

Use input 

communicated 

 

In a 

plan 

 Triggering event: 

desired_Concepts, 

correct SQL answers, 

incorrect SQL answers 

    N/A 

Present 

prerequisite 

quizzes 

In a 

plan 

Goals, subgoals, and 

screen print 

Triggering event: 

desired_Concept, SQL 

answer queries 

(correct/incorrect) 

 

.print 

Quizzes 

BB, 

Answers BB 

Compare 

answer 

In a 

plan 

Feedback to student: 

pass or fail 

Triggering event:  SQL 

answer queries 

(correct/incorrect) 

 Quizzes 

BB, 

Answers BB 

Take 

decisions 

In a 

plan 

Make a pass or a fail 

decision 

N/A  N/A 

Communicate 

decisions 

and 

activities 

In a 

plan 

Send answers logged 

in by students, 

[passed or failed] 

predicate messages 

 

 

N/A 

 

 

.send 

 

 

N/A 

Aggregate 

updated 

decisions 

 Update beliefs with 

all the decisions 

[Passed or Failed] 

received 

Passed or Failed 

prerequisite decisions  

  

    N/A 

 

Match rules 

 

 

Set of 

plans 

 

Match plan context 

with updated beliefs  

Triggering event: 

desired_Concept, SQL 

answer queries 

(correct/incorrect) 

  

   N/A 

 

Classify by 

rule match 

 

By a 

plan 

Select the relevant 

plan and communicate 

recommendation 

message 

           

 

        N/A 

  

 

   N/A 

Match URL 

ontology 

relations 

In a 

plan 

Match or unify plan 

context 

Triggering event: 

Recommendation message 

 

 

 

   N/A 

Present URL 

link 

In a 

plan 

Release URL link N/A .print    N/A 

 

Store 

persistently 

 

 

 

Use persistentBB 

class 

 

Triggering event: 

desired_Concept, SQL 

answer queries 

(correct/incorrect) 

 Text 

Persistent 

BB  

Goals Plans Actions Percept Internal 

Action 

Data 

Fig.4. 18: Expanded summary of capability descriptor: percepts, triggering events, goals, plans and data 
used by agents in the system. 
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4.5 The Student Model 

Baffes (1994) states that a student model involves the method used in representing the 

knowledge of students. As given in Padayachee (2002), modelling a system for 

learning purposes involves the use of interactive component and attributes of the 

learner (i.e, the student). The Classical Four Model (Padayachee, 2002) architecture as 

shown in Chapter 2 has a Tutoring Module that uses: a strategy for diagnosing 

misconception and learner’s need, a module that stores a student’s current cognitive 

status, a knowledge base module containing domain knowledge and the procedure of 

learning, and a user interface for interactive dialog. The agent based Pre-assessment 

System of this study mirrors this type of ITS architecture where a diagnostic strategy 

is being employed to identify gaps in students’ learning in a system that can also collect 

students’ learning activities, keep students’ learning attributes and classify students’ 

knowledge for learning materials.  

Agents are designed to observe their environment. The environment to observe in this 

research are not natural environments. Rather a student environment that is part of a 

software system (Ricci, Piunti, Viroli, 2011). Wang (2014) called this environment a 

partially observable environment. In this research, for agents to observe the student 

environment, the environment needs to be modelled with the parameters that can elicit 

and represent the inherent knowledge attributes of students with regards to identifying 

gaps in their learning. To this effect, a student model was devised with five parameter 

information from the viewpoint of the Tutoring Module (Padayachee, 2002) that can 

diagnose misconception in students’ learning. In a tuple, the model is given as: M = 

<D, C, P, F, V, S> (Ehimwenma, Beer & Crowther, 2015a; 2015b) where   

 <M>: is the model. 

 <D>: The desired_Concept is the set D = {C1, C2, ..., Ck-1, Ck} of observable 

parent classes in an ontology tree that has leafnodes N such that �௜,௝ are the set 

of leafnodes with respect to �௜. 
 <C>: The set of prerequisite such as C = {C2};  C = {C2, C3}; or C = {C2, C3, 

…, Ck-1, Ck} parent classes underneath a desired_Concept D. In general, a 
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prerequisite to a desired_Concept �௜ is �௜ - �௜−ଵ. For instance, let C1 be a 

desired_Concept, then any other element of the set C can be a prerequisite(s) 

to C1, respectively. That is, a D ≡ C. 

 <P>: The set of passed predicate P = {p1, p2, ..., pk-1, pk} over the leafnodes N 

of the prerequisites C to a desired_Concept D. The first order logic (FOL) form 

is P(�௜,௝) for a given leafnode. Thus, for the prerequisite C, the index x in �� 

represents the total number of individual leafnode N per �௜. Therefore, N  C 

i.e. N is subclassed by C, and C  D i.e. C is subclassed by D.  At start of pre-

assessment any D ≡ C. The P(�௜,௝) formula symbolises knowledge gain. 

 <F>: The set of failed predicate F = {f1, f2, ..., fk-1, fk} over the leafnodes N of 

the prerequisites C with respect to a desired_Concept D. In FOL formula this 

is given as F(�௜,௝) for a given leafnode N per Ci. The F(�௜,௝) formula 

symbolises knowledge gap. 

 <V>: The set of observable inputs e.g. SQL answer queries V = {V1, V2, ..., Vk-

1, Vk} from students over the leafnodes N of the prerequisite C to a 

desired_Concept D. For every correct answer input that is assessed, the atomic 

formula P(�௜,௝) as the corresponding decision statement is taken and 

communicated; for every incorrect answer input, the corresponding predicate 

F(�௜,௝) decision statement is taken and communicated for appropriate 

classification.   

 <S>: The set of timespent S = {�ଵ, �ଶ, ..., �௞−ଵ, �௞} by a student on pre-

assessment activities; such that, �௞ is the time interval between a given question 

on the system and the student answer. This is so because every activity and the 

expected students’ response are timestamped by an agent. 

The choice of the parameters <D>, <P> and <F> which are predicates for first-order 

logic statements, a form of knowledge representation stated in Chapter 2 (e.g. 

Father(peter) (Baader & Nutts, 2003)). In addition, the <D>, <P> and <F> are for 

agents’ communication and for reasoning by the agent agModelling for the 

categorisation of students for learning materials. This is in contrast to SmartTutor 

(Gamalel-Din, 2002) where learning-by-experience was used. The use of these 
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parameters in this research is informed by their absence in literature as predicates in 

logic based statements for multiagent systems development.  

The <P> and <F> represents the predicates for the logic based decisions statements in 

the agent agSupport plan after every pre-assessment. They represent boolean values. 

While the <P> is the predicate in the logic statement that will communicate the 

decision on correct answer response, the <F> is the predicate that would communicate 

the decision on the incorrect answer response.  From the model M, above, the 

following outlines the purpose of the modelled parameters in the Pre-assessment 

System: 

 To fetch and communicate observed percepts (inputs) from the environment: 

Consider <D> or desired_Concept as any topic or concept a human tutor, for 

instance, wants to teach. The Pre-assessment System, like the tutor wants to 

know whether students are prepared for <D>. Then the system pre-assesses 

students on the past prerequisites <C>. To fetch quizzes of prerequisite 

concepts, agent uses !achievement goals.  

 To construct classification rules for agent: To classify students for 

appropriate learning material, the classifier agent agModelling gets messages 

from the pre-assessment agent agSupport with a tell performative. This 

messages are the decisions reached after each pre-assessment. The decisions 

statements that are communicated are logic based formulas with <P> and <F> 

as predicates. After aggregating the messages, the plan context that is matched 

in the agent agModelling would be triggered, and further message 

communication is sent using the achieve performative to agent agMaterial 

(Fig. 4.14).   

 To support the release of URL links after classification:  The message 

expected by the agent agMaterial are recommendation triggers from agent 

agModelling. When the agent agMaterial gets these messages, it also matches 

the appropriate plan context and release the URL(s) for learning material(s) 

(Fig. 4.15).    
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 To keep student learning history: In order for the tutor to unravel possible 

difficulties facing his students in the domain context (i.e. SQL) of learning (of 

this research), the TextPersistentBB class shall be configured in the MAS for 

the agent agModel to keep the students’ learning history persistently. These are 

information that includes: the <D>, <P>, <F>, and <V> attributes. The <V> 

parameter are answers to be viewed by the tutor to support students in SQL. 

The TextPersistentBB is a Jason TextPersistentBB class (a text database) (Fig. 

4.16). 

In addition, the parameters <P>  passed or <F>  failed are not chosen nor devised for 

first-order logic statements for classification alone. But also to reinforce students (e.g. 

Pavlov, 1960) in the course of pre-learning assessments.    

4.6 The Pre-assessment Mechanism  

The pre-assessment mechanism is a structure devised to present the picture of the 

process of identifying gaps in students’ learning and making supplementary learning 

materials recommendation. The function is to ascertain the true and accurate level of 

students’ skills and knowledge and supporting them to start learning at the level 

appropriate to their current level of knowledge because every student cannot afford to 

start from the same learning block. This approach is similar to the PAT (Ritter et al. 

1998) strategy that ensures that current skills set for students are attained before 

promoting students to a new level of learning. 

 

This structure (Fig. 4.19) depicts: 

 

 How learning concepts are represented in hierarchy. 

 The strategy for decision flow and navigation from leafnode concept to 

leafnode concept for prerequisite question selection when a desired concept is 

received; which would be released by the use of agent achievement goals 

(Bordini, Hubner & Wooldridge, 2007). 

 The communication of the decisions made within the system after every pre-

assessment. 
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 The aggregation of decision statement.  

 The classification of students learning using the aggregated decision statements 

for learning materials recommendation.  

 

In the Pre-assessment Mechanism (Fig. 4.19) learning concepts are given in a 

hierarchy of inter-related concepts illustrated with the letters A, B, C, and D. Where A 

represents the lowest class concept and D the highest class concept in a hierarchy of 

learning structure. The A, B, C, and D represents any class nodes or topics in the SQL 

domain of learning. Every class node has at least two leafnodes and a subclass node 

that has its own leafnodes. The leafnodes are the concepts that represents the lessons 

taught in the classroom.  

 

 

Fig.4. 19: The Pre-assessment Mechanism (Ehimwenma, Beer & Crowther (2014b) 

 

4.7 The Learner Component  

The Learner component in the Pre-assessment Mechanism is dual purpose: i) as 

students and ii) as a classifier. The first input into the system by students are the desired 

concepts as symbolised with A, B, C or D in the Figure 4.19. Where A is the bottom 

(or lowest concept) that has no prerequisite. As such A has no pre-assessment and 

becomes the default concept to study when entered. 

When a student enters a class node (i.e. desired_Concept), agent !achievement 

goal is triggered to retrieve the quiz corresponding to a leafnode of the prerequisite 

class, then pre-assessment is carried out, decision is taken based on the answers 
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received; and then followed by the next !achievement goal according to the 

number of leafnodes considered under the desired_Concept (see Fig. 4.9 for the loop 

in the PDT AUML protocol diagram).  As shown in Figure 4.19, a pass or a fail 

decision is taken by the MAS for every quiz that is completed. While the student is 

getting feedback about his/her performance, the beliefs of the classifier agent is also 

being updated with the pass or fail decisions to match the relevant plan context, and 

the student is classified for learning material(s). Thus, because of the need of a system 

to gather students’ skills status (or decisions), classify them and make recommendation 

for learning materials, a multi-agent system was considered as appropriate to provide 

this capability. This is due to the fact that individual agent can handle specialised 

functions.  Case based reasoning (CBR) is a type of classification technique that was 

combined with MAS in González, Burguillo & Llamas (2005). CBR is a method in 

which concrete previous experience is applied to solve current and similar problem 

situations. In contrast to CBR approaches where a current problem is interpreted as a 

previous one based on similarities or differences (classification CBR), or where a new 

solution is adapted based on past, stored or existing solutions (problem CBR) (de 

Mantaras, 2001); the approach taken in this thesis is a rule-based approach to reasoning 

by a classifier agent. This is where domain specific rules are specified as antecedents 

for a body of conclusions that is applied in a classification process (Patterson, 1990, 

Rifkin & Klautau, 2004; Marsland, 2014). This is because, we believe that the rule-

based approach is more decisive to address the errors that are liable to be made by 

students in their responses to questions from the system that will in the end make 

recommendation for their learning. In addition, because the answer input to the system 

is open ended, so answers submitted by students to the system may also not be 

similar.  In this process, all pre-assessment activities will be communicated between 

agents as specified in the PDT diagrams (e.g. Fig. 4.9). This process of pre-assessment 

as regards the Pre-assessment Mechanism (Fig. 4.19) can be viewed in two ways for 

implementation, namely: i) Pre-assessment by immediate prerequisite class, and ii) 

Pre-assessment by multiple prerequisite classes. 
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4.8 Pre-assessment By Immediate Next Prerequisite Class 

This is the pre-assessment strategy that considers only the leafnodes of the immediate 

prerequisite class to a desired concept that is intended for learning by a student (Fig. 

4.20).  

 

 
Fig.4. 20: Strategic diagram of the Pre-assessment by immediate next prerequisite class. Where C 
represents the desired amongst the classes of concept and B the immediate prerequisite class to C. 
 

The strategy of the testing process has been shown in the loop segment of the AUML 

protocol and interaction diagram (Fig. 4.9), and detailed process of pre-assessment 

rules formation is given in the following section using the Figure 4.21 for illustration. 

The rule formation procedure is in logic based semantics. As mentioned in Chapter 2, 

it is described in Dell'Acqua et al. (1999) as the use of symbolic representations in the 

expression of rules, reasoning and knowledge preferences that reacts to several 

alternative choices of action.   

 

4.8.1 Logic Based Classification Specification for Pre-assessment in a 
Regular Ontology Model 

The Figure 4.21 is an ontology tree structure of equal number of leafnodes �� per 

parent class node (�௜). The tree is a directed graph that shows the relations between a 

parent class and its subclasses. Furthermore, it illustrates the process of navigation 

between classes. For instance, let us choose C2 to be a �௜ then its means for its �௜,௝: N3 

corresponds to �ଶ,ଵ; and N4 to �ଶ,ଶ 

Now, given that C1 is a desired concept, a pre-assessment would be on the leafnodes 

N3 and N4; and for C2 as a desired concept, pre-assessment would be on leafnodes N5 

and N6. In the case where C1 is the desired concept, and leafnodes N3 and N4 are passed, 

the student learns the leafnodes N1 and N2 which are leafnodes (or childnodes) of the 

C

B

B
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desired concept. Otherwise, the failed leafnodes N3 or N4 or both are learned. In the 

case where C2 is the desired concept, and leafnodes N5 and N6 are passed, the student 

learns the leafnodes N3 and N4 which are leafnodes (or childnodes) of the desired 

concept C2. Otherwise, the failed leafnodes N5 or N6 or both are learned.  

 

 
Fig.4. 21: A digraph of a regular ontology tree. 

 

Applying first order logic (FOL) formulas, the classification and recommendation 

rules for the classifier agent to classify students for learning are as stated:   

 

desiredConcept(C1) N3 N4 

[ 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) => desiredConcept(C1).{N1,  N2} . (1) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) => failed(N4) . . . (2) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) => failed(N3) . . . (3) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) => failed((N3) ꓥ (N4)) . . (4) 

] 

desiredConcept(C2) N5 N6 

[ 

: ƎdesiredConcept(C2) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)   => desiredConcept(C2).{N3,  N4} (5) 

: ƎdesiredConcept(C2) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6) => failed(N6) . . . (6) 

: ƎdesiredConcept(C2) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6) => failed(N5) . . . (7) 

: ƎdesiredConcept(C2) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6) => failed((N5) ꓥ (N6)) . . (8) 

] 
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The �௜,௝ in the passed(�௜,௝) and failed(�௜,௝) logic based notation are decision statements 

about a student’s performance on the ontology leafnodes after pre-assessment on that 

given node �௜,௝. The stated axioms are rules-based reasoning where each axiom 

represents a case or a category in the pre-assessment of the leafnodes N3 and N4, and 

N5 and N6, respectively, before a student learns a desired concept. The rules which are 

8 in number defines the condition for the pre-assessment of immediate prerequisite 

leafnodes, and also presents the rule structure for a two leafnode per class node in a 

regular ontology as shown in Figure 4.21. Each rule is a parameter combination of the 

<P> and <F> predicates in combination with the desired concept <D>. The <D> 

parameter represents the concept entered by a student which is also part of the 

conditions in the classifier agent plan context as implemented in Chapter 5. 

Rule (1), for instance,  

 

desiredConcept(C1) N3 N4  : ƎdesiredConcept(C1)  ꓥ Ǝpassed(N3)  ꓥ Ǝpassed(N4)    

=> desiredConcept(C1).{N1,  N2} 

 

depicts that for all  desired concept that is C1, for all leafnode N3, and for all leafnode 

N4, such that, there exists Ǝ in the agent beliefs the desired concept C1 and there exists 

a passed pre-assessment of the leafnode N3 and there exists a passed pre-assessment of 

the leafnode N4, then the conclusion and recommendation for learning shall be the 

leafnode N1 and N2 of the desired concept C1 which is the intended concept of learning 

submitted by the student. This rule formation system also applies to the class node C1 

whose pre-assessment would be on the leafnodes N5 and N6. 

In the Figure 4.21 tree structure, there are four rule axioms per parent class node if and 

only if the immediate class prerequisite to a desired concept is considered for pre-

assessment. This type of strategy implements Chunking (Casteel, 1988; Anderson, 

2008) that was discussed in Chapter 2 as the breaking down of skills and learning 

materials into smaller and more manageable units for students to succeed. 

Knowing the number of expected classification rules prior to coding as observed in 

this work is crucial so as to avoid misclassification or missing out a case of 
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classification. To estimate the number of expected rules needed, Ehimwenma, Beer & 

Crowther (2015a; 2015b) devised the Initialisation equation: 

R = C�� + 1 

 

Systematically, in navigating from one parent class node C to another and to their 

respective leafnodes N, the classified rules estimation process is expressed as  

R = �1 + ࢐,࢏��࢏  

where  �௜ = number of prerequisite classes 

T = the Boolean parameters <P> and <F> which equals 2 �௜,௝ = leafnodes with respect to class �௜ 
In a regular ontology where pre-assessment is on the immediate prerequisite to a 

parent class node, the total number of rules R can be estimated such as illustrated with 

the Figure 4.21. Given that the total prerequisite class node C =  2 (i.e. C2 and C3 in Fig. 

4.21), and size of leafnode N =  2 across each parent class, then 

R = 2 * 2**2 + 1 

 R = 2 * 4 + 1 

 R = 8 + 1 

  R = 9 

Where 1 represents the default rule that corresponds to the lowest concept A in the Pre-

assessment Mechanism that has no prerequisite, as mentioned earlier. The default rule 

represents the release of the URL link of the lowest concept when entered.  

 

Alternatively, our pre-assessment rules polynomial equation (Ehimwenma, Crowther 

& Beer, 2016b): 

R = 1 + ∑ �=࢐,�=࢏࢑� i��࢐,࢏  

also estimates the accurate number of rules for the aforementioned regular ontology 

such that each prerequisite class node �௜ (i.e. C2 and C3) upon which the pre-

assessment will be done takes a unit value of 1, the �௜,௝ per �௜ = 2; and T = 2 (the 

passed and failed predicates). Thus, by isolating the node and then the summation, we 

have 



Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification 
Method 

 

93 
 

R = 1 + Σ[[C 2TNమ,భ , C2TNమ,మ], [C3TNయ,భ, C3TNయ,మ]]  

R = 1 + C2T2 + C3T2 

R = 1 + (1 * 2 ** 2) + (1 * 2 ** 2) 

R = 1 + 4 + 4  

R = 9 

But the estimation of the expected number of rules and the corresponding number of 

classification rules representation is however different when pre-assessment is of 

multiple classes beneath a given desired concept as shown in the following section.  

 

4.9 Pre-assessment By Multiple Prerequisite Classes 

This is the strategy where pre-assessment is from prerequisite class to prerequisite 

class under a desired concept. In this type of arrangement, the more the number of 

leafnodes under a given desired concept, the more the complexity in the rule 

representation process. This complexity extends to students in managing their learning 

gaps having to deal with large amount of recommended URL links, particularly when 

there is large amount of incorrect responses to pre-assessment quizzes. The loop 

segment of the AUML protocol and interaction diagram (Fig. 4.9) also depicts this 

strategic process of pre-assessment and does not specify any size. The Figure 4.22 is 

non-regular ontology that is used to illustrate the rule formation process of ontology 

of 5 leafnodes. 

 

4.9.1 Logic Based Classification Specification for Pre-assessment in a 
Non-Regular Ontology Model 

The Figure 4.22 is non-regular ontology tree. As against a regular ontology tree that 

has equal number of leafnodes �� across all parent class �௜, a non-regular ontology is 

a tree with a varying of number of leafnodes across its parent class �௜ node.  
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Fig.4. 22: A digraph of non-regular ontology tree. A model where all the prerequisite classes under a 
given parent class, in this case C1, are being considered for pre-assessment. 
 

The parent classes �௜ in the tree (Figure 4.22) are C1, C2, and C3. C1 has a sub-parent 

class C2 that has two leafnodes N1 and N2 and a sub-parent class C2, and C2 has three 

leafnodes N3, N4, and N5. To consider all the prerequisite leafnodes N2 N3, N4, N5 and N6 

for pre-assessment under the parent class C1 as the desired concept, the logic based 

axioms for classification are stated as follows: 

 

desiredConcept(C1) N2 N3 N4 N5 N6  

[ 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ 

Ǝpassed(N6) => desiredConcept(C1).{ N1}. . . . . . (1) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ 

Ǝfailed(N6) => failed(N6) . . . . . . . . (2) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)        

=> failed(N5) . . . . . . . . . (3) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)         

=> f(N4) . . . . . . . . . . (4) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed (N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ 

Ǝpassed(N6) => f(N3) . . . . . . . . (5) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)        

=> failed(N2) . . . . . . . . . (6) 



Chapter 4 Methodology: Agent Oriented Analysis & Design and Classification 
Method 

 

95 
 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)           

=> failed((N5) ꓥ (N6)) . . . . . . . . (7) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)           

=> failed((N4) ꓥ (N6)) . . . . . . . . (8) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)             

=> failed((N4) ꓥ (N5)) . . . . . . . . (9) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)             

=> failed(N4) ꓥ (N5) ꓥ (N6)) . . . . . . .             (10) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)           

=> failed((N2) ꓥ (N6)) . . . . . .  . .            (11) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)           

=> failed((N2) ꓥ (N5)) . . . . .  . .            (12) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)              

=> failed(N2) ꓥ (N5) ꓥ (N6)) . . . . . .  .             (13) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)           

=> failed((N2) ꓥ (N4)) . . . . . . . .            (14) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)              

=> failed((N2) ꓥ (N4) ꓥ (N6)) . . . . . . .             (15) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)             

=> failed((N2) ꓥ (N4) ꓥ (N5)) . . . . . .  .             (16) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝpassed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)                 

=> failed((N2) ꓥ (N4) ꓥ (N5) ꓥ (N6)) . . . . . .            (17) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)            

=> failed((N3) ꓥ (N6)) . . . . . . . .            (18) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)           

=> failed((N3) ꓥ (N5)) . . . . . . . .                (19) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)          

=> failed((N3) ꓥ (N5) ꓥ (N6)) . . . . . .  .               (20) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)          

=> failed((N3) ꓥ (N4)) . . . . . . . .               (21) 
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: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)              

=> failed((N3) ꓥ (N4) ꓥ (N6)) . . . . . . .             (22) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)             

=> failed((N3) ꓥ (N4) ꓥ (N5)) . . . . . . .                (23) 

: ƎdesiredConcept(C1) ꓥ Ǝpassed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)                  

=> failed((N3) ꓥ (N4) ꓥ (N5) ꓥ (N6) . . . . . .               (24) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)           

=> failed((N2) ꓥ (N3)) . . . . . . . .               (25) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)              

=> failed((N2) ꓥ (N3) ꓥ (N6)) . . . . . .  .              (26) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)              

=> failed((N2) ꓥ (N3) ꓥ (N5)) . . . . . . .                (27) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)                  

=> failed((N2) ꓥ (N3) ꓥ (N5) ꓥ (N6)) . . . . . .               (28) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6)              

=> failed((N2) ꓥ (N3) ꓥ (N4))  . . . . . .             (29) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝfailed(N6)                  

=> failed((N2) ꓥ (N3) ꓥ (N4) ꓥ f(N6)) . . . . . .              (30) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝpassed(N6)                   

=> failed((N2) ꓥ (N3) ꓥ (N4) ꓥ (N5)) . . . . . .             (31) 

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)                               

=> failed((N2) ꓥ (N3) ꓥ (N4) ꓥ (N5) ꓥ (N6))  . . . . .               (32) 

] 

 

For the five prerequisite leafnodes N2 N3, N4, N5 and N6 to the desired concept C1, the 

number of classification rules to code for the classifier agent is 32 for all cases that 

must be accurately captured. As established in literature and preceding section, for a 

technical subject such as SQL considering a large number of leafnodes under a given 

desired concept, would presents large materials to students such as stated in the last 

axiom (32): 
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desiredConcept(C1) N2 N3 N4 N5 N6  

: ƎdesiredConcept(C1) ꓥ Ǝfailed(N2) ꓥ Ǝfailed(N3) ꓥ Ǝfailed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6)                     

=> failed((N2) ꓥ (N3) ꓥ (N4) ꓥ (N5) ꓥ (N6)) 

 

which states for all  desired concept that is C1 and for the leafnodes N2, N3, N4, N5, 

and N6, such that, there exists Ǝ in the agent beliefs the desired concept C1 and there 

exists a failed pre-assessment of the leafnodes N2, N3, N4, N5, and N6, then the 

conclusion and recommendation for learning shall be the leafnodes N2, N3, N4, N5 and 

N6 underneath the desired concept C1 submitted by the student. This type of pre-

assessment of by multiple prerequisite classes that would involve a large number node 

for a subject like SQL that is reported in literature to be difficult may not be supported 

by Chunking (Casteel, 1988; Anderson, 2008): a theory that helps student to succeed. 

While the strategy of pre-assessment by immediate prerequisite class supports 

Chunking, it also allows students to complete knowledge diagnosis and get results 

quickly. Skills status or classification of the student is dependent on the number of 

prerequisite �௜ classes and leafnodes �௜,௝ in a given pre-assessment. Thus, at the 

completion of pre-assessment by Chunking and having learned the materials as well, 

a student can choose another desired concept for self-testing.    

 

For a large size of knowledge graph or ontology, the following then summarises the 

general form of the underlying reasoning in the pre-assessment process. Given that ⅅ 

is the desired concept that subsumes some prerequisites �௜ which further subsumes 

some leafnodes �௜,௝ i.e. �௜,௝   �௜  ⅅ; we then state that  

 

ⅅ �௜  �௜,௝  hasPrerequisite(ⅅ, �௜) ꓥ hasKB(�௜ , �௜,௝) 

                             [ 

                               : Ǝⅅ ꓥ passed(�௜,௝) =>  ⅅ.{ ��} 

else 

                                : Ǝⅅ ꓥ Ǝfailed(�௜,௝) =>  failed(�௜,௝) 

                             ] 
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where  �� represents the set of immediate leafnode instances of the desired concept as 

specified in, for example, Rule (1) from Figures 4.21 and 4.22, respectively.  Note that 

the desired concept D ≡ C. This is defined in Chapter 5 using a DL language. 

   

  Again, the devised rules estimation formula comes handy in estimating the required 

number of classification rules. But since the ontology is non-regular, the prerequisite 

class nodes �௜ takes a unit value, which is 1; and N2, N3, N4, N5 and N6 has the total size 

of prerequisite leafnodes N =  5 underneath the desired concept. Thus the number of 

classification R can be estimated as 

 

R = �1 + ࢐,࢏��࢏  

R = 1 * 2**5 + 1 

R = 1 * 32 + 1 

R = 32 + 1 

R = 33 

where 1 represents the default rule that corresponds to A in the Pre-assessment 

Mechanism that has no prerequisite. The leafnodes �௜,௝ are the modules in which 

students are tested on. On that premise, they are the nodes that counts when estimating 

and formulating the required number of rules depending on the given �௜. To implement 

the derived classification axioms above, each logical axiom has a corresponding plan 

in the agent program in the MAS.   

As encountered during the course of this work, mapping the boolean [P, F] predicates 

to every leafnode N and generating the classified rules can be cumbersome. For a small 

number of leafnodes N ≤ 3, the rules can be generated easily by hand. But for leafnodes 

N ≥ 4, an algorithm had to be developed (Chapter 7, Section 7.7.1) for a program to 

generate the rules. The use of a program (e.g. Python) for rule generation is to ensure 

completeness or correctness for the rules that are deterministic: that is, exactly one rule 

for each episode of action or pre-assessment on the number of leafnodes N.  

Each logical axiom (above) practically corresponds to one agent plan at 

implementation. While the rules are produced from the program written for the 

algorithm, the logical axioms or rules satisfy the ontological structures that are 
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associated.  In addition, our model equation estimates the number of expected rules, 

for example, 8 +1, 16 +1, or 32 +1 number of rules. The model/math equation also 

support rule checking and ensures no case (rule) of classification is missing. In the 

derived logical axioms, no two axioms or rules are same. This correctness is certain 

via the program of parameter combination from the algorithm: the algorithm returns 

the expected outputs in finite steps. 

 

4.9.2 Estimating The Number of Rules by Prerequisites �࢐,࢏ and 
Leafnodes �࢑,࢐ Notation in a Tree 

The Figure 4.23 is a multi-dimensional knowledge graph that extends the graphs 

earlier presented in Figures 4.21 and 4.22, respectively. The structure presents a graph 

of several nodes in the horizontal plain and inter-connected nodes in the vertical 

traversal. All nodes are connected by a root or parent node C1. This is to illustrate the 

required number of rules process. To estimate the needed number of rules, let the root 

node C1 be the desired concept (at Level 1 where a student wants to be), and its 

prerequisite concepts as C2, C3, C4, C5, and C6 (the non-termial nodes). 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 

Level 2 

Level 3 

Level 4 

Level 1 

 

Fig.4. 23: A knowledge graph of multiple horizontal and vertical traversal 
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Below is the computation process of the number of classification rules for the 

prerequisites �௜,௝ �௝,௞ . As a non-regular ontology, we shall apply our model equation 

R = 1 + ∑ ࢐,࢏�  ࢑,࢐��

Firstly, we isolate the nodes before summation: 

 

 Number of Rules Estimation Via Horizontal Navigation 

A) Node isolation at Level 2, prerequisite class C2 to C3, horizontal navigation 

through leafnodes N2, N3, N5, N5 and N6:  

1 + Σ[[�ଶ,ଵ��భ,భ ,  �ଶ,ଵ��భ,మ], [�ଶ,ଶ��మ,భ, �ଶ,ଶ��మ,మ , �ଶ,ଶ��మ,య], 

B) Node isolation at Level 3, prerequisite C4 to C5, horizontal navigation through 

leafnodes N7, N8, N9, and N10:  

[�ଷ,ଵ��భ,భ ,  �ଷ,ଵ��భ,మ], [�ଷ,ଶ��మ,భ , �ଷ,ଶ��మ,మ], 
C) Node isolation at Level 4, horizontal navigation through leafnode N11:  

 [�ସ,ଵ��భ,భ]] 

The Computation at the isolated Levels 2, 3 and 4, Horizontal navigation:  

R = 1 + Σ[[�ଶ,ଵ�ଶ], [�ଶ,ଶ�ଷ], [�ଷ,ଵ�ଶ] + [�ଷ,ଵ�ଶ],  [�ସ,ଵ�ଵ]] 

R = 1 + [ͳ ∗ ʹଶ + ͳ ∗ ʹଷ + ͳ ∗ ʹଶ
  + ͳ ∗ ʹଶ + ͳ ∗ ʹଵ] 

R = 1 + 4 + 8 + 4 + 4 + 2 

R = 23 

This is an estimation of the number of rules R for pre-assessment by immediate 

prerequisite class in horizontal traversal of nodes. 

 

 Number of Rules Estimation Via Vertical Navigation 

A) Node isolation along prerequisites C2 through C4 to C6 vertical navigation to 

leafnodes N2, N3, N7, N8 and N11:  

R = 1 + Σ [[�ଶ,ଵ��భ,భ ,  �ଶ,ଵ��భ,మ], [�ଷ,ଵ��భ,భ ,  �ଷ,ଵ��భ,మ], [�ସ,ଵ��భ,భ], 
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B)  Node isolation along prerequisites �ଷ to �ହ vertical navigation to leafnodes 

N4, N5, N6, N9 and N10:  

[�ଶ,ଶ��మ,భ, �ଶ,ଶ��మ,మ , �ଶ,ଶ��మ,య], [�ଷ,ଶ��మ,భ,  �ଷ,ଶ��మ,మ]]  

 

Computation along the vertictal traversals:  

R = 1 + Σ [[�ଶ,ଵ�ଶ], [�ଷ,ଵ�ଶ], [�ସ,ଵ�ଵ], [�ଶ,ଶ�ଷ], [�ଷ,ଶ�ଶ]] 

 R = 1 + [ͳ ∗ ʹଶ] + [ͳ ∗ ʹଶ] + [ͳ ∗ ʹଵ] + [ͳ ∗ ʹଷ] + [ͳ ∗ ʹଶ]  

R = 1 + 4 + 4 + 2 + 8 + 4 

R = 23 

This illustrate the estimated number of rules for pre-assessment by immediate 

prerequisite class in a vertical traversal of nodes as shown with the horizontal 

traversal. 

 

 Number of Rules Estimation for Multiple Prerequisite Classes 

Now, lets consider the computation of the required number of rules R for the entire 

prerequisite classes underneath the desired concept C1 (Fig. 4.23). Either by vertical 

or horizontal traversal of the nodes as shown above, the result will be same.  From the 

formula R,  

R = 1 + ∑ ࢐,࢏�  ࢑,࢐��

and individual node isoloation, and summation:  

R = 1 + Σ [�ଶ,ଵ��భ,భ ,  �ଶ,ଵ��భ,మ, �ଷ,ଵ��భ,భ,  �ଷ,ଵ��భ,మ, �ସ,ଵ��భ,భ ,  �ଶ,ଶ��మ,భ, �ଶ,ଶ��మ,మ , �ଶ,ଶ��మ,య, �ଷ,ଶ��మ,భ ,  �ଷ,ଶ��మ,మ] 

             R = 1 + Σ[�ଶ,ଵ�ଶ, �ଷ,ଵ�ଶ, �ସ,ଵ�ଵ, �ଶ,ଶ�ଷ, �ଷ,ଶ�ଶ] 

                       R = 1 + [ͳ ∗ �ଶ + 1 * �ଶ + 1 * �ଵ + 1 * �ଷ + 1 * �ଶ] 

               R = 1 + ʹ ଵ଴ 

                 R = 1025 
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Thus, for a total of 10 leafnodes that may be considered under a desired concept D, 

1025 is the number of classification rules that will be needed to be trained from the 

passed and failed boolean predicates mapping with the 10 leafnodes. Note that the 

value of C for all calculation for non-regular ontologies in this work equals 1. 

 

4.10 Summary of Chapter 

This chapter has presented the agent based Pre-assessment System as modelled with 

the Prometheus methodology using the Prometheus Design Tool (PDT): a graphical 

agent UML for specifying agent designs from scenario development, to goal 

specification and refinement, to percept, message, data coupling, action, plans and 

their interactions. The chapter presented a student model with parameters that can 

obtain attributes from the student environment and then described a mechanism of pre-

assessment which is the underlying strategy for diagnosing learning gap, classifying 

and making recommendation for students after their pre-assessments. While Gamalel-

Din (2002) applied learning-by-experience, this thesis uses a classification technique 

via some classification rules. This is defined with first-order logic (FOL) as the 

reasoning process about the decision messages reached over students’ skill tests. The 

analysis has been shown in this chapter with ontology tree models and FOL formulas. 

The FOL based rules are a conjunction of the <P> and <F> boolean parameter 

combinations mapped to leafnodes N. To support students for effective learning, 

Chunking was identified as a good educational strategy for pre-assessments and 

supported learning of SQL. The chapter then illustrated how our modelled equations 

does estimates the number of classification rules. While the Initialisation equation 

estimates the number of classification rules for 1) batches of immediate prerequisite 

class pre-assessment and 2) multiple class pre-assessment; the polynomial equation 

has been used to estimate the number of classification rules for batches of multiple 

prerequisite class pre-assessment as illustrated.  In Chapter 5, the implementation of 

the Pre-assessment System in Jason agent language shall be presented. The chapter 

shall cover the real-time SQL domain ontology development with description logic, 

ontology construction and visualisation; and its first-order representation for agents. 

 



 

 

Chapter 5 

A SQL Ontology and The Pre-

assessment System  

 

5. Introduction 

In Chapter 4, an AOSE graphical editing tool, the PDT which is an agent UML that 

supports the Prometheus methodology was presented as employed in the specification 

and design of the Pre-assessment System. The chapter described the Pre-assessment 

Mechanism as a process for identifying gaps in student learning, and explained the 

parameters of the Student Model of this research and their use as predicates for: inter-

agent messages, classification reasoning about students’ knowledge status and first-

order logic (FOL) formulas. This chapter presents the implementation of the agents of 

the Pre-assessment System as specified in Chapter 4 for the pre-assessment of students 

and inter-agent communication in the pre-assessment process. Firstly, the chapter 

presents an SQL learning structure, then the SQL domain ontology definition in a 

TBox using description logic (DL) syntax, and the different ontology models generated 

from the TBox. It looks at concepts relationships in Jena API ontology model and the 

Protégé ontology editor, then knowledge representation in FOL from the ABox 

assertions for agents’ beliefs. The chapter also describes CArtAgO as the environment 

artifact for percepts observation.  

 

5.1 Contextual Learning Structure  

The domain context of this system is Structured Query Language (SQL) which is 

presented in a structured hierarchy in Figure 5.1. In a teaching-learning environment, 

modules are taught in an order of sequence from simple to complex as specified in a 

given curriculum. In a top-down approach, this is presented in the hierarchy of 
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complex to simple concept, namely:  UNION, JOIN, UPDATE, DELETE, INSERT, 

and SELECT where UNION is the complex concept and SELECT is the lowest. 

 

 
Fig.5. 1: Hierarchy of six SQL Modules Learning Structure (extended version of Ehimwenma, Beer & 
Crowther 2014b). 
 

In this arrangement, a lower module is taught and learned before a higher one.  Thus, 

any immediate-lower concept is a prerequisite to its next higher concept. The topics in 

this structure are the modules in which students would be pre-assessed on the Pre-

assessment System to identify gaps in their learning so as to make recommendation 

for learning materials to assist them in closing the gaps. Thus, the Figure 5.1 presents 

a: 

 Hierarchy in which students are pre-assessed in structured sequence. This is 

because in such an arrangement, one topic is taught before the next in a bottom-

up approach; 

 Domain for formalising a definition of ontology in SQL using a DL TBox; 

 Domain in which instances of classes (topics) will be named as ABox 

assertions in FOL to represent knowledge structures for agents and inter-agent 

communication. 

 

5.2 Description Logic for SQL Ontology 

Description logic (DL) is a family of knowledge representation (KR). KR is the set of 

acquired experiences or background structure of knowledge that an intelligent system 

is given to function: to reason, to query, to make judgement or prediction. This sort of 

KR in artificial intelligence (AI) as ascertained in Baader et al. (2003) is usually on 
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methods for providing high-level description of the domain of interest or world in FOL 

formalism for building intelligent applications.  

In the following section, a formal definition of a SQL ontology is presented using a 

DL syntax. The DL ontology describes the relationships between classes, classes and 

individuals and the constraints or restrictions on individuals. KR based on DL consists 

of two components: TBox and ABox (Obitko, 2007). The TBox describes terminology 

for the SQL ontology and the ABox introduces the individuals and their relations for 

representation in the Pre-assessment System.  

 

5.2.1 TBox Description for a SQL Ontology 

The Figure 5.2 is a TBox terminology (hierarchical) (Nardi & Brachman, 2003) 

description of concept names for a SQL domain ontology. The concept names are the 

named symbols on the left hand side of the equivalence ≡ symbol and are defined on 

the right hand side as base symbols (Baader & Nutt, 2003) as explained in Chapter 2.  

Given the DL syntax Ǝr.C that a thing has a role or relation with the concept C e.g. 

ƎhasChild.Lawyer, and Ǝr.{x} that a thing has some relation with a some instances e.g. 

ƎcitizenOf.{USA} (Baader, horrocks & Sattler, 2003);  then from the Figure 5.2, the 

axiom   

 

 

 
Fig.5. 2: TBox Description of an SQL Domain. 

                  SqlNode   ≡   SqlClassNode    SqlSubClassNode  

       LeafNode   ≡   SqlSubClassNode    (ƎhasQuiz.Quiz    

                       ƎhasAnswer.Answer    

           ƎhasContent.WebUrl)    

                       ¬ SqlClassNode    

PrerequisiteConcept   ≡   SqlClassNode  ≥ 2 hasKB.LeafNode   

                      ;;ƎhasPƌeƌeƋuisite.SqlSubClassNode   

                      ƎisPƌeƌeƋuisiteOf.SqlClassNode)            

         ;ƎhasPrerequisite.SqlSubClassNode)) 

       DesiredConcept   ≡    SqlNode  ƎhasPrerequisite.PrerequisiteConcept 

       isPrerequisiteOf   ≡    hasPrerequisite¯  

           

 

 

 

 

 

 

 

 

 

 

 SqlNode  ≡  SqlClassNode     SqlSubClassNode 
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defines a SqlNode as parent class nodes and subclass nodes in this SQL domain 

ontology. This represents the class node concept that is required to be entered by a 

student as a desired_Concept intended to be studied upon which some pre-assessments 

will be conducted. 

The following axiom 

 

uses existential restriction Ǝ to define the term LeafNode as subclass nodes that have 

some quizzes, answers and web URLs (universal resource locator) via their respective 

hasQuiz, hasAnswer and hasContent relations, and also with the classical negation ¬ 

symbol that leafnodes are not parent class nodes per se. The terms Quiz, Answer and 

WebUrl depicts the corresponding literals to the defined terms for every leaf node that 

are used for pre-assessment and recommendation.  

 

In the axiom that involves the use of a minimum cardinality restriction of 2 

 

the PrerequisiteConcept is defined as class concepts that have at least two leaf nodes 

and either a hasPrerequisite relation to a (sub)class and a isPrerequisiteOf inverse or a 

hassPrerequisite relation to the (sub)class concept. 

 

Then, the axiom 

 

 

defines a DesiredConcept as nodes that have some prerequisite node via the 

hasPrerequisite relation, and finally,  

 

 LeafNode   ≡   SqlSubClassNode    (ƎhasQuiz.Quiz    

               ƎhasAnswer.Answer    

               ƎhasContent.WebUrl)   

               ¬ SqlClassNode    

 

 

 

 

 PrerequisiteConcept  ≡  SqlClassNode  ≥ 2 hasKB.LeafNode    

                                ;;ƎhasPƌeƌeƋuisite.SqlSubClassNode    

                                ƎisPƌeƌeƋuisiteOf.SqlClassNode)             

                   ;ƎhasPrerequisite.SqlSubClassNode)) 

 

 

 

 

 

 isPrerequisiteOf   ≡    hasPrerequisite¯ 

DesiredConcept ≡ SqlNode  ƎhasPrerequisite.PrerequisiteConcept  
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which states that the isPrerequisiteOf relation is the inverse of hasPrerequisite relation. 

 

From the DL syntax, named symbols, for example DesiredConcept is defined. Roles 

or relationships such as hasPrerequisite, hasKB (Ehimwenma, Beer & Crowther, 

2014a), and isPrerequisiteOf are also defined. While the DesiredConcept is unary 

predicate for a desired concept in a FOL statement for agents’ communication, the 

hasPrerequisite, hasKB, and isPrerequisiteOf are binary predicates between classes 

and individuals.   

 

5.2.2 SQL Individuals in Description Language 

Individuals values, as ascertained in Baadar & Nutts (2003) are not only meant to be 

asserted in ABox. They can be instantiated also in a TBox. By implication, the DL 

SQL ontology defined above can have instances of individuals defined within it, for 

example, the DesiredConcept term can also be instantiated as:  

 

 

 

which states, insert is a desired concept that has a hasprerequisite relation with select 

that has a knowledge base with the hasKB relation with selectWhere that has a URL 

link with the hasUrl relation.  

 

5.2.3 ABox Assertion for a SQL Ontology 

ABox contains assertion knowledge called ground fact which are individuals and their 

properties (Rudolph, 2011). Based on the SQL learning structure (Fig. 5.1), the class 

instances of the desired_Concepts can be declared as: 

 

and the set of leaf node instances which are: 

 

 DesiredConcept = {union, join, update, delete, insert, select} 

 LeafNode = {unionAll, unionDistinct, selfJoin, fullJoin,  
  innerJoin, UpdateSelect, updateWhere, deleteSelect, 
  deleteWhere, insertSelect, insertWhere, selectWhere, 
   selectAll,selectOrderBy, selectDistinct} 

DesiredConcept   =   {insert}  hasPrerequisite.{select} 

                                      (hasKB.{selectWhere}  hasContent.{http://…}Ϳ 
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Similar to the examples shown in literature as in C(a) that a belongs to the 

interpretation of C e.g. father(peter), and R(b, c) that c is a filler for the role R for 

b (Baadar & Nutts, 2003), the following ABox assertions are then stated, in their unary 

and binary predicate e.g. 

     desiredConcept(update) 

that Update is a desired_Concept; and that  

hasPrerequisite(update, delete) 

Update has prerequisite Delete, an inverse relation 

isPrerequisiteOf(delete, update) 

which states Delete is a prerequisite of Update; and another hasKB connected 

predicate relation 

hasKB(update, updateSelect) 

that Update has KB UpdateSelect 

 

are ground (first-order) atomic formula for Jason agent language beliefs 

representation. Such set of beliefs are the agent’s knowhow of its world (Bordini, 

Hubner & Tralamazza, 2006). 

 

5.3 Digraph analysis of the Description Logic SQL Ontology 

Model  

Based on the SQL TBox description, different ontology models were created to 

visualise the knowledge modules in the domain of SQL and the modules relationships 

to each other. Using graphical analysis, the models that are created from ABox 

assertion are given below as: regular ontology and non-regular ontologies (section 

5.3.1 and 5.3.2). The ontology models are directed graphs where the directed links 

between nodes indicates navigation. The graphs contain six class node concepts 

according to the SQL learning structure in Figure 5.1, with the hasPrerequisite relation 

between class nodes, and hasKB relation between a class and its leaf nodes. 
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5.3.1 A Regular SQL Ontology 

A regular ontology is an ontology with an equal number of leaf-nodes across all its 

parent class nodes in its tree (Ehimwenma, Beer & Crowther, 2015a). The Figure 5.3 

is a regular ontology of a linear configuration from top to bottom with two leaf nodes 

across all parent class nodes. An immediate lower node is a prerequisite to its top node.   

 

 
Fig.5. 3: A regular ontology of two leaf nodes per parent class node. 

 

The relation linking two parent class nodes (top and immediate next) is the 

hasPrerequisite binary relation. The desired concepts (which are parent class nodes) 

has two leaf nodes with the hasKB relation, and other edge labelled the hasPrerequisite 

relation linking other class nodes in the hierarchy which are themselves 

DesiredConcept as defined in the DL syntax of Figure 5.2.  

 

5.3.2 Non-Regular SQL Ontology Model 

Recall that in the DL syntax (Fig. 5.2) a minimum cardinality constraint of at least two 

leaf nodes per parent class node was defined. A varying amount of leaf nodes across 

parent class nodes in an ontology constitutes a non-regular ontology. In the Figure 5.4, 
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the ontology has a parent class node that has more number of leaf nodes than other 

parent nodes in the ontology.  

 
Fig.5. 4: Linear ontological model from the TBox. SELECT is reflexive. 

 

While other parent nodes have two leaf nodes, the select concept has four leaf nodes. 

This is a valid representation as specified by the description in the TBox given the 

minimum cardinality of leafnodes N ≥ 2.  

 

Unlike the Figures 5.3 and 5.4 that has a single relation between a desired class concept 

and its prerequisite class, in Figure 5.5 is a model with, for example, two 

hasPrerequisite directed relations from a parent class to other parent classes. This 

model places two parent classes at the level e.g. Union and Join. But in teaching 

and learning, one unit of lesson must be taught before another. In that case, the Figure 

5.5 model does not validate the ordered sequence of the concepts provided in Figure 

5.1, but the model however satisfies the TBox definition in Figure 5.2. Which is also 

true of the Figures 5.3 and 5.4 including Figure 5.5 that satisfies the axiom  

 

 

         ≡   SqlClassNode  ≥ 2 hasKB.LeafNode                                        

    ;ƎhasPrerequisite.SqlSubClassNode)) 
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As a type of formative assessment system that enables students to make a choice of 

their desired learning concept, pre-assessment exercises that determines whether a 

student should learn his or her desired concept or not must be in ordered sequence. 

This is to avoid any gaps in the hierarchy of learning structure.  

 

 

 
Fig.5. 5: A non-linear hierarchy of the SQL learning structure. But some parent class nodes are not 
connected in sequence according to Fig. 5.1. 
 

Another model of the TBox is that which is presented in Figure 5.6, a model where 

two different property relations: hasPrerequisite and isPrerequisiteOf are used as 

connected links between class nodes. While the hasPrerequisite shows the navigation 

from a top level concept of learning to a lower-level concept, the isPrerequisiteOf 

relation presents the connectedness from a lower-level knowledge concept to a top 

level concept.  

 



Chapter 5 A SQL Ontology and The Pre-assessment System 

112 
 

 
Fig.5. 6: A variant ontology model of the TBox description and its navigation. But not in the 
structured sequence presented in Fig. 5.1 
 

The isPrerequisiteOf is the inverse property or relation to the hasPrerequisite property. 

The Figure 5.6 satisfies the axiom 

 

option of the definition of the PrerequisiteConcept in the TBox, such that any class 

node that has a hasPrerequisite must have a isPrerequisiteOf relation. The drawback 

of the Figure 5.6 ontology model is the infinite loop traversal across parent class nodes 

such that the knowledge engineer will need to determine a start point and an end point 

that are connected for pre-assessment. 

 

5.4 Navigation of Ontology Nodes 

In a standard curriculum, teaching and learning is sequential and ordered, simple to 

complex, from one concept to another, see Figure 5.1. The various graphical ontology 

models visualised so far from the TBox has shown how a DL definition is used to 

describe a body of knowledge and the relationships between concepts. Roles or binary 

relations specified connection between nodes. In directed graphs, these relations 

provide a sense of navigation from node to node. For instance, the binary property 

         ≡   SqlClassNode  ≥ 2 hasKB.LeafNode                                        

  ;;ƎhasPƌeƌeƋuisite.SqlSubClassNode    ƎisPrerequisiteOf.SqlClassNode)          

  ;ƎhasPrerequisite.SqlSubClassNode)) 
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relations (e.g. Fig. 5.1, 5.2), showed possible navigation path through which concepts 

are linked for pre-assessment. This can be established either on the strategy of: 

 Pre-Assessment By Immediate Prerequisite Class; or  

 Pre-Assessment By Multiple Prerequisite Classes;  

as described in Chapter 4. The directed links in the ontology models are the navigation 

paths from one class node concept. In Pre-assessment System of this study, the binary 

property depicts the manner in which agent !achievement goals are 

programmed to carry out the pre-assessment of students’ SQL knowledge. For 

example, the Figure 5.7 shows the hasPrerequisite relation navigation based on Figure 

5.2, and Figure 5.8 navigation that comprise the hasPrerequisite and  isPrerequisiteOf 

relations based on Figure 5.6. 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

  
 
 

While the Figure 5.6 reflects a model of the TBox definition, it does not reflect the 

sequence of the SQL learning structure in Figure 5.1; e.g. 

update → delete → union 

which implies that: with update as desired_Concept, pre-assessment is on the delete 

and the union concepts. In ABox assertion for ontologies and pre-assessment, it should 

1. insert → select 

2. update → delete → insert 

3. Join → Update → Delete 

1. union → delete → update → insert 

2. update → delete → union 

3. join → select → update   

4. update → insert → select 

Fig.5. 7: Illustrating navigation strategy for agent !achievement goal. 

 

Fig.5. 8: Illustrating navigation strategy based on directed links between class nodes. Yet 
contrasts the structured sequence in Fig. 5.1.  
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follow the order of the specified curriculum, like the navigation of the Figure 5.7. But 

not with the gap of a missing concept as in  

update → insert → select 

where the delete concept is not connected in that order.  While item 1, in the Figure 

5.7, is of the Pre_ Assessment By Immediate Prerequisite Class strategy, others are of 

the Pre_ Assessment By Multiple Prerequisite Classes as outlined in Chapter 4. 

 

Every parent class node has its leaf nodes. The insert concept for instance, has its leaf 

node concepts named as: insertValue and insertSelect. These are the unit of lessons in 

which SQL skills are tested to ascertain whether there is a gap in learning before 

proceeding to the insert concept. As defined in the TBox,  

 

 

all leaf nodes have their respective literals, which are the quizzes, answers and url data 

that are specified with the: hasQuiz, hasAnwser and hasContent relations, respectively. 

The LeafNode axiom is then explicitly expanded in Figure 5.9. The literals (quiz, 

answer and url) in rectangular shapes are String data values that are used for the pre-

assessment, release of learning materials, and for inter-agent communication in the 

MAS.  

 
Fig.5. 9: The insert class example with its leaf node and literal (or data) nodes. 

 

 LeafNode   ≡   ƎhasQuiz.Quiz                                                              

               ƎhasAnswer.Answer                                                

   ƎhasContent.WebUrl  

   (¬ (SqlClassNode    SqlSubClassNode))
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The quiz and answer literals are beliefs initialised in the BB of the agent agSupport: 

the agent that pre-assesses students, take decisions on their answer responses to 

quizzes, and communicates the pass or fail predicate decision statement to the agent 

agModelling (the classifier) for classification. The classification process which is the 

categorisation of student learning and recommendation of appropriate learning 

material(s) was represented in first order logic (FOL) formulas as the process of 

reasoning by the classifier agent in Chapter 4.  

 

5.5 Ontology Building Tools: Jena API and Protégé 

Ontology Editor 

An ontology is a description of things and their relationships (Gruber 1993; 1995). 

Ontology is a way of organising and representing knowledge. The preceding sections 

of this chapter has defined, and analysed a SQL learning structure. This section thus 

presents the use of Jena ontology API and the Protégé ontology editor in building 

ontologies. After the ontology construction, the OWL (web ontology language) 

ontology is parsed in Jena RDF API to show the compatibility of OWL and RDF KR. 

It is pertinent to state that the purpose is not to query ontology repository such as 

Protégé or Jena ontology models, but to amongst other objectives depict the subject, 

predicate, object format for FOL representation. 

 

5.5.1 Constructing ontologies in Jena API 

RDF is a graph database. RDF defines resources as connected graphs in their subject, 

predicate, object form. A class (subject or object) and relation (i.e. predicate) are all 

resources in RDF.  

From the ontology models (i.e. Figure 5.3, 5.4 or 5.5), let us consider a cross-section 

of class concepts that comprises Delete, Insert and Select and their relations to 

illustrate an RDF ontology model. Using TURTLE as the output syntax in Jena (Fig. 

5.10), the output shows that delete has a CLASS relation with Insert, and a ROLE 

property or relation with deleteWhere and deleteSelect. Then Insert that also have a 

CLASS relation with Select, and a ROLE relation with insertWhere and insertSelect. 
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RDF data structure does not support unary predicate relation. But a set of triple that is 

expressed as logical formulas p(a, b) (see Chapter 2). 

 

 

 

 

 

 

 

 

5.5.2 Protégé Ontology Tool 

Like Jena, Protégé ontology editor constructs and renders ontology in different output 

syntax. An example is the RDF/XML syntax. Using the same cross-section of class 

concepts that comprise the Delete, Insert and Select; Protégé, an OWL tool is used to 

visualise the classes and their relations (Fig. 5.11).  

 

In furtherance, to establish the backward compatibility of OWL syntax to RDF, the 

OWL ontology rendered in RDF/XML format is parsed in Jena using the Turtle format.  

 

 
Fig.5. 11: A cross-section of the concepts: DELETE, INSERT and SELECT in structured of Figure 5.1. 

 
 

<delete> <http://www.w3.org/2001/vcard-rdf/3.0#CLASS> <insert> ; 
        <http://www.w3.org/2001/vcard-rdf/3.0#ROLE> 
                "deleteWhere”, "deleteSelect" . 
 
<insert> <http://www.w3.org/2001/vcard-rdf/3.0#CLASS> <select> ; 
        <http://www.w3.org/2001/vcard-rdf/3.0#ROLE> 
                "insertWhere", "insertSelect" . 
 
<select> <http://www.w3.org/2001/vcard-rdf/3.0#ROLE> 
               "selectOrderBy", "selectDistinct", "selectAll", selectWhere". 

 
Fig.5. 10: Jena ontology rendered in Turtle syntax. 
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Ontologies rendered in RDF/XML or OWL/XML are in their fully qualified URI 

(universal resource identifier). But in parsing the OWL file in Jena, TURTLE syntax 

also output the ontology only in their given resource names, with additional 

information such as the owl:class, and an rdfs:subclassof relation (Fig.5.12).  

 

 
Fig.5. 12: Protégé OWL ontology using Turtle syntax from Jena API. 

 

For instance, the statement  

:insert a owl:Class ; rdfs:subClassOf  :delete . 
 

is a class to class relation that states insert is an owl class and by the rdfs 

property it is an subclass of delete. This class to class relation also 

applies to other class concepts in the learning structure (Fig. 5.1). Similarly, in the 

following statement 

:deleteSelect a owl:Class ; rdfs:subClassOf  :delete . 
 

the deleteSelect concept is an owl class and a subclass of the delete 

concept. In the TBox (Fig.5.2) the leaf node is defined as a subclass of a class concept, 

 <http://www.semanticweb.org/lette/ontologies/sql/delete> 
        a       owl:Ontology . 
:delete  a      owl:Class . 
:deleteSelect  a         owl:Class ; 
        rdfs:subClassOf  :delete . 
:deleteWhere  a          owl:Class ; 
        rdfs:subClassOf  :delete . 
:insert  a               owl:Class ; 
        rdfs:subClassOf  :delete . 
:insertSelect  a         owl:Class ; 
        rdfs:subClassOf  :insert . 
:insertValue  a          owl:Class ; 
        rdfs:subClassOf  :insert . 
:select  a               owl:Class ; 
        rdfs:subClassOf  :insert . 
:selectAll  a            owl:Class ; 
        rdfs:subClassOf  :select . 
:selectWhere  a          owl:Class ; 
        rdfs:subClassOf  :select . 
:selectOrderBy  a        owl:Class ; 
        rdfs:subClassOf  :select . 
:selectDistinct  a       owl:Class ; 
        rdfs:subClassOf  :select . 
:hasKB  a            owl:ObjectProperty ; 
        rdfs:domain  :delete , :select , :insert ; 
        rdfs:range   :insertSelect , :deleteSelect , :deleteWhere ,  
        :selectOrderBy , :selectWhere , :selectAll ,   
               :insertValue , :selectDistinct . 
:hasPrerequisite  a  owl:ObjectProperty ; 
        rdfs:domain  :select , :insert , :delete ; 
        rdfs:range   :select , :insert . 
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but not amongst the PrerequisiteConcepts that has the hasPrerequisite property. In the 

OWL ontology the relationship between classes is established with the 

hasPrerequisite property, and that of a class node to leaf node by the hasKB 

property. The hasPrerequisite and hasKB relations are ObjectProperty 

(Horridge et al. 2004) relations that have their respect range and domain concepts 

listed alongside in the illustrated TURTLE syntax (Fig. 5.12). 

 

  
Fig.5. 13: A Regular SQL ontology 

  

Having semantically analysed different ontology models from the TBox definition and 

ABox assertions, the FOL representation of knowledge for the Pre-assessment System 

(agents) given the ABox assertion in the hierarchy of the SQL learning structure (Fig. 

5.1) is stated as follows (Fig. 5.13): which is a representation for a regular ontology 

i.e. an ontology with equal number of leaf nodes per parent class across an ontology 

tree with every statement annotated with [ont(sql)] as SQL ontology. In the following 

section, the pre-assessment System is presented with its agents and CArtAgo 

environment. 

 

 hasPrerequisite(Union, Join)[ont(sql)]. 

hasKB(join, outerJoin)[ont(sql)]. 

hasKB(join, innerJoin)[ont(sql)]. 

hasPrerequisite(Join, Update)[ont(sql)]. 

hasKB(update, updateSelect)[ont(sql)]. 

hasKB(update, updateWhere)[ont(sql)]. 

hasPrerequisite(Update, Delete)[ont(sql)]. 

 hasKB(delete, deleteSelect)[ont(sql)]. 

 hasKB(delete, deleteWhere)[ont(sql)]. 

hasPrerequisite(Delete, Insert)[ont(sql)]. 

 hasKB(insert, insertSelect)[ont(sql)]. 

 hasKB(insert, insertWhere)[ont(sql)]. 

hasPrerequisite(Insert, Select)[ont(sql)]. 

 hasKB(select, SelectWhere)[ont(sql)]. 

hasKB(select, SelectAll)[ont(sql)]. 

hasPrerequisite(Select, Select)[ont(sql)]. 
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5.6 The Pre-assessment System 

The Pre-assessment System is a multiagent system (MAS) of five component agents. 

The agent oriented programming (AOP) language for its implementation is Jason, a 

variant of AgentSpeak language.  The choice is based on the analysis in Chapter 3 that 

Jason AgentSpeak is a: 

 first-order logic (FOL) knowledge representation language, with beliefs in 

Prolog-like data structure; and  

 supports speech acts based inter-agent communication using performatives or 

communicative acts. 

Jason is a reactive AOP language. Thus, the Pre-assessment System is also a reactive 

MAS. The Pre-assessment System obtains percepts from the student (environment) 

with CArtAgO: the reactive interface, and communicates all percepts for the pre-

assessment and classification of students’ true state of learning. The agents of the Pre-

assessment System as configured in Jason AgentSpeak language are shown as follows 

in Figure 5.14:  

 Agent agInterface: The agent that creates the CArtAgO artifact and observes 

it. 

 Agent agSupport: The agent that pre-assesses students’ knowledge and make 

either a pass or a fail decision. 

 Agent agModelling: The agent that classifies students’ knowledge by matching 

its classification rules to the pass or fail decision messages received.  

 Agent agModel: The agent that keeps persistent beliefs of all pre-assessment 

activities.  

 Agent agMaterial: The agent that recommends learning materials.  

 

As indicated in Chapter 2, these five cooperative agents are comparable to the 

integrated multi-part components of a recommender system e.g. El Mabrouk, Gaou & 

Rtili (2017); or the Padayachee (2002) Classical Four Model ITS architecture and 

micro-society of agents for solving a problem, respectively. The five agents and their 

functions were first identified and specified at the Architectural Design phase in 

Chapter 4 (e.g. Figures 4.5, 4.6, and 4.7) along with their roles, percepts, actions, 

messages, and plans specified at the Detailed Design phase in Figures 4.11 to 4.16.  
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Fig.5. 14: Snapshot of Agents creation and configuration in the Pre_asssessment MAS Project in Jason. 
 

5.6.1 CArtAgO + Jason 

Firstly, in Figure 5.14, the MAS project is declared to run on the Centralised 

infrastructure of Jason. This infrastructure as stated in Chapter 3 enables Jason agents 

to run on a local machine. The 

environment: c4jason.CartagoEnvironment 

is a declaration of a default workspace environment, meant for the agent agInterface 

in the following declaration:   

agInterface agentArchClass c4jason.CAgentArch 

to create the CArtAgO (Ricci, Piunti, Viroli, 2011) environment for percept 

observation at the start of the Pre-assessment MAS. This class is a Jason library file 

that can be assigned to agent(s) to construct a CArtAgO environment.  Also configured 

are the: 

1) cartago.jar and c4jason.jar libraries in the declared class path;  

2) c4jason.Environment as the environment declaration. 

 

These files are required for the MAS to work within the CArtAgO environment. The 

Jason infrastructure selected to run the MAS is the Centralised infrastructure, and the 

Student beliefBaseClass Jason.bb.TextPersistentBB 

is a text persistent belief base (BB) for the agent agModel (student) to permanently 

keep the pre-assessment activities of students. The IDE (integrated development 

environment) used for developing the Pre-assessment System is the jEdit for coding 

or programming agents in Jason.  

 MAS pre_assessment { 
  
    infrastructure: Centralised 
    environment: c4jason.CartagoEnvironment  
    agents:  
  agInterface agentArchClass c4jason.CAgentArch;  
  agSupport; //pre-assessment 
  agModelling; //classifier 
  student beliefBaseClass jason.bb.TextPersistentBB;//agModel 
       agMaterial; //ontology 
      
    classpath: "../../../lib/cartago.jar";"../../../lib/c4jason.jar"; 
  
} 
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5.7 The Pre-assessment System Environment  

In Monette (2014) model of designing an interactive agent system for human learning, 

the system comprises four components, namely: 

 Environment which implies a set of students; 

 Sensor which is the keyboard; 

 Actuator which implies the screen display (e.g. exercises, suggestions and 

corrections); 

  performance measure that evaluates student’s score.  

 

Based on the Monette (2014), Figure 5.15 presents the description of the facilities in 

the Pre-assessment MAS environment. The environment of the Pre-assessment System 

is a partially observable environment (Wang, 2014). According to Wang, 

environments where agent are not directly situated are partially observable to the 

agent. In the Monette (2014) model for the design of an interactive tutor, students and 

school are prescribed as an agent environment. The Sensor facility is enabled by the 

CArtAgO workspace artifact for the MAS to observe events that are external to it. The 

observable events are text-based SQL topics i.e. desired concept of students and their 

SQL answer queries, where the answers (correct and incorrect SQL queries) are open-

ended inputs from the keyboard. The actuators are the output screen in which an agent 

can display information to the environment, and the performance measure is the 

accurate classification of students’ SQL knowledge status.  

 

 
Fig.5. 15: Facility of the Pre-assessment System Agent (Based on Monette, 2014) 
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The Monette (2014) model emphasises the Russel & Norvig (2010) Structure of 

Simple Reflex Agent by specifying the facilities that constitutes an agent based 

system’s environment, sensors and actuators. 

 

5.8 Programming CArtAgO for Open-Ended Percepts 

An agent can be reactive (Wooldridge & Jenning, 1995; Chin et al. 2014, see Chapter 

3): from the context of action and reaction, agents continuously perceive inputs from 

their environment. In this view, agent activities are both perception and action. The 

Pre-assessment System is a Vertical (one pass) Architecture such that the percept 

received by an agent at the interface is communicated from agent to agent across the 

MAS. Each agent is programmed with individual plans to carry out some specific 

functions in the process of pre-assessment. From amongst its plans, an agent selects 

the plan whose plan context satisfies the incoming percept(s), and react subsequently 

to the actions in the body of plan.   

The Pre-assessment System uses CArtAgO to observe desired concept and 

corresponding SQL answer queries to quizzes as percepts from a real-time student. 

Agents perceive events through sensors as collectors of environment stimuli. In 

CArtAgO, sensors are program structures provided in the infrastructure that agents can 

create, and use for directing information flow (Ricci, Viroli & Omicini; 2006). The 

getObsProperty (Ricci, Viroli & Omicini; 2006) (Fig. 5.16) in CArtAgO is the 

computational function in which an agent can perceive and take action that could 

change its belief and the beliefs of other agents. The sensors used in CArtAgO for 

obtaining input percepts are object-oriented programming methods in Java. 

  

In this work, CArtAgO was configured and assigned to the agent agInterface. As a 

goal, the agent agInterface would create artifact and monitor its states. Given the focus 

function (Piunti, Ricci, Boissier & Hübner, 2009), agent agInterface is committed to 

the long term activity of observation of that environment (see full listings in Appendix 

C.2.2). The base artifact class provides basic functionalities to link GUI events to the 

artifact operations. Figure 5.16 shows a snapshot definition of the String type of 

percepts observable in the MAS.  
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5.9 The Agents of the Pre-assessment System 

In the following sections, a detailed description and functions of the component agent 

of the pre-assessment system is presented. 

 

5.9.1 Agent agInterface and Percept Observation 

In this system, the agent agInterface creates the GUI using the PreassessmentGUI class 

that extends the GUIArtifact (Fig. 5.17) and observes the dynamic user inputs. In 

Figure 5.18, the first plan with the triggering event !create_gui is the agent agInterface 

achievement goal to create the artifact at the start of the MAS. The adoption of this 

goal results in the creation of the GUI text interface shown in Figure 5.19.  

Subsequently, the second plan with the triggering event + value(V) is the agent sensor, 

and in its plan context is a number of selective inputs that are expected to be entered 

from the artifact text area. This context is a pre-condition that contains the SQL 

learning concepts that must be submitted or satisfied before the body of that plan can 

be executed, in this case to communicate the percept to the agent agSupport. For 

example, when agent agSupport receives a desired concept, it releases a quiz of the 

prerequisite concept.  

On the third plan with same triggering event +value(V) like the second plan, the agent 

does not expect a null or empty input. A String data type must be entered for the plan 

to be executed as defined in the PreassessmentGUI class. These Strings are both the 

SQL concepts and their respective SQL queries to prerequisite assessments. 

 

 

 … 
 @OPERATION void setValue(String value){                
  value = frame.getText();                         
  getObsProperty("value").updateValue(getValue());
 }                                                                 
 private String getValue(){                                                    
  return frame.getText(); 

 } 

… 

Fig.5. 16: A Slice of the Java Code that gets Percept through human interaction in CArtAgO. 
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Fig.5. 18: A slice of Jason plans that creates observable artifact and percept communication 
 

 // agent agInterface 
!create_gui. //goal to create GUI artifact 
 
/* plan */ 
 
//creating GUI 
+!create_gui 
  <- makeArtifact("gui", "c4jexamples.PreassessmentGUI",[],Id);  
 . 
 . 
 . 
     focus(Id). //long term focus on artifact observation 
 
// perceiving student's desired concept from GUI 
+value(V)[source(percept)] : value("SELECT") | value("INSERT") |  
 value("DELETE") | value("UPDATE") | value("JOIN") | value("UNION") 
   <-.println("The topic you have entered to learn is: ", V); 
     .send(agSupport, tell, value(V)); 
     .println(""). 
   
// perceiving student's answer from GUI 
+value(V)[source(percept)] :   not value("") 
    <-.println("The answer you have provided is: ", V); 
      .println(""); 
      .send(agSupport, tell, value(V)); 
      .wait(600000). 

 package c4jexamples; 

import javax.swing.*; 

import java.awt.event.*; 

import cartago.*; 

import cartago.tools.*; 

/** 

definition of the GUI artifact for the agent to create and observe 
at run time.  

*/ 

public class PreassessmentGUI extends GUIArtifact { 

 private MyFrame frame; 

 public void setup() { 

  frame = new MyFrame(); 

  linkActionEventToOp(frame.submitButton,"submit"); 

  linkKeyStrokeToOp(frame.text,"ENTER", "updateText");  

  linkWindowClosingEventToOp(frame, "closed"); 

  defineObsProperty("value", getValue());  

  frame.setVisible(true);   

 } 

… 

Fig.5. 17: Snapshot of the PreassessmentGUI CArtAgO Artifact 
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Fig.5. 19: CArtAgO artifact for Agent Percept and User Interaction. With overlapping MAS output or 
display console. The output console prompts the user for inputs when the MAS is started (Ehimwenma, 
Beer & Crowther, 2015a). 
 

5.9.2 Agent agModelling and Classification  

The agent agModelling is the Classifier agent of this system as specified with the PDT 

systems design in Chapter 4. Classification in the context of this work is the reasoning 

over the aggregate of decision messages from the agent agSupport after pre-

assessment for the accurate and selective categorisation of students for learning 

materials. These messages are those predicated with the desiredConcept <D>, passed 

<P> or failed <F>  parameters as prescribed in the Student Model (Chapter 4). For 

every pre-assessment quiz carried out by the agent agSupport (like the human teacher) 

on a student, the classifier agent is always updated to begin the process of reasoning 

over the messages based on the FOL pre-condition statements in its plan context. In 

Jason, the format for adopting the plan, classifying, and making recommendation for 

learning material is stated as (Ehimwenma, Beer & Crowther, 2016a): 

 

+ !recommend_material : set_of_profile_parameters 

                               < - recommended_material. 

 

where + !recommend_material represents the triggering message from the sender agent 

agSupport with a tell performative; set_of_profile_parameters, the pre-conditions 
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that are matched with every updated beliefs received by a tell performative, and the 

recommended_material as the message content with an achieve performative to the 

learning material agent agMaterial to be committed to achieving and releasing URL 

materials.  

 

 One vs. All Multiple Classification  

Classification as stated in Chapter 2 is predicting the correct class of an object or data 

after the data goes through a classifier(s) (Rifkin & Klautau, 2004; Marsland, 2014). 

In this research, each student skills data is proposed to belong to a single class 

depending on the student’s desired_Concept and number of prerequisite leafnodes N. 

One vs. All classification refers to the agent agModelling action of matching the rules 

in a plan context with beliefs and selecting a plan from amongst the number of plans 

to classify a student. That is, the agent decides a single accurate class and recommend 

suitable learning material. This is after a collection of decision statements of many 

observations (e.g. answer activities) from a sender agent. Then the student is presented 

what to learn at the end of the pre-assessment session. The agent agModelling has a 

number of first-order predicate (passed or failed) rules that are based on the number 

of leaf nodes under a desired concept.  

As mentioned earlier, two pre-assessment strategies have been identified given the pre-

assessment mechanism in Chapter 4: the pre-assessment by immediate-next 

prerequisite class is supported by the educational theory of Chunking (Casteel, 1988; 

Anderson, 2008) as discussed in Chapter 2. With a regular ontology structure, the pre-

assessment system was implemented. On observing the DELETE desired concept, a 

slice of the rules or plans that classifies students are given in Figure 5.20. The literals 

in the predicate statements are in natural language that clearly represents a student’s 

performance on the leaf nodes insertSelect and insertValue concepts.  

The classifier agent agModelling has no initial beliefs. But updated beliefs that are 

communicated by the agent agSupport. From aggregated beliefs, plan context is 

matched and the plan selected. The updated beliefs are an accumulation of <D>, <P>, 

and <F> predicate statements in the course of a student’s engagement with the 

MAS. They correspond (as shown in Figure 5.20) to the d(Cx), p(Nx) and f(Nx) 

predicate combinations in the FOL rules formulated in Chapter 4, section 4.8. 
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Fig.5. 20: Agent plans based on the derived FOL syntax specified in Chapter 4 for classification of 
student knowledge on the DELETE desired concept.  
 

This set of rules can be explained further using the IF…THEN statement as condition-

action rule as indicated in Russell & Norvig (2010) simple reflex agent. The passed or 

failed predicates of a FOL statement are categorical features for classification that is 

decided by the agent agSupport.  All the agent agModelling does is to take the inputs 

and decide which of the number of classes (called N classes by Marsland, 2014) the 

students belongs to. Thus, if a set of percepts or input attributes are all <passed> (e.g. 

label @d1) then the student has positive ability to learn his desired concept, that is the 

delete. That is, 

IF 

 desired_Concept(“delete”)  
& passed(“The student has passed the insert with select question”)  
& passed(“The student has passed insert with value question”)  

THEN  

Delete URL 

 

 @d1  

+!recommendMaterial[source(agSupport)] :  desired_Concept("DELETE")[source(agSupport)] 

    & passed("The student has passed the INSERT with SELECT question.") 

    & passed("The student has passed the INSERT with VALUE question.") 

    <- .send(agMaterial, achieve, hasPrerequisite(delete, insert)).   

@d2  

+!recommendMaterial[source(agSupport)] :  desired_Concept("DELETE")[source(agSupport)] 

    & passed("The student has passed the INSERT with SELECT question.") 

    & failed("The student has NOT passed the INSERT with VALUE question.") 

    <- .send(agMaterial, achieve, has_KB(insert, insert_value)).   

@d3  

+!recommendMaterial[source(agSupport)] :  desired_Concept("DELETE")[source(agSupport)] 

    & failed("The student has NOT passed the INSERT with SELECT question.") 

    & passed("The student has passed the INSERT with VALUE question.") 

    <- .send(agMaterial, achieve, has_KB(insert, insert_select)). 

@d4  

+!recommendMaterial[source(agSupport)] :  desired_Concept("DELETE")[source(agSupport)] 

    & failed("The student has NOT passed the INSERT with SELECT question.") 

    & failed("The student has NOT passed the INSERT with VALUE question.") 

    <- .send(agMaterial, achieve, hasPrerequisite(insert, select)).  
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But if the set of input is a mix of both <Passed> and <failed> (e.g. label @d2 then it 

is partial ability. The student learns the failed concept insert_value:  

IF 

 desired_Concept(“delete”)  
& passed(“The student has passed the insert with select question”)  
& failed(“The student has NOT passed insert with value question”)  

THEN  

insert_value URL 

 

But if the set is a mix of both <failed> and <passed> (e.g. label @d3) in reversed order 

to @d2, then it is also partial ability. The student learns the failed concept 

insert_select: 

 

IF 

 desired_Concept(“delete”)  
& failed(“The student has NOT passed the insert with select question”)  
& passed(“The student has passed insert with value question”)  

THEN  

insert_select URL 

 

But if the set are all <failed> predicates (e.g. label @d4) then the student has negative 

ability. Then the student learns all the failed concept insert_select, and 

insert_value as shown below: 

 

IF 

 desired_Concept(“delete”)  
& failed(“The student has passed the insert with select question”)  
& failed(“The student has NOT passed insert with value question”)  

THEN  

insert_select URL, insert_value URL 

 

On the pre-assessment system, all the set of predicate in the context part of the agent 

plan corresponds to the student behaviour. Noticed that the parameter <D>  is part of 

all the predicate clauses in the classification plan context. The parameter, as part of the 

decision clauses, identifies a student’s desired concept as well as the prerequisite leaf 

nodes connected to the desired concept. In Jason, at the fulfilment of these conditions 

(the ifs), the triggering_event is adopted for the execution of the plan body. 
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From the foregoing analysis, the process of the Input-communication-classification in 

the Pre-assessment System MAS is presented in Figure 5.21:  

 
Fig.5. 21: Inputs, communication and classification in the multiagent Pre-assessment System. Inputs 
are serial, as students reaction to the System. 

 

where the communication-classification stages are represented as h0 function that is 

further broken down into a serial or asynchronous process of communication between 

agents in Figure 5.22. This mirrors the one-pass vertical architecture (Chin et al. 2014) 

of agents such that the agent agInterface obtains the sensor input, communicate the 

input as messages through from agent to agent that all along the way performed their 

roles according to design, and finally to the effector agent that releases the URL links 

to the student. The three agents in Figure 5.22 are reactive agents with individualised 

plans represented in decision symbols: that represents agent plans that are triggered 

based on the percept received from incoming messages. The triggered plan is 

dependent on the plan context that is satisfied. The end of a pre-assessment session is 

at the time the ontology agent agMaterial releases learning material(s).  

 

 

Fig.5. 22: One vs. All Multiple Classification (Ehimwenma, Beer & Crowther, 2016a) 

 

Rules representations (plan context) are beliefs about the state of the world (student 

learning). In communication, the agents are reactive and they use deliberation as a 

DesiredConcept

Answer1

Answer2
h0 Output (URL)

Answern

⁝
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means to an end: Deliberation here, involves (usually systematic) exploration of 

alternative courses of action (Logan, 2014). The input becomes beliefs that are 

matched with pre-conditions for plan selection. The output of one agent behaviour 

becomes the input of another agent. In other words, there is a condition(s) match of 

the representation of current state to previous percept or message; and each agent 

output is a predicate statement to the next agent. 

 

5.9.3 Agent agModel and Student History  

The agent agModel is the Student agent. It is the agent that keeps track of the students’ 

pre-assessment history. This history is comprised of the desired concept <D> and 

answers <V> to every question. This parameter information is also communicated by 

the agent agSupport after every pre-assessment activity and are persistently stored in 

the agent agModel text database using the Jason TextPersistentBB Class. The stored 

information is meant for the course tutor to monitor students’ learning and their 

technical difficulties in their SQL query constructs. Figure 5.23 illustrates some of the 

information stored in the text database.  

 

 
Fig.5. 23: A snapshot of the agent agModel (student) Mind Inspection of updated beliefs in Persistent 
beliefs after some pre-assessments by the MAS. 
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5.9.4 The Agent agSupport and Pre-assessment   

This is the teacher that pre-assesses students using!achievement goals for 

questions retrieval from its beliefs. For instance, given that a desired concept is update, 

agSupport first enquires from the agent agMaterial whether the update concept exists 

in the ontology with the message (see Fig. 5.24): 

.send(agMaterial, askOne, hasPrerequisite(V, delete)); 

The agent agMaterial replies back that the Update concept has prerequisite delete. The 

askOne performative message does not update the belief of a receiver agent. Instead, 

it triggers the agent agMaterial to reply to the sender with the content requested. On 

receipt of the replied message, the sender agent agSupport belief is updated with the 

new information. Based on the FOL logic information that is now available to the agent 

agSupport, it then informs the student that the concept entered has a prerequisite in the 

given code 

.print(V, “hasPrerequisite delete”); 
 

Thereafter, achievement goal  

… 
!quizDeleteSelect(DeleteSelectQuiz). 

+!quizDeleteSelect(DeleteSelectQuiz):quizDeleteSelect(DeleteSelectQuiz) 

<- … 
 

as the next intention in the plan is adopted with the condition that the 

quizDeleteSelect(DeleteSelectQuiz) in the plan contexts exists in the 

agent BB, then the body of the plan is executed.  

In the body of the plan, date and time are stamped to every activity of students. This 

is from the stage of the desired concept to the stage of the materials recommended for 

learning. The essence of this is to record time lapse on every event in order to make 

comparison with the outcome of pre-assessment. Then the desired concept is sent to 

the agent agModelling (the classifier). Afterwards, the quiz of the first or left most leaf 

node to the delete concept i.e. deleteSelect is released to the student (Fig. 5.24). As 

shown in the DL definition and in Figure 5.9, every leafnode has a corresponding 

question. On receipt of the quiz, the student enters his answer. The agent agSupport 

receives the answer from the agent agInterface, and sends an answer to agent 



Chapter 5 A SQL Ontology and The Pre-assessment System 

132 
 

agModelling. At this stage the student is assessed on the answer and informed of the 

outcome. 

 

Fig.5. 24: Agent achievement goal for retrieving and displaying the deleteSelect quiz from BB. 

  

 

 For a passed assessment, this the plan behaviour of the agent assessment, feedback 

and communication of the decision process (Fig. 5.25). The agent takes decisions on 

the answers received from agInterface and communicate the passed or failed decisions 

statements, including feedbacks to students. Thereafter the quiz of the next leaf node 

of the delete concept i.e. deleteWhere is released by agent agSupport through the 

adoption of the next agent achievement goal. In the process of pre-assessment, the 

agent agSupport uses achievement goals within plans to navigate from question to 

question in its beliefs. At every stage of pre-assessment, the agents agModelling 

(classifier) and agModel (or student) are directly communicated (see Fig.5.25). This 

implementation has been with two leaf nodes per class node based on the principle of 

Chunking (Casteel, 1988; Anderson, 2008). 

 

 

 

 ... 
.send(agMaterial, askOne, hasPrerequisite(V, delete));//Asking if relation 

 exists in ontology 

.println(V, " has prerequisite DELETE"); //action after getting reply 

-value(V); //belief drop 

.println("Question on DELETE with SELECT:"); 

.println; 

!quizDeleteSelect(DeleteSelectQuiz). 

 

+!quizDeleteSelect(DeleteSelectQuiz) : quizDeleteSelect(DeleteSelectQuiz) 

 <-.date(YY, MM, DD); 

 .time(HH, NN, SS); 

 .println(DeleteSelectQuiz); 

 .concat(DeleteSelectQuiz, ", date(",YY,"-", MM,"-", DD, ")", ", ", 

 "time(",HH, "-", NN, "-", SS, ")", Qds); 

 .send(student, tell, quizDeleteSelect(Qds)); 

 .println; 

 .wait(6000000). 
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Fig.5. 25: Plan snapshot for a passed answer assessment, user feedback, communication and next quiz 
display use of achievement goal by the agent agSupport 
 

 

5.9.5 Agent agMaterial and Ontology  

This is the agent that has the SQL ontological relation initialised as internal knowledge 

beliefs in FOL ground facts. The agent take message percept, matches the concepts in 

every relation as requested and directed, and retrieves the information or literal from 

its BB. For example, an askOne request from the agent agSupport that confirms a 

student’s desired concept when submitted at the interface. The agent holds the learning 

materials in their URL (universal resource locator). At the end of a pre-assessment 

session, the agent makes URL(s) available to students by matching a plan context to 

the achieve performative message as directed (a directive, Searle, 1959) by the 

 @p16 

// Plan for correct answer to DELETE_SELECT the first prerequisite to UPDATE. 

 

+value(V)[source(agInterface)] : value(V) == value("DELETE FROM TENNIS_PLAYERS 

WHERE TOWN = (SELECT TOWN FROM TENNIS_PLAYERS WHERE PLAYERNO = 44 AND PLAYERNO <> 

44)") & testCount(0) 

   <-.date(YY, MM, DD); .time(HH, NN, SS); 

     .println("Good. Your answer is correct."); 

     ?testCount(Count); -+testCount(Count+ 1); 

.concat(V, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN, "-

", SS, ")", Rds1); 

     .send(student, tell, responseToDeleteSelect(Rds1)); //date and time appended 

     PassedDS = "The student passed DELETE with SELECT question."; 

  .concat(PassedDS, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-

", NN, "-", SS, ")", Pds); 

     .send(student, tell, passed(Pds)); 

.send(agModelling, tell, passed("The student passed the DELETE with SELECT 

question.")); 

     .println("Question on DELETE with WHERE clause:"); 

     !quizDeleteWhere(DeleteWhereQuiz); .println. 

 

+!quizDeleteWhere(DeleteWhereQuiz) : quizDeleteWhere(DeleteWhereQuiz)  

<- .date(YY, MM, DD); .time(HH, NN, SS); 

.concat(DeleteWhereQuiz, ", date(",YY,"-", MM,"-", DD, ")", ", ",  

"time(",HH, "-", NN, "-", SS, ")", Qdw); 

    .send(student, tell, quizDeleteWhere(Qdw)); //date and time appended 

    .wait(6000000); .println. 
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classifier agent—after the student is classified. An askOne performative from agent 

agSupport and the achieve performative from agent agModelling is an order that 

commits the agent agMaterial to the message content. The content of these 

performatives were successfully executed by the agent agMaterial. In the agent 

beliefs, ground facts are represented in FOL as:  

 

 class to class with hasPrerequisite relation; 

 class to leaf nodes (subclass) with hasKB relation; 

 leaf node to data values with hasContent relation; 

 class to class with isPrerequisiteOf relation 

as defined in the SQL TBox. 

 

The properties hasPrerequisite and hasKB relations are the ObjectProperty, and the 

hasContent a DataProperty as in Protégé (Horridge et al. 2004). The Figure 5.26 

present a snapshot of a plan with the hasKB predicate e.g. 

+!has_KB(delete, deleteSelect) 

that is adopted by the agent agMaterial when the sending agent agModelling has 

concluded classification. Every plan in the agent agMaterial is for recommendation of 

learning content to direct a suitable level(s) of learning material for student.  

 

 
Fig.5. 26: Adoption of a hasKB predicate relation, and content query from BB with ?hasContent 
test goal in a plan. 
 
 

The agent agModelling uses the hasPrerequisite or hasKB predicate in its message  

At the receipt and adoption of the plan with this message as the triggering event, the 

agent agMaterial uses a test goal given in the form 

?hasContent(x, y) 

 @u_m3 

+!has_KB(delete, delete_select)[source(agModelling)] // for failure of the 

DELETE_SELECT of desired_Concept("UPDATE") 

<- .println(" You will learn the DELETE_SELECT. Please use the text link below:"); 

   ?hasContentText(deleteSelect, DS_textURL)[o(sql)]; 

   .println("DELETE...SELECT query Text Link: "); 

   .println(DS_textURL). 
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to query its BB for the release of learning material. The hasContent data property 

relation is suffixed with Text, such as: 

?hasContentText(updateWhere, UW_textURL)[o(sql)];   

to depicts the type of learning material on the URL links. 

 

5.10 Summary of Chapter 

One of the objectives of this system is to unravel gaps in students learning and to 

adequately support them to fill-in the gaps. The failure of any prerequisite concept 

when a student intends to learn a top or higher concept means a gap in his learning. 

This Chapter has presented the implementation of the Pre-assessment System and its 

SQL ontology learning structure towards the objective of identifying gaps in learning. 

Given Maedche & Staab (2001) 5-tuple [C, R, F, A, I], the SQL ontology was defined 

using formal concepts.  Firstly, the SQL ontology was defined with a description logic 

TBox terminology and ABox assertion. While the TBox described the terms and 

relations in the SQL domain ontology, the ABox asserted the individual members. The 

terms in the TBox were analysed and different ontology models were constructed 

given the role (or relation), the constraints and the minimum cardinality of ≥ 2 

specified for leaf nodes. But since learning is sequential, the linear model was adopted 

for implementation. The linear model has a regular model as well as a non-regular 

ontology model. In furtherance, the chapter demonstrated the classes and relations 

using the Jena API ontology model and Protégé ontology illustrations, and then parse 

the Protégé   OWL ontology in Jena (an RDF API) to observe: 1) the OWL class to 

class relation, 2) OWL class to rdfs subclass relation, 3) the object properties that exists 

between rdfs domain and range in TURTLE syntax in order to capture OWL 

expressiveness over RDF(S). TURTLE outputs ontology listings in concepts’ given 

names, and not in their fully qualified URI namespaces such as in RDF/OWL or 

OWL/XML syntax.  Based on concepts’ given names and their property, first-order 

logic (FOL) representation was used to specify agent beliefs or ground facts in a 

system that has been implemented in Jason AOP. The chapter then presented the Pre-

assessment System, and its detailed structure as specified with the PDT AUML tool in 

Chapter 4.  This covered the agents, their functions or role in the system, CArtAgO 

and percept observation, agent localised or internal knowledge base in FOL, and inter-
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agent communication of ontological knowledge. As presented in Chapter 4, two 

strategies of pre-assessment were identified given the Pre-assessment Mechanism. 

This chapter has implemented and tested the strategy of pre-assessment by immediate 

prerequisite class and its classification process. While the results of this 

implementation and evaluation shall be presented in Chapter 6, details of the pre-

assessment by multiple prerequisite classes (the second strategy) shall be presented in 

Chapter 7.     

 



 

 

 

Chapter 6 

System Evaluation, Results and 

Analysis of Data 
 

6. Introduction 

Chapter 5 started by introducing the learning structure of the SQL domain of this 

thesis. Using a description logic language, the concepts of the SQL ontology and inter-

concept relationships was defined with a minimum cardinality specification of two 

leafnodes per parent class. From the various ontology model analysis given the TBox 

definition, this research adopted the linear model as the optimum model for 

implementation on the Pre-assessment System. This is to allow students to progress 

gradually from one level of pre-learning to the next without missing any concept. 

Based on the linear model, beliefs or facts representation in first-order logic (FOL) and 

speech acts (performatives) based inter-agent communication in the Pre-assessment 

System was implemented using Jason AgentSpeak language. Afterwards, the System 

was evaluated for fitness-of-purpose, which is, to identify gaps in students’ learning. 

Thus, this Chapter 6 presents the evaluation of the Pre-assessment System, the data 

collected and the analysis of the data. This includes students' skills data and their 

experiential feedback after their pre-assessment exercise.  From the results, the data 

on students' real-time engagement with the Pre-assessment System reflects students’ 

understanding of SQL queries. In the post pre-assessment data which is qualitative, 

students expressed their thoughts through questionnaire that was administered via the 

SurveyMonkey (2017).  
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6.1 Sampling Technique 

This section presents the process of sampling in the survey and the collection of data 

in the research. 

 

 Population: The population of the study is SQL/database students. This is 

because the content of learning of the Pre-assessment System is SQL. With the 

identified population sample, the system can be effectively evaluated for 

fitness of purpose and results validation given that the population are 

participants in the learning domain. 

 

 Sampling Frame: The sampling frame are database students of the Sheffield 

Hallam University. The is comprised of students that are in their first year 

undergraduate, second year undergraduate course through to Master’s degree 

level. They are students that have either studied database modules in their 

recent past or in their current learning.  

 

 Sampling Method: The method of sampling used for the chosen population is 

the random sampling technique. Firstly, after consulting with the lecturers in 

charge of the databases courses, emails were then sent out via the Sheffield 

Hallam University Blackboard site to request for volunteer participants in the 

study. Apart from the use of emails, the course lecturers also candidly 

announced in the classrooms to remind students of participation. Due to the 

imbalance of demographic representation such as ethnicity in the database 

modules, demographic data was later dropped for consideration in the study.  

 

 Sample Size: All the students who volunteered for the study also took part in 

the survey which is about the identification of learning gaps in students' SQL 

query skills. The sample size of 7 students that volunteered for the survey and 

their course distribution in a survey that was conducted over four academic 

semesters is shown in TABLE 6.1. 
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TABLE 6. 1: SAMPLE SIZE OF VOLUNTEERS AND RECRUITMENT 
RECORDS 

S/N Semester/Academic Year No. of Participants 

1. Semester 1, 2014/15 2 

2. Semester 2, 2014/15 2 

3. Semester 1, 2015/16 0 

4. Semester 1, 2016/17 3 

 TOTAL 7 

 

 

6.2 Experimental Setup 

This section presents the different stages of the Pre-assessment System’s evaluation 

exercise and the data collated in tables after analysis. 

 

6.2.1 Recruitment for Evaluation Exercise 

SQL is one of the technical fields of programming in computing science. It can be 

tricky to learn and easily forgotten when learned. As described in Chapter 2, the skills 

in SQL are challenging and students have many difficulties learning them (Mitrovic 

1998). In Prior (2003) it was ascertained after their experimentation that the learning 

and mastering of these (SQL) skills is a difficult process that requires considerable 

amount of practice and effort on the part of students. Prior (2003) stated is not easy for 

students. Therefore, to ease the difficulty in the learning of SQL, strategies that 

supports the best learning practice was considered. This further informed the choice of 

our linear ontology models of SQL concepts implementation in batches (chunks) and 

class by class in a simple-to-complex order. This is to model learning path and resource 

for students to succeed. 

So having developed the System to test SQL previous knowledge gaps or gains, 

sessions were organised for testing the focus group—computing students that have 

taken modules in Databases. As students that have previous knowledge of SQL, it was 
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believed that students have the capability to holistically evaluate the system to address 

their learning needs in the domain of SQL.  With the necessary requirements of the 

Research Ethics standards met, calls for volunteer-participants were made for the 

evaluation of the system to:  

 Pre-assess students’ skills in the domain of SQL (the context in which the 

system has been developed). 

 Evaluate the system’s fitness for purpose i.e. test of the underlying pre-

assessment mechanism, accurate classification, inter-agent communication and 

overall system design goal. 

 

6.2.2 Student Consent and Lesson Plan 

As part of standard Research Ethics procedure, a Consent Form was designed for the 

study in order to obtain the participating students’ consent (see Appendix B, B.2 for 

consent form). As a duly conceived teaching-learning session, a Lecture Plan was also 

designed. This was to guide students through their pre-assessment exercise.  

Students were acquainted at the beginning of the pre-assessment sessions with the 

objectives of the test exercise—which was to identify gaps in previously learned SQL 

knowledge. Students were informed that the session was not a formal faculty 

examination. Rather it was a research survey of a multi-agent Based SQL Pre-

assessment System developed to assist the learning of SQL. As such there was the 

need to have some independent body (like them — students in Databases or SQL) that 

could evaluate the system’s function or performance, and then make feedback to the 

researcher. The essence is to support the learning and teaching of SQL. In doing so, 

that their personal data or information obtained would not be divulged in any form.  

In addition, the students were informed that, by no means, were they compelled to 

participate in the exercise. They could accept to continue or opt out of the research 

exercise at any moment. However, their participation in the evaluation exercise was 

highly solicited and important to the study. On those grounds, the students gave and 

signed their Consent, and the Lecture Plan were handed out to them for the 

commencement of their pre-assessment exercise.   

Furthermore, it was explained that the objective of the system was to find out whether 

gaps exist in their SQL knowledge. That when they [students] enter a topic (among a 
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list of topics on the system) that they intend to learn, the system would present to them 

some questions on the prerequisites to the topic that was entered: To ascertain whether 

the students are ready for the new topic they intended to learn or whether there are 

previously learned modules that needed to be revisited. Finally, that, while they would 

engage the Pre-assessment System, the answers that were provided would be logged 

in the system for the researchers’ review.  

 

6.3 Pre-assessment Skills Data Collection and Analysis  

The pre-assessment exercise took place in different academic sessions as shown in 

TABLE 6.1. As students worked on the system they equally got feedback from the 

System, their correct query constructs were adjudged as passed and the incorrect ones 

as not passed (i.e. failed).  

 

Recall that in Chapters 4 and 5, the pre-assessment System also keep the history of 

students’ activities. Thus the following are examples of the pre-assessed data stored 

permanently by the agent agModel (student) in the system (complete data in 

Appendix A, A.1):  

 

 Example Data 1 

The  

desired_Concept("INSERT, date(2017-1-26), time(12-10-

23)")[source(agSupport)]. 

 

is the INSERT desired concept entered by the student, and  

 

quizSelectWhere("What query statement will return the player 

number and address of each player living in Stratford? HINT: 

order of address: STREET, HOUSENO, POSTCODE., date(2017-1-26), 

time(12-10-23)")[source(agSupport)]. 

 

the quiz of SELECT_WHERE, the first leaf node prerequisite to INSERT; and  
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responseToSelectWhere("SELECT PLAYERNO, STREET, HOUSENO, 

POSTCODE, date(2017-1-26), time(12-13-

54)")[source(agSupport)]. 

 

the student response to the quiz of SELECT_WHERE, then  

 

failed("The student has NOT passed the SELECT...WHERE 

question., date(2017-1-26), time(12-13-

4)")[source(agSupport)]. 

 

which is the failed predicate decision statement after assessment by the agent 

agSupport. The message that is also sent to the agent agModelling (classifier). This 

message is followed by the next quiz  

 

quizSelectAll("State the SQL query that will output all the 

data in TENNIS_TEAMS?, date(2017-1-26), time(12-13-

54)")[source(agSupport)]. 

 

is the quiz of SELECT_ALL, the second leaf node prerequisite to INSERT. Then  

 

responseToSelectAll("SELECT PLAYERNO, STREET, HOUSENO, 

POSTCODE, date(2017-1-26), time(12-13-

59)")[source(agSupport)]. 

 

which is the student response to the quiz of SELECT_ALL, and then the 

 

failed("The student has NOT passed the SELECT_ALL question., 

date(2017-1-26), time(12-13-59)")[source(agSupport)]. 

 

which is the failed predicate decision statement that is also a message sent to the 

agent agModelling (classifier).  

 

After accumulating the two failed predicate decision statements, the agent 

agModelling (classifier) classified the student for learning by sending an achieve 

performative message to the agent agMaterial as specified with the Prometheus PDT 

design tool in Chapter 4. The agent agModelling (classifier) does this by matching the 
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message content in their unary logic form to its array of plans, and triggering the plan 

whose plan context is selected before communicating the agent agMaterial to release 

the web URL link. This, the student placed on a browser to study the two failed 

concepts in this case.  

 

 Example Data 2 

In this pre-assessment, 

 

desired_Concept("UNION, date(2017-1-26),time(12-42-

14)")[source(agSupport)]. 

 

is the UNION desired concept entered by a student, and  

 

quizFullOuterJoin("Give, for each player, the player number, 

the name and the penaltiees incurred by him or her; order the 

result by player number. (HINT: you need to use OUTER JOIN), 

date(2017-1-26), time(12-42-14)")[source(agSupport)]. 

 

the quiz of FULL_OUTER_JOIN, the first leaf node prerequisite to UNION; and  

 

responseToFullOuterJoin("SELECT P.PLAYERNO, P.NAME, 

PEN.AMOUNT, date(2017-1-26), time(12-59-

10)")[source(agSupport)]. 

 

the student response to the quiz of FULL_OUTER_JOIN, then  

 

failed("The student has NOT passed the FULL_OUTER_JOIN 

question., date(2017-1-26), time(12-59-

10)")[source(agSupport)]. 

 

which is the failed predicate decision statement taken and as the message that is sent 

to the agent agModelling (classifier). Then the next quiz  

 

quizInnerJoin("For each player born after June 1920, find the 

name and the penalty incurred by him or her? HINT: you need to 

use INNER JOIN, date(2017-1-26), time(12-59-

10)")[source(agSupport)]. 
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is the quiz of INNER_JOIN which is the second leaf node prerequisite to UNION. 

Then  

 

responseToInnerJoin("SELECT P.PLAYERNO, P.NAME, PEN.AMOUNT 

FROM TENNIS_PLAYERS P INNER JOIN TENNIS_PENALTIES PEN ON 

P.PLAYERNO = PEN.PLAYERNO, date(2017-1-26), time(13-1-

19)")[source(agSupport)]. 

 

which is the student response to INNER_JOIN, and then the 

 

passed("The student has NOT passed the INNER_JOIN question., 

date(2017-1-26), time(13-1-19)")[source(agSupport)]. 

 

which is the passed predicate decision statement which is also a message to the agent 

agModelling (classifier). In this pre-assessment, the student only failed one 

prerequisite. Thus, the student was recommended to the Full_Outer_Join URL link 

being the failed concept. 

 

 Example Data 3 

In contrast to Example 1 and Example 2 above, in Example 3, the two leafnode 

prerequisites to the INSERT was passed by the student when   

 

desired_Concept("INSERT, date(2015-10-16), time(11-11-

47)")[source(agSupport)]. 

 

INSERT was entered as the desired concept. The prerequisite quiz  

 

quizSelectWhere("What query statement will return the player 

number and address of each player living in Stratford? HINT: 

order of address: STREET, HOUSENO, POSTCODE., date(2015-10-

16), time(11-11-47)")[source(agSupport)]. 

 

of SELECT_WHERE was displayed. The  
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responseToSelectWhere("SELECT STREET, HOUSENO, POSTCODE FROM 

TENNIS_PLAYERS WHERE TOWN="Stratford";, date(2015-10-16), 

time(11-12-57)")[source(agSupport)]. 

 

was the response from the student. Then the student was assessed to have passed 

 

passed("The student has passed the SELECT...WHERE question., 

date(2015-10-16), time(11-12-57)")[source(agSupport)]. 

 

Then the next quiz  

 

quizSelectAll("State the SQL query that will output all the 

data in TENNIS_TEAMS?, date(2015-10-16), time(11-12-

57)")[source(agSupport)]. 

 

of the SELECT_ALL statement was released, and the student responded with  

 

responseToSelectAll("SELECT * FROM TENNIS_TEAMS;, date(2015-

10-16), time(11-13-51)")[source(agSupport)]. 

 

which is the correct answer to SELECT_ALL, and the student was also assessed to 

have  

 

passed("The student has passed the SELECT_ALL question., 

date(2015-10-16), time(11-13-51)")[source(agSupport)]. 

 

the SELECT_ALL prerequisite leafnode quiz. In this case, the student was 

recommended to learn the desired concept having passed the prerequisite quizzes. 

 

 Example Data 4 

There were occasions after a desired concept was entered and quiz released, because 

students spent their time trying to work out their query statements, the system clocked 

out. An example is, 

 

 desired_Concept("INSERT, date(2015-10-16), time(11-8-

 32)")[source(agSupport)]. 
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then the quiz 

 

 quizSelectWhere("What query statement will return the player 

 number and address of each player living in Stratford? HINT: 

 order of address: STREET, HOUSENO, POSTCODE., date(2015-10-

16),  time(11-8-32)") [source(agSupport)].  

 

that was not responded to. In such cases, students had to restart the MAS. For the 

complete data set that was stored in the agent agModel belief base (see Appendix A, 

A.1). The TABLE 6.2 presents the data of the number of correct answers and that of 

the incorrect answers entered in the system by all 7 participants who took part in the 

survey.   

 

 
TABLE 6. 2: PERCENTAGE OF CORRECT AND INCORRECT PRE-

ASSESSMENT ANSWERS 
No of Students Percentage (%) Correct  Percentage (%) Incorrect 

7 22.7% 77.3% 

 

In the TABLE 6.2 a total of 22.7% (passed) correct answers were entered for queries 

as against incorrectly answered queries 77.3% (failed) pre-assessments, respectively; 

(see Chapter 7 for breakdown).  

 

 

6.4 Post Evaluation and Experiential Feedback Data 

To gather students’ perception about their user experience on the Pre-assessment 

System, a post-evaluation survey was conducted through a 17 item questionnaire. The 

questionnaire was designed by the researcher, and was vetted and validated by the 

supervisory team as suitably adequate for the collection of the relevant data with 

respect to the system’s design and the SQL domain of learning. The questionnaire 

contained both structured and unstructured items with 11 structured items that can be 

ticked, and 6 unstructured items of open-ended entries that requires short textual 

response. The TABLE 6.5 contains the structured data of 11 items, while the Tables 
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6.3, 6.4 and 6.6 – 6.9 have the unstructured data entries as obtained from the 

administered questionnaires via SurveyMonkey (2017).  

 

TABLE 6. 3: QUESTION 1. COURSE OF STUDY? 

Course Percentage (%) 
BEng (Hons) Software Engineering 29% 

MSc Database Professional 14% 
Enterprise System Professional 14% 

BSc Info Tech with Business Studies 43% 
Total 100% 

 
 
 

TABLE 6. 4: QUESTION 2. YEAR OF STUDY? 

Year Percentage (%) 
First Year 14.3% 

Second Year 71.4% 
Masters 14.3% 
Total 100% 

 
 
 

 
TABLE 6. 5: QUESTIONS 3 – 13 

Questions (Q) Strongly 
agreed 

Agreed Undecided Disagreed Strongly 
disagreed 

Q3:  The system 
was useful 

14.29%  71.43% 14.29%   

Q4:  The system 
helped me to recall 
my previous 
knowledge 

 
42.86% 

 
57.14% 

   

Q5:  The system 
supports the learning 
of SQL 

 
28.57% 

 
57.14% 

 
14.29% 

  

Q6:  I am not 
familiar with SQL 

14.29%   57.14% 28.57% 

Q7:  The system 
provided guidance 
to learning materials 

  
85.71% 

 
14.29% 

  

Q8: The system has 
a use-able interface 

 57.14% 14.29% 28.57%  
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Q9:  I understood 
the purpose of the 
system 

 
42.86% 

 
57.14% 

   

Q10: The tutor was 
helpful in 
introducing the 
system 

 
57.14% 

 
42.86% 

   

Q11: The tutor was 
helpful in providing 
assistance 

 
57.14% 

 
42.86% 

   

Q12: The session’s 
organisation was a 
good learning 
experience 

 
14.29% 

 
57.14% 

 
14.29% 

 
14.29% 

 

Q13: The session 
was well organised 

28.57% 57.14% 14.29%   

 
 
 
The following Tables 6.6 – 6.9 presents the open-ended responses from participants 

of the Pre-assessment System and the pre-assessment sessions: 

 

 
TABLE 6. 6: QUESTION 14. WHAT WAS MOST INTERESTING ABOUT THE 

SESSION'S ORGANISATION? 
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TABLE 6. 7: QUESTION 15. WHAT WAS LEAST INTERESTING ABOUT THE 
SESSION'S ORGANISATION? 

 

 
TABLE 6. 8: QUESTION 16. WHAT IS MOST INTERESTING ABOUT THE 

SQL SYSTEM? 

 
 
TABLE 6. 9: QUESTION 17. WHAT WAS LEAST INTERESTING ABOUT THE 

SQL SYSTEM? 
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6.5 Summary of Chapter 

The Pre-assessment System has been evaluated, and data was collected in this chapter. 

The data collected from a small sample size of 7 database students was presented. The 

sample size is the number of participants that volunteered to partake in the survey. Of 

no doubt, participant recruitment for the study has been a challenge. Nonetheless, from 

the available sample size and system evaluation, it is found that the system has been 

able to identify gaps in students’ SQL query constructs. This is on the strategy of Pre-

assessment by Immediate Prerequisite Class using a regular ontology model of two 

leaf nodes to a class node (Chapter 5, Fig. 5.3) that was implemented. The chapter also 

presented the pre-assessment data and showed how students were pre-assessed as the 

System navigated from one leaf node concept to another underneath their desired 

concept. Altogether, the data collected and analysed reflects students’ know-how of 

SQL query skills, quantitative and as well as qualitative data analysis. From the SQL 

knowledge or skills related data, the difficulty faced by a cross section of students have 

been unravelled. This can enable the course tutor to meet the learning needs of 

students. This knowledge data as presented conforms to Prior (2003) assertion that 

SQL is not easy to learn and that students are faced with challenges and difficulties in 

writing SQL queries. At the end of the pre-assessment sessions, open ended views 

were collected as feedback from students via SurveyMonkey. This was for the 

elicitation of facts about their user experience. In next Chapter 7, further discussion is 

presented about the pre-assessment data, and its implications for the teaching of SQL. 

Also discussed is the strategy of Pre-assessment by Multiple Prerequisite Classes as 

well the process involved in the development and operations of the Pre-assessment 

System.  

 

 

 

 



 

 

Chapter 7 

Discussions 
 

7. Introduction 

The aim of this research was to identify gaps in students’ learning in order to provide 

assistance in filling those gaps by pointing students to the materials of the concepts or 

unit of lessons that they needed to know. To that effect, the agent based Pre-assessment 

System was proposed and developed to use a classification approach that can 

categorise students’ skills and recommend materials that would help to close the gaps 

in students’ learning.  

 

In a formal school curriculum i.e. universities, schools (e.g. Manouselis et al. 2011), 

learning is sequential and ordered from known (learned concepts) to the unknown 

(higher concepts). As a formative type (Conole &Warburton, 2005) of prior knowledge 

assessment system, the Pre-assessment System has its concept of learning structured 

in an ordered sequence.  In this arrangement, diagnosis of students’ understanding of 

prior SQL domain concepts is carried out so that support can be provided for further 

learning through the planned pre-assessment strategies earlier described in Chapters 4.  

 

7.1 Dealing with The Research Question 

The purpose of this research was to identify gaps in students’ learning: between a target 

learning concept of the student (a higher concept) called the “desired_Concept” and 

some previously learned concepts (the lower level concept). To achieve this aim, a 

research question RQ was formulated towards the development and realisation of a 

formative type of assessment system as: 

How can students be helped to identify gaps in their current learning so that 

they can be fully prepared for the next stage in their learning? 
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The approach to answering this RQ has been through: the development of the Pre-

assessment System, evaluation of the system, and the collection of students' activities 

and skills data from the agent agModel persistent beliefs after the agent Mind 

inspection (Bordini, Hubner & Wooldridge, 2007). Agent Mind inspection is a view 

into an agent belief update by the programmer or researcher, see Chapter 5, Figure 

5.3. 

 

7.1.1 How System Identified Gaps and Material Recommendation  

The System has helped students to self-diagnose their SQL skills. This has been 

through a process in which students are prompted to enter a desired_Concept from a 

hierarchy of SQL class concepts or topics (See Figure 5.19). Thereafter, pre-

assessment on some prerequisite leafnodes to their chosen concept is carried out. This 

is because every student cannot start in the same learning block, as such, there has to 

be a different choice-levels of pre-assessments. While a student may desire to study a 

higher concept, the research wanted to ascertain whether the student has a good 

knowledge of prerequisites to the desired_Concept. In that perspective, pre-assessment 

or pre-learning diagnosis needs to take students from one lower-level to the next 

higher-level concept after assessment. This is when students have demonstrated an 

appropriate level of skills at the lower level. On one hand, this is similar to the strategy 

used in the PAT Algebra System (Ritter et al. 1998) that promote students to a higher 

level-learning after completing a task at a lower level.  In contrast to the PAT Algebra 

System and also a number of SQL systems that provides tutorials e.g. 

"SQLCourse.com" (see Chapter 2), but not assistance for errors, the Pre-assessment 

System makes material recommendation for the learning of unlearned i.e. the failed 

concepts after pre-assessment. The act of making recommendations for the learning of 

failed concepts makes the Pre-assessment System different from the systems identified 

in literature (see Chapter 2) by the strategies of pre-assessment and classification 

employed in this thesis. 

 

As presented in Chapter 6, the Pre-assessment System evaluated students’ skills prior 

to learning a higher or desired_Concept. During pre-assessment sessions, as 

prerequisite questions were presented to the participants (students) in the study, 

http://sqlcourse.com/
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students responded by entering SQL answer queries from question to question: 

questions that corresponded to the prerequisite class concepts whose leafnodes N have 

been defined to have N ≥ 2 minimal cardinality in the TBox, see Chapter 5, Figure 

5.2. As described in Chapter 5, implementation of an ontology of learning concepts in 

the Pre-assessment System can be of at least leafnodes N = 2 per parent class which 

has been implemented and evaluated, and of leafnodes N ≥ 2 per parent class 

implementation that is presented in this chapter. 

 

While student participants engaged with the System, the System continuously 

interacted with students, informing them of the questions they have answered correctly 

or incorrectly. From the assessment on incorrect answers, students were able to 

identify their own learning gaps. After pre-assessment exercises, some students 

realised they were not ready for their higher and intended desired_Concept. At the end 

of each pre-assessment exercise in which students were classified based on their skills, 

learning material URLs were presented, and students viewed materials on the web that 

provided assistance for their learning: That way the system provided assistance to 

students to close their learning gaps.   

 

The Pre-assessment System is one that has been developed to be adaptable to students' 

level of learning of SQL.  As stated in Michalski, Carbonell & Mitchell (2013) the 

level of adaptability provided by a system should be that which must present learning 

materials suitable to the state of knowledge of the student. Thus, the materials that 

were presented to students after their pre-assessments were tailored by the System to 

either the leafnodes of the desired_Concept they intended to learn or to the failed 

leafnode(s) of the prerequisite concepts as defined in Chapter 4. See sections 4.7.1 and 

4.7.2 for the FOL rules definition. The learning materials for a desired_Concept were 

provided when a student passed all prerequisite questions considered and programmed 

under the desired_Concept.  

 

7.1.2 Initial System Development Stages 

The Pre-assessment System has been developed using Jason AgentSpeak language, a 

first order logic (FOL) based language. During the early system developmental stages, 
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questions that Zhang, Kendall & Jiang (2002) described when developing an agent 

based system arose, namely: what agent does what, what agent interacts, and how? 

By further decomposing the aforementioned steps, subsequent questions ensued:  

 

 What is the MAS going to observe?  

 How will it observe? 

 How will the MAS make decisions? 

 How will it assist students to close the gaps in their learning? 

 How and in what performative can agent communicate messages to 

understandably fulfil the goal of pre-assessment, see Chapter 4, Figure 4.2.  

 

As described in Chapter 4, the approach is that the MAS observe a student’s 

desired_Concepts, present leafnode prerequisite questions and receive answer 

responses to the leafnodes prerequisite questions. The means, with which, this was 

done was through the CArtAgO artifact.  

Jason AOP is language where beliefs representation and message content are in FOL. 

Given the beliefs in belief base (BB), agents make decisions by selecting the plan 

whose plan context matches the beliefs in their FOL representation. As stated in 

Chapter 3, Jason agent plan structure is of the form   

triggering_event-condition-action.  

 

When the condition part of a plan is satisfied after some percept or accumulated 

messages in beliefs, the triggering_event is adopted and the action(s) in the plan body 

is executed.  

 

7.2 Reactive System 

In Chapter 5, the Pre-assessment System was described as a system of five agents that 

is holistically a reactive system. This is because each agent reacts to perceived input(s) 

at appropriate trigerring of an event. The agent agInterface can be referred to as the 

first reactive layer as it is the agent that observes the CArtAgo artifact. This is followed 

by others i.e. agents agModelling, agSupport, and agMaterial that takes individual 

decisions based on their individual plans and expected percepts. The agent 
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agModel(student) is the only agent whose function is to receive and keep persistent 

beliefs of all activities. 

 

7.2.1 Agent Long term and Short term memory 

Agents can possess both long-term and short-term memory. While the modelled facts 

that are initialised as beliefs in the agent is long-term memory, the updated knowledge 

as a result of inter-agent messages, can be said to be the short-term memory. As a 

reactive system, the short-term beliefs is the knowledge from which the agent 

recognises, matches and unifies with the long-term beliefs to perform a designated 

task. In convention as with volatile storage, agents' short-term beliefs are ephemeral 

or short-lived: They are lost when the MAS system is Stopped. The long-term belief 

is the agent permanent store that keeps updated beliefs, this beliefs or text knowledge 

base uses the TextPersistentBB class to keep track of all student activities during pre-

assessment.  

 

7.3 Agents Communication in The Pre-assessment System  

In the Pre-assessment System, the essence of communication is for the agents to co-

operate in the process of identifying gaps in students’ learning and to assist in filling 

the gaps. In communication, there is a sender and a hearer, and the content of 

communication i.e. the message (Searle, 1969, Wooldridge, 2002, Labrou & Finin, 

1998). Starting from the student user of the system down to all the agents of the Pre-

assessment System, communication precedes reaction. Within the SQL Pre-

assessment MAS, agents have engaged in communicative actions in order to share or 

transfer knowledge. This is carried out through speech acts performatives (Searle, 

1969) in agent plans. Examples of the performatives in Jason AOP for developing the 

Pre-assessment System are tell, achieve, and askOne. 

 

In the Pre-assessment System, agents communicate both unary literal in the form of 

p(a), such as  

    value(V) 

    desired_Concept(V)  

where V is the percept from environment, and also with binary literals p(a, b), such as 
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    hasPrerequisite(X, insert) 

where agents mapped variables in their predicate statement using the predicate and a 

variable in a unary representation e.g. desired_Concept(V), or a predicate and one 

named literal in the statement e.g. hasPrerequisite(X, insert)  in a binary 

representation. Based on the problem being addressed in this research that comprises 

the strategy of learning and understanding some lower concepts of a SQL domain 

before progressing to a higher class concept. The hasPrerequisite and hasKB are the 

predicates used for the set of semantic communications of facts between agents. While 

the hasPrerequisite is a link to individuals from a “domain” to a “range” (Horridge et 

al. 2004), the isPrerequisiteOf is the inverse relation from a range to a domain 

individual.  As part of, for example, the agent agMaterial action, when the 

representation hasPrerequisite(high_concept, low_concept)  is received, the agent 

uses the inverse relation ?isPrerequisiteOf(low_concept, high_concept)  as a test goal 

to verify the relationship between the given concepts, see Chapter 5, section 5.2. 

Thereafter to the ?hasContentX (a, a_URL) test goal (where X represents one of Text 

or Video) that ascertains the existence of a belief fact before the release of a learning 

material URL. 

  

In the work of Klapiscak & Bordini (2009) every property or predicate relation 

between concepts in their FOL representation were not shared among the ontological 

statements. So the predicates were used in the unification of semantic literal tracking 

and mappings of atomic facts or literals in the ontology. But our approach to ontology 

concept matching or unification is quite different from this work. This is because the 

predicates are shared amongst many relations. That is, the predicates are related to 

several unary or binary literals, respectively. For example, the desired_Concept 

predicate is in multiple concept relations, and in Prolog-like syntax are: 

 

desired_Concept(delete)  

desired_Concept(insert) 

desired_Concept(select) 

 

or the hasPrerequisite predicate in their binary relations  
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hasPrerequisite(delete, insert) 

hasPrerequisite(insert, select) 

 

that are similar to Gelfond (2008) and Zini & Sterling (1999) KB facts collection for 

a system. Thus, to ensure the right search and match of predicate statement in the 

collection of beliefs (i.e. the updated beliefs and initial beliefs representation) within a 

hearer agent BB, one of the literals, that is, either the subject or object as in 

predicate(subject, object) had their named-literal specified. For example 

   hasPrerequisite(X, insert) 

which made ontological representation and communication more explicit for agents. 

This also facilitated the execution of the right plans, which includes the appropriate 

achievement goals, and other actions in the plan body as well as right replies to a 

sender agent where replies are required from the use of the askOne performatives. In 

contrast to the foregoing, it was realised that where two variables X and Y are given 

such as in   

   hasPrerequisite(X, Y) 

binary relation, the hearer agents executed the wrong plan: because of the several 

relations in the ontology with the same predicate hasPrerequisite and same subject X. 

 

Consider the following representation and its inter-agent communication. In a situation 

where both atomic literals are named in the relation  

 

.send(agMaterial, askOne, hasPrerequisite(insert, delete)) 

 

the hearer agent (e.g. agMaterial) clearly distinguished the fact in its beliefs and made 

the appropriate and required reply. But the following message  

 

.send(agMaterial, askOne, hasPrerequisite(X, Y)) . .(i) 

 

gave room for ambiguity as the agent could not exactly map X to insert and Y to delete 

for instance, due to multiple representation with the same predicate 

hasPrerequisite. Thus, for the agent to unify its relational representations 



Chapter 7 Discussions 

 

158 
 

appropriately during communication, the binary relation such as in (i) above was then 

structured to have at least a named-literal or concept such as in (ii) below: 

 

.send(agMaterial, askOne, hasPrerequisite(X, delete)) . (ii) 

 

where variable X is the desired concept of the student. The emphasis is that with at 

least one named literal in a binary relation, the actual fact needed to be unified were 

matched by the agent and the appropriate plan also selected for execution.  The binary 

relations such as explained in (ii) was then adopted for all message communication to 

the agent agMaterial. For example, see the message with the achieve performative in 

(iii) below: 

 

.send(agMaterial, achieve, hasPrerequisite(delete, Y))..(iii) 

 

in which Y is an atomic variable that are instantiated by the agent easily without 

confusion about the appropriate plan. It is of importance to state that, on receipt of the 

message (ii), the hearer agent agMaterial initiates a reply message back to the sender 

agent. This reply, updated and created additional fact to the beliefs of the sender agent 

thus causing changes to the sender agent’s mental state.  The semantic operability of 

the achieve performative as given in message (iii) does not form a belief addition to 

the hearer’s beliefs.  

 

Communication in a MAS can be Assertive, Directive, commissive or Declarative 

(Searle, 1969). The achieve performative is thus a directive (Searle, 1969) that gives a 

command to the hearer agent. At the message reception, the hearer agent adopts this 

performative message as a goal to execute—having got the plan to execute it.  

Effective communication is bidirectional—between two entities that are either similar 

or dissimilar. In a MAS, communication is established when the message content of 

the sender is understood and utilised by the hearer, see Chapter 3. Some messages 

form belief addition, and some do not. This is dependent on the performative acts.  

 



Chapter 7 Discussions 

 

159 
 

7.4 Agent agInterface: The Interface Agent 

The process of communication in the MAS begins at the CArtAgO artifact when the 

agent agInterface observes percepts. A system that observes percepts or that takes 

inputs must have a reactive layer. The agent agInterface is the first reactive agent to 

the external world (of the user). In the process of fulfilling its functions within the 

MAS, the actions undertaken by the agent agInterface is described as both Assertive 

and Directive (Searle, 1969). The agent agInterface exercises its Assertive property, 

which is to inform, by observing and telling other agent in the MAS about the state of 

the environment—the partially observable environment (Wang, 2014): a non-natural 

environment since agents are not directly situated in the student. From Assertive, a 

Declarative act which is bringing changes by utterances is performed. This is 

actualised by belief change in the world (other agents) due to their belief updates from 

percept communication.  

 

7.4.1 Percept Observation 

Using the Pre and Post condition (Labrou & Finin, 1998), the task of observing by the 

agent agInterface is outlined as: 

 

Pre: value(V)[source(percept)]  //environment percept 

Post: send observed value(V) percept 

 

The Pre condition is the fact that must exist prior to the act of utterance. This is the 

percept obtained by the agent. The value predicate in the value(V) is the observation 

property configured in the CArtAgO environment (Ricci, Piunti & Viroli, 2011, see 

Figure. 5.16). The Post is the fact established after the act (utterance) is performed. 

This is an action performed in the plan body of the agent. Going by the nature of the 

pre-assessment MAS application that is meant to support teaching and learning, the 

use of the single predicate value as in 

     Value(V) 

by the agent agInterface in the collection of percepts has been applied to all percepts. 

This includes the desired concepts and all SQL sentences (i.e. correct and incorrect 

answer queries) from students.  
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For example, consider the DELETE  concept is the chosen desired_Concept of a 

student that was submitted and perceived by the agent. From amongst the altenatives 

of desired_Concepts (Fig.7.1 below) represented in FOL in the plan context (i.e. pre-

condition), the value(“DELETE ”) satisfied one of the specified conditions for the 

agent agInterface to adopt the plan. The adoption +value(“DELETE ”) of this plan, 

triggers the execution of the plan body and the content is communicated to the named 

agent agSupport. 

 

 

Fig.7. 1: List of desired SQL concepts contained in a plan context and a tell Performative as means of 
Communication. 
 
 
This percept in the predicate value(V) is communicated to the agent agSupport—

the pre-assessment agent, and received in its FOL logic form with the source as 

annotation  

  value(“DELETE”)[source(agInterface)]. 
 

In Figure 7.2 is the plan that receives students’ SQL query answers. For students to 

learn SQL query construct professionally, assessment should be open-ended, not in 

multiple-choice alternatives. Thus the expected SQL answer queries to the System are 

open-ended. While the correct answers to SQL questions can be predetermined to 

compare with students’ correct answer, the incorrect answers of students cannot be 

predetermined as there are bound to be varying answers from students to the same 

questions which signals a gap in learning. To gauge the level of skills and 

competencies, the queries expected in the system are made open-ended. But with one 

 // agent agInterface perceive student's desired concept via percept 

 

+value(V)[source(percept)] : value("SELECT") | value("INSERT") | 

value("DELETE") | value("UPDATE") | value("JOIN") | value("UNION") 

<-.println("The topic you have entered to learn is: ", V); 

  .send(agSupport, tell, value(V)); 

  .println(""). 
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condition that the values submitted to the system must not be empty by the use of a 

negation not value(“”).  

 

 

Fig.7. 2: Plan for Perceiving the SQL Answer Queries from the student environment. 

 

As agents communicate messages, their belief states are updated leading to 

experiential knowledge increase.  From amongst the updated knowledge, a receiver 

agent becomes committed—a commissive act—to execute intentions which are 

contained in its plans. The plan which is executed is determined by the specified 

context in the plans. 

 

7.5 Agent agSupport: The Pre-assessment Agent  

This is the agent responsible for the executive functions of the pre-assessment process. 

The agent agSupport is the agent in the MAS that interrogates students’ learning and 

the agent with most number of communications, see Chapter 4, Figure 4.7 for the 

System Overview Diagram.  

At the observation of value(V) by the agent agInterface, if the content of the variable 

V that is communicated to the agent agSupport is a desired_Concept; the variable V 

is substituted for the variable in the predicate statement desired_Concept(V) in the 

agent plan (Fig. 7.3) that is contained in the.send() statement to the agModel, and 

agModelling to start the process of classification. After testing students, agSupport 

communicates the decision statement reached in every plan to the agent agModelling 

(classifier) that applies the principle of learning by being told to classify students.  

From Labrou & Finin (1998), the following are the Pre that describes the FOL data 

structure and the necessary beliefs that must hold before the agent agSupport proceeds 

with the Post conditions: 

 // agent agInterface perceive student's answer via percept 

 

+value(V)[source(percept)] : not value("") 

<-.println("The answer you have provided is: ", V); 

  .println(""); 

  .send(agSupport, tell, value(V)); 

  .wait(600000). 
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Pre: quizOfLeafnodes(X)[source(self)]  //B 

Pre: value(V)[source(sender)]  //percept 

Post: Adopt a desired_Concept in the predicate value(V) [source(sender)]   

Post: inter-communicate the desired_Concept 

Post: adopt an achievement goal in a plan to retrieve quiz from beliefs and display  

Post: adopt a SQL query answer in the predicate value(V) [source(sender)]   

Post: check whether SQL query answers in predicate value(V)[source(sender)]   

Post: [passed or failed]  decision 

Post: send a passed or failed predicate message 

 

The representation 

 

Pre: quizOfLeafnodes(X)[source(self)] 

 

that is annotated with [source(self)] (see Chapter 3, section 3.12.1) are a 

collection of initial knowledge of questions from which students are pre-assessed by 

the agent.  Jason agent knowledge can be of source(self), source(percept), 

or source(sender) (Bordini, Hubner & Wooldridge, 2007). The Post are the 

actions undertaken by the agent as given. Aside these, some other Post condition 

actions are the concatenation of date i.e. date(YY, MM, DD) and time i.e. 

time(HH, NN, SS) functions to all the percepts received before their 

communication to other agents. The .concat() is a Jason internal action that co-

joins strings in a specified variable.  

 

7.5.1 The Agent Pre-assessment Process 

The agent agSupport receives the concept value(“DELETE”)[source(agInterface)]  

communicated by source: [source(agInterface)]. The agent agSupport has been 

initialised with the beliefs of prerequisite questions as knowledge in unary predicate, 

as shown with the Pre condition, from where it can fetch or instantiate the required 

facts during pre-assessments sessions. Based on the current knowledge state of the 

agent e.g. +value(“DELETE”) percept, the perceived communicative message triggers 

the plan to display the prerequisite questions when the pre-condition is matched. The 
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Figure 7.3 depicts this process including other detailed communication protocol and 

date and time stamping of users’ activities through to the  !achievement goal (or desire 

w.r.t. BDI) 

!quizInsertSelect(InsertSelectQuiz) //D 

 

that the agent wants to realise with a variable InsertSelectQuiz that is matched 

with the unary representation in the agent beliefs when the agent adopts this goal (e.g. 

Fig. 7.6).  

 

Fig.7. 3: Adoption of the DELETE desired Concept. 

 

As the variable name InsertSelectQuiz indicates, the first leaf-node question 

corresponding to the InsertSelect of the immediate prerequisite class to Delete 

is released, see Figure 5.3. The unit of lessons or learning are the leafnodes that 

contains the SQL queries. Hence, the programming of !achievement goals of the agent 

agSupport to the leafnodes of the SQL ontology structure.  

On receipt of the SQL query answer i.e. percept to the first prerequisite question from 

the agent agInterface, the agent agSupport selects the relevant plan to assess the 

student’s SQL query skill using the  passed or failed boolean predicate states given in 

the agent respective plans. For a given leafnode, each plan compares all SQL query 

answers. While the plan for the passed predicate decision compares student correct 

 @plan15_Delete_desiredConcept 

+value(V)[source(agInterface)] : value(V) == value("DELETE")  

<-.date(YY, MM, DD); .time(HH, NN, SS); 

  .send(agModelling, tell, desired_Concept(V)); 

  .send(student, tell, desired_Concept(V)); 

.concat(V, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", 

NN, "-", SS, ")", MsgD); 

  .send(student, tell, desired_Concept(MsgD)); //date and time appended 

.send(agMaterial, askOne, hasPrerequisite(V, insert));//Asking if 

relation exists in ontology 

  .println(V, " has prerequisite INSERT"); 

  -value(V); //belief drop 

  .println("Question on INSERT SELECT:"); 

  !quizInsertSelect(InsertSelectQuiz); 

  .println. 
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answer with the use of equality == operator; the plan for the failed predicate decision 

compares the incorrect SQL answer using the different \== Prolog operator, (as 

described in Chapter 3). This type of comparison operators also applies to Jason AOP. 

 With the \== operator, the agent returns true for all its perceived inputs. The 

implication of this is that the agent was unable to navigate or move from one incorrect 

SQL answer plan to another. Now to aid the agent navigation from plan to plan 

selection and execution, Jason FOL iterative statements were introduced as part of the 

constraints in the agent plan context.  The Figure 7.4 and Figure 7.5 code snippets are 

two examples of plans: one each for a correct and incorrect SQL query answer, 

respectively; with respect to the Insert_Select.  Notice the !achievement goal  

 

 !quizInsertValue(InsertValueQuiz) //D  

 

at the end of the plans in the Figures 7.4 and 7.5.  

 

 

Fig.7. 4: Plan for a Passed Pre-assessment of InsertSelect 

 

 

 

 @plan14_InsertSelect_correct 

// Plan for correct answer to INSERT with SELECT of the DELETE desired_Concept. 

 

+value(V)[source(agInterface)] : value(V) == value("INSERT INTO 

TENNIS_RECR_PLAYERS (PLAYERNO, NAME, TOWN, PHONENO) SELECT PLAYERNO, NAME, TOWN, 

PHONENO FROM TENNIS_PLAYERS WHERE LEAGUENO IS NULL") & countForDeletePre(0) 

<- .date(YY, MM, DD); .time(HH, NN, SS); 

   .println("Good. Your answer is correct."); 

   ?countForDeletePre(Count); -+countForDeletePre(Count+ 1);  

.concat(V, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN, "-",  

SS, ")", Ris); 

   .send(student, tell, responseToInsertSelect(Ris)); //date and time appended 

   PassedIS = "The student has passed the INSERT with SELECT question."; 

.concat(PassedIS, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN, 

"-", SS, ")", Pis); 

   .send(student, tell, passed(Pis)); 

   .send(agModelling, tell, passed(PassedIS)); 

   .println("Next question on INSERT VALUE:"); .println; 

   !quizInsertValue(InsertValueQuiz); .println. 
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Fig.7. 5: Plan for a Failed Pre-assessment of InsertSelect, and giving agent the subgoal 
!quizInsertValue(InsertValueQuiz) 
 

 
This is the agent sub-goal to be realised and it represents the next prerequisite question 

on the InsertValue (the second leafnode and neighbour to the InsertSelect). 

When achievement goals are adopted e.g. + !quizInsertValue(InsertValue), questions 

are presented to students. The Figure 7.6 shows the adoption of the achievement goal 

that actualises the release of the InsertValue question. As visibly shown in Figure 

7.6, the pre-condition in the agent plan context is a necessary condition that must exist 

in its beliefs for the agent to decide or be committed this intention w.r.t. BDI (see 

Bordini, Hubner & Wooldridge, 2007).  

 

 @plan12_InsertSelect_incorrect 

// INSERT with SELECT question of the DELETE desired_Concept. 

 

+value(V)[source(agInterface)]  : value(V) \== value("INSERT INTO 

TENNIS_RECR_PLAYERS (PLAYERNO, NAME, TOWN, PHONENO) SELECT PLAYERNO, NAME, TOWN, 

PHONENO FROM TENNIS_PLAYERS WHERE LEAGUENO IS NULL") & countForDeletePre(0) & not 

value("UNION")  

& not value("JOIN") & not value("SELECT") & not value("INSERT")  

<- .date(YY, MM, DD); .time(HH, NN, SS); 

   ?countForDeletePre(Count); -+countForDeletePre(Count+ 1); 

.concat(V, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN, "-", SS, 

")", Ris); 

   .send(student, tell, responseToInsertSelect(Ris)); //date and timestamp  

   .println("You have NOT passed the INSERT with SELECT question."); 

   FailedIS = "The student has NOT passed the INSERT with SELECT question."; 

.concat(FailedIS, ", date(",YY,"-", MM,"-", DD, ")", ", ", "time(",HH, "-", NN, 

"-", SS, ")", Fis); 

   .send(student, tell, failed(Fis)); 

   .send(agModelling, tell, failed(FailedIS)); 

   .println("NEXT Question on INSERT VALUE:"); 

   !quizInsertValue(InsertValueQuiz).    
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Fig.7. 6: Adoption of +!quisInsertValue achievement goal, display and communication. 

 

The number of plans for pre-assessment in the agent agSupport has been determined 

by the number of leafnodes considered under a given desired_Concept such that every 

leafnode has two pre-assessment plans: one for a passed pre-assessment and other for 

a failed pre-assessment. In the DL ontology (Chapter 5), the number of leafnode per 

parent class has been defined to have leafnode N ≥ 2 minimum cardinality.   

Also note that in the Figure 7.3 that, the .send() internal action has the tell and 

askOne performatives. These performatives have been used by the agent agSupport 

to communicate knowledge and to make enquiries, respectively. The tell sends 

messages e.g. a student desired_Concept, correct, and incorrect answers; to other 

agents such as the agent agModel (student, or TextPersistent agent). However the 

askOne in  

.send(agMaterial, askOne, hasPrerequisite(V, insert)); 

is a message that requests the receiver agent agMaterial whether the variable V unified 

with a literal in the statement hasPrerequisite(V, insert) in the agent’s ontological 

beliefs.. This is a communication that does not add beliefs to the receiver agent 

agMaterial, but makes the agent agMaterial reply to the content that matched the 

binary representation. The reply to the agent agSupport caused belief addition, and in 

turn was used by the agent to display the information to the student user that  

delete hasPrerequisite insert 

where insert is the prerequisite to be pre-assessed.  

 +!quizInsertValue(InsertValueQuiz) : quizInsertValue(InsertValueQuiz) 

<- .date(YY, MM, DD); .time(HH, NN, SS); 

   .println("Question on INSERT VALUE:"); 

   .println(InsertValueQuiz); 

.concat(InsertValueQuiz, ", date(",YY,"-", MM,"-", DD, ")", ", ", 

"time(",HH, "-", NN, "-", SS, ")", Qiv); 

  .send(student, tell, quizInsertValue(Qiv));  

  .wait(6000000). 
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Jason is an extension of the AgentSpeak language which is BDI programming 

language (Bordini, Hubner & Wooldridge, 2007; Bădică et al. 2011). As noticed in the 

plan context of Figures 7.5 for example, the use of constraints for controlling the 

selection of plans in agent programs is not uncommon. Padgham & Singh (2013) state 

that to make sure that a preferred plan is selected by an agent, most BDI programs are 

often filled with constraints that narrows down the selection of a plan. This accounts 

for the number of constraints in the agents agSupport and agModelling in this thesis. 

As stated earlier in Chapter 3, plans are a list of courses of action that are executed in 

turns. In the Pre-assessment System, just as one agent plan triggers another agent plan 

through inter-message communication, so, within the agent agSupport, one plan has 

triggered another plan through the use of achievement goals adoption. This is done 

until the agent navigates through the questions corresponding to all the leafnodes 

considered under a given desired concept, (as first described in Figures 4.21 and 4.22).  

7.6 Strategies of the Pre-assessment System Development 

As earlier mentioned, leafnodes are the concepts which students are pre-assessed on, 

not the parent class concepts. Pre-assessment on a leafnode is either a passed or failed 

outcome; such as in  

 

IF  (answer is correct)   

THEN  (actions for correct answer)  

 !acheivement goal 

IF  (answer is incorrect)   

   THEN (actions for incorrect answer) 

    !acheivement goal  

where the !acheivement goal of the pair of the correct and incorrect answers to a given 

leafnode is towards this same leafnode. 

 

7.6.1 Pre-assessment By Immediate Prerequisite Class Program 
Development 

Given the regular ontology (Figure 5.3), in the agent agSupport program, there are two 

pre-assessment plans per leafnode, and one agent plan each per desired_Concept that 
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begins the pre-assessment process. Then it means that, in the ontology, each parent 

class and its two leafnodes has a sub-total of 5 plans. In the ontology, the Union class 

concept has no super class.  Therefore, as shown in the agent plans, pre-assessment 

begins with the leafnodes of the immediate lower class i.e. the Join. Underneath the 

Union class, there are 5 parent classes which are the Join, Update, Delete, 

Insert and Select where each parent class and their leafnodes have 5 plans, 

respectively. Therefore, the total number of pre-assessment plans in the agent 

agSupport amounts to 25 + 1 = 26 plans, where 1 is the plan that represents the lowest 

class concept that has no prerequisite as symbolised with the letter A in the Pre-

Assessment Mechanism, Figure 4.18. This excludes any plan for the leafnodes 

UnionAll and UnionDistinct because the parent class has no superclass.  

 

 Iterative Control Statement 

This section describes the iteration that has been used to enable the agent agSupport 

to navigate between its own plans. This began by first initialising the iteration 

statement to zero in the agent agSupport beliefs i.e. testCount(0) (Fig. 7.7). For 

the ontology of equal leafnodes, the same predicate (also known as functor) 

“testCount()” was applied to all iterative control statements in agent agSupport 

pre-assessment plans in the strategy of Pre-assessment By Immediate Prerequisite 

Class. 

 
Fig.7. 7: Initialising an iteration belief. 

 

 

Fig.7. 8: Testing and updating the iteration in a plan body. 

 

 //agent agSupport in project preassessment.mas2j 

 

/* initial belief and facts */ 

testCount(0). 

 ?testCount(Count); 
-+testCount(Count + 1); 
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Because the ontology being considered is a regular ontology of two leafnodes per 

parent class, the iteration is also equal to 2, with 1 iteration e.g. testCount(1) 

being shared by the plans of both a correct SQL query answer and incorrect SQLquery 

answer that corresponds to a leafnode concept. In that light, the execution of the 

iteration is thus dependent on either of the answers that is entered by a student. Recall 

that the number of leafnodes determines the Boolean parameter [P or F] combinations 

and number of classification rules, see Chapter 4, section 4.8 and 4.9. Thus, based on 

a regular ontology of 2 leafnodes, a total of four possible classification categories per 

parent class was drawn for the agent agModelling. On the receipt of answer percept 

and execution of a plan by the agent agSupport, the Jason iterative statement is updated 

as shown in Figure 7.8. The decision tree in Figure 7.9 diagrammatically presents how 

students are classified into one of the following categories: <PP>, <PF>, <FP> or 

<FF> given, for instance, the DELETE concept.  

 

 

Fig.7. 9: Classified Decision Tree Flow for DELETE Pre-assessment 

 

7.6.2 Pre-assessment By Multiple Prerequisite Classes Program 
Development 

The strategy of Pre-assessment By Multiple Prerequisite Classes is that in which 

additional leafnodes of two more prerequisite classes underneath a given 

desired_Concept is considered for pre-assessment. This strategy involves the 
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navigation of agent plans and its achievement goals from one plan to another in the 

order of SQL learning concepts in Figure 5.1 and also across multiple classes. To 

demonstrate the multiple prerequisite assessment and classification process, the Figure 

5.4 which is a non-regular ontology has been considered for the application of this 

strategy. The ontology model is non-regular because the number of leafnodes across 

its parent class nodes are not equal in number. To be precise, the Select class node 

has leafnodes N = 4 as against Join that has N = 3, and others have N = 2. The 

TABLE 7.1 presents an order of multiple class pre-assessment from a given desired 

class concept, through its prerequisites classes, down to all leafnodes N. 

 

TABLE 7. 1: DESIRED_CONCEPT AND ORDER OF MULTIPLE PREREQUISITES CLASS 
FOR PRE-ASSESSMENTS BASED ON FIGURE 5.4 

Desired_Concept Prerequisite classes Prerequisite 
leafnodes 

No. of leafnodes N 

Select No prerequisite Nil Nil 

Insert ƎhasPrerequisite.{select} selectOrderBy, 

selectDistinct, 

selectWhere,  

selectAll 

 

4 

Delete ƎhasPrerequisite.{insert, 

select} 

insertSelect, 

insertValue, 

selectOrderBy, 

selectDistinct, 

selectWhere, 

selectAll 

 

 

6 

Update ƎhasPrerequisite.{delete, 

insert, select} 

deleteSelect, 

deleteWhere, 

insertSelect, 

insertValue, 

selectOrderBy, 

selectDistinct, 

selectWhere, 

selectAll 

 

 

8 

Join ƎhasPrerequisite.{update, 

delete, insert, select} 

updateSelect, 

updateWhere, 

deleteSelect, 

deleteWhere, 
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insertSelect, 

insertValue, 

selectOrderBy, 

selectDistinct, 

selectWhere,  

selectAll 

10 

Union ƎhasPrerequisite.{join, 

update, insert, select } 

selfJoin, 

fullOuterJoin, 

innerJoin, 

updateSelect, 

updateWhere, 

deleteSelect, 

deleteWhere, 

insertSelect, 

insertValue, 

selectOrderBy, 

selectDistinct, 

selectWhere,  

selectAll 

 

 

 

 

 

 

12 

Desired_Concept Prerequisite classes Prerequisite 
leafnodes 

No. of leafnodes N 

 
For example, on the Union desired_Concept with the leafnodes (or units of lessons) 

as the UnionAll and UnionDistinct that a student intends to learn; the student 

would need to be pre-assessed on all prerequisite leafnodes underneath the Union as 

shown in the TABLE 7.1. This type of arrangement is at variance with the educational 

principle of Chunking (Casteel, 1988; Anderson, 2008) in which the presentation of 

classified learning materials is prescribed in “smaller quantities” for students to 

succeed.  This theory is required in the design of a formative assessment system for 

SQL: a subject area that has been adjudged as challenging and difficult to learn 

(Mitrovic, 1998; Prior, 2003).  Thus the Pre-assessment MAS is a formative 

assessment system that has engaged the principle of Chunking in its design to facilitate 

effective learning in students. Based on the background literature on the difficulty 

experienced by students in SQL, and the results obtained so far from the Pre-
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assessment System evaluation, managing this units of learning in smaller quantities 

would enable students to be more successful in their learning of SQL.  

 

To demonstrate the strategy of Pre-assessment By Multiple Prerequisite across parent 

classes with respect to the Chunking educational principle of learning, the Figure 5.4 

was remodelled into Figure 7.10. The following illustration 1, 2, and 3 presents this 

strategy over a non-regular ontology in the pre-assessment process. In the Figures 7.10 

- 7.13, the red arrows indicate the link between two classes, and the black arrows, the 

link between a class and its subclasses. 
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Fig.7. 10: A non-regular ontology tree. 
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 Illustration 1 

As already mentioned, Jason AOP is language that uses Prolog-like syntax. Prolog is 

a FOL language for demystifying complex DL formula (Almendros-Jemenez, 2011) 

for separating assertions from DL defined concepts. From the R(b, a) or p(a, b) 

binary expression, the Join concept and its relationships with other classes (Fig. 7.11) 

considered for multiple prerequisites are stated in FOL to produce some initial belief 

(see TABLE 7.2) for the pre-assessment MAS.  

 

In the Figure 7.11, Join is a main topic (that represents a desired_Concept) with 

SelfJoin, FullOuterJoin and InnerJoin as its unit of lessons (i.e. the 

leafnodes). Under Join are multiple prerequisite parent classes C that comprises the 

Update and Delete concepts, both with a total number of leafnode N =  4; namely:  

UpdateSelect, UpdateWhere, DeleteSelect and DeleteWhere. In 

the TABLE 7.2 we show the relationship between these classes and their leafnode 

concepts. In the TABLE are agent initial beliefs of the named concepts (as represented 

in the system), agent achievement goals and the pre-assessment process for the Join 

learning target. The achievement goals e.g. !quizUpdateSelect are the goals 

given to the agent to quiz a student. From plan to plan, they serve as links that connects 

the ontological nodes in a tree for pre-assessments.  Like in Prolog programs, 

navigation between plans in Jason ends with full stops “.”, which implies the logical 

OR between plans. Also, inside agent plans are statements that breaks with semi colon 

“;” that implies the logical AND.  

 

 

Fig.7. 11: Semantic relations of a total of 4 prerequisite leafnode of two prerequisites parent classes 
under Join.  
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TABLE 7. 2: THE JOIN PRE-ASSESSMENT PROCESS ILLUSTRATION 

Initial ontology belief state Pre-assessment 
process:  
IF…THEN  

Agent achievement goal 

hasPre(join, update) 

hasKB(update, pdateSelect) 

hasKB(update, pdateWhere) 

hasPre(update, delete) 

hasKB(delete, deleteSelect) 

hasKB(delete, deleteWhere) 

IF  Join 

    THEN  updateSelect 

                updateWhere 

                 

     deleteSelect 

                deleteWhere 

 

 

!quizUpdateSelect 

!quizUpdateWhere 

 

!quizDeleteSelect 

!quizDeleteWhere 

 

 

 

 Illustration 2 

In the Figure 7.12 is the desired_Concept Insert with InsertSelect and 

InsertValue as its unit of lessons (leafnodes). But under Insert is one 

prerequisite Select with leafnodes N = 4, namely: SelectOrderBy, 

SelectDistinct, SelectWhere, and SelectAll that also represents the 

Select unit of lessons. In TABLE 7.3 are agent initial beliefs, agent achievement 

goals and the pre-assessment process when the Insert is a student’s target of 

learning. 

 

 

Fig.7. 12: Semantic relations of a total of 4 prerequisites leafnode for pre-assessment under the 
Insert. 
         

 



Chapter 7 Discussions 

 

176 
 

 

 
TABLE 7. 3: THE INSERT PRE-ASSESSMENT PROCESS ILLUSTRATION 

Initial ontology belief state Pre-assessment process: 
IF…THEN 

Agent achievement goal 

hasPre(insert, select) 

hasKB(select, selectOrderBy) 

hasKB(select, selectDistinct) 

hasPre(select, selectWhere) 

hasKB(select, selectAll) 

 

IF  insert 

    THEN  selectOrderBy  

                selectDistinct 

                selectWhere 

                selectAll 

 

!quizSelectOrderBy 

!quizSelectDistinct 

!quizSelectWhere 

!quizSelectAll 

 

 

 Illustration 3 

Pre-assessment based on UNION as desired_Concept in which its unit of lessons 

(leafnodes) are UnionAll and UnionDistinct is over the instances of the 

Join prerequisite that has prerequisite leafnode N =  3, namely: SelfJoin, 

FullOuterJoin and InnerJoin (Fig. 7.13). TABLE 7.4 also illustrates the 

relations between these unit of lessons and the process of agent goal achievement. 

 

 

 

Fig.7. 13: Semantic relations of a 3 prerequisite leafnodes under the Union desired_Concept. 
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TABLE 7. 4: THE UNION PRE-ASSESSMENT PROCESS ILLUSTRATION 

Initial ontology belief 

state 

Pre-assessment 
process:  
IF…THEN 

Agent achievement goal 

hasPre(union, join) 

hasPre(join, selfJoin) 

hasKB(join, fullOuterJoin) 

hasKB(join, innerJoin) 

IF  union 

    THEN  selfJoin 

                fullOuterJoin  

                InnerJoin      

 

!quizSelfJoin 

!quizFullOuterJoin 

!quizInnerJoin 

 

 

By analogy the arrangement of plans for both the Pre-assessment By Multiple 

Prerequisite Classes strategy and that of the Pre-assessment By Immediate 

Prerequisite Class strategy in the agent agSupport follows the same procedure. This 

is shown in the  pseudo-algorithm in Figure 7. 14. The Multiple Prerequisite Classes 

strategy involves the process of given agent !achievemtn goals to navigate more plans 

to cover additional prerequisite leafnodes as shown in the Illustrations 1, 2 & 3 based 

on Figure 7.10 non-regular ontology. As a result of the variation in the leafnodes, plans 

for the respective desired_Concept class were programmed to use a different functor 

in their iterative statement: one per parent class, where   

 Each iterative statement is initialised to 0, and begins at the first plan that 

corresponds the (passed or failed) answers of first leafnode prerequisite to the 

desired_Concept;  

 A correct and incorrect plan equally shared one iteration; and 

 The iterations as constraints in a plan content and pre-conditions. 

 

The iterative statements in Figure 7.15 are the initialised iterations for the answers of 

the prerequisite plan for the Union, Join, Update, Delete, and Insert 

desired_Concepts, respectively. The iterations are aids for the agent to navigate down 

its plan. This was introduced during development, because the agent would 

continuously execute only the first plan of the plans corresponding to the incorrect 

SQL query answers. This approach provided a solution.  
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Fig.7. 15: Initialisation of iterations as beliefs in agent agSupport 

 /* initial belief and facts */ 

countForInsertPre(0). 

countForDeletePre(0). 

countForUpdatePre(0). 

countForJoinPre(0). 

countForUnionPre(0). 

 

 

Pseudocode of pre-assessment and interaction in the multiagent system 

  

1. initial beliefs: predicate(Class, Class) 

2. initial beliefs: predicate(Class, Leafnode) 

3. initial beliefs: predicate(Leafnode, URL) 

4. initial beliefs: quiz(PrerequisiteLeafnode) 

5. Given a desired concept that has N leafnodes prerequisite  

6. IF 

7.    Percept ← desiredConcept 
8. THEN 

9.    .send(receiver, tell, desiredConcept) 

10.    fetch the next quiz(Prerequisite_Leafnode) 
11.    .send(receiver, tell, quiz(Prerequisite_Leafnode) 
12.    output quiz(Prerequisite_Leafnode) 
13.    Percept ← answer(X) 
14.    IF 
15.       answer(X) == answer(Prerequisite_Leafnode) 
16.    THEN 
17.       passed(Prerequisite_Leafnode) decision 
18.       .send(receiver, tell, passed(Prerequisite_Leafnode) 
19.    IF  
20.        answer(X) \== answer(Prerequisite_Leafnode) 
21.    THEN 
22.        failed(Prerequisite_Leafnode) decision 
23.       .send(receiver, tell, failed(Prerequisite_Leafnode) 
24. IF 
25.    N number of leafnodes have been pre-assessed on 
26. THEN 
27.    .send(receiver, achieve, recommendMaterial) 
28. Else  
29.    repeat 10 to 27 

 

Fig.7. 14: Pseudo-algorithm of the pre-assessment process that depends on the number of leafnodes N 
considered under a desired_Concept 
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7.6.3 Open_Ended Answers Assessment 

Programming a MAS for the recognition of negative facts (i.e. incorrect answers) can 

pose some difficulty for agent plan selection and execution of goals when the expected 

inputs are limitless in scope, unbounded or open-ended texts. It is quite different when 

it is of positive facts i.e. the correct answers.  

With positive facts, the expected input answers were represented in the agent such that 

when the perceived percept was matched in a plan, relevant plans were selected and 

actions in the body of the plan executed. This is because positive facts are information 

whose representation are known and can be represented or given to agent for 

comparison with incoming percepts. But negative facts are unknown and as such 

cannot be pre-determined for representation, yet database student needs to program 

SQL like professionals (Prior, 2003). In order for database students (in this study) to 

program like professionals, they needed to code their resultset queries on the Pre-

assessment System. This was aimed at revealing their line of thoughts and unravelling 

the technical difficulty faced in SQL by pointing them to relevant materials, and to 

better inform teaching strategy.  

So, with the open-ended nature of SQL queries, comparisons of perceived incorrect 

SQL answer inputs are assessed with the different \== operator. But this was without 

inconsistency in the agent behaviour at the time of System development. This was 

when an answer input does not match the positive fact or correct answer. The \== 

operator caused previous or existing beliefs to trigger irrelevant plans. To enable the 

agent agSupport to select the plans that uses the \== operator, iterative statements such 

as countForDeletePre(X) (Fig. 7.15) were introduced in the agent plan context.  

This was also coupled with some negated predicate statement such as not 

value(“INSERT”) to block existing or incoming percept from soliciting un-

required plans.  

 

7.7 Agent agModelling: The Task of Classification 

Classification in this thesis is the technique used in categorising students' skill status 

in order to recommend learning materials that meets their learning needs. The task of 

classification is that of the agent agModelling (the classifier). The process of 
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classification starts with the inter-agent communication of the desired_Concept of 

students to this agent, as shown in the Prometheus PDT diagrams in Chapter 4, e.g 

Figure 4.9, and Figure 4.14. This marks the beginning of the search for a student’s 

class for material recommendation that ends with the last of the prerequisite leafnodes 

under a desired_Concept.  

To classify, the agent combines a set of predicate statements such as 

desired_Concept(X), passed(N) and failed(N) to make a decision for the right level of 

skill.  The process of rule formation which was described in Chapter 4 with the use of 

FOL syntax is the conjunction of the desired_Concept(X), passed(N) and failed(N) 

predicate decision messages received by this agent, where N in the FOL formulas 

passed(N) and failed(N) as in  

 

passed(“The student has passed the UPDATE with SELECT question”) 
and  

failed(“The student has NOT passed the DELETE with WHERE 

question”) 
 

are not of the same leafnode in the same agent plan. These messages which are updated 

beliefs are the premise in which the classifier agent matches its plan contexts as well 

as adopts its triggering_event before proceeding to execute the actions in the plan. 

Engaging the use of the Pre and Post conditions, the task of classifying is stated as: 

 

  Pre: desired_Concept(X) [source(sender)] //percept 

Pre: passed(N)[source(sender)] //percept 

Pre: failed(N) [source(sender)] //percept 

Post: Adopt a plan where all Pre are satisfied, and classify 

Post: send an achieve performative message 

 

During the Pre-assessment System evaluation and participants skills' test sessions, 

students’ SQL pre-skills status to a desired_Concept were evaluated, classified, and 

appropriate recommendations made. When a plan context amongst its list of plans is 

satisfied, all that is contained in the plan body are actions of messages conveyed by 

the achieve performative. These actions are executed through the .send() internal 
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action to the agent agMaterial for the release of learning material URL(s). One 

.send() internal action with hasKB predicate represents one material 

recommendation, while that of hasPrerequisite predicate contains a collection of all 

the leafnodes of a desired_Concept, or that of all the failed leafnodes of a prerequisite, 

see Figures 7.16 and 7.17 respectively. Thus, from logic based semantics, for a 4 

leafnodes N underneath a desired_Concept, the classification rule for the Fig. 7.16 can 

be explicitly stated as 

 

desiredConcept(C) N4 N5 N6 N7  

: ƎdesiredConcept(C) ꓥ Ǝpassed(N4) ꓥ Ǝpassed(N5) ꓥ Ǝpassed(N6) ꓥ Ǝpassed(N7)      

=> desiredConcetp(C).{ N1, N2, N3} 

 

where the conclusion N1, N2, and N3 are the prescribed leafnodes of the 

desired_Concept that is recommended for learning for all the passed prerequisites 

leafnodes passed(N4), passed(N5), passed(N6) and passed(N7) in the context or 

condition part of the rule. 

 

 
Fig.7. 16: Two multiple prerequisite classes of 4 leafnodes classification. Agent agModelling sending 
hasPrerequisite predicate message. 
 

 

Similarly, for the Fig. 7.17, the applied logic based classification syntax is   

 

desiredConcept(C) N4 N5 N6 N7  

: ƎdesiredConcept(C) ꓥ Ǝpassed(N4) ꓥ Ǝfailed(N5) ꓥ Ǝfailed(N6) ꓥ Ǝfailed(N7) 

 => failed(N5  ꓥ N6 ꓥ N7) 

 

 /* A classification rule for pre-assessments under the JOIN concept */ 

@joinRule1  

+!recommendMaterial[source(agSupport)] :  desired_Concept("JOIN")[source(agSupport)] 

 & passed("The student has passed the UPDATE with SELECT question.") 

 & passed("The student has passed the UPDATE with WHERE question.") 

 & passed("The student has passed the DELETE with SELECT question.") 

 & passed("The student has passed the DELETE with WHERE question.") 

 <- .send(agMaterial, achieve, hasPrerequisite(join, update)).        
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where N5, N6, N7 are the prescribed and recommended leafnodes of the failed 

prerequisites, namely, failed(N5), failed(N6) and failed(N7) in the context or condition 

part of the rule. Given that context is any information that can be used to characterise 

the situation of an entity: where an entity is a person, place or object (Dey, Abowd & 

Salber. 2001; Verbert et al. 2012).  The stated axioms as implemented are the modelled 

learning paths (Bañeres, 2017) for individual students for a given desired_Concept.  

 

 
Fig.7. 17: Two multiple prerequisite classes of 4 leafnodes classification. Agent agModelling sending 
hasKB predicate message. 
 

During pre-assessment, the number of .send() internal action that is communicated 

to the agent agMaterial is determined by the performance of the student. But the 

number of classification rules and the parameters passed and failed combinations are 

determined by the number of leafnodes under a given desired_Concept programmed 

at design time. The content of the .send() message of this agent agModelling are 

binary relation e.g.  

 

.send(agModelling, achieve, has_KB(X, select_orderby)) 

 

in their FOL representations. These .send() internal action messages ranges from 

1 to 4 action according to the strategies of the Pre-Assessment By Immediate 

Prerequisite Class and the Pre-Assessment By Multiple Prerequisite Classes explained 

earlier. At the end of pre-assessment, the classifier agent classifies students into one of 

the classified categories, namely: 

 

 The desired_Concept when all prerequisites are passed correctly,  

 /* A classification rule for pre-assessments under the JOIN concept */ 

@joinRule4  

+!recommendMaterial[source(agSupport)] :  desired_Concept("JOIN")[source(agSupport)] 

 & passed("The student has passed the UPDATE with SELECT question.") 

 & failed("The student has NOT passed the UPDATE with WHERE question.") 

 & failed("The student has NOT passed the DELETE with SELECT question.") 

 & failed("The student has NOT passed the DELETE with WHERE question.") 

 <- .send(agMaterial, achieve, has_KB(X, update_where)); 

    .send(agMaterial, achieve, has_KB(X, delete_select)); 

    .send(agMaterial, achieve, has_KB(X, delete_where)). 
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 The failed leaf-node when some prerequisite is answered incorrectly, or  

 All  of the failed leaf-nodes when all prerequisites are answered incorrectly  

 

with-respect-to the number of leaf-node N considered under a preferred 

desired_Concept.  

 

7.7.1 Generating Parameter Combination for Classification 

Each leafnode �௜,௝  has two possible boolean states [passed or failed] upon which a 

student is pre-assessed. For a large number of leafnodes, say leafnode N ≥ 4 under a 

desired_Concept, the process of estimating the required number of classification rules 

R has been given in Chapter 4. But the process of generating the rules via parameters 

[passed or failed] combinations for accurate classification for a number of leafnode N 

can also be tedious to derive, see the FOL notation in Chapter 4. Thus to combine the 

[passed or failed] parameters for accurate classification with respect to leafnodes ��, 

the Figure 7.18 presents the algorithm for the classifier agent.  

 

 
  Fig.7. 18: Classification rules generation algorithm 

 

In the algorithm, there is a number of leafnodes N given or considered under a 

desired_Concept. Firstly, the first leafnode is mapped to the two given boolean 

parameters P and F  (i.e. passed and failed): an operation that generates the first two 

rules. Subsequently, to obtain further rule combinations, the outcome of the previous 

mapping is mapped to the outcome of a current mapping to produce the new 

classification rules. This process is graphically shown in Figure 7.19. 

Algorithm for Generating Classification Rules 
 

1. Initialise T =  [P, F]  /** pass or fail boolean parameter */ 
2. 1 ≤  x ≤ k  
3. While x !=  k 
4.            N ← N1, … , Nx +  1   /** number of leafnodes */ 
5.            Initial_Rule =  T * (Nx)  /** leafnode(s) and parameter mapping */ 
6.            Current_Rule ← Current_Rule * Initial_Rule  /** rule formation */ 
7. Output Current_Rule 
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Fig.7. 19: Classification rules formation process 

  

 

The classification rule formation process is found to be suitable for generating the rules 

for the two strategies of pre-assessment, which are: 

 Pre-assessment By Immediate Prerequisite Class, and  

 Pre-assessment By Multiple Prerequisite Classes 

 as outlined in this research. 

 

Given the Figure 7.10, now to estimate the total number of classification rules R for 

the agent agModelling (the classifier) based on the strategy of Pre-assessment by 

Multiple Prerequisite Classes, let us apply the equation as earlier stated in Chapter 4: 

R = 1 + ∑ �=࢏࢑� i��࢐,࢏  

Since, the strategy is for a non-regular ontology, the variable Ci (of the prerequisite 

parent classes to the desired_Concept) takes a unit value i.e. 1. Thus 

 

 for the desired_Concept Union, C = 1 and N = 3  

 for the desired_Concept Join, C = 1 and N = 4 
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therefore, on a vertical traversal 

  R = 1 + [�ଶ,ଶ�ସ + �ଷ,ଷ�ଶ + �ଶ,ଷ�ସ + �ଶ,ସ�ସ + �ଶ,ହ�ଷ] 

R = 1 + (1 * 2 ** 4) + (1 * 2 ** 2) + (1 * 2 ** 4) + (1 * 2 ** 4) + (1 * 2 ** 3)  

R = 1 + 16 + 4 + 16 + 16 + 8 

R = 1 + 60 

R = 61 number of classification rules  

 

This estimate R = 61 is the number of [passed or failed] predicate statement that have 

been combined for the non-regular ontology.  multiple class pre-assessments with 

respect to the number of leafnodes N considered for the system. Given the equation, 

the of classification rules R is determined by the number of leafnodes N underneath 

some desired concepts.  

 

7.8 Agent agModel: The Store Agent 

Updated beliefs are data that are perceived and stored by agents. As mentioned earlier, 

beliefs can be short-term or long-term for storage of percepts or activities in the 

system. While other agents in the MAS has short-term beliefs by reason of the fact that 

perceived percepts are lost when the MAS is stopped, the agent agModel (student)is 

the long-term belief base agent configured at the point of the agents’ creation, see 

Chapter 5, Figure 5.14. This is for the MAS to store all students’ activities which 

comprised the SQL skills data presented in some part of Chapter 6 and Chapter 7.  

 

7.9 Agent agMaterial 

This agent performs the last function of the MAS, which is the release materials for 

students at the end of pre-assessment sessions. As already mentioned, material URLs 

are released after classification by the classifier agent agModelling. Employing the Pre 

and Post conditions (Labrou & Finin, 1998), the following are the Pre and Post 

conditions of this agent:  

 

Pre: hasPrerequisite(x, y)[source(self)]  //B 

Pre: hasKB(y, z)[source(self)]  //B 
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Pre: hasContent(z, url)[source(self)]  //B 

Post: Adopt a plan with hasPrerequisite(x, y)[source(sender)] ,  

                     Or adopt a plan with hasKB(y, z)[source(sender)]  

Post: ?hasContent(z, url) 

Post: release material url 

 

The Pre conditions are the ontological binary relations that are initialised as beliefs B. 

They are the premise in which the classified students’ message content from the 

classifier agent agModelling is matched for a plan(s) to be triggered before the release 

of materials. In the Post conditions are test goals in the form ?hasContent(a, 

url) in the plan body, (Fig. 7.20). Prior to the release of the materials, the test 

goals are used by the agent to query its belief base whether a relation exist that 

contains the URL links for students after a plan is triggered.  From the semantics of 

speech acts (Labrou & Finin, 1998), the completion condition is the effect the learning 

materials will have on students. As asserted in Manouselis et al. (2011), Chapter 2, 

recommended learning is an effort and time taking activity; for students to acquire the 

requisite skills, the Pre-assessment System was programmed to identify relevant skill 

needs of students with support on how to achieve them. 

 

 
Fig.7. 20: Agent agMaterial use of test goal ?hasContent before the retrieval URL materials for 
students. 
 

 //learning material 

 

@inner_joinURL 

+!has_KB(X, inner_join)[source(agModelling)] : true 

    <-.println; 

 .println(" You will learn INNER JOIN query statements.                                                         

 Please use the link for materials:"); 

 ?hasContentText(innerJoin, IJ_textURL)[o(sql)]; //Test goal 

 .println("INNER JOIN query Text Material: "); 

 .println(IJ_textURL); .println. 
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7.10 The Pre-assessment Sessions 

The following section presents and discusses the results gathered from the evaluation 

of the Pre-assessment System. It comprises the analysis of students’ SQL input queries, 

and students’ post-evaluation feedback.   

 

7.11 Analysis of SQL Query Statements at Pre-assessment 

Sessions 

From the inspection of the agent TextPersistent beliefs, the gaps that existed in 

students’ construct of SQL query were identified. In a step-by-step analysis, this 

Section presents students’ interaction with the system starting from the submission of 

their desired_Concept, to the questions they responded to and their SQL query 

statements, and down to the recommendations made. The analysis looked critically at 

two selected Case Studies, and tried to unravel the possible factors that may be 

responsible for the learning gaps. Also discussed is the inherent implications of these 

Cases for the teaching of SQL.  

 

7.11.1 Case Study I: The UPDATE Desired_Concept 

The student learning target was the Update topic as shown in (TABLE 7.5, S/N. 6). 

Thus, 

1. Student’s desired_Concept: UPDATE.  

2. Inter-agent Communication: desired_Concept("update, date(2015-
4-7), time(11-3-17)")[source(agSupport)]. 
 

3. Prerequisite 1: Delete all penalties who live in the same 
town as player 44, but keep the data for player 44 
 

4. Inter-agent Communication: quizDeleteSelect("Delete all 
penalties who live in the same town as player 44, but 
keep the data for player 44., date(2015-4-7), time(11-3-

17)")[source(agSupport)]. 
 

5. Student’s query response: DELETE FROM (SELECT * FROM 
TENNIS_PENALTIES WHERE PLAYERNO = 44 
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6. Inter-agent Communication: responseToDeleteSelect("DELETE FROM 
(SELECT * FROM TENNIS_PENALTIES WHERE PLAYERNO = 44), 

date(2015-4-7), time(11-9-27)")[source(agSupport)]. 
 

7. MAS Feedback: you have NOT Passed the DELETE_SELECT 

8. Inter-agent Communication: failed("The student has NOT passed 
the DELETE with SELECT question.")[source(agSupport)]. 
 

9. Prerequisite 2: Delete all penalties incurred by player 44 in 
1980 

10. Inter-agent Communication: quizDeleteWhere("Delete all 
penalties incurred by player 44 in 1980., date(2015-4-

7), time(11-9-27)")[source(agSupport)]. 
 

11. Student’s query response: DELETE FROM SELECT * FROM 
TENNIS_PENALTIES WHERE PLAYERNO = 44 
 

12. Inter-agent Communication: responseToDeleteWhere("DELETE FROM 
SELECT * FROM TENNIS_PENALTIES WHERE PLAYERNO = 44, 

date(2015-4-7), time(11-9-58)")[source(agSupport)]. 
 

13. MAS Feedback: you have NOT passed the DELETE with WHERE. 

14. Inter-agent Communication: failed("The student has NOT passed 
the DELETE with WHERE question.")[source(agSupport)]. 
 

15. MAS Recommendation: URL recommendation to learn both 
prerequisite concepts in DELETE.  

 

 

7.11.2 Case Study II: The JOIN Desired_Concept 

In this Case Study, the student’s intended learning concept was the Join ( TABLE 

7.5, S/N. 10).  Thus,  

1. Student’s desired_Concept: JOIN.  

2. Inter-agent Communication: desired_Concept("JOIN, date(2015-9-
16), time(11-01-15)")[source(agSupport)]. 
 

3. Prerequisite 1: Set the number of sets won to zero for all 
players resident in Stratford. 
 

4. Inter-agent Communication: quizUpdateSelect("Set the number of 
sets won to zero for all players resident in Stratford., 

date(2015-9-16), time(11-01-15)") [source(agSupport)]. 
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5. Student’s query response: SELECT * FROM TENNIS_MATCHES  

 

6. Inter-agent Communication: responseToUpdateSelect("SELECT * 
FROM TENNIS_MATCHES, date(2015-9-16), time(11-3-16)") 

[source(agSupport)]. 
 

7. MAS Feedback: you have NOT Passed the UPDATE_SELECT. 

 

8. Inter-agent Communication: failed("The student has NOT passed 
the UPDATE with SELECT question.")[source(agSupport)]. 
 

9. Prerequisite 2: Change the value F in the SEX column of the 
PLAYERS table to W (women). 
 

10. Inter-agent Communication: quizUpdateWhere("Change the value F 
in the SEX column of the PLAYERS table to W (women)., 
date(2015-9-16), time(11-3-16)") [source(agSupport)]. 
 

11. Student’s query response: UPDATE SEX FROM P WHERE SEX = 'F' TO 
SEX = 'W' 
 

12. Inter-agent Communication: responseToUpdateWhere("UPDATE SEX 
FROM P WHERE SEX = 'F' TO SEX = 'W' 
 

13. MAS Feedback: you have NOT passed the UPDATE with WHERE. 

 

14. Inter-agent Communication: failed("The student has NOT passed 
the UPDATE with WHERE question.")[source(agSupport)]. 
 

15. MAS Recommendation: URL recommendation to learn both 
prerequisite concepts in UPDATE. 
 

 

TABLE 7. 5: SUMMARY OF CORRECT AND INCORRECT ANSWER RESPONSES 

NB: Passed ≡ 1 and Failed ≡ 0 

S/N Desired 
Concept 

Prerequisite leafnode N & 
Time of Quiz Display  
(HH -MM -SS) 

Time Student 
Responded 
(HH -MM -
SS) 

Time Spent 
on Task 
(HH -MM -
SS) 

Classification 
of Students' 
Skills [0 or 1] 

1.  
 
 
INSERT 

SELECT_WHERE  
12-10-23 

 
12-13-54 
 

 
00-03-31 

 
0 

SELECT_ALL  
12-13-54 

 
12-13-59 

 
00-00-05 

0 



Chapter 7 Discussions 

 

190 
 

   
2.  

 
INSERT 

SELECT_WHERE  
12-14-40 
 

 
12-14-46 
 

 
00-00-06 
 

 
1 

SELECT_ALL  
12-14-46 

 
12-15-30 
 

 
00-00-44 
 

 
1 

3.  
 
DELETE 

INSERT_SELECT 
12-17-38 
 

 
12-22-18 
 

 
00-04-44 
 

 
0 

INSERT_VALUE 
12-22-18 
 

 
12-22-37 
 

 
00-00-19 
 

 
0 

4.  
 
INSERT 

SELECT_WHERE  
12-29-43 
 

 
12-32-04 

 
00-02-21 

 
0 

SELECT_ALL  
12-32-04 
 

 
12-33-06 
 

 
00-01-02 
 

 
0 

5.  
 
UNION 

FULL_OUTER_JOIN 
12-42-14 
 

 
12-59-10 
 

 
00-16-56 
 

0 

INNER_JOIN 
12-59-10 
 

 
13-01-19 
 

 
00-01-29 
 

 
1 

6. UPDATE DELETE_SELECT 
11-08-54 

 
11-09-27 

 
00-00-33 

 
0 

DELETE_WHERE 
11-09-27 

 
11-12-10 

 
00-02-33 

 
0 

7. UPDATE DELETE_SELECT 
11-11-31 

 
11-12-10 

 
00-00-39 

 
0 

DELETE_WHERE 
11-12-10 

 
11-14-14 

 
00-02-24 

 
0 

8. UNION FULL_OUTER JOIN 
11-28-48 

 
11-28-56 

 
00-00-08 
 

 
0 

INNER_JOIN 
11-28-56 

 
11-29-35 

 
00-00-39 
 

 
0 

9. UNION FULL_OUTER_JOIN 
11-29-48 

 
11-31-43 

 
00-01-55 
 

 
0 

INNER_JOIN 
11-31-43 

 
11-34-04 

 
00-02-21 

 
0 

10. JOIN UPDATE_SELECT 
11-01-15 

 
11-03-16 

 
00-03-01 

 
0 

UPDATE_WHERE 
11-03-16 

 
11-05-01 

 
00-01-45 

 
0 

11. INSERT SELECT_WHERE 
11-11-47 

 
11-12-57 

 
00-01-10 

 
1 

SELECT_ALL 
11-12-57 

 
11-13-51 

 
00-00-54 

 
1 
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7.12 Findings from The Pre-assessment Exercise 

From the Case Studies, it is apparent that there are learning gaps in the students’ SQL 

query knowledge which might not have been known to the students themselves. This 

is evident from the fact that they thought they were prepared for the desired_Concept 

they entered to learn. They believed that they could answer the prerequisite questions 

to the(ir) desired_Concepts. These were assessed to have NOT Passed the prerequisites 

in both Case Studies I and II (see lines 7 & 13), respectively. These are irrespective of 

the time spent on tasks or by the number of attempts (e.g. twice) made. In all of the 

pre-assessment cases, the System recommended the learning of the appropriate 

materials according to the performance of each of the student. 

 

7.13 Implications for Teaching 

Programming is not an easy subject to study (Lahtinen, Ala-Mutka & Järvinen, 2005; 

Ala-Mutka, 2004).  Particularly for this study, SQL programming can be very difficult 

because of the activity involved in translating a natural language question into a 

semantically correct SQL expression (Sadiq et al, 2004). Such underlying factors have 

influenced a number of systems research on ways to improving students’ SQL coding 

skills (e.g. Wang & Mitrovic, 2002; Kenny & Pahl, 2005; Sadiq et al, 2004). As given 

in Prior (2003) mapping from a problem statement describing what information is 

required from the database into an appropriate SQL statement is not easy.  

From the analysis of results and findings in students’ SQL query constructs from the 

cases being reviewed in the preceding sections, students may have inherent gaps in 

SQL query constructs from previously learned SQL concepts without realising it. 

Tutors need to understand this: To handle courses with uttermost diligence so as to 

take students through learning with emphasis on the difficult or technical constructs 

(such as the use of operators, SQL query keywords, and subqueries) where 

misconception may arise. 

Considering the Case Study I (Section 7.11.1), the pre-assessment problem that was 

posed to the student was a sub-query problem — a DELETE SELECT (line 3 or 4). 

The student was able to decipher that the problem was a sub-query task but 

encountered difficulty in the process of organising the query statement. From the 

student’s SQL query statement, the main part of the query missed out on:  



Chapter 7 Discussions 

 

192 
 

 

 the table-name,  

 the where clause,  

 the column_name, and  

 the operator.    

 

On the sub-query part, the Select All (“SELECT * …”) query expression was the 

student’s response (line 5) in the case studies, sections 7.111 and 7.11.2 respectively. 

Though on the question (line 3 or 4), there was the term “all penalties”. This does not 

imply all fields in the table. So this may have put the student in a tight situation to infer 

that this meant all the columns or fields in the table. But this only refers to the penalties 

field. Further, on prerequisite 2 (line 9 or 10) where the problem was a Delete 

Where task, the student was aware that this is not a sub-query task. However, the 

query (line 11 or 12) also missed out on the following information:  

 

 table-name, and  

 specified column_name; 

 

instead the (“SELECT *…”) was also used to “select all” the column-names.  

 

In Case Study II (Section 7.11.2), the first pre-assessment task was also a sub-query 

problem (line 3 or 4). Unlike in Case Study I where the student was able to decipher 

that the problem was a subquery problem (even when the system supported some pre-

assessment problems with hints on the type of problem), in this Case Study, the student 

was unable decipher this. The SQL query submitted by the student was as Select 

All (“SELECT * …”) statement (line 5 or 6). Further to the next prerequisite 

assessment (line 9 or 10), the student had difficulty by submitting the UPDATE query 

statement that had a field or column_name before the supposed table_name (which the 

student stated as “P”) and also using the word “TO” in the query (line 11 or 12). Shown 

below is the student’s answer:  
 

UPDATE SEX FROM P WHERE SEX = 'F' TO SEX = 'W' 
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against the correct and expected answer in the System  

  
UPDATE TENNIS_PLAYERS SET SEX = 'W' WHERE SEX = 'F' 

 

As shown above in the student’s query, the statement missed out on the SET keyword 

for the UPDATE query. 

This analysis has revealed in detail the area of difficulties faced by students. It also 

underscores the area in which tutors of SQL can give greater attention. From the Case 

Studies, it could be stressed that some students are yet to have a good grasp of SQL 

query syntax. SQL syntax has a defined format and structure that can be adhered to 

when constructing queries. This format gives the order of precedence of SQL 

keywords, table_names, column_names and their operators in a query statement.    

The Pre-assessment MAS has not only identified gaps in learning but has also 

identified skills gained by student as described by the modelled parameters and the 

logic of classification in Chapter 4. Knowledge gain was identified in some of the pre-

assessment cases based on the regular ontology of 2 leafnodes across all parent class 

nodes (see TABLE 7.5). In one of the data stored, the student’s desired_Concept was 

the INSERT topic. After the pre-assessments on the Select Where and the 

Select All query, the student was adjudged “Passed” and recommended to study 

the INSERT desired topic entered. 

The TABLE 7.5 is a collection of all the data of the activities that took place in the 

System. This include the desired concepts, the time spent on each task, and the class 

of the answers submitted as assessed by the Pre-assessment System.  From the data in 

TABLE 7.5 two cases of recommendation for the desired_Concept occurred in the 

survey (described as positive ability in Chapter 5); one case of a passed pre-assessment 

(described as partial ability); and all others cases of failed pre-assessment, described 

as negative ability. 

 

As defined in the FOL syntax (Chapter 4) during the specification of the classification 

process, every failed concept is recommended for learning via a URL link to the 

relevant material; and for all passed concepts, the student learns his desired concept 

(which are the leafnodes to the class node) from relevant URL links too.  The failed 

concepts are equivalent to the class of 0s and the passed concepts the class of 1s as 
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analysed in TABLE 7.5. From the data, the percentage summary of the Passed 

leafnodes concepts against the Failed leafnode concepts is shown in Figure 7.21. 

 
Fig.7. 21: Percentage of number of passed vs. failed leafnode concepts 

 

 

As stated in Chapter 5, abilities of students can be further classified into: 1) positive 

ability when all SQL answer queries are all passed; 2) partial ability when there is a 

mix of both Passed and failed SQL query constructs; and 3) negative ability when all 

SQL queries are assessed as failed.  The Figure 7. 22 represents the details of these 

abilities.  

 

 
Fig.7. 22: Percentage of students’ abilities. 
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Recall that the Pre-assessment MAS also keep records of time spent on tasks by 

students in its TextPersistent BB agent. These beliefs were examined to understand 

whether time was a factor and had any influence on students’ performances, on each 

pre-assessment task. In the TABLE 7.6 is the boolean values [1 or 0] to visualise the 

classification of pre-assessment outcomes against the time spent on tasks by students 

using linear regression. From the data, students' performances have not been 

influenced by time: the longer time-length spent on tasks did not increased students’ 

chances of remembering or overcoming their difficulties in SQL code constructs. The 

visualisation of the binary classification is given in Fig. 7.23 after the data was split: 

50% training and 50% test, respectively. 

 

TABLE 7. 6: TIME- INDEPENDENT VARIANT STUDENTS’ PERFORMANCE ANALYSIS 

Time spent 
(mm.ss) 

Boolean classification Time spent 
(mm.ss) 

Boolean classification 

3.31 0 2.33 0 
0.05 0 0.39 0 
0.06 1 2.24 0 
0.44 1 0.08 0 
4.44 0 0.39 0 
0.19 0 1.55 0 
2.21 0 2.21 0 
1.02 0 3.01 0 
16.56 0 1.45 0 
1.29 1 1.10 1 
0.33 0 0.54 1 

 

 
Fig.7. 23: Time-Independent Variant Student Performance Regression Analysis based on the data in 
TABLE 7.6. 
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Based on the Figure 7.23 the average time spent on the tasks that were passed and 

those failed are largely between 0 and 5 minutes, with one outlier on the 0 class. One 

of the objectives of this regression analysis was to make predictions, but based on the 

small of amount of data collected, reliable prediction cannot be projected. 

 

Recall that in Chapter 4 it was stated that the passed and failed predicate parameters 

were devised not only for the agent classification of students but to also provide 

increased reinforcements to students during their pre-assessment feedbacks. From the 

experimental survey with students and the observations made during the pre-

assessment sessions, negative reward i.e. a failed feedback does increase 

reinforcement. When some students noticed they had negative feedbacks due to 

incorrect SQL queries, they immediately wanted to have another attempt, to get their 

SQL queries right. Like positive rewards for correct answers, negative rewards for 

incorrect incorrect can instigate reinforcement and did  provide positive 

reinforcements. 

 

7.14 Relevance of Chunking in the Pre-assessment System  

Students learn best by Chunking of unit of lessons (Casteel, 1988; Anderson, 2008). 

From the evidence in the students' skill data and the time lapse spent by some students 

on task, this thesis concurs to the assertion of Prior (2003) that SQL is difficult, and 

not easy to learn. As stated in Sadiq et al. (2004), and as clearly observed, this was 

because of having to translate a natural language problem into the logic of SQL 

queries. Thus, the optimal strategy to organise formative assessment materials for 

students in SQL is by applying the principle of Chunking that will enable students to 

focus more time and attention to the smaller units of the recommended learning 

materials after their pre-assessments. Because organising a very large number of units 

of lessons for pre-assessments can potentially lead to task overload from large amount 

of learning materials being recommended in the event that several pre-assessments are 

failed. From the survey, students stayed on tasks and studied their recommended 

materials, as well as having repeated attempts on already failed attempts.     
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7.15 System’s Post-Evaluation Survey 

The aim of the Pre-assessment System of this study as stated earlier was to identify 

gaps in students’ learning and to devise a strategy through agent classification learning 

on how to assist students in filling the gaps.  From the data presented in Chapter 6, 

Section 6.3 and the analysis of the preceding Sections 7.11 – 7.14, the study has 

revealed that 77.3% of students in the survey have inherent skills gap in their 

construction of SQL queries. In the following Section, the Pre-assessment System 

post-evaluation survey data is presented and discussed. The data covered students’ 

perception of the Pre-assessment System, the pre-assessment sessions, and about 

students previous SQL studies.  A 17 item structured questionnaire was used to collect 

data, including demographic data. 

 

7.15.1 Student Course Distribution Data 

With questions 1 and 2 (Q1 & Q2, see Chapter 6, and Appendix B.B1) course 

distribution and the level of study of the student participants that took part in the 

survery was collected. As shown in the TABLEs 6.2 and 6.3 of Chapter 6, 29% 

represented students in Software Engineering; 43% in BSc Information Tecnology with 

Business Studies; and 14% in MSc Database Professional and Enterprise System 

Professional, respectively. The survey comprised of students from both undergraduate 

and postgraduate studies with 71.4% being  Second Year students; and 14.3%  First 

Year and MSc students, respectively (TABLE 6.4).  

 

7.15.2 User Perception of The Pre-assessment System and Sessions 

Questions 3 – 9 (Q3 -Q9) investigated students’ view about the System’s fitness-for-

purpose and responses were gathered as qualitative data (TABLE 6.5, Chapter 6). 

Question Q3 sought students’ opinion on whether the system was useful. Responses 

showed that 14.3% Strongly Agreed, 71.4% Agreed, while 14.3% were Undecided. In 

Question Q4, it was asked whether the System helped to recall previous SQL learning 

experiences. The responses received are 57.1% Agreed and 42.9% Strongly Agreed.  

Q5 sought to find out whether the system supported their learning of SQL, 28.6% of 

the participants Strongly Agreed, 57.1% Agreed while 14.3% were Undecided. The 
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survey also wanted to know whether the participants were not familiar with SQL. The 

response gathered revealed that participants have studied SQL previously: with 14.3% 

Strongly Agreed,  but 57.1% Disagreed and 28.6% strongly disagreed respectively 

that they are “NOT familiar with SQL”. By implication, 85.7% Agreed and believed 

they were well acquainted with the concept of SQL and database queries. In terms of 

MAS system directing the course of the pre-learning assessment, 85.7% of the 

participants Agreed that they were guided by the system, while 14.3% were 

Undecided.  

From Questions Q9 – Q11, with 42.9% Strongly Agreed and 57.1% Agreed, it was 

made known that participants understood the design purpose of the system, and 

acknowledged the role of the researcher in facilitating the pre-assessment sessions. 

The latter is for the researcher’s reflection on the part he took at the sessions.  

In Q12, while the data revealed that 14.3% Strongly Agreed, 57.1% Agreed  that the 

session was a good learning experience; 14.3% Disagreed. In Q13, 28.6% Strongly 

Agreed and 57.1% Agreed that the sessions were well organised; 14.3% were 

Undecided. 

 

7.15.3 Open-Ended User Feedback 

Using open-ended entries from questions 14 to 17 (Q14 – Q17), diverse views about 

the pre-assessment sessions or the System that could not possibly be captured by the 

closed-item questions in Q3 -Q13 were elicited. From these responses, some student 

users found the pre-assessment sessions and system satisfactory while others made 

comments on important issues that are salient enough to improve usability design and 

usage experience in further work.    

 

In TABLE  6.7 students’ view were sought on: what was least interesting about the 

sessions? One view was that  

 

 

The AOP language for developing the Pre-assessment System is Jason AgentSpeak, a 

logic based programming language. So, prior to the various pre-assessment sessions,  

volunteer participants were scheduled for different times to evaluate the System. But 

“Lack of equipment available. Session was slow.” 
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in the course of a participant’s use of the system, some participants encroached into 

the time schedule of another participant. This was due to the time some participants 

needed to understand their questions, understand the data on the MySQL database 

server, and construct their SQL queries.   

 

Initially, the agent based Pre-assessment System was developed to connect to the 

MySQL Workbench database server.  Review of System development after the 

prototype had the Pre-assessment System disabled from the database server. This is 

because of the need for one system to host the database, and another for the Pre-

assessment System. Thus, in the course of the participants’ usage of the System,  two 

systems were made available: one opened for the data on the TENNIS_DATABASE 

and the other for taking the pre-assessment exercises. In that regard, the issue of  

 

“We only had one monitor to do the work on.” 

was addressed. 

 

Also on the view in TABLE 6.7 that   

 

 

  

 

Like most formative assessment or self-diagnostic systems that assesses knowledge, 

the Pre-assessment System is programmed to take in an input or percept when 

submitted, then assessment, and then next question. As result, some participants in the 

study who felt the need to retake their assessment, did so as many times as they needed. 

The Pre- assessment System is flexible and will allow the pre-assessment about a given 

desired_Concept to take place over and over again. This is recorded in the skills data 

collected and showed some students took their assessment twice on the same module. 

The views from the TABLE 6.9 that participants  

 

 
 
 

“The system is not quite flexible and does not allow trial and 
error terms. One small error led into decision that we need to 
learn the module. …”  

“Having to switch between three different 
windows to operate the system” 
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has to do with the built-in MAS output console and the input window for participants 

SQL queries answers. Recall that, agents are components that can be situated in some 

[student] environment in order to fetch or observe percepts. As a result, the input 

window was configured for open-ended SQL queries using the CArtAgO artifact. 

Participants’ text-inputs are percieved by the MAS through this artifact, and after 

processing by the MAS, outputs are displayed through the Jason built-in MAS output 

console. Future work will consider one window for both input and output. One other 

important view from TABLE 6.9, is that  

 

 

 

This is what the strategy of Pre-assessment By Multiple Prerequisite Classes has 

addressed. Where more unit of lessons are added to parent class nodes or modules (Fig. 

5.4, Fig. 7.10), and also, pre-assessment across multiple class nodes as specified in the 

ontology tree.  

 

In TABLEs 6.6 and 6.8, participants expressed satisfaction on the concepts of pre-

learning and teaching through the Pre-assessment System where they have to learn 

what is appropriate. This is one view from TABLE 6.6, entry no. 3, which states   

 
 
 
 
 

 

This aligns with one of the objectives of this System: To avoid putting every students 

in the same starting block on the learning ladder. At any given level the student can 

build up the ladder. While this System would allow students that has solid 

understanding of some concepts already to progress to the next or higher level of 

learning. Those with misconception and difficulty would be assisted by the System to 

identify the weaknesses in their learning, and be assisted to fill those gaps in the 

absence of the tutor. When what is already known by say Student X is being taught all 

over again with Student X present, this becomes “redundant” to that student. 

  

“The system covered limited SQL statements so when 
more are added I think it will be more interesting.” 
 

“It is actually a good objective, we will learn what exactly we 
need to learn. Because sometimes tutor[s] teach something 
which is redundant since some people already understand it 
well.” 
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The purpose of modelling students’ skills for adaptive learning in this work is for the 

intelligent system and the course tutor to give optimum support for improved 

performances. As required of a typical system of diagnosis and fault detection (in 

students’ cognition), the Pre-assessment System through classification reasoning has 

identified and recommended learning appropriate for participants in this evaluation 

exercise. 

 

7.16 Summary of Chapter 

The Pre-assessment System, its broad goal, which is to identify gaps in learning and 

classification process of learning has been presented in this Chapter. The Chapter 

described the Pre-assessment System as a reactive system of five interacting agents. 

Where the agent agSupport is the pre-assessment agent that uses !achievement goals 

– the state an agent wants to accomplish – for the pre-assessment of knowledge. Each 

!achievement goal corresponds to each leafnode in a given ontology tree. For the 

recommendation of appropriate learning materials, classification is first carried out 

based on the passed or failed boolean parameters predicate decision statements from 

agent agSupport. The agent agModelling classifies students before the release of 

learning material by agent agMaterial. This Chapter also discussed algorithms, and 

generation of classification rules. The generation of the classification is based on the 

FOL rules: the formal reasoning representation (from Chapter 4) and its application 

for the realisation of the classification plans in the agent agModelling. 

  

Two strategies, namely: Pre-assessment By Immediate Prerequisite Class and Pre-

assessment By Multiple Prerequisite Classes that evolved from the Pre-assessment 

Mechanism were also presented. While the data collected from the implementation of 

the former was analysed and discussed; the chapter had the implementation of the latter 

discussed. Based on the results from the experimentation and background literature on 

the learning of SQL, the position of this thesis is that the educational theory of 

Chunking (Casteel, 1988; Anderson, 2008) which is to present tasks of learning to 

students in smaller units, can support students to succeed in their learning of SQL. This 

is based on the data gathered in Chapter 6 in which 77.3% of the unit of lessons 

(leafnodes) were not passed, (see TABLE 6.2, and Fig. 7.21). Yet students stayed on 



Chapter 7 Discussions 

 

202 
 

tasks to study recommended materials. From the foregoing, organising and allocating 

units of lessons in smaller quantities has enabled students to remain on tasks to study 

recommended materials. When one desired learning concept is successfully 

completed, another desired concept can be attempted for learning. In the next Chapter 

8, the conclusions for this study shall be presented along with its contribution to 

knowledge, and future work.  

 

 

 



 

 

Chapter 8 

Conclusions and Future Work 
 

This study has demonstrated pre-assessment and learning path recommendation 

strategies like a face-to-face tutor would do so as to boost competency level of students 

before the start of a new lesson. The thesis covered two strategies of pre-learning 

assessment using an agent based approach in order to fill the gaps in learning and 

support further learning. In this work, the multiagent Pre-assessment System was 

investigated, developed and evaluated: as a System aimed at identifying gaps in 

students’ learning and making learning materials recommendation to fill-in the gaps. 

From this implementation and evaluation of data, it has been shown that the Pre-

assessment System can perform its classification function in accordance to its rule 

based knowledge representation process in which students’ prior learning is pre-

assessed and materials are recommended for learning. This has followed a Pre-

assessment Mechanism that depicts the process or strategy of pre-assessment of lower 

concepts in order to measure what has been learned successfully by a student before 

the start of a higher or desired_Concept intended for learning. The Pre-assessment 

System’s investigation began by identifying the research problem as a classification 

problem in a learning domain in which students’ skills set would be collected and 

categorised for learning material recommendation.    

 

8.1 Research Development Approach 

The research approach to this study is dual in nature, namely: rule based classification 

procedure, and agent oriented software engineering through the Prometheus 

methodology (Padgham & Winikoff, 2004) for the Pre-assessment System design. 

Prometheus is a methodology for developing intelligent agent systems and has a 

customised tool known as the Prometheus Design Tool (PDT) for designing BDI 

agents. The PDT has been used in the design specification and analysis of the pre-

assessment multiagent system as well as its rule based representation, as outlined in 



Chapter 8 Conclusions & Future Work 

 

204 
 

Chapter 4. The agents were developed with individual responsibility and to function 

as components that make up a whole sum. As with an organisation, its organisational 

parts must be able to interact cooperatively, with individualised roles in order to realise 

its design objective.  

 

To solve and answer the research question, a structured hierarchy of learning was 

outlined in the domain of SQL. The domain was then analysed after its definition as a 

TBox with a description logic (DL) language. The analysis presented the inter-

relations between the ABox instances i.e. concepts, individuals and roles in accordance 

to the given learning structure (Fig. 5.1) which enabled students to have their prior 

knowledge assessed. Thereafter, they can progress from one lower level of learning to 

the next higher level, see Chapter 5. After implementation, the System evaluation 

showed that the system diagnosed students’ state of SQL knowledge, captured their 

areas of difficulty and pointed them to learning material to close the gaps in their 

learning. Another benefit of the of the Pre-assessment System is that the learning 

activities are stored, especially the SQL queries, and these can be teaching resource 

for the tutor. The tutor can use this resource to unravel the the technical difficulties or 

challenges faced by students, and also, pay greater attention to these challenges during 

teaching.  

 

The following is a recap of the objectives of this research as stated in Chapter 1 and 

how they have been addressed: 

 To investigate a systematic way of identifying gaps in students’ knowledge 

which may hinder them in their next stage of learning. This is to allow students 

to self-diagnose any gaps on their previous learning before the start of a new 

module. In that regard, the research team deciphered that gaps could be 

identified between two ends: which are a start-point and an end-point of pre-

assessment. This led to the flow-chart of the Pre-assessment Mechanism 

(Chapter 4, Fig. 4.19) in which a student could enter a desired_Concept (i.e. 

the start-point), go through some prerequisite assessments to the end of the 

leafnodes N, get result(s), and have learning recommended.  
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 To build a domain ontology of related concepts and use declarative logic based 

representation in the system in the process of learning gap identification prior 

to the start of a higher and desired learning by students. A domain subject of 

learning was needed as the content of the system. The SQL learning domain 

was chosen. The choice of SQL was based on the good enrolment records of 

students in DB. Which was also envisaged would produce a good number of 

volunteer participants for the survey. Then a hierarchy of topics (concepts) as 

a learning structure was developed based on the teaching notes of DB lecturers 

in the department of computing. This led to the definition of the ontology: 

concepts, individuals and their relations using a DL language (Chapter 5). 

 To investigate the communication of ontological concepts in the system in the 

process of identifying gaps in students’ learning. As a multiagent based system, 

agent must communicate. The thesis looked into the communication of 

knowledge: from environmental percepts, to decision statements, and to the 

ABox assertive knowledge in their unary and binary predicates. Then chose the 

tell, askOne and achieve performatives for inter-agent communication in 

system using the .send() standard internal action (see MAS implementation in 

Chapter 5, and discussion in Chapter 7). This is against the .broadcast() 

standard internal action whose message in some occasions didn’t trigger agent 

to fire their plans .  

 To develop the tools that allow the system to recommend supplementary study 

materials to close the gaps in their current learning. This covers the design 

(Chapter 4) and implementation (Chapter 5 & 7) of the Pre-assessment 

System. 

 To evaluate the effectiveness of the system by assessing how effective it is in 

helping real students improve their learning. This is where the Pre-assessment 

System was assessed for fitness of purpose by students. Students used the 

system, and self-diagnosed their learning. Where students made errors and 

failed a concept, material URLs were recommended. But where all pre-

assessments are passed, students were recommended for their 

desired_Concept, (See data in Chapter 6). They opened the links and studied 

materials. 
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8.2 Contributions to Knowledge 

In summary, the following are the contributions of this research: 

1. Identifying gaps in students’ learning using a devised Pre-assessment 

Mechanism: As stated in the objectives, Chapter 1, the study has investigated 

systematic strategies to identifying gaps in students’ learning. The realisation 

of this objective comprised two identified strategies: Pre-assessment By 

Immediate Prerequisite Class, and Pre-assessment By Multiple Prerequisite 

Classes that originated from the Pre-assessment Mechanism in Chapter 4. The 

educational principle of Chunking (smaller unit of lessons) was applied as the 

underlying principle and optimal strategy in developing the agent based e-

learning system. The System has supported students to identifying gaps or 

gains in their current learning and also making recommendation to close the 

gaps. This is in a subject domain that is ascertained by researchers in literature 

as “difficult and challenging”.  

2. Goal specification using agent oriented software engineering for developing 

e-learning system. This is from requirement specification, to agent goals, to 

functionality specification, to agent role grouping, interaction, protocols and 

capabilities in the development of the intelligent agent based e-learning system, 

see Chapter 4. 

3. Use of description logic syntax for defining an ontology of a learning domain. 

The study developed an ontology in a learning domain as the content of the 

agent based multiagent system using a DL language. The DL defined the TBox 

terminology and named the ABox instances in the domain of SQL. Given the 

form of a unary predicate p(a) and binary relation R(a, b) or p(a,b), a collection 

of agent beliefs (also known as knowledge in first order logic) were modelled 

as ground facts. These facts have been used by agents in the system for 

communication of knowledge in the diagnosis of students’ prior skills and 

during recommendation for appropriate learning materials, see Chapter 5.   

4. Modelling classification features with logic based representation (or 

architecture) for agent plans for the recommendation of appropriate 
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knowledge-level learning materials. Based on the boolean state: passed(N) and 

failed(N) parameters and the desired_Concept(D), first order logic notations 

were used to define the classification rules that categorised students’ skills. The 

classification rules are a collection of axioms that is dependent on the number 

of leafnodes underneath a given desired_Concept(D), see Chapter 4, and 

discussion on implementation in Chapter 5 & 7.  

8. 3 Limitation of The Study 

As with most research, this study is not without any challenges. This centres around 

the small number of volunteer-participants in the survey, and the system constraints 

with the Jason AgentSpeak language. 

 

8.3.1 Volunteer Population Sample of the Study 

This is the aspect of this study where only 7 volunteer participants were recruited for 

the system evaluation in a survey exercise that spanned across four academic 

semesters. This number is well below the recruitment projection made at the early 

stage of this study by the research team.  

 

8.3.2 System Constraint with Jason AgentSpeak Language 

Aside from keeping to the educational principle of Chunking (Casteel, 1988; 

Anderson, 2008) in the development of the Pre-assessment System, it was also 

observed that Jason AgentSpeak language had some limitation in completing the 

execution of the plan corresponding to the fifth or more leafnodes N ≥ 5 in the 

sequence of prerequisite assessment, e.g. Figure 5.4. This is where the agent plan that 

needed to assess SQL query answer of the fifth pre-assessment leafnode i.e. N = 5 was 

not triggered. This constraint halted the adoption of the next !acheivement goal by pre-

assessment agent. Yet the agent’s Mind Inspection revealed that the agent received the 

required percept for such agent plan to be triggered from the sending agent.  
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8.3.3 Alternative Languages of Implementation 

Jason has been used in this work to the test our model theory of agent based system 

for pre-assessments in students’ learning after the analysis of a number of agent 

oriented programming languages (AOP) and platform (see Section 3.9 and Table 3.1). 

This is because Jason was readily available as open source language that met all our 

implementation requirements. From implementation, our model theory of logic based 

rules for classification reasoning in pre-assessment were verified and validated. 

Nonetheless, the following highligts a few AOP languages and platforms that are 

suitable alternatives to Jason:  

 Jack: Jack is a language with a BDI mental model. With its integrated 

graphical environment, the Jack Development Environment can be used to 

develop the pre-assessment multiagent systems or distributed agent 

application across multiple network devices. As shown in Figure 3.9, the 

Prometheus agent analysis and design methodology supports the 

generation of skeletal Jack code for straight-forward implementation on 

JackTM. 

 Jade middleware architecture: Jason runs on Jade based on the “Jade” 

infrastructure. As a middleware platform, Jade can be used to develop and 

distribute the pre-assessment system on different network hosts. Jade 

supports semantic web languages such as XML.  

 Jadex language and middleware platform: Jadex can also be applied in the 

development of distributed intelligent agents on the BDI paradigm. 

Besides, Jadex framework is realised when agents sit on the Jade 

middleware infrastructure, use it and run on it.  Like Jade, Jadex also 

supports the XML web semantic technology. 

 

8.4 Further Work 

The Pre-assessment System has been developed with a group of five agents, but with 

one agent in charge of the pre-assessments of all the leafnodes. Depending on the 

number of concepts and leafnodes, future research intends to look into the 

development of more number of agents (swarm of agents), so as to have one agent per 



Chapter 8 Conclusions & Future Work 

 

209 
 

concept or leafnode in the conduct of pre-assessment.  This is likely to resolve the 

system constraint encountered in Jason. 

 

Two strategies of pre-assessments have been identified in this study. Further work will 

be to conduct more surveys, collect more data, and then compare both strategies so as 

to evaluate which is the better strategy supporting students through prerequisite 

assessment for further successful learning.    

 

The Pre-assessment System has operated a single tasking mode.  Further investigation 

would be to look into multi-tasking approach for parallel percept observation, pre-

assessments and classification. One way to achieve this is through a web launch of the 

Pre-assessment System.  

 

Hard-coding training examples for skills classification can be cumbersome when a 

large number of nodes are considered for pre-assessments. Basically, this is when the 

boolean predicate parameters are being mapped to every leafnode concept that are 

included in a pre-assessment activity. In future work, multi-agent learning would be 

an area to be investigated in order to have agents compute and produce their own 

classification plans or rules.     

 

Students’ performance score was not considered in this system development. In future 

work use of performance score is an area to be considered. Thus, using the outcome [0 

or 1] of students’ performance on every leafnode, performance scores could be rated 

against certain threshold values. Below a given threshold, agents could direct students 

to revisit a previously attempted leafnode question.  

The data drawn from the System survey has been small. Future work will look to gather 

more data over a large population sample of databases SQL students, so that further 

regression analysis can be carried out in order to predict the trend of SQL learning by 

students from time to time. 

Jason is a programming language with syntax structure in a Prolog-like syntax. Jason 

agent communicates semantic literals (unary or binary) as demonstrated in this 
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research. These are literals that are in first-order logic representation. To this effect, 

further work will be to explore the connection of agent based system to ontology 

repositories from where agents can make sense of the data to query and update the 

repository. 

 

8.4.1 Recommendation 

The recommendation for future implementation in order to support students’ 

successful learning of SQL are: 

1. SQL formative assessment systems should be developed for practice such that 

DB tutors can have access to students query constructs in order to inform 

improved teaching methods when tutors see the difficulties faced by students 

in their queries. 

2.  Prior learning diagnosis should become part of intelligent learning systems. 

That is, there should be pre-learning diagnosis before the commencement of a 

new or desired learning by students. 

3. Students should not be overloaded with practice of prior learning assessments. 

This means, the educational principle of Chunking should be considered and 

employed in the organisation of prior learning assessments. 

4. Learning of SQL syntax structure, relational algebra and natural language 

processing should be prerequisites to SQL coding. Where necessary students 

should be well acquainted with the maths of set theory and its operators, and 

decomposition of natural sentence into FOL form or notation.   

5. The strategy of prior learning assessments, classification and recommendation 

of learning materials to fill- in the gaps in students’ learning should be adopted 

in the development of SQL intelligent tutoring and recommender systems 

before the learning of a relatively desired or higher concepts. 
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Appendix A 
 

A.1 Pre-assessment Data 

This is the student skills data, recorded and stored by the agent agModel (student) in 

the Pre-assessment Sytem. Appended to each data is the date and time of each pre-

assessment exercise. The time between each event was analysed and used to plot the 

binary classification graph in Chapter 7. 

 

//The INSERT desired concept data 

desired_Concept("INSERT, date(2017-1-26), time(12-10-

23)")[source(agSupport)]. 

 

quizSelectWhere("What query statement will return the player number 

and address of each player living in Stratford? HINT: order of 

address: STREET, HOUSENO, POSTCODE., date(2017-1-26), time(12-10-

23)")[source(agSupport)]. 

 

responseToSelectWhere("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE, 

date(2017-1-26), time(12-13-54)")[source(agSupport)]. 

 

failed("The student has NOT passed the SELECT...WHERE question., 

date(2017-1-26), time(12-13-54)")[source(agSupport)]. 

quizSelectAll("State the SQL query that will output all the data in 

TENNIS_TEAMS?, date(2017-1-26), time(12-13-54)")[source(agSupport)]. 

 

responseToSelectAll("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE, 

date(2017-1-26), time(12-13-59)")[source(agSupport)]. 

 

failed("The student has NOT passed the SELECT_ALL question., 

date(2017-1-26), time(12-13-59)")[source(agSupport)]. 
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//The INSERT desired concept data 

desired_Concept("INSERT"), date(2017-1-26), time(12-14-

40)")[source(agSupport)]. 

 

quizSelectWhere("What query statement will return the player number 

and address of each player living in Stratford? HINT: order of 

address: STREET, HOUSENO, POSTCODE., date(2017-1-26), time(12-14-

40)")[source(agSupport)]. 

responseToSelectWhere("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE 

FROM TENNIS_PLAYERS WHERE TOWN = 'Stratford', date(2017-1-26), 

time(12-14-46)")[source(agSupport)]. 

 

passed("The student has passed the SELECT...WHERE question., 

date(2017-1-26), time(12-14-46)")[source(agSupport)]. 

 

quizSelectAll("State the SQL query that will output all the data in 

TENNIS_TEAMS?, date(2017-1-26), time(12-14-46)")[source(agSupport)]. 

 

responseToSelectAll("SELECT * FROM TENNIS_TEAMS, date(2017-1-26), 

time(12-15-24)")[source(agSupport)]. 

 

passed("The student has passed the SELECT_ALL question., date(2017-

1-26), time(12-15-30)")[source(agSupport)]. 

 

 

//The DELETE desired concept data 

desired_Concept("DELETE, date(2017-1-26), time(12-17-

38)")[source(agSupport)]. 

 

quizInsertSelect("Enter into the table: TENNIS_RECR_PLAYERS; the 

number, name, town, and telephone number of each non-competition 

player? HINT: INSERT and SELECT., date(2017-1-26), time(12-17-

38)")[source(agSupport)]. 

 

responseToInsertSelect("SELECT * FROM TENNIS_RECR_PLAYERS, 

date(2017-1-26), time(12-22-18)")[source(agSupport)]. 

 

failed("The student has NOT passed the INSERT with SELECT question., 

date(2017-1-26), time(12-22-18)")[source(agSupport)]. 
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quizInsertValue("A new team has enrolled in the league. The third 

team will be captained by player 100, and will compete in the third 

division. Add the team to the database?, date(2017-1-26), time(12-

22-18)")[source(agSupport)]. 

 

responseToInsertValue("INSERT , date(2017-1-26), time(12-22-

37)")[source(agSupport)]. 

failed("The student has NOT passed the INSERT with VALUE question., 

date(2017-1-26), time(12-22-37)")[source(agSupport)]. 

 

desired_Concept("SELECT, date(2017-1-26), time(12-28-

10)")[source(agSupport)]. 

 

//The INSERT desired concept data 

desired_Concept("INSERT, date(2017-1-26), time(12-29-

43)")[source(agSupport)]. 

 

quizSelectWhere("What query statement will return the player number 

and address of each player living in Stratford? HINT: order of 

address: STREET, HOUSENO, POSTCODE., date(2017-1-26), time(12-29-

43)")[source(agSupport)]. 

 

responseToSelectWhere("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE 

FROM TENNIS_PLAYERS WHERE TOWN = 'STRATFORD';, date(2017-1-26), 

time(12-32-4)")[source(agSupport)]. 

 

failed("The student has NOT passed the SELECT...WHERE question., 

date(2017-1-26), time(12-32-4)")[source(agSupport)]. 

 

quizSelectAll("State the SQL query that will output all the data in 

TENNIS_TEAMS?, date(2017-1-26), time(12-32-4)")[source(agSupport)]. 

 

responseToSelectAll("SELECT PLAYERNO, STREET, HOUSENO, POSTCODE, 

date(2017-1-26), time(12-33-6)")[source(agSupport)]. 

 

failed("The student has NOT passed the SELECT...WHERE question., 

date(2017-1-26), time(12-33-6)")[source(agSupport)]. 
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//The UNION desired concept data 

desired_Concept("UNION, date(2017-1-26),time(12-42-

14)")[source(agSupport)]. 

 

quizFullOuterJoin("Give, for each player, the player number, the 

name and the penaltiees incurred by him or her; order the result by 

player number. (HINT: you need to use OUTER JOIN), date(2017-1-26), 

time(12-42-14)")[source(agSupport)]. 

 

responseToFullOuterJoin("SELECT P.PLAYERNO, P.NAME, PEN.AMOUNT, 

date(2017-1-26), time(12-59-10)")[source(agSupport)]. 

 

failed("The student has NOT passed the FULL_OUTER_JOIN question., 

date(2017-1-26), time(12-59-10)")[source(agSupport)]. 

 

quizInnerJoin("For each player born after June 1920, find the name 

and the penalty incurred by him or her? HINT: you need to use INNER 

JOIN, date(2017-1-26), time(12-59-10)")[source(agSupport)]. 

 

responseToInnerJoin("SELECT P.PLAYERNO, P.NAME, PEN.AMOUNT FROM 

TENNIS_PLAYERS P INNER JOIN TENNIS_PENALTIES PEN ON P.PLAYERNO = 

PEN.PLAYERNO, date(2017-1-26), time(13-1-19)")[source(agSupport)]. 

 

failed("The student has NOT passed the INNER_JOIN question., 

date(2017-1-26), time(13-1-19)")[source(agSupport)]. 

 

 

//The JOIN desired concept data (SECOND ATTEMPT KEN) 

desired_Concept("JOIN, date(2015-10-16), time(11-0-

15)")[source(agSupport)].  

 

quizUpdateSelect("Set the number of sets won to zero for all players 

resident in Stratford., date(2015-10-16), time(11-0-

15)")[source(agSupport)].  

 

responseToUpdateSelect("SELECT * FROM TENNIS_MATCHES, date(2015-10-

16), time(11-3-16)")[source(agSupport)].  
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failed("The student has NOT passed UPDATE with SELECT question., 

date(2015-10-16), time(11-3-16)")[source(agSupport)]. 

 

quizUpdateWhere("Change the value F in the SEX column of the PLAYERS 

table to W (women)., date(2015-10-16), time(11-3-

16)")[source(agSupport)]. 

 

responseToUpdateWhere("UPDATE SEX FROM P WHERE SEX = 'F' TO SEX = 

'W', date(2015-10-16), time(11-5-1)") [source(agSupport)]. 

 

failed("The student has NOT passed UPDATE with WHERE question., 

date(2015-10-16), time(11-5-1)")[source(agSupport)]. 

 

 

//The INSERT desired concept data 

desired_Concept("INSERT, date(2015-10-16), time(11-11-

47)")[source(agSupport)]. 

 

quizSelectWhere("What query statement will return the player number 

and address of each player living in Stratford? HINT: order of 

address: STREET, HOUSENO, POSTCODE., date(2015-10-16), time(11-11-

47)")[source(agSupport)]. 

 

responseToSelectWhere("SELECT STREET, HOUSENO, POSTCODE FROM 

TENNIS_PLAYERS WHERE TOWN="Stratford";, date(2015-10-16), time(11-

12-57)")[source(agSupport)]. 

 

passed("The student has passed the SELECT...WHERE question., 

date(2015-10-16), time(11-12-57)")[source(agSupport)]. 

 

quizSelectAll("State the SQL query that will output all the data in 

TENNIS_TEAMS?, date(2015-10-16), time(11-12-

57)")[source(agSupport)]. 

 

responseToSelectAll("SELECT * FROM TENNIS_TEAMS;, date(2015-10-16), 

time(11-13-51)")[source(agSupport)]. 

 

passed("The student has passed the SELECT_ALL question., date(2015-

10-16), time(11-13-51)")[source(agSupport)]. 
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//Other data are with no response from the student:  

 

desired_Concept("INSERT, date(2015-10-16), time(11-8-

32)")[source(agSupport)]. 

 

quizSelectWhere("What query statement will return the player number 

and address of each player living in Stratford? HINT: order of 

address: STREET, HOUSENO, POSTCODE., date(2015-10-16), time(11-8-

32)")[source(agSupport)]. 

 

 

//Another data, also with no response from the student:  

desired_Concept("UPDATE, date(2015-10-16), time(11-7-

10)")[source(agSupport)]. 

 

quizDeleteSelect("Delete all penalties who live in the same town as 

player 44, but keep the data for player 44., date(2015-10-16), 

time(11-7-10)")[source(agSupport)]. 

 

 

//The UPDATE desired concept data 

desired_Concept("UPDATE, date(2015-3-7), time(11-3-

17)")[source(agSupport)]. 

desired_Concept("UPDATE, date(2015-3-7), time(11-8-

4)")[source(agSupport)]. 

 

quizDeleteSelect("Delete all penalties who live in the same town as 

player 44, but keep the data for player 44., date(2015-3-7), 

time(11-8-54)")[source(agSupport)]. 

 

responseToDeleteSelect("DELETE FROM (SELECT * FROM TENNIS_PENALTIES 

WHERE PLAYERNO = 44), date(2015-3-7), time(11-9-

27)")[source(agSupport)]. 

 

failed("The student has NOT passed the DELETE with SELECT 

question.")[source(agSupport)]. 
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quizDeleteWhere("Delete all penalties incurred by player 44 in 

1980., date(2015-3-7), time(11-9-27)")[source(agSupport)]. 

 

responseToDeleteWhere("DELETE FROM SELECT * FROM TENNIS_PENALTIES 

WHERE PLAYERNO = 44, date(2015-3-7), time(11-12-

10)")[source(agSupport)]. 

 

failed("The student has NOT passed the DELETE with WHERE 

question.")[source(agSupport)]. 

 

 

//The UPDATE desired concept data 

desired_Concept("UPDATE, date(2015-5-7), time(11-11-

31)")[source(agSupport)]. 

 

quizDeleteSelect("Delete all penalties who live in the same town as 

player 44, but keep the data for player 44., date(2015-5-7), 

time(11-11-31)")[source(agSupport)]. 

 

responseToDeleteSelect("DELETE FROM TENNIS_PENALTIES(SELECT * FROM 

TENNIS_PENALTIES WHERE PLAYERNO = 44), date(2015-5-7), time(11-12-

10)")[source(agSupport)]. 

 

failed("The student has NOT passed the DELETE with SELECT 

question.")[source(agSupport)]. 

 

quizDeleteWhere("Delete all penalties incurred by player 44 in 

1980., date(2015-5-7), time(11-12-10)")[source(agSupport)]. 

 

responseToDeleteWhere("DELETE * FROM TENNIS_PENALTIES WHERE PLAYERNO 

= 44 AND PAYMENT_DATE LIKE '1980', date(2015-5-7), time(11-14-

4)")[source(agSupport)]. 

 

failed("The student has NOT passed the DELETE with SELECT 

question.")[source(agSupport)]. 
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//The UNION desired concept data 

desired_Concept("UNION, date(2015-3-7),time(11-19-

4)")[source(agSupport)]. 

 

//Re-entering of desired_Concept after studying quiz and database 

desired_Concept("UNION, date(2015-3-7),time(11-28-

48)")[source(agSupport)]. 

 

quizFullOuterJoin("Give, for each player, the player number, the 

name and the penaltiees incurred by him or her; order the result by 

player number. (HINT: you need to use OUTER JOIN), date(2015-3-7), 

time(11-28-48)")[source(agSupport)]. 

 

responseToFullOuterJoin(SELECT * FROM TENNIS_PLAYERS (alias) P OUTER 

JOIN TENNIS_PENALTIES (alias) PEN ON P.PLAYERNO = PEN.PLAYERNO, 

date(2015-3-7), time(11-28-56)")[source(agSupport)].  

 

failed("The student has NOT passed the FULL_OUTER_JOIN 

question.")[source(agSupport)]. 

 

quizInnerJoin("For each player born after June 1920, find the name 

and the penalty incurred by him or her? HINT: you need to use INNER 

JOIN, date(2015-3-7), time(11-28-56)")[source(agSupport)]. 

 

responseToInnerJoin(SELECT * FROM TENNIS_PLAYERS (alias) P INNER 

JOIN TENNIS_PENALTIES (alias) PEN ON P.PLAYERNO = PEN.PLAYERNO, 

date(2015-3-7), time(11-29-35)")[source(agSupport)]. 

 

failed("The student has NOT passed the INNER_JOIN 

question.")[source(agSupport)]. 

 

 

//The UNION desired concept data (SECOND ATTEMPT KEN) 

desired_Concept("UNION, date(2015-3-7),time(11-29-

48)")[source(agSupport)]. 

 

quizFullOuterJoin("Give, for each player, the player number, the 

name and the penaltiees incurred by him or her; order the result by 
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player number. (HINT: you need to use OUTER JOIN), date(2015-3-7), 

time(11-29-48)")[source(agSupport)]. 

 

responseToFullOuterJoin(SELECT P.PLAYERNO, P.NAME, 

PEN.PLAYERNO FROM TENNIS_PLAYERS (alias) P OUTER JOIN 

TENNIS_PENALTIES (alias) PEN ON P.PLAYERNO = PEN.PLAYERNO, 

date(2015-3-7), time(11-31-43)")[source(agSupport)]. 

 

failed("The student has NOT passed the FULL_OUTER_JOIN 

question.")[source(agSupport)]. 

 

quizInnerJoin("For each player born after June 1920, find the name 

and the penalty incurred by him or her? HINT: you need to use INNER 

JOIN, date(2015-3-7), time(11-31-43)")[source(agSupport)]. 

 

responseToInnerJoin(SELECT P.PLAYERNO, P.NAME, 

PEN.PLAYERNO FROM TENNIS_PLAYERS (alias) P INNER JOIN 

TENNIS_PENALTIES (alias) PEN ON P.PLAYERNO = PEN.PLAYERNO, 

date(2015-3-7), time(11-34-04)")[source(agSupport)]. 

 

failed("The student has NOT passed the INNER_JOIN 

question.")[source(agSupport)]. 
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A.2 The MySQL Tennis_Database Tables 

The Tennis Database tables in the MySQL database that students used during their 

pre-assessment sessions. 

 

 

Fig. 1: Snapshot of The Tennis_Players Table 

 

 

 

Fig. 2: The Tennis_Teams Table 

 

 

 

Fig. 3: The Tennis_Penalties Table 
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Fig. 4: The Tennis_Matches Table 

 

 

 

Fig. 5: The Tennis_Committee_Members Table 

 

 

 

Fig. 6: The Tennis_Recr_Players Table 
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B.1 Students’ Feedback Questionnaire 
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B.2 Consent Form  

 

 

 

 

Introduction to SQL: Evaluation of SQL Based Multiagent Pre-assessment 
System 

 

Your Consent:  

This session is about the evaluation of a system we are designing. The learning content on this 
system is SQL: structured query language. The system is to check whether a student is ready 
to learn the topic he/she desires to learn. This readiness is checked by first asking you questions 
on the next immediate-lower topic to the one you would enter. Each topic has two questions. 
If the answers you provide are correct, you will learn the topic you have entered. But if both 
answers are incorrect, you will be required to learn both. And if one is answered correctly and 
the other incorrectly, the incorrectly answered will be the one to be learnt. 

We kindly request that you help to participate in this system’s test and survey. Your response 
are anonymous and will be used to improve the design, content and performance of this system. 
Your consent and participation is significant to us. We won’t take much of your time.  

NB: Please, kindly complete the questionnaire when you finish with the system. 

Thank you. 

 

Objectives of the System:  

Are to: 

1) identify whether you are ready to learn the SQL topic you entered; 

2) ensure that you have mastered an immediate-lower topic before learning a higher one;  

3) direct you to the appropriate URL link that you can place on a browser. 

 

 

I agree to participate (a tick please):     

 

Email: ………………………………………………………………………………………… 

 

Sign:……………………………………....... 

Yes No 
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B.3  Research Ethics Approval 

 

 

 

Howson, Tracey D <T.D.Howson@shu.ac.uk>  
To  
Ehimwenma, Kennedy K (student - 55002)  
CC  
Crowther, Paul  
Today at 10:30 AM  

Hi Ken 

  

Please see the message below form the Ethics Committee Chair regarding your SHUREC1, 
please keep this safe. 

  

He seems to be researching other computing students on learning in computing so will not 
need a SHUREC2A and so does not need formal ethical approval. However, please would 
you feed back to him that he needs to make sure that he gives each of his research 
participants an information sheet telling them about the research and gets them to sign a 
consent form to ensure they have consented to the research. He needs to offer participants the 
chance to withdraw from the research at any time up to the submission of his thesis. He 
should also confirm that participants’ data is anonymised and kept securely. He should send 
in a copy of his consent/information sheet and we will file it with his SHUREC1. 

  

Kind regards 

  

Tracey Howson 

Admin Officer 

Cultural, Communication & Computing Research Institute (C3RI) 

9104 Cantor Building, 153 Arundel Street, Sheffield, S1 2NU 

Tel +44 (0)114 225 6741 

Fax +44 (0)114 225 6702 

Email t.d.howson@shu.ac.uk 

Web http://www.shu.ac.uk/research/c3ri/ 

My web profile http://www.shu.ac.uk/research/c3ri/people/tracey-howson 
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B.4 Certificate of Volunteer Participants in the Survey 

 

 

 

  


