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JIT-Based Cost Analysis for Dynamic Program

Transformations

John Magnus Morton1,4 Patrick Maier2,4 Phil Trinder3,4

School of Computing Science
Univeristy of Glasgow

UK

Abstract

Tracing JIT compilation generates units of compilation that are easy to analyse and are known to execute
frequently. The AJITPar project investigates whether the information in JIT traces can be used to dynam-
ically transform programs for a specific parallel architecture. Hence a lightweight cost model is required for
JIT traces.
This paper presents the design and implementation of a system for extracting JIT trace information from the
Pycket JIT compiler. We define three increasingly parametric cost models for Pycket traces. We determine
the best weights for the cost model parameters using linear regression. We evaluate the effectiveness of the
cost models for predicting the relative costs of transformed programs.

Keywords: Cost Model, JIT Compiler, Program Transformation, Skeleton, Parallelism

1 Introduction

The general purpose hardware landscape is dominated by parallel architectures —

multicores, manycores, clusters, etc. Writing performant parallel code is non-trivial

for a fixed architecture, yet it is much harder if the target architecture is not known in

advance, or if the code is meant to be portable across a range of architectures. Exist-

ing approaches to address this problem of performance portability, e.g. OpenCL [21],

offer device abstraction yet retain a rather low-level programming model typically

intended for a specific problem domain, e.g. for numerical data-parallel problems.

There is less language support for multiple architectures in other domains. For

example symbolic computations, like combinatorial searches or computational al-

gebra, often exhibit large degrees of parallelism but the parallelism is irregular :
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the number and size of parallel tasks is unpredictable, and parallel tasks are often

created dynamically and at high rates [28].

The Adaptive Just-in-Time Parallelism (AJITPar) project [2] investigates a novel

approach to deliver portable parallel performance for programs with irregular paral-

lelism across a range of architectures by combining declarative task parallelism with

dynamic scheduling and dynamic program transformation. Specifically, AJITPar

proposes to adapt task granularity to suit the architecture by transforming tasks at

runtime, thus varying the amount of parallelism depending on the architecture. To

facilitate dynamic transformations, AJITPar will leverage the dynamic features of

the Racket language and its recent trace-based JIT compiler, Pycket [13,10].

Dynamic task scheduling and task transformation both benefit from predicted

task runtimes. This paper investigates how to construct lightweight cost models for

JIT traces. A JIT trace is simply a linear path through the program control flow

graph that the compiler has identified as being executed often. We hypothesize that

even very simple cost models can yield sufficiently accurate predictions as traces

have very restricted control flow, and we only require to compare the relative costs

of pre- and post-transformed expressions.

The main contributions in this paper are as follows. We have designed and imple-

mented a system for extracting JIT trace information from the Pycket JIT compiler

(Section 3). We have defined 3 cost models for JIT traces, ranging from very simple

to parametric, and we have used an regression analysis over the Pycket benchmark

suite to automatically tune the architecture-specific cost model parameters (Sec-

tion 4). We have shown that the tuned cost model can be used to accurately predict

the relative execution times of transformed programs (Section 5).

2 Related Work

2.1 AJITPar

The Adaptive Just-In-Time Parallelisation (AJITPar) project [2] aims to investigate

a novel approach to deliver portable parallel performance for programs with irreg-

ular parallelism across a range of architectures. The approach proposed combines

declarative parallelism with Just In Time (JIT) compilation, dynamic scheduling,

and dynamic transformation. The project aims to investigate the performance porta-

bility potential of an Adaptive Skeletons (AS) library based on task graphs, and an

associated parallel execution framework that dynamically schedules and adaptively

transforms the task graphs. We express common patterns of parallelism as a rel-

atively standard set of algorithmic skeletons [17], with associated transformations.

Dynamic transformations, in particular, rely on the ability to dynamically compile

code, which is the primary reason for basing the framework on a JIT compiler.

Moreover, a trace-based JIT compiler can deliver estimates of task granularity by

dynamic profiling and/or dynamic trace cost analysis, and these can be exploited

by the dynamic scheduler. A trace-based JIT-compiled functional language was

chosen as functional programs are easy to transform; dynamic compilation allows

a wider range of transformations including ones depending on runtime information;
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and trace-based JIT compilers build intermediate data structure (traces) that may

be costed.

The work described in this paper aims to identify a system for calculating relative

costs of traces, which will be used to determine the scheduling of parallel tasks based

on their relative costs, and the selection of appropriate transformations to optimise

for the parallel work available in the task.

2.2 Tracing JIT

Interpreter-based language implementations, where a program is executed upon a

virtual machine rather than on a real processor are often used for a variety of reasons

- including ease of use, dynamic behaviour and program portability, but are often

known for their poor performance compared to statically compiled languages such

as C or FORTRAN.

JIT compilation is a technology that allows interpreted languages to significantly

increase their performance, by dynamically compiling well-used parts of the pro-

gram to machine code. This enables interpreters or virtual machine languages to

approach performance levels reached by statically compiled programs without sac-

rificing portability. Dynamic compilation also allows optimisations to be performed

which might not be available statically.

JIT compilation does not compile the entire program as it is executed, rather it

compiles small parts of the program which are executed frequently (these parts are

described as hot). The most common compilation units are functions (or methods)

and traces [8]. A trace consists of a linear sequence of instructions which make up

a single iteration of the body of loop. A complete trace contains no control-flow

except at the points where execution could leave the trace; these points are known

as guards. The main benefit of traces compared to functions as a unit of compilation

is that it can form the entire body of a loop spanning multiple functions, rather than

just the body of a single function.

2.3 RPython Tool-chain

The specific JIT technology we use is part of the RPython tool-chain. PyPy [32] is

an alternative implementation of the Python programming language [33], notable for

having Python as its implementation language. PyPy is implemented using a subset

of the Python language known as RPython and the tool-chain is intended to be

used as a general compiler tool-chain. Smalltalk [12] and Ruby [39] are examples of

languages implemented on the RPython tool-chain. PyPy has a trace-base JIT, and

the RPython tool-chain allows for the JIT to be easily added to a new interpreter

implementation

Pycket [13] is an implementation of the Racket language built on PyPy’s tool-

chain. Racket is a derivative of the Scheme Lisp derivative [37] with a number of

extra features. Pycket uses the Racket front-end to compile a subset of Racket to

a JavaScript Object Notation (JSON) representation of the abstract syntax tree

(AST) and uses an interpreter built with the RPython tool-chain to interpret the
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AST.

JITs built with RPython are notable in that they are meta-tracing [11]. Rather

than trace an application level loop, the JIT traces the actual interpreter loop itself.

The interpreter will annotate instructions where an application loop begins and ends

in order for appropriate optimisations to be carried out. The purpose of this is so

that compiler writers do not need to write a new JIT for every new language that

targets RPython/PyPy, they just provide annotations.

2.4 Cost Analysis

Resource analysis is important in resource-limited systems like most embedded sys-

tems, in hard real-time systems where timing guarantees are required, and for direct-

ing program refactoring or transformation. Here we seek a static resource analysis

to inform dynamic program transformations. Recently there has been significant

progress in both the theory and practice of resource analysis. Some of this progess

is reported in the FOPARA workshops [19] and the TACLe EU COST action [38].

Analysis techniques exist for a range of program resources, for example execution

time [41,1,34], space usage [36,26], or energy [22]. The resource of interest here

is predicted execution time. For many applications, e.g. embedded and real-time

software systems, the most important performance metric is worst case execution

time. Various tools [41,20,1] have been built to statically estimate or measure this;

an example is aiT [20] which uses a combination of control flow analysis and lower

level tools, such as cache and pipelining analysis. Cache and pipelining analysis

attempts to predict the caching and processor pipelining behaviour of a program

and is performed in aiT using abstract interpretation. Here however we predict

expected, rather than worst case execution time. Moreover we do not need precise

absolute costs: approximate relative costs should suffice to allow the transformation

engine to select between alternative rewrites.

A range of analysis techniques are used to estimate the resources used by pro-

grams. High level cost analysis can be performed on the syntactic structure of

the source code of a program, e.g. using a mathematical function of C syntactic

constructs to estimate execution time [15]. Low-level representations of code and

bytecode can be used as source for static resource analysis [3,4,26,7,6]. For example

the COSTA tool [4] for Java which allows the analysis of various resources using

parameterized cost models, and the CHAMELEON tool [7] which builds on this

approach and uses it to adapt programs.

There are many other approaches in cost analysis including amortized resource

analysis [23,6], incremental resource analysis [5], and attempting to enforce resource

guarantees using proof-carrying code [6,9] (the MOBIUS project is a prime example).

Control flow is a key element of many resource analyses [41,20]. However, as JIT

traces do not contain any control flow, these types of analysis are redundant and a

far simpler approach will suffice. This is fortunate as the static analysis must run

fast as part of the warm-up phase of the execution of the JIT compiled program.

Our work is part of the body of work that applies resource analysis to paral-

lelism [40,3,34].
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2.5 Code Transformation

Program transformations are central to optimising compilers. GHC, for instance,

aggressively optimises Haskell code by equational rewriting [24,25]. Transformations

can also be used for optimising for parallel performance. Algorithmic skeletons [17]

– high level parallel abstractions or design patterns – can be tuned by code trans-

formations to best exploit the structure of input data or to optimise for a particular

hardware architecture. Examples of this include the PMLS compiler [35], which

tunes parallel ML code by transforming skeletons based on offline profiling data,

and the Paraphrase Project’s refactorings [16] and their PARTE tool for refactoring

parallel Erlang programs [14]. PMLS is an automatically parallelising compiler for

Standard ML which turns nested sequential higher-order-function calls into parallel

skeleton calls and performs code transformation based on runtime behaviour of sub-

parts of the program; unlike AJITPar, these transformations are entirely offline and

no attempt is made to solve the problem of performance portability. PARTE uses

refactoring to allow the introduction of parallel skeletons and the transformation

of existing parallel skeletons; these refactorings are applied entirely ahead-of-time

and at the instruction of the user, while the transformations are driven by offline

profiling.

3 Language Infrastructure

3.1 Pycket Trace Structure

A JIT trace consists of a series of instructions recorded by the interpreter, and a

trace becomes hot if the number of jumps back to the start of the trace (or loop) is

higher than a given threshold, indicating that the trace may be executed frequently

and is worth compiling.

Other important concepts in Pycket traces include guards : assertions which cause

execution to leave the trace when they fail; bridges : that are traces starting at a

guard that fails often enough; and trace graphs : representing sets of traces. The

nodes of a trace graph are entry points (of loops or bridges), labels, guards, and

jump instructions. The edges of a trace graph are directed and indicate control

flow. Note that control flow can diverge only at guards and merge only at labels or

entry points. A trace fragment is a part of a trace starting at a label and ending

at a jump, at a guard with a bridge attached, or at another label, with no label in

between.

The listing in Figure 1 shows a Racket program incrementing an accumulator

in a doubly nested loop, executing the outer loop 105 times and the inner loop 105

times for each iteration of the outer loop, thus counting to 1010.

Figure 1 also shows the trace graph produced by Pycket. The nodes represent

instructions which are pertinent to the flow of control through the loop. In the

graph, labels are represented by l nodes, g nodes represent guards and j nodes

represent jump instructions. The inner loop (which becomes hot first) corresponds

to the path from l2 to j1, and the outer loop corresponds to the bridge. The JIT
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( d e f i n e numb1 100000)
( d e f i n e numb2 100000)

( d e f i n e ( inner i t e r acc )
( i f (> i t e r numb2)

acc
( inne r (+ i t e r 1) (+ acc 1 ) ) ) )

( d e f i n e ( outer i t e r acc )
( i f (> i t e r numb1)

acc
( outer (+ i t e r 1) ( inne r 0 acc ) ) ) )

( outer 0 0)

Loop Entry

l1

l2

g1

g2

g3

j1

Bridge Entry b2

l3

j2

Fig. 1. Doubly nested loop in Racket and corresponding Pycket trace graph.

l a b e l ( i7 , i13 , p1 , de sc r=TargetToken (4321534144))
debug_merge_point (0 , 0 , ’ ( l e t ( [ i f_0 (> i t e r numb2 ) ] ) . . . ) ’ )
guard_not_inval idated ( desc r=<Guard0x10196a1e0>) [ i13 , i7 , p1 ]
debug_merge_point (0 , 0 , ’(> i t e r numb2 ) ’ )
i 14 = int_gt ( i7 , 100000)
guard_fa l se ( i14 , de sc r=<Guard0x10196a170>) [ i13 , i7 , p1 ]
debug_merge_point (0 , 0 , ’ ( i f i f_0 acc . . . ) ’ )
debug_merge_point (0 , 0 , ’ ( l e t ( [ AppRand0_0 . . . ] . . . ) . . . ) ’ )
debug_merge_point (0 , 0 , ’(+ i t e r 1 ) ’ )
i 15 = int_add ( i7 , 1)
debug_merge_point (0 , 0 , ’(+ acc 1 ) ’ )
i 16 = int_add_ovf ( i13 , 1)
guard_no_overflow ( desc r=<Guard0x10196a100>) [ i16 , i15 , i13 , i7 , p1 ]
debug_merge_point (0 , 0 , ’ ( inne r AppRand0_0 AppRand1_0 ) ’ )
debug_merge_point (0 , 0 , ’ ( l e t ( [ i f_0 (> i t e r numb2 ) ] ) . . . ) ’ )
jump( i15 , i16 , p1 , de sc r=TargetToken (4321534144))

Fig. 2. Trace fragment l2 to j1.

compiler unrolls loops once to optimise loop invariant code, producing the path from

l1 to l2.

The trace graph is a convenient representation to read off the trace fragments.

In this example, there are the following four fragments: l1 to l2, l2 to g2, l2 to j1,

and l3 to j2. Trace fragments can overlap: for instance, l2 to j1 overlaps l2 to g2.

Figure 2 shows a sample trace fragment, l2 to j1, corresponding to the inner loop.

Besides debug instructions, the fragment consists of 3 arithmetic-logical instructions

and 3 guards (only the second of which fails often enough to have a bridge attached).

The label at the start brings into scope 3 variables: the loop counter i7, the

accumulator i13, and a pointer p1 (which plays no role in this fragment). The jump

at the end transfers control back to the start and also copies the updated loop

counter and accumulator i15 and i16 to i7 and i13, respectively.
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3.2 Runtime Access to Traces and Counters

The RPython tool chain provides language developers with a rich set of APIs to

interact with their generic JIT engine. Among these APIs are a number of call-

backs that can intercept intermediate representations of a trace, either straight after

recording, or after optimisation. We use the latter callback to obtain the optimised

trace for cost analysis.

In debug mode RPython can instrument traces with counters, recording how

often control reaches an entry point or label. RPython provides means to inspect

the values of these counters at runtime. AJITPar will use this feature in the future

to derive estimates of the cost of whole loop nests from the cost and frequency of

their constituent trace fragments. For now, we dump the counters as the program

terminates and use this information to evaluate the accuracy of trace cost analysis

(Section 4).

The JIT compiler counts the number of times a label is reached but we are more

interested in counting the execution of traces. Unfortunately, full traces as gathered

by our system cannot be simply counted, as guards can fail and jumps can target

any label. Fortunately, we can work out the trace fragment execution count due to

the fact that there is a one-to-one correspondence between guards and their bridges.

Essentially, the frequency of a fragment ℓ to g is the frequency of the bridge attached

to guard g. Trace fragments are the largest discrete part of traces we can accurately

count. The frequency of a fragment starting at ℓ and not ending in a guard is the

frequency of label ℓ minus the frequency of all shorter trace fragments starting at

ℓ. Table 1 and Table 2 demonstrate this on the trace fragments of the nested loop

example. The first two columns show the JIT counters, the remaining three columns

show the frequency of the four trace fragments, and how they are derived from the

counters. Note that not all counters reach the values one would expect from the

loop bounds. This is because counting only starts once code has been compiled;

iterations in warm-up phase of the JIT compiler are lost. The hotness threshold is

currently 131 for loops.

JIT counter JIT count

nl1 100,001

nl2 10,000,098,957

nb2 99,801

nl3 99,800

Table 1
JIT counters and counts for program in Figure 1.

3.3 JIT Instruction Classes

When discussing the cost models, it is useful to classify the RPython JIT instructions

into different sets. We begin with the set of all instructions all. Initially, it was

decided to sub-divide all into two subsets: the set debug instructions debug and all

J.M. Morton et al. / Electronic Notes in Theoretical Computer Science 330 (2016) 5–25 11



fragment frequency expression frequency

l1 to l2 nl1 100,001

l2 to g2 nb2 99,801

l2 to j1 nl2 − nb2 9,999,999,156

l3 to j2 nl3 99,800

Table 2
JIT counters and trace fragment frequencies for program in Figure 1.

other instructions; this is based on the idea that debug operations are removed by

optimisations and do not count towards runtime execution costs.

It was further theorised that some instructions will be more costly than oth-

ers. The set of all non-debug instructions was further subdivided into high-cost

instructions high and low-cost instructions low, based on their expected relative

performance.

Class Example Instructions

debug debug_merge_point

numeric int_add_ovf

guards guard_true

alloc new_with_vtable

array arraylen_gc

object getfield_gc

Table 3
RPython JIT Instruction Classes

Further classification of the instructions can be made based on the conceptual

grouping of them and makes no assumptions of their performance characteristics.

The classes are object read and write instructions object, guards guards, numerical

instructions numeric, memory allocation instructions alloc and array instructions

array. These classes are described in Table 3. Jump instructions are ignored, since

there is only ever one in a trace. External calls are excluded as two foreign function

calls could do radically different things.

A histogram of JIT operations, taken from traces generated by all the cross-

implementation benchmarks and shown in Figure 3, shows that overall these traces

are also dominated by instructions from the guards, objects and numeric classes.

4 JIT-based Cost Models

The traces produced by Pycket during JIT compilation provide excellent information

for cost analysis. The linear control flow makes traces easy to analyse, and the fact

that traces are only generated for sufficiently “hot” code focuses cost analysis on the

most frequently executed code paths. In this section, we define several cost models

based on trace information collected from Pycket.
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Fig. 3. Most common instructions in cross-implementation Pycket benchmarks

4.1 Trace Cost Models

We start with cost models for individual traces. Let Tr be an arbitrary trace of

length n, that is, Tr = op1 . . . opn is a sequnce of instructions opi. A trace cost

model γ is a function mapping Tr to its predicted trace cost γ(Tr), where γ(Tr) is

a dimensionless number, (ideally) proportional to the time to execute Tr. Since the

runtime of Tr may depend on the hardware architecture, the trace cost model may

be specific to a particular architecture.

4.1.1 Null Cost Model (CM0)

The simplest possible trace cost model assigns the same cost to each trace, regardless

of its length and the instructions contained. The purpose of this null cost model,

which is formally defined by Equation (1), is to serve as a baseline to compare the

accuracy of other cost models against. Using this model to calculate the cost for

whole programs (Section 4.2) can be considered roughly equivalent to using a loop

counting control-flow analysis for estimating the execution time of a program. Note

that the null cost model is architecture independent.

γ(Tr) = 1 (1)

4.1.2 Counting Cost Model (CMC)

A slightly more sophisticated trace cost model declares the cost of a trace to be its

length, counting the number of instructions (ignoring debug instructions, which are

not executed at runtime). This counting cost model is defined by Equation (2) and

is architecture independent.

γ(Tr) =
n
∑

i=1

{

0, if opi ∈ debug

1, otherwise
(2)
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4.1.3 Weighted Cost Model (CMW )

Certain types of instructions are likely to have greater execution time, for example

memory accesses may be orders of magnitude slower than register accesses. A more

intricate cost model can be obtained by applying a weighting factor to each of the

instruction classes described in Section 3.3. Equation (3) shows the definition of this

weighted cost model, parameterised by abstract weights a, b, c, d and e.

γ(Tr) =
n
∑

i=1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪



0, if opi ∈ debug

a, if opi ∈ array

b, if opi ∈ numeric

c, if opi ∈ alloc

d, if opi ∈ guard

e, if opi ∈ object

(3)

The accuracy of the model depends on the concrete weights, and their choice depends

on the actual architecture. Section 4.3 demonstrates how to obtain concrete weights

for a reasonably accurate model.

4.2 Whole Program Cost Models

Let P be a program. During an execution of P , the JIT compiler generates m

distinct traces Trj and m associated trace counters nj .

Given a (null, counting or weighted) trace cost model γ, we define the (null,

counting or weighted) cost Γ(P ) of P by summing up the cost of all traces, each

weighted by their execution frequency; see Equation (4) for a formal definition.

Γ(P ) =
m
∑

j=1

nj γ(Trj) (4)

Note that Γ is not a predictive cost model, as its definition relies on traces and trace

counters, and the latter are only available after the execution of a program. However,

Γ can still be useful for predicting the cost of transformations, as demonstrated in

Section 5.

4.3 Calibrating Weights for CMW

To use the abstract weighted cost model CMW (Section 4.1.3), it is necessary to find

concrete values for the weight parameters a, . . . , e in Equation (3). Ideally, program

cost Γ(P ) is proportional to program runtime t(P ). That is, ideally there exists

k > 0 such that Equation (5) holds for all programs P .

Γ(P ) = k t(P ) (5)

Given sufficiently many programs, we can use Equation (5) to calibrate the weights

of CMW for a given architecture by linear regression, as detailed in Section 4.3.2.
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4.3.1 Benchmarks

For the purpose of calibrating weights we use 41 programs from the standard Pycket

benchmark suite pycket-bench [31] and the Racket Programming Languages Bench-

mark Game suite [18]. The programs used are a subset of the full suite, as programs

that result in failing benchmark runs or which contain calls to foreign functions are

omitted. Foreign function calls are removed as it is unlikely that any two foreign

function calls are doing the same thing or take the same time.

For each program, we record the execution time, averaging over 10 runs. We

also record all traces and the values of all trace counters; since all benchmarks are

deterministic traces and trace counters do not vary between runs.

The Pycket version used for these experiments is revision e56ba66d71 of the

trace-analysis branch of our custom fork [29], built with Racket version 6.1 and

revision 79009 of the RPython toolchain. The experiments are run on a 16 core 2.0

GHz Xeon server with 64 GB of RAM running Ubuntu 14.04.

4.3.2 Linear Regression

Picking an arbitrary value for k, e.g. k = 1, we derive the following relation from

Equations (5) and (4).

t(Pl) = Γ(Pl) + ǫl =

ml
∑

j=1

nlj γ(Trlj) + ǫl (6)

Pl is the lth benchmark program, generating ml traces Trlj and trace counters nlj ,

t(Pl) is the observed average runtime of Pl, and ǫl is the error term. Equation (6)

becomes a model for linear regression by expanding γ according to its definition

(3), which turns the right-hand side into an expression linear in the five unknown

weights a, . . . , e.

Weights are implicitly constrained to be non-negative, as negative weights would

suggest that corresponding instructions take negative time to execute, which is phys-

ically impossible. To honour the non-negativity constraint, weights are estimated

by non-negative least squares linear regression.

γ(Tr) =
k

∑

i=1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪



4.884× 10−4, if opi ∈ numeric

4.797× 10−3, if opi ∈ alloc

4.623× 10−4, if opi ∈ guard

0, otherwise

(7)

Equation (7) shows the resulting weighted cost model for the Xeon server architec-

ture. This model only attributes non-zero cost to allocation, numeric instructions

and guards, implying that object and array access instructions have negligible cost.

The regression fit for this cost model is shown in Figure 4. The fit is obviously

linear but rather coarse, indicating that CMW is not a very accurate model. There is

one egregious outlier (the trav2 benchmark – a tree traversal program); a possible

explanation is that the program is spending most of its time in the interpreter
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Fig. 4. Execution time vs cost for CMW determined using linear regression

rather than compiled code, resulting in an underestimation of cost due to lack of

trace output to measure. We note that linear regression fits for CMC and CM0 are

visibly worse than the fit for CMW , which implies that their accuracy is lower than

CMW .

5 Costing Transformations

The main purpose of a cost model in the AJITPar project is to enable the selec-

tion and parameterisation of appropriate dynamic transformations. This section

identifies the transforms and explores how accurately the cost models predict the

execution time of programs before and after transformation.

5.1 Skeleton Transforms

In AJITPar parallel programs are expressed by composing algorithmic skeletons [17]

from an Adaptive Skeletons (AS) library [27].

Adaptive skeletons are based on a standard set of algorithmic skeletons for spec-

ifying task-based parallelism within Racket. The AS framework expands skeletons

to task graphs and schedules tasks to workers; expansion and scheduling happen at

runtime to support tasks with irregular granularity. The AS framework piggy-backs

on Pycket to analyze the cost of tasks as they are executed. The cost information

is used both to guide the dynamic task scheduler as well as a skeleton transfor-

mation engine. The latter adapts the task granularity of the running program to

suit the current architecture by rewriting skeletons according to a standard set of

equations [27].

A number of different skeleton types are used in AJITPar. The basic types

of skeletons are parallel map, parallel reduce and divide and conquer. The actual

versions of the skeletons in AJITPar are tuneable, in that they are parameterised

with a number that specifies the granularity of the parallelism in some way. The

definitions of some of these tuneable skeletons, parMapChunk, parMapStride and

J.M. Morton et al. / Electronic Notes in Theoretical Computer Science 330 (2016) 5–2516



−− map s k e l e t on s
parMap : : ( a → b) → [ a ] → [ b ]
parMap f [ ] = [ ]
parMap f ( x : xs ) = spawn f x : parMap f xs

parMapChunk : : In t → ( a → b) → [ a ] → [ b ]
parMapChunk k f xs = concat $ parMap (map f ) $ chunk k xs

parMapStride : : Int → ( a → b) → [ a ] → [ b ]
parMapStride k f xs = concat $ transpose $ parMap (map f )

$ transpose $ chunk k xs

−− d i v i d e and conquer s k e l e t on s
parDivconq : : ( a → [ a ] ) → ( [ b ] → b) → ( a → b) → a → b
parDivconq div comb conq x =

case div x o f
[ ] → spawn conq x
ys → spawn comb (map (parDivconq div comb conq ) ys )

parDivconqThresh : : ( a → Bool ) → ( a → [ a ] ) → ( [ b ] → b)
→ ( a → b) → a → b

parDivconqThresh thresh div comb conq x
= i f thresh x

then spawn (divconq div comb conq ) x
e l s e case div x o f

[ ] → spawn conq x
ys → comb (map (parDivconqThresh p div comb conq ) ys )

−− s i gna tu r e s o f a u x i l i a r y func t i ons
chunk : : Int → [ a ] → [ [ a ] ]
map : : ( a → b) → [ a ] → [ b ]
concat : : [ [ a ] ] → [ a ]
divconq : : ( a → [ a ] ) → ( [ b ] → b) → ( a → b) → a → b
transpose : : [ [ a ] ] → [ [ a ] ]

Fig. 5. AJITPar base skeletons and tunable skeletons.

parDivconqThresh, are shown in Figure 5, specified in a Haskell-style pseudocode 5 .

Code which uses these skeletons can be transformed by modifying the first argument

which serves as a tuning parameter; we will use τ to denote this tuning parameter.

The AJITPar system aims to transform skeletons such that the resulting tasks

are of optimal granularity, i.e. execute for about 10 to 100 milliseconds on average.

To this end, the system monitors the runtime of tasks and computes their cost

as they complete, following Equation (4). If the system sees too many tasks fall

outwith the optimal granularity range, it will attempt to transform the skeleton

that generated the tasks. In the simplest case this is done by changing the tuning

parameter τ as follows.

Let t0 and γ0 be the observed average runtime and cost of tasks generated by

the skeleton’s current tuning parameter τ0. The system computes k = t0/γ0 and

picks a target granularity t1 (in the range 10 to 100 milliseconds) and corresponding

target cost γ1 = t1/k. Then the system picks the new tuning parameter τ1 such

that the cost ratio γ1/γ0 and the tuning ratio τ1/τ0 are related by the skeleton’s

cost derivative.

The cost derivative is a function expressing the change of cost γ in response

5 Extended with a primitive spawn, where expressions of the form spawn f x create a new task computing
the function application f x.
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Benchmark Input Skeleton(s)

Matrix multiplication 1000x1000 matrices parMapChunk

SumEuler [1...4000] parMapChunk; parMapStride

Fibonacci 42 parDivconqThresh

k-means sample data parMapChunk

Mandelbrot 6000x6000 parMapChunk

Table 4
Benchmarks with their input and applied skeletons

to the change of the tuning parameter τ . For example, the cost derivative for the

parMapChunk skeleton is the constant function 1 because doubling the chunk size τ

doubles the cost of tasks. In contrast, the derivative for parMapStride is the function

1/x because doubling the stride width τ halves the cost of individual tasks. Note

that in general, the cost derivative is specific to the skeleton but independent of

benchmark application and architecture.

Underlying this method of tuning τ is the assumption that the time/cost ratio

k is independent of τ . In the rest of this section, we will empirically demonstrate

that this is indeed the case as long as task granularity is not too small.

5.2 Experiments

The suitability of the cost models for predicting the effect of applying transforms on

execution time is evaluated. A cost model will be considered sufficiently accurate if

the ratio k of execution time to predicted cost is constant across different τ values

for each program.

5.2.1 Benchmarks and transforms

The benchmarks used in these experiments are shown in Table 4, and the sources

of the benchmarks are available at [30]. For most benchmarks it is obvious what

tasks compute, e.g. in the case of matrix multiplication a chunk of rows of the result

matrix. k-means is a special case, its tasks do not compute a clustering but classify

a chunk of the input data according to the current centroids; this is the parallel

part of each iteration of the standard cluster refinement algorithm. The input data

for k-means consists of 1024000 data points of dimension 1024, to be grouped into

5 clusters. The experiments are carried out on the same hardware and software

platforms as in Section 4.3.1.

5.2.2 Experimental Design

The benchmarks represent the sequential code executed by a worker during the

execution of a single task. Each benchmark is run with a variety of different values

for the tuning parameter τ . For example, Fibonacci is run with threshold values of

15, 16, 17, 18, 21, 24, 27, 30, etc. Since Pycket does not yet support snapshotting

the trace counter file, each run is performed twice; once with warmup code only

and then again with the warmup code and the task that is to be measured. The
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difference in trace counters between the two runs accurately reflects to the trace

counters of the task 6 .

Mandelbrot and SumEuler are irregular benchmarks, that is, work is distributed

non-uniformly, making some tasks harder than others. To investigate the accuracy

of the cost model in the presence of irregular parallelism, we repeat the Mandelbrot

and chunked SumEuler experiments with different chunks.

5.2.3 Results

The graphs of time/cost ratio k against tunable paramater τ for each benchmark

and cost model can be found in Figures 6 to 11. The rightmost point on each graph

represents the τ equivalent to one worker, and thus the untransformed version of that

code; moving rightwards along the x-axis corresponds to increasingly coarse-grained

tasks.

Figure 12 shows the plot of k (for cost model CMW ) against τ for each of three

different chunks of Mandelbrot, showing how irregularity affects the prediction. Ta-

ble 5 shows the stable values of time/cost ratio k to which the benchmarks converge;

the table also shows the range of values that k can take and a “minimum” task gran-

ularity (Section 5.3).

Fig. 6. k vs τ for Matrix multiplication benchmark

5.3 Discussion

The overall shape of graphs in Figures 6 to 11 is the same for all benchmarks and

cost models: The time/cost ratio k starts out high (on the left) and falls at first

as task granularity increases, then stabilises. The value of k the graphs stabilise at

depends on the benchmark and on the cost model; for CMW the stable k values are

listed in Table 5. By design of CMW these values cluster around 1 though none of

them is particularly close to 1, indicating that CMW is not particularly accurate

for any of the benchmarks, over- or under-estimating the actual execution time by

6 Unless the JIT was not warmed up sufficiently.
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Fig. 7. k vs τ for irregular chunked SumEuler benchmark

Fig. 8. k vs τ for strided SumEuler benchmark

Fig. 9. k vs τ for Fibonacci benchmark

a factor of 2 to 7. This is expected given the coarseness of the fit of CMW shown in

the previous section (Figure 4).

One difference between the graphs is the range over which k varies as task gran-
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Fig. 10. k vs τ for k-means benchmark

Fig. 11. k vs τ for Mandelbrot benchmark

Fig. 12. k vs τ for Mandelbrot benchmark (CMW ) comparing 3 chunks

ularity increases; this range is listed in Table 5. For the SumEuler benchmarks, and

to a lesser extent for Fibonacci, this range is large. This correlates with very low

granularities (on the order of tens of microseconds) for the smallest tasks. Once the
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Benchmark stable k range of k min. task granularity for stable k

Matrix Multiplication 0.579 0.201 < 11400 μs

Strided SumEuler 6.87 1450 306 μs

Chunked SumEuler 4.31 1460 129 μs

Fibonacci 0.542 1.55 294 μs

k-means 0.535 0.847 < 12100 μs

Mandelbrot 0.251 0.0187 < 117000 μs

Table 5
Stable k values for each benchmark (cost model CMW )

granularity crosses a certain threshold, around 100 to 300 μs as listed in Table 5,

the value of k stabilises. This suggests that the cost models are particularly inaccu-

rate for small tasks, possibly due to the fact that smaller tasks run through fewer

traces, but do become more accurate as task size increases. In particular, the cost

models are reasonably accurate for tasks in the target granularity range of 10 to 100

milliseconds.

For matrix multiplication and Mandelbrot the range of k listed in Table 5 is

small. For k-means the range would also be small (around 0.3) if the unusually high

k for the smallest task granularity were disregarded as an outlier. 7 This correlates

with minimum task granularities that are quite high (10 to 120 milliseconds); in fact,

these granularities are already in the target range. Thus, for these benchmarks the

cost models are reasonably accurate over the whole range of the tuning parameter τ .

Another source of inaccuracy for cost prediction, besides ultra-low task granular-

ity, is irregularity. The chunked SumEuler and Mandelbrot benchmarks do exhibit

irregular parallelism. In the case of SumEuler, chunks at the lower end of the in-

terval give rise to smaller tasks than chunks at the upper end, and in the case of

Mandelbrot, chunks at the top and bottom of the image produce smaller tasks than

chunks in the middle. The graphs in Figures 7 and 11 show plots of k for chunks in

the middle of the interval or image rather than the average over all chunks, in an

attempt to account for the effect of irregularity. Figure 12 contrasts the time/cost

ratio k of a chunk at the top of the image (Chunk 0) with two chunks in the middle.

The k for Chunk 0 is markedly different from the other two and not stable, though

the graphs do converge as granularity increases, which correlates with the fact that

irregularity decreases as chunk size increases. We note that while the moderate ir-

regularity of Mandelbrot causes some loss of accuracy, it is not too bad: the ratio

between the most extreme k of Chunk 0 and the stable value of k for Mandelbrot is

less than a factor of 3. In contrast, the ratio between task runtimes for Chunk 0 and

average task runtimes for Mandelbrot is a factor of more than 10. Thus, the cost

models are somewhat able to smooth the inaccuracies in prediction that are caused

by irregular task sizes.

Finally, on the evidence presented here, it does look like all three cost models are

7 The experiment data suggest this outlier is caused by insufficient JIT warmup though we do not yet
understand why.
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equally well suited to predicting the cost of transformations. While this is the case

for simple transformations that only change the value of a single tuning parameter

τ , this need no longer be the case when trying to cost a chain of two transformations.

In future work, we aim to systematically predict the cost of chains of transformations

of skeleton expressions comprising multiple skeletons, e.g. a parallel map followed

by a parallel reduce. We expect that in these cases there will be a bigger difference

between the set of traces pre- and post-transformation than what we currently see.

Hence we expect the actual content of the traces to matter more, and cost model

CMW to beat the other two on accuracy of prediction.

6 Discussion and Ongoing work

We have designed and implemented a system for extracting JIT trace information

from the Pycket JIT compiler (Section 3). We have defined three lightweight cost

models for JIT traces, ranging from the extremely simple loop counting model CM0

to the relatively simple instruction counting model CMC to the architecture-specific

weighted model CMW . To automatically determine appropriate weights for CMW

we have run a linear regression over the Pycket benchmark suite (Section 4). We

have used all three cost models to compare the relative cost of tasks generated

by six skeleton-based benchmarks pre- and post-transformation, where the skeleton

transformations are induced by changing a skeleton-specific tuning parameter. We

have found that the effect of these transformations on task runtime can be predicted

accurately using our cost models, once the task granularity rises above a threshold

(Section 5).

We have demonstrated that even the simplest, architecture-independent cost

model described in this paper allows us to accurately predict the effect of simple

transformations on task runtime. We expect that the architecture-specific model

CMW will be more accurate when predicting the task runtime of more complex

transformations, e.g. chains of transformations (as arise naturally when transform-

ing complex skeleton expressions by rewriting). We further speculate that similar

techniques can be used to identify lightweight cost models based on the traces pro-

duced by the JIT compilers for other languages, e.g. Python, Javascript, etc.

In future work, the AJITPar project plans to use cost model CMW in its efforts

to adapt task granularity to best suit the underlying parallel architecture. More

precisely, CMW will be used to tune skeleton parameters (as outlined in Section 5)

and also to select the most promising candidate expressions for skeleton rewriting.

The AJITPar project plans to evaluate whether this cost-model based adaptive

framework does deliver portable parallel performance by benchmarking several case

studies on multiple architectures, ranging from multicore desktops to clusters of

servers with several hundred cores.
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