
Transparent fault tolerance for scalable functional
computation

STEWART, Robert, MAIER, Patrick <http://orcid.org/0000-0002-7051-8169>
and TRINDER, Phil

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/18620/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

STEWART, Robert, MAIER, Patrick and TRINDER, Phil (2016). Transparent fault
tolerance for scalable functional computation. Journal of Functional Programming,
26, e5.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/151170623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

ZU064-05-FPR SGP2 23 May 2016 10:40

Under consideration for publication in J. Functional Programming 1

Transparent Fault Tolerance for Scalable

Functional Computation

ROBERT STEWART

Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, UK

PATRICK MAIER & PHIL TRINDER

School of Computing Science, Glasgow, UK

Abstract

Reliability is set to become a major concern on emergent large-scale architectures. While there are

many parallel languages, and indeed many parallel functional languages, very few address reliability.

The notable exception is the widely emulated Erlang distributed actor model that provides explicit

supervision and recovery of actors with isolated state.

We investigate scalable transparent fault tolerant functional computation with automatic supervi-

sion and recovery of tasks. We do so by developing HdpH-RS, a variant of the Haskell distributed

parallel Haskell (HdpH) DSL with Reliable Scheduling. Extending the distributed work stealing

protocol of HdpH for task supervision and recovery is challenging. To eliminate elusive concurrency

bugs, we validate the HdpH-RS work stealing protocol using the SPIN model checker.

HdpH-RS differs from the actor model in that its principal entities are tasks, i.e. independent

stateless computations, rather than isolated stateful actors. Thanks to statelessness, fault recovery

can be performed automatically and entirely hidden in the HdpH-RS runtime system. Statelessness

is also key for proving a crucial property of the semantics of HdpH-RS: fault recovery does not

change the result of the program, akin to deterministic parallelism.

HdpH-RS provides a simple distributed fork/join-style programming model, with minimal ex-

posure of fault tolerance at the language level, and a library of higher level abstractions such as

algorithmic skeletons. In fact, the HdpH-RS DSL is exactly the same as the HdpH DSL, hence users

can opt in or out of fault tolerant execution without any refactoring.

Computations in HdpH-RS are always as reliable as the root node, no matter how many nodes and

cores are actually used. We benchmark HdpH-RS on conventional clusters and an HPC platform: all

benchmarks survive Chaos Monkey random fault injection; the system scales well e.g. up to 1400

cores on the HPC; reliability and recovery overheads are consistently low even at scale.

1 Introduction

We know from both data centres and High Performance Computing (HPC) that faults

become frequent in large scale architectures, e.g. around 105 cores (Barroso et al., 2013).

With the exponential growth in the number of cores many expect servers with these num-

bers of cores to become commonplace in the near future. Hence the massively parallel

computations on such architectures must be able to tolerate faults. For example there

is already intense research to improve the fault tolerance of HPC software (Cappello,

2009), and cloud frameworks like Google MapReduce (Dean & Ghemawat, 2008) and

ZU064-05-FPR SGP2 23 May 2016 10:40

2

Hadoop (White, 2012) provide transparent fault tolerance for their restricted data retrieval

computations.

There are many parallel functional languages e.g. (Marlow et al., 2009; Scholz, 2003),

and many scale over distributed memory architectures to support massively parallel com-

putations e.g. (Aljabri et al., 2014; Loogen et al., 2005). There are, however, very few fault

tolerant parallel functional languages. The notable exception is the Erlang distributed actor

model (Armstrong, 2010) that is widely emulated, e.g. by Cloud Haskell (Epstein et al.,

2011) and the Akka library for Scala (Gupta, 2012). Erlang style fault tolerance provides

mechanisms for the explicit supervision and recovery of stateful processes, or actors, and

hence faults are observable.

We investigate exploiting the statelessness of functional languages to provide scalable

transparent fault tolerance, in contrast to stateful actor models. If a copy of the closure rep-

resenting a stateless computation is preserved it can be recovered by simply re-evaluating

the closure. Conveniently functional languages like Haskell clearly distinguish stateless

and stateful computations. There remain significant challenges to scaling parallel func-

tional programs, e.g. they commonly employ complex data and control structures, and

dynamically create tasks of irregular sizes.

The basis of our investigation is a variant of the Haskell Distributed Parallel Haskell

DSL (HdpH), HdpH-RS that extends HdpH with reliable scheduling (RS). Both HdpH

and HdpH-RS are designed for scalable distributed-memory parallelism, and employ work

stealing to load balance dynamically-generated tasks of irregular sizes.

The paper makes the following research contributions.

Language design for transparent fault tolerance. The HdpH-RS implementations of the

HdpH spawn and spawnAt primitives create and supervise idempotent tasks guaranteeing

that they terminate providing the spawning location survives. Idempotent tasks have no side

effects whose repetition can be observed, e.g. tasks that are stateless or perform idempotent

database updates (Ramalingam & Vaswani, 2013). By the transitivity of spawning the

program terminates if the root node, where the program starts, survives1. For ease of

programming HdpH-RS exploits the higher level HdpH programming abstractions, most

significantly some 9 parallel skeletons that encapsulate common parallel programming

patterns (Stewart & Maier, 2013). Logically the programmer can switch from normal to

fault tolerant execution simply by selecting the HdpH-RS implementation, i.e. without

refactoring application code 2.

HdpH-RS is designed to manage dynamic, irregular and idempotent task parallelism on

large scale architectures like HPCs. It copes well with complex algorithms, coordination

patterns, and data structures. There are many real-world applications with these charac-

teristics, for example many combinatorial problems or computational algebra problems

e.g. (Maier et al., 2014a). (Section 3).

1 Erlang style automatic restarting of the root node could easily be provided, and would simply
rerun the entire computation, typically up to a fixed failure frequency, e.g. 5 restarts/hour.

2 Section 6.4 outlines some minor pragmatic issues with using fault tolerance.

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 3

An operational semantics for HdpH-RS that provides a concise and unambiguous model

of scheduling in the absence and presence of failure. Provided that all tasks are idempotent,

we show that the semantics makes failure unobservable: a program always computes the

same result, no matter how many failed tasks had to be recovered (Sections 3.4 and 3.5).

The design and implementation of transparent fault tolerance via a distributed sched-

uler that implements the HdpH-RS spawn primitives, fault detection, and recovery. The

reliable scheduler performs work stealing while tolerating the random loss of any or all

nodes other than the root node. It replicates supervised tasks, tracks their location, and

reinstates them if the task may have been lost. In the current implementation any tasks

created by a lost task will also be recreated during the re-evaluation. The HdpH-RS imple-

mentation is publicly available (Stewart & Maier, 2013) (Sections 4, 6).

A validation of the fault tolerant distributed scheduler with the SPIN model checker.

The work stealing scheduling algorithm is abstracted in to a Promela model and is formally

verified with the SPIN model checker (Holzmann, 2004). The model represents all failure

combinations of non-root nodes that may occur in real architectures. The key reliability

property shows that the variable representing a supervised task is eventually full despite

node failures. The property is proven by an exhaustive search of 8.2 million states of the

model’s state space at a reachable depth of 124 transitions (Section 5).

An evaluation of the HdpH-RS transparent fault tolerance performance using four

benchmarks on both conventional (Beowulf (Meredith et al., 2003)) clusters and the HEC-

ToR HPC (Edinburgh Parallel Computing Center (EPCC), 2008). All benchmarks execute

without observable faults in the presence of Chaos Monkey (Hoff, 2010) random fault

injection. We show that HdpH-RS scales well, e.g. achieving a speedup of 752 with explicit

task placement and 333 with lazy work stealing when executing Summatory Liouville on

1400 HECToR cores. Supervision overheads are consistently low even at scale and recov-

ery overheads are similarly low in the presence of frequent failure when lazy on-demand

work stealing is used (Section 7). The dataset supporting this evaluation is available from

an open access archive (Stewart et al., 2015).

Novelty This paper is the first comprehensive presentation of transparent fault tolerance

in HdpH-RS, covering the design, implementation, semantics, validation, and evaluation.

HdpH-RS was conceived as a key component of the SymGridPar2 scalable computational

algebra framework. The HdpH-RS design is presented as part of the SymGridPar2 design

in (Maier et al., 2014b), together with some very preliminary performance measurements.

HdpH-RS is described alongside HdpH in (Maier et al., 2014c), but with only a few

paragraphs dedicated to describing each of the implementation, validation, and evaluation.

2 Related Work

2.1 Faults and Reliability

A fault is a characteristic of hardware or software that can lead to a system error. An

error can lead to an erroneous system state giving a system behaviour that is unexpected

ZU064-05-FPR SGP2 23 May 2016 10:40

4

by system users. Faults may be due to a range of factors, e.g. incorrect software, or the

capacity issues like insufficient memory or persistent storage.

State
resychronisation

Non−stop
forwarding

Software
upgrade

Exception
handling

Active
redundancy

Preparation
and repair

Passive
redundancy

Fault Recovery

Reintroduction

Shadow

Rollback

Checkpointing

Fault Detection

Exception prevention

Process monitor

Transactions

Fault Prevention

Availability Tactics

Voting

System monitor

Ping

Exception detection

Removal from service

Spare

Heartbeat

Fig. 1: Availability Tactics from (Scott & Kazman, 2009)

Tactics for fault tolerance detection, recovery and prevention are shown in Figure 1.

Monitors are components that can monitor many parts of a system, such as processors,

nodes, and network congestion. They may use heartbeat or ping-pong protocols to mon-

itor remote components in distributed systems. In message passing distributed systems,

timestamps can be used to detect or re-order incorrect event sequences. Most existing

work in fault tolerance for HPC systems is based on checkpointing or rollback recovery.

Checkpointing methods (Chandy & Lamport, 1985) are based on periodically saving a

global or semi-global state to stable storage. Global checkpointing does not scale, and

though asynchronous checkpointing approaches have potential to scale on larger systems,

they encounter difficult challenges such as rollback propagation, domino effects, and loss

of integrity through incorrect rollback in dependency graphs (Elnozahy et al., 2002). Algo-

rithmic level fault tolerance is an alternative high level fault tolerance approach. Examples

include leader election algorithms, consensus through voting and quorums, or simply ig-

nore failures by smoothing over missing results with probabilistic accuracy bounds.

2.2 Reliability of Large Scale Systems

The success of future HPC architectures will depend on the ability to provide reliability

and availability at scale (Schroeder & Gibson, 2007). As HPC systems continue to increase

in scale, their mean time between failure decreases. The current practise for fault tolerance

in HPC systems is to use very reliable hardware, e.g. processors and interconnects, and to

use checkpointing and rollback. With the increasing error rates and increasing aggregate

memory exceeding IO capabilities, checkpointing is fast becoming unusable (Litvinova

et al., 2010).

Parallel functional computations are typically very different from most HPC computa-

tions that perform relatively regular iterations over arrays of floating points. In contrast

HdpH and other functional computations employ complex data and control structures, use

arrays and floating points sparingly, and dynamically create tasks of irregular sizes. Rather

than checkpointing, HdpH-RS uses supervision and re-evaluation for fault tolerance.

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 5

Big Data frameworks like Google MapReduce (Dean & Ghemawat, 2008), and Hadoop

(White, 2012) operate at scale on commodity hardware and hence provide fault tolerance.

They provide automatic and largely transparent fault tolerance. Queries are idempotent,

the data is replicated in a distributed file store, e.g. by the Hadoop HDFS (White, 2012),

the failure of a sub query is detected and it is recomputed. Such frameworks perform

a restricted form of data retrieval computation. HdpH-RS, and other parallel functional

languages, are more commonly used for large compute-bound tasks, i.e. Big Computation

and not Big Data.

HdpH-RS differs from Hadoop in a number of ways. Where a Hadoop master node su-

pervises the health of all slave nodes, supervision is distributed in HdpH-RS, and all HdpH-

RS nodes are capable of detecting remote node failures. In Hadoop, failure detection and

task replication is centralised. The output of map tasks are stored to disk locally in Hadoop.

In the presence of failure, completed map tasks are redundantly re-scheduled, due to the

loss of their results. This is in contrast to HdpH-RS, where the resulting values of evaluating

task expressions is transmitted with rput as soon as they are calculated. Failure detection

latency in Hadoop is 10 minutes by default in order to tolerate non-responsiveness and

network congestion (Dinu & Ng, 2011). In contrast, the failure detection latency in HdpH-

RS is a maximum of 5 seconds by default, and can be modified by the user.

2.3 Fault Tolerant Distributed Languages

Erlang is a distributed actor based functional language that is increasingly popular for

developing reliable scalable systems, many with soft real-time requirements. The Erlang

approach to failures relies on actors having isolated state, and hence they can ’let it crash’

and rely on another process to correct the error (Armstrong, 2010). One Erlang process

can monitor another Erlang process, which is notified if the monitored process dies. The

Erlang reliability model is widely emulated, e.g. by and the Akka library for Scala (Gupta,

2012) and by Cloud Haskell (Epstein et al., 2011).

The Cloud Haskell and HdpH-RS designs and implementations are closely related.

Both languages are implemented entirely in Haskell with GHC extensions and inherit the

language features of Haskell, including purity, types, and monads, as well as the multi-

paradigm concurrency models in Haskell. Both provide mechanisms for serialising func-

tion closures, enabling higher order functions to be used in distributed computing envi-

ronments. Both are de-coupled into multiple layers, separating the process layer, trans-

port layer, and transport implementations. The software architecture, illustrated in Figure

2, is designed to encourage additional middlewares other than Cloud Haskell for dis-

tributed computing, and for alternative network layer implementations other than TCP.

Cloud Haskell and HdpH-RS share the TCP network layer.

HdpH-RS reliability differs from Erlang-style reliability in a number of ways, and for

concreteness we compare with distributed Erlang. HdpH-RS provides dynamic load man-

agement where an idle node may steal a task. In contrast distributed Erlang spawns a

process to a named node (host), and thereafter it cannot migrate. This makes Erlang less

suitable than HdpH-RS for computations with irregular parallelism. HdpH-RS recovery

in effect automates Erlang OTP supervision behaviours and hence user does not need

to handle failures excplicity as in Erlang. Where HdpH-RS is designed to recover only

ZU064-05-FPR SGP2 23 May 2016 10:40

6

Cloud
Haskell

TCP UDP MPI

meta−par Middlewares

Transports

Transport APInetwork−transport

HdpH−RS

Fig. 2: Distributed Haskell Software Layers

idempotent tasks transparently, i.e. without making faults observable, the recovery of a

stateful process in Erlang may make the faults observable. Such a model can provide better

availability as nodes (Erlang VMs) can be monitored and restarted from the operating

system. In contrast to HdpH-RS and Cloud Haskell Erlang is dynamically typed, and hence

programming errors may be detected only at runtime.

3 Design

3.1 HdpH-RS Language

Haskell Distributed Parallel Haskell (HdpH) and HdpH-RS are shallowly embedded Has-

kell DSLs that support high-level explicit and semi-explicit parallelism. HdpH-RS is scal-

able as it distributes computations across a network of multicore nodes. It is portable, being

implemented entirely in Haskell (with GHC extensions) rather than relying on bespoke

low-level runtime systems like Glasgow parallel Haskell (GpH) (Trinder et al., 1996) or

Eden (Loogen et al., 2005).

HdpH-RS provides high-level semi-explicit parallelism with implicit and explicit task

placement and dynamic load management. Implicit placement frees the programmer from

controlling work distribution and load management. Instead, idle nodes steal work from

busy nodes automatically, thereby maximising utilisation when there is enough work to be

stolen at the expense of deterministic execution. HdpH-RS provides low cost automatic

fault tolerance using Erlang-style supervision and recovery of location-invariant computa-

tions.

HdpH-RS extends the Par monad DSL (Marlow et al., 2011) for shared-memory par-

allelism to distributed memory, and Listing 1 lists the HdpH API. Like (Marlow et al.,

2011), HdpH focuses on task parallelism. In distributed memory, this requires serialisation

of Par computations and results so they can be sent over the network. The Par type

constructor is a monad for encapsulating a parallel computation. To communicate the

results of computation (and to block waiting for their availability), threads employ IVars

as futures (Halstead Jr., 1985), which are essentially mutable variables that are writable

exactly once.

The spawn and spawnAt primitives immediately return a future of type IVar (Closure

t). The actual result can be read by calling get, blocking until the result is available. Note

that a future is not serialisable, hence cannot be captured by explicit closures. As a result

the future can only be read on the hosting node, i.e. the node it was created on. Details of

explicit closures in HdpH-RS are in (Maier et al., 2014b).

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 7

data Par a -- monadic parallel computation of type ’a’
eval :: a → Par a -- strict evaluation

data Node -- explicit location (shared-memory node)
allNodes :: Par [Node] -- list of all nodes; head is current node

data Closure a -- explicit closure of type ’a’
unClosure :: Closure a → a
toClosure :: (Binary a) ⇒ a → Closure a
mkClosure -- Template Haskell closure conversion macro

-- ∗ task distribution
type Task a = Closure (Par (Closure a))
spawn :: Task a → Par (Future a) -- lazy
spawnAt :: Node → Task a → Par (Future a) -- eager

-- ∗ communication of results via futures
data IVar a -- write-once buffer of type ’a’
type Future a = IVar (Closure a)
get :: Future a → Par (Closure a) -- local read
rput :: Future a → Closure a → Par () -- global write (internal use)

Listing 1: HdpH-RS Primitives

The example in Listing 2 illustrates the use of the HdpH primitives to sum the Liouville

function (Borwein et al., 2008) from 1 to n in parallel. The code shows how to construct

a list of tasks with the mkClosure macro, how to generate parallelism by spawning the

tasks, how to retrieve the results closures, and how to unwrap them and return the

final sum. Note how the actual parallel computation, the function liouville, applies the

toClosure primitive to create a result closure containing a fully evaluated Integer.

parSumLiouville :: Integer → Par Integer
parSumLiouville n = do

let tasks = [$(mkClosure [|liouville k |]) | k ← [1..n]]
futures ← mapM spawn tasks
results ← mapM get futures
return $ sum $ map unClosure results

liouville :: Integer → Par (Closure Integer)
liouville k = eval $ toClosure $ (-1)^(length $ primeFactors k)

Listing 2: Summatory Liouville with HdpH-RS

3.2 Algorithmic Skeletons

HdpH-RS provides algorithmic skeletons (Cole, 1988) that abstract over the DSL primi-

tives to provide high level fault tolerant parallelism. Algorithmic skeletons abstract com-

munication, interaction, and commonly-used patterns of parallel computation e.g. divide-

and-conquer, map/reduce, parallel map and parallel buffer variants. Programmers that use

ZU064-05-FPR SGP2 23 May 2016 10:40

8

these skeletons do not create tasks with spawn, spawnAt or call get on IVars directly.

Instead, the skeleton implementations handle task creation and placement and synchroni-

sation using IVars.

There are two versions of each algorithmic skeleton, one that uses eager scheduling and

another that uses lazy scheduling. Lazy skeletons are implemented with combinations of

spawn and get, and rely on the work stealing scheduler to load balance tasks. Eager skele-

tons are implemented with combinations of spawnAt and get, and push tasks to nodes as

soon as they are created. Node selection with spawnAt varies between skeletons. Parallel

map skeletons e.g. pushMap and pushMapSliced select nodes in a round-robin fashion.

Nested skeletons e.g. pushDivideAndConquer (Stewart, 2013b) use random node selec-

tion. We explore the performance implications of fault tolerance and lazy/eager scheduling

in Section 7.

parMapSliced, pushMapSliced -- lazy and eager slicing parallel maps
:: (Binary b) -- result type serialisable (required by toClosure)
⇒ Int -- number of tasks
→ Closure (a → b) -- function closure
→ [Closure a] -- input list
→ Par [Closure b] -- output list

parMapSliced = pMapSliced $ mapM spawn
pushMapSliced = pMapSliced $ λtasks → do

nodes ← allNodes
zipWithM spawnAt (cycle nodes) tasks

pMapSliced -- slicing parallel map, parametric in task scheduling
:: (Binary b)
⇒ (∀t. [Task t] → Par [Future t]) -- task scheduling parameter
→ Int -- number of tasks
→ Closure (a → b) -- function closure
→ [Closure a] -- input list
→ Par [Closure b] -- output list

pMapSliced scheduleTasks n cf cxs = do
let tasks = [$(mkClosure [| fmap toClosure $ mapM (λcy →

fmap toClosure $ eval (unClosure cf $ unClosure cy)) cys |])
| cys ← slice n cxs]

ivars ← scheduleTasks tasks
results ← mapM get ivars
return $ unslice $ map unClosure results

slice :: Int → [a] → [[a]]
slice n = transpose ◦ chunk n where

chunk n [] = []
chunk n xs = ys : chunk n zs where (ys,zs) = splitAt n xs

unslice :: [[a]] → [a]
unslice = concat ◦ transpose

Listing 3: Two versions of a HdpH-RS Skeleton

Two versions of an HdpH-RS parallel map skeleton are shown in Listing 3. Both divide

the input list into a number of slices and evaluate each slice in parallel. For example,

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 9

dividing the list [e1, ...,e5] into three slices yields a list [[e1,e4], [e2,e5], [e3]]. The skele-

tons create three parallel tasks, distributed lazily with parMapSliced and eagerly with

pushMapSliced. The two skeletons actually differ only in task scheduling; task creation

and gathering of results, including slicing and unslicing of lists of closures, is uniformly

handled by the underlying parametric skeleton pMapSliced. The full list of HdpH-RS

skeletons are in (Stewart, 2013b) and their implementations are online (Stewart & Maier,

2013).

3.3 Applicability

HdpH-RS is designed to manage dynamic, irregular and idempotent task parallelism on

large scale architectures like large clusters or HPCs. Section 7 demonstrates that HdpH-

RS delivers good performance for applications with complex algorithms, coordination

patterns, and data structures. As HdpH-RS retains backup closures of supervised tasks, its

performance is predicated on a small closure footprint: either there are few closures, or they

are small, or terminate quickly. Thus, HdpH-RS offers a trade-off between fault tolerance

and memory use. There are many real-world applications with these characteristics, for

example many combinatorial problems or computational algebra problems e.g. (Maier

et al., 2014a).

On the other hand HdpH-RS is not appropriate for certain classes of application. In

particular we do not target traditional HPC workloads, i.e. regular computations over

vectors of floating points. These have little need for the dynamic load management and rich

data structures provided by HdpH-RS, and need highly optimised floating point and vector

capabilities. Similarly, for good performance task execution time must greatly outweigh

communication time, which is largely determined by the size of the closure transmitted.

Hence Big Data workloads with large memory footprints are not well suited. Finally HdpH-

RS would not facilitate the development of applications that rely on reliable distributed data

structures, like replicated distributed hash tables, as these are not yet provided.

3.4 Operational Semantics

This section presents an operational semantics for HdpH-RS in the style of (Marlow et al.,

2011), focusing on fault recovery. Figure 3 introduces the syntax of terms and values.

IVars are represented as names which can be bound by name restriction ν ; the set of names

occuring free in X (where X may be of any of the syntactic categories in Figure 3) is

denoted by fn(X).

The term language of Figure 3 is essentially the same as the embedded DSL presented in

Section 3.1, except that it ignores explicit closures, i.e. assumes that all terms are implicitly

serialisable. We assume that terms that may be serialised have no free IVars, more precisely,

we restrict the last argument of spawn, spawnAt and rput to terms M such that fn(M) = /0.

This is justified as in the language design (Section 3.1) these arguments are explicit closures

that cannot capture free IVars.

For the purposes of the DSL semantics the host language is a standard lambda calculus

with fixed points and some data constructors for nodes, integers and lists (omitted to save

space). We assume a big-step operational semantics for the host language, and write M ⇓V

ZU064-05-FPR SGP2 23 May 2016 10:40

10

Meta-variables i, j names of IVars

p,q nodes

P,Q sets of nodes

x,y term variables

Values V ::= () | i | p | xM1 . . .Mn | λx.M | fixM

| M >>=N | returnM | evalM | allNodes | spawnM | spawnAt pM | get i | rputiM

Terms L,M,N ::= V |M N | (>>=) | return | eval | spawn | spawnAt | get | rput

States R,S,T ::= S |T parallel composition

| ν i.S name restriction

| 〈M〉p thread on node p, executing M

| 〈〈M〉〉p spark on node p, to execute M

| i{M}p full IVar i on node p, holding M

| i{〈M〉q}p empty IVar i on node p, supervising thread 〈M〉q

| i{〈〈M〉〉Q}p empty IVar i on node p, supervising spark 〈〈M〉〉q for some q ∈ Q

| i{⊥}p zombie IVar i on node p

| deadp notification that node p is dead

Evaluation contexts E ::= [·] | E >>=M

Fig. 3: Syntax of HdpH-RS terms, values and states.

to mean that there is a derivation proving that term M evaluates to value V . The definition

of the host language semantics is entirely standard and omitted (Peyton Jones, 2002). Note

that the syntax of values in Figure 3 implies that the DSL primitives are strict in arguments

of type Node and IVar.

The operational semantics is a small-step reduction semantics −→ on the states defined

in Figure 3. A state is built from atomic states by parallel composition and name restriction.

Each atomic state has a location, a node indicated by the subscript p. The special atomic

state deadp signals that p has died, modeling node failure detection.

An atomic state of the form 〈M〉p or 〈〈M〉〉p, where M is a computation of type Par (),

denotes a thread or spark, respectively. A thread is a currently executing task and is tied to

its current node p; a spark is a task that does not yet execute and may migrate from p to any

other node q. An atomic state of the form i{?}p denotes an IVar named i; the place holder

“?” signals that we don’t care whether i is full, empty, or a zombie. To enable fault recovery,

empty IVars i{〈M〉q}p and j{〈〈N〉〉Q}p supervise the thread 〈M〉q resp. spark 〈〈N〉〉q that is

supposed to fill them, maintaining knowledge of their location. In case of a non-migratable

thread that knowledge is the exact node q where it was placed by the scheduler. In case

of a spark, however, the superving IVar j may not know the actual node due to migration,

hence the spark is annotated with a set of nodes Q over-approximating its true location.

Figure 4 asserts the usual structural congruence properties of parallel composition and

name restriction, and the usual structural transitions propagating reduction under parallel

composition and name restriction.

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 11

S |T ≡ T |S ν i.ν j.S≡ ν j.ν i.S

R | (S |T)≡ (R |S) |T ν i.(S |T)≡ (ν i.S) |T, i /∈ fn(T)

S−→ T

R |S−→ R |T

S−→ T

ν i.S−→ ν i.T

S≡ S′ −→ T ′ ≡ T

S−→ T

Fig. 4: Structural congruence and structural transitions.

〈E [M]〉p −→ 〈E [V]〉p, if M ⇓V and M 6≡V (normalize)

〈E [returnN >>=M]〉p −→ 〈E [M N]〉p (bind)

〈E [evalM]〉p −→ 〈E [returnV]〉p, if M ⇓V (eval)

〈E [allNodes]〉p −→ 〈E [returnM]〉p, where M is an list of all nodes, starting with p (allNodes)

〈E [spawnM]〉p −→ ν i.(〈E [return i]〉p | i{〈〈M >>=rput i〉〉{p}}p | 〈〈M >>=rput i〉〉p), where i /∈ fn(E)

(spawn)

〈E [spawnAtqM]〉p −→ ν i.(〈E [return i]〉p | i{〈M >>=rput i〉q}p | 〈M >>=rput i〉q), where i /∈ fn(E)

(spawnAt)

〈E [rput iM]〉p | i{〈N〉p}q −→ 〈E [return()]〉p | i{M}q (rput empty thread)

〈E [rput iM]〉p | i{〈〈N〉〉Q}q −→ 〈E [return()]〉p | i{M}q (rput empty spark)

〈E [rput iM]〉p | i{N}q −→ 〈E [return()]〉p | i{N}q, where N 6=⊥ (rput full)

〈E [rput iM]〉p | i{⊥}q −→ 〈E [return()]〉p | i{⊥}q (rput zombie)

〈E [get i]〉p | i{M}p −→ 〈E [returnM]〉p | i{M}p, where M 6=⊥ (get)

〈〈M〉〉p1
| i{〈〈M〉〉P}q −→ 〈〈M〉〉p2

| i{〈〈M〉〉P}q, if p1, p2 ∈ P (migrate)

〈〈M〉〉p | i{〈〈M〉〉P1
}q −→ 〈〈M〉〉p | i{〈〈M〉〉P2

}q, if p ∈ P1 ∩P2 (track)

〈〈M〉〉p −→ 〈M〉p (convert)

i{〈M〉q}p |deadq −→ i{〈M〉p}p | 〈M〉p |deadq, if p 6= q (recover thread)

i{〈〈M〉〉Q}p |deadq −→ i{〈〈M〉〉{p}}p | 〈〈M〉〉p |deadq, if p 6= q and q ∈ Q (recover spark)

deadp | 〈〈M〉〉p −→ deadp (kill spark)

〈return()〉p −→ (gc thread) deadp | 〈M〉p −→ deadp (kill thread)

ν i.i{?}p −→ (gc ivar) deadp | i{?}p −→ deadp | i{⊥}p (kill ivar)

−→ deadp (dead)

Fig. 5: Small-step semantics of HdpH-RS.

Figure 5 presents the transition rules for HdpH-RS. Most of these rules execute a thread,

relying on an evaluation context E to select the first action of the thread’s monadic compu-

tation. Rules that are similar to those in (Marlow et al., 2011) are not explained in detail.

The first three rules are standard for monadic DSLs; note how eval is just a strict

return. The rule (allNodes) exposes a list of all the system’s nodes, in no paricular order

except that the current node is the head of the list. The rules (spawn) and (spawnAt) define

the work distribution primitives. The primitive spawn creates an IVar i on the current node

p and wraps its argument M, followed by a write to i, into a spark initially residing on p; it

also stores the spark in the empty IVar, as backup for fault recovery. In contrast, spawnAt

wraps M into a thread, which is placed on node q (and backed up in the empty IVar for fault

recovery). The side condition on both rules ensures that the name i is fresh, i.e. does not

occur free in the current thread. The (rput *) and (get) rules for IVars are similar to those

ZU064-05-FPR SGP2 23 May 2016 10:40

12

in (Marlow et al., 2011) except that IVars in HdpH-RS can only be read on the node they

reside on. They can however be written from any node, and writes can be raced;3 the first

write wins and overwrites the backup thread/spark, subsequent writes have no effect. Rules

(migrate), (track) and (convert) govern the fault tolerant scheduling of sparks. A spark may

freely migrate from node p1 to p2, subject to both locations being tracked by set P. The

tracking set may change via rule (track) in arbitrary ways, provided the current location

of the spark remains a member, modelling the supervising IVar’s changing and uncertain

knowledge about the location of a supervised spark; Figure 10 in Section 5.4 shows how

rules (migrate) and (track) abstract the actual behaviour of the HdpH-RS work stealing

algorithm. Migrating sparks cannot be executed directly; instead rule (convert) must turn

them into threads that can execute but not migrate. Finally, the (gc *) rules eliminate

garbage, i.e. terminated threads and inaccessible IVars. Note that to become garbage, IVars

must be unreachable, and sparks must be converted and executed to termination; hence the

semantics does not support speculative parallelism.

The remaining rules deal with faults. The four rules at the bottom right of Figure 5 define

the fault model of HdpH-RS. A node p may die any time, signalled by the spontaneous

production of deadp, and non-deterministically its sparks and threads may disappear and

its IVars may turn into zombies. IVars cannot just disappear, or else writes to IVars on dead

nodes would get stuck instead of behaving like no-ops. However, some of p’s sparks and

threads may survive and continue to execute. In this way the semantics models partial faults

and pessimistic notification of faults. Node failure is permanent as no transition consumes

deadp.

Finally, the (recover thread) and (recover spark) rules model the recovery of tasks that

have been lost due to faults. A thread supervised by IVar i on p and executing on dead node

q 6= p is replicated on p, after which i updates the tracking location to p (which effectively

rules out further supervision as there is no point supervising a thread on the same node).

A spark supervised by IVar i on p and known to reside on some node in the tracking set

Q is replicated on p if any node q ∈ Q is dead; afterwards i continues to supervise, now

tracking {p}, the location of the replica spark. Due to the inherent uncertainty of tracking,

sparks may be replicated even when actually residing on healthy nodes.

The transition rules are illustrated by executions with and without faults in (Stewart,

2013b). Section 5.4 relates the operational semantics to the actual fault tolerant work

stealing algorithm of HdpH-RS.

3.5 Transparent Fault Recovery

We aim to show that, under reasonable assumptions, fault recovery is transparent, i.e.

semantically unobservable in the sense that it cannot change the result of reductions. We

need to formally define a number of concepts, leading to the result of a reduction, namely

a normal form of its initial state.

We note that in any reduction, rule (dead) permutes with every rule to the left. That is,

in any given reduction it is irrelevant how early a failing node dies; what matters is the

3 Since the DSL in Section 3.1 does not expose rput, races only occur as a result of task replication
by the fault tolerant HdpH-RS scheduler.

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 13

subsequent reaction, killing and/or recovering threads and sparks. Thus, for the purpose of

investigating normal forms, we ban rule (dead) and instead start reduction from states of

the form S | deadp1
| . . . | deadpn , insisting that all failing nodes die right at the start of the

reduction. For the remainder of this section, let F = {p1, . . . , pn} be a set of failing nodes.

We decorate the reduction relation −→ with F and define S −→F T iff S | deadp1
| . . . |

deadpn −→ T | deadp1
| . . . | deadpn . We call −→ /0 reductions failure-free; obviously, these

reductions cannot use any of the rules (kill *), (recover *) and (rput zombie).

A main thread is a thread of the form 〈M〉p with fn(M) = /0, and a root thread is a thread

of the form 〈M >>=rput i〉p with fn(M) = /0. That is, a main thread has no free IVars, and

a root thread has exactly one free IVar, which it only accesses to write its final result. A

main thread corresponds to a program’s initial thread (e.g. the thread executing the main

action in a Haskell program) whereas root threads correspond to tasks created by spawn or

spawnAt.

We call a state S well-formed iff there is a state S0 consisting of a single main or root

thread such that S0 −→
∗
F S, where −→∗F denotes the reflexive-transitive closure of −→F .

We observe that reductions starting from well-formed states cannot get stuck except when

embedding the host language, namely term M diverging in rules (normalize) and (eval), or

when executing the final rput of the root thread. In particular, well-formedness guarantees

that all other rputs find their target IVars, that all gets find their source IVars, and that

these source IVars reside on the same nodes as the threads executing get.

Given a state S, a thread 〈N〉p is reachable from S iff there is a state T such that

S −→∗F ν i1 . . .ν in.(T | 〈N〉p). Thread 〈N〉p is a normal form of S, denoted S ↓F 〈N〉p, iff

S −→∗F 〈N〉p and 〈N〉p is irreducible. If F = /0 we call 〈N〉p a failure-free normal form.

Note that reaching normal form entails p /∈ F , otherwise 〈N〉p would be reducible by rule

(kill thread). Furthermore, reaching normal form entails that all parallel computation has

ceased because threads and sparks have been garbage collected or killed (on failed nodes).

Finally note that S may have any number of normal forms.

We observe that the existence of normal forms allows compositional splicing of re-

ductions. More precisely, given a state S and a root thread 〈M >>=rput ik〉p such that

S−→∗F ν i1 . . .ν in.(T |〈M >>=rput ik〉p) and 〈M >>=rput ik〉p ↓F 〈N〉p, there is a reduction

S−→∗F ν i1 . . .ν in.(T | 〈N〉p). Note that fn(〈N〉p) = fn(〈M >>=rput ik〉p) = {ik} due to the

fact that fn(M) = /0 and normalisation cannot create free IVars.

We have defined normal forms of arbitrary states S, yet we will mostly be interested

in the normal forms of main and root threads, as the latter correspond to tasks spawned

and potentially replicated. Ignoring potential divergence in rules (normalize) and (eval),

reductions starting from main and root threads do not get stuck — see the above obser-

vation on well-formedness — hence existence (though not uniqueness) of normal forms

is guaranteed. In particular, a normal form of a main thread 〈M〉p must be of the form

〈returnN〉p with fn(N) = /0. Likewise, a normal form of a root thread 〈M >>=rput i〉p
must be of the form 〈rput iN〉p with fn(N) = /0. Note that the name of the result IVar

has no bearing on the normal forms of a root thread as 〈M >>=rput i〉p ↓F 〈rput iN〉p if

and only if 〈M >>=rput j〉p ↓F 〈rput j N〉p for all IVars i and j. However, HdpH-RS is

a location-aware DSL, so moving a thread from node p to q may substantially alter its

normal forms.

ZU064-05-FPR SGP2 23 May 2016 10:40

14

We aim to transform reductions with failures into failure-free reductions, preserving

normal forms. This isn’t possible in general; it does require some restriction on the use of

location information. We call a thread 〈M〉p location invariant iff it does not matter where

it executes; that is, 〈M〉p ↓F 〈N〉p if and only if 〈M〉q ↓F 〈N〉q for all sets of nodes F and all

nodes p and q. We call 〈M〉p transitively location invariant iff 〈M〉p is location invariant

and all root threads 〈N >>=rput j〉q reachable from 〈M〉p are location invariant.

Now we can state the claim of the main theorem below. The normal forms of a transi-

tively location invariant main thread coincide with its failure-free normal forms. That is,

the effects of failure and recovery cannot be observed in the results of reductions (provided

the main thread executes on a non-failing node).

Theorem 1 Let F be a set of failing nodes and 〈M〉p a transitively location invariant main

thread with p /∈ F. Then for all normal forms 〈N〉p, we have 〈M〉p ↓F 〈N〉p if and only if

〈M〉p ↓ /0 〈N〉p.

Proof sketch. The reverse implication is trivial as the failure-free reductions are a subset

of all possible reductions.

Proving the forward implication is done by splicing together reductions normalising the

root threads arising from calls to spawn and spawnAt in the body of M. The root thread

reductions in question are failure-free according to Lemma 2 below. Hence an argument

similar to the step case in the proof of Lemma 2 yields the conclusion that there is a

(spliced) failure-free reduction from 〈M〉p to 〈N〉p.

Lemma 2 Let F be a set of failing nodes, and let 〈M >>= rput i〉p be a transitively

location invariant root thread with p /∈ F. Then 〈M >>= rput i〉p ↓F 〈rput i N〉p implies

〈M >>= rput i〉p ↓ /0 〈rput i N〉p.

Proof sketch. We prove the claim by induction on the number of calls to spawn and

spawnAt occuring during the normalisation of 〈M >>=rput i〉p.

• Base case. Suppose the reduction from 〈M >>=rput i〉p to 〈rput iN〉p involves no

calls to spawn and spawnAt. Then all states along the reduction are single threads

of the form 〈M′ >>=rput i〉p, so none of the rules (recover *) and (kill *) apply.

Hence the reduction is already failure-free.

• Step case. Suppose the reduction from 〈M >>=rput i〉p to 〈rput iN〉p is already

failure-free up to a state S of the form S = ν i1 . . .ν in.(T | 〈spawnM′ >>=M′′〉p).

Rule (spawn) will create a new IVar in+1 and spark 〈〈M′ >>=rput in+1〉〉p on non-

failing node p. The spark may migrate, get converted to a root thread, get killed, be

recovered, migrate, get killed, and so on. Eventually though, the IVar in+1 will be

filled by some thread 〈rput in+1 N′〉q, which implies that 〈rput in+1 N′〉q is a normal

form of the root thread 〈M′ >>=rput in+1〉q. We may assume that q is not a failing

node, for otherwise we could use location invariance to transplant the normalisation

of 〈M′ >>=rput in+1〉q to a another non-failing node. Thus, we have q /∈ F and

〈M′ >>=rput in+1〉q ↓F 〈rput in+1 N′〉q, from which we get 〈M′ >>=rput in+1〉q ↓ /0

〈rput in+1 N′〉q by induction hypothesis. Therefore we can extend the above failure-

free reduction 〈M >>=rput i〉p −→
∗
/0 S from state S to a state S′ of the form S′ =

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 15

ν i1 . . .ν in+1.(T | in+1{N
′}p | 〈M

′′〉p) by applying rule (spawn), followed by (track)

and (migrate) to move the spark from p to q, followed by (convert) and the spliced-

in failure-free reduction of 〈M′ >>=rput in+1〉q to normal form, followed by rule

(rput empty spark).

The argument for extending failure-free reductions over calls to spawnAt is sim-

ilar if a little simpler because tasks created by spawnAt do not migrate and are

recovered at most once. The claim follows by repeating the construction, eventually

yielding a failure-free reduction from 〈M >>=rput i〉p to 〈rput iN〉p.

Observations. Firstly, our definition of (transitive) location invariance is in terms of re-

ductions, i.e. rests on the operational semantics. However, there are many cases where

location invariance is guaranteed statically. For instance, skeletons like pushMapSliced

(Listing 3) use location information only for scheduling decisions; in particular, locations

are never written to IVars and never compared. Thus, the resulting skeletons are clearly

location invariant. We leave a more thorough static characterisation of location invariance,

e.g. in the form of a type system, for future work.

Secondly, for the purpose of presenting a simple semantics, we have ignored all ob-

servable effects apart from locations, and location invariance took care of reconciling the

effects with task replication. A DSL with more realistic effects (e.g. tasks performing IO)

would have to take more care. On top of location invariance, effects would need to be

idempotent, i.e. invariant under replication, in order to guarantee the unobservability of

failure and recovery.

Finally, HdpH-RS is a non-deterministic DSL as decisions taken by the non-determin-

istic scheduler may become observable, e.g. in case migrating tasks query their current

location. However, the sublanguage that restricts HdpH-RS task distribution to spawnAt

only is deterministic, due to entirely deterministic scheduling. Whether there are more

interesting deterministic sub-languages, in the face of truly non-deterministic scheduling,

is an interesting and timely (Kuper et al., 2014) open question.

4 Reliable Work Stealing Protocol

4.1 Work Stealing Protocol

The HdpH-RS fault tolerant work stealing protocol adds resilience to sparks and threads

and involves a victim, a thief and a supervisor. A supervisor is the node where a supervised

spark was created, and is responsible for guaranteeing the execution of that spark. A thief is

a node with few sparks to execute. A victim is a node that may hold sparks and is targeted

by a thief. The HdpH-RS runtime system messages serve two purposes: to schedule sparks

from heavily loaded nodes to idle nodes, and to allow supervisors to track the location of

sparks as they migrate between nodes.

The message handlers that implement the fishing protocol are in Section 4.4. A suc-

cessful work stealing attempt is illustrated in Figure 6. A thief node C targets a victim

node B by sending a FISH message. The victim requests a scheduling authorisation from

the supervisor with REQ. The supervisor grants authorisation with AUTH, and a spark is

ZU064-05-FPR SGP2 23 May 2016 10:40

16

Message From To Description

FISH thief T V Fishing request from a thief.

SCHEDULE spark victim V T Victim schedules a spark to a thief.

NOWORK V T Response to FISH: victim informs thief that it either does not hold
a spark, or was not authorised to schedule a spark.

REQ ref seq victim thief V S Victim requests authorisation to send spark to thief.

DENIED thief S V Supervisor denies a scheduling request with respect to REQ.

AUTH thief S V Supervisor authorises a scheduling request with respect to REQ.

OBSOLETE thief S V In response to REQ: the task waiting to be scheduled by victim is an
obsolete task copy. Victim reacts to OBSOLETE by discarding task
and sending NOWORK to thief.

ACK ref seq thief T S Thief sends an ACK to the supervisor of a spark it has received.

DEADNODE node any node to itself A message from a node to itself reporting failure of a remote node.

Table 1: HdpH-RS Messages

scheduled from the victim to the thief in a SCHEDULE message. When the thief receives the

SCHEDULE it sends an ACK to the supervisor.

Node A

supervisor

Node B

victim

Node C

thief

FISH
REQ

AUTH
SCHEDULE

ACK

Fig. 6: Fault Tolerant Fishing Protocol in HdpH-RS

The HdpH-RS Runtime System (RTS) messages are described in Table 1. The Message

column is the message type, the From and To columns distinguish a supervisor node (S),

a thief node (T) and a victim node (V). The Description column shows the purpose of the

message. The use of each message are described in the scheduling algorithms in Section

4.4.

4.2 Task Locality

For the supervisor to determine whether a spark is lost when a remote node has failed,

the migration of a spark needs to be tracked. This is made possible by the RTS messages

REQ and ACK. An example of task migration tracking is in shown in Figure 7. Node A is

supervising spark 0. The messages REQ and ACK are received by the supervising node A

to keep track of a spark’s location. Sparks and threads can therefore be identified by their

corresponding IVar.

The IVar data structure in Hdph-RS plays an important role for fault tolerance, shown

in Listing 4. Not only are they used to implement futures, they also store supervision

information about the corresponding task. An empty IVar keeps track of the get calls

from other threads in blockedThreads, and supervision state in supervisedState. The

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 17

Node A

supervisor

Node B

victim

Node C

thief

OnNode B
holds ..0

FISH C
REQ i0 r0 B C

AUTH C

InTransition B C

SCHEDULE ..0 B

ACK i0 r0 C

OnNode C

Fig. 7: Migration Tracking with Message Passing

SupervisedTaskState keeps a local copy of the corresponding task in task, a task

replica count in replicaNum and the known task location in location — either OnNode

node or InTransition [node].

type IVar a = IORef (IVarContent a)
data IVarContent a = Full a

| Empty { blockedThreads :: [a → Thread]
, supervisedState :: SupervisedTaskState }

data SupervisedTaskState = SupervisedTaskState
{ task :: Closure (Par ())
, replicaNum :: Int
, location :: TaskLocation }

data TaskLocation = OnNode NodeId
| InTransition [NodeId]

Listing 4: Holding Supervision State in Empty IVars

The message REQ is used to request authorisation to schedule the spark to another node.

If the supervisor knows that it is in the sparkpool of a node (i.e. OnNode thief) then it will

authorise the fishing request with AUTH. If the supervisor believes it is in-flight between two

nodes then it will deny the request with DENIED. Examples of unsuccessful work stealing

attempts are given in (Stewart, 2013b).

4.3 Duplicate Sparks

Location tracking for a task switches between two states in the corresponding empty IVar

(Listing 4), either OnNode if the supervisor receives an ACK or InTransition if the

supervisor authorises a migration in response to a REQ. To ensure the safety of sparks, the

scheduler makes pessimistic assumptions that tasks have been lost when a node fails. If a

supervisor is certain that a spark was on the failed node, then it is replicated. If a supervisor

believes a spark to be in-flight either towards or away from the failed node during a fishing

operation, again the spark is replicated. The consequence is that the scheduler may create

duplicates.

Duplicates of the same spark can co-exist in a distributed environment with one con-

straint. Older obsolete spark replicas are not permitted to migrate through work stealing,

ZU064-05-FPR SGP2 23 May 2016 10:40

18

Node A

supervisor

Node B

victim

Node C

thief1
Node D

thief2

OnNode B holds ..0 FISH C

REQ r0 s0 B C

AUTH C

InTransition B C

SCHEDULE ..0 B

holds ..0

DEADNODE B

create replica ..1

FISH D

REQ r0 s1 A D
AUTH D

SCHEDULE ..1 A

holds ..1

Fig. 8: Pessimistic Scheduling that Leads to Spark Duplication

as multiple migrating copies with the same reference may potentially lead to inconsistent

location tracking. However, they are permitted to transmit results to IVars using rput.

Thanks to idempotence, this scenario is indistinguishable from the one where the obsolete

replica has been lost. This possibility is illustrated in Figure 8. A spark is created with

spawn on node A and then fished by node B. B fails during a fishing exchange between B

and C, and A receives a DEADNODE notification of the failure of B. At this point, supervising

node A has not yet received an ACK from C, and pessimistically replicates the spark locally.

In this instance the original spark survived the failure of node B and there are now two

copies of the spark. This is a partial execution, so neither nodes C or D send an ACK in this

message sequence to return the spark supervision state to OnNode on node A.

4.4 Fault Tolerant Scheduling Algorithm

The message handlers that implement the fault tolerant algorithm are in Algorithm 1. Each

node is proactive in their search for work with fishing, triggering a sequence of messages

between the victim, thieving and supervising nodes. The FISH handler (line 1) shows how

a node that receives a FISH has been targeted by a thief. The victim checks that this node

has not already been targeted by another thief (line 2) and is waiting for authorisation. If it

is, then a NOWORK reply is sent to the thief. Otherwise, if the victim has an available spark

then it is reserved and the victim sends a REQ to the supervisor. If the sparkpool is empty,

a NOWORK is sent to the thief.

The REQ handler is shown on line 11. If the location of the reserved spark is known

precisely by the supervisor, the request is granted with AUTH. Otherwise, if the task is

believed to be in transition between two nodes, the request is rejected with DENIED. If the

spark is obsolete, then the victim is instructed to discard it with an OBSOLETE message.

A victim’s AUTH handler is shown on line 21. It sends the reserved spark to a thief in a

SCHEDULE message on line 22. The handler for scheduled sparks is shown on line 23. A

thief adds the spark to its own sparkpool (line 24), and sends an acknowledgement of its

arrival to its supervisor (line 25). However, if a victim is informed that the reserved spark

is an obsolete copy with OBSOLETE from the supervisor, it discards the reserved spark and

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 19

Algorithm 1 Fault Tolerant Algorithm Message Handlers

Assumption: Thief (fisher) is looking for work.
1: function HANDLE(FISH thie f)
2: if not waiting f or auth then ⊲ is there an outstanding authorisation request
3: if sparkpool not empty then
4: spark← pop sparkpool
5: reserve spark
6: send spark.supervisor (REQ spark.re f spark.replica myNode thie f)
7: else
8: send thie f NOWORK

9: else
10: send thie f NOWORK

Assumption: A schedule request is sent from a victim to this supervising node.
11: function HANDLE(REQ re f replica victim thie f)
12: if replicaO f re f == replica then ⊲ remote task is most recent copy
13: location← locationO f re f
14: if location == OnNode then ⊲ task location known
15: update location (InTransition victim thie f)
16: send victim (AUT H thie f) ⊲ authorise the request
17: else if location == InTransition then
18: send victim (DENIED thie f) ⊲ deny the request

19: else
20: send victim (OBSOLET E thie f) ⊲ task is old copy, order victim to discard

Assumption: Location state on supervisor was OnNode.
21: function HANDLE(AUT H re f thie f)
22: send thie f (SCHEDULE reserved spark) ⊲ send thief the spark

Assumption: A Victim was authorised to send this node a spark in a SCHEDULE.
23: function HANDLE(SCHEDULE spark)
24: insert spark sparkpool ⊲ add spark to sparkpool
25: send spark.supervisor (ACK spark.re f spark.replica myNode)

Assumption: Thief receives a spark.
26: function HANDLE(ACK re f thie f)
27: update (locationO f re f) (OnNode thie f) ⊲ set spark location to OnNode

Assumption: A remote node has died.
28: function HANDLE(DEADNODE deadNode)
29: if f ishVictim == deadNode then
30: resume f ishing

31: if thie f O f GuardedSpark == deadNode then
32: insert reserved spark sparkpool ⊲ return reserved spark to sparkpool

33: for all s ∈ sparks on deadNode do
34: insert s sparkpool ⊲ replicate potentially lost spark

35: for all t ∈ threads on deadNode do
36: insert t thread pool ⊲ replicate potentially lost thread: convert & execute locally

sends a NOWORK message to the thief. The pseudo code for the OBSOLETE and DENIED

message handlers is in (Stewart, 2013b).

The supervisor handler for ACK messages is shown on line 26. It updates the migration

tracking for this spark to OnNode, a state that will allow another thief to steal from the new

host of the spark.

ZU064-05-FPR SGP2 23 May 2016 10:40

20

The handler for DEADNODE messages is on line 28. There are four checks performed by

every node when a remote node fails. First, it checks if it is waiting for a fishing reply

from the dead node (line 29). Second, whether the dead node is the thief of the spark it has

requested authorisation for (line 31). Third, it identifies the sparks are at-risk due to the

remote node failure (line 33). Fourth, it identifies the threads are at-risk due to the remote

node failure (line 35). All at-risk sparks are replicated and added to the local sparkpool.

These duplicates can be fished again for load-balancing (line 34). All at-risk threads are

replicated and are converted and executed locally (line 36).

5 Validating Reliable Work Stealing

5.1 Desirable Scheduling Properties with Non-Deterministic Systems

The SPIN model checker is used to ensure that the HdpH-RS scheduling algorithm honours

the small-step semantics (Section 3.4), supervising sparks in the absence and presence of

faults. Due to the many sources of non-determinism in faulty systems, it is easy to make

mistakes in correctness arguments for fault tolerant distributed systems. Hence distributed

faulty systems are natural candidates for model checking (John et al., 2013), and specifi-

cally because of two properties of HdpH-RS:

1. Asynchronous message passing Causal ordering (Lamport, 1978) of asynchronous

distributed scheduling events is not consistent with wall-clock times. HdpH-RS mes-

sage passing between nodes is asynchronous and non-blocking, instead writing to

channel buffers. Because of communication delays, knowledge of remote node avail-

ability could be outdated (Xu & Lau, 1997).

2. Work stealing To recover tasks in the presence of failure, a supervisor must be

able to detect node failure and must always know the location of its tasks. The

asynchronous message passing for stealing work complicates location tracking. The

protocol for reliably relocating tasks between nodes in the presence of failure is

intricate (Section 4), and model checking the protocol increases confidence in the

design.

The HdpH-RS reliable scheduling algorithm is abstracted into a Promela model. The su-

pervisor and worker abstractions are in Appendix A, and the full model is available online

(Stewart, 2013a). Promela (Holzmann, 2004) is a meta-language for building verification

models, and the language features are intended to facilitate the construction of high-level

abstractions of distributed systems. Temporal logic (Prior, 1957) provides a formalism for

describing the occurrence of event in time that is suitable for reasoning about concurrent

programs (Pnueli, 1977). The SPIN model checker is used to verify key reliable scheduling

properties of the algorithm design from Section 4.4, expressed in linear temporal logic

(LTL). The properties are:

1. The IVar is empty until a result is sent: Evaluating a task involves transmitting a

value to the supervisor, the host of the IVar associated with the task. This property

verifies that the IVar cannot be full until one of the nodes has transmitted a value to

the supervisor.

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 21

2. The IVar is eventually always full: The IVar will eventually be filled by either a

remaining worker, or the supervisor. This is despite the failure of any or all worker

nodes.

The LTL properties guarantee spark evaluation, i.e. the associated future (IVar) on the

supervising node is eventually filled. A counter property is used to ensure the Promela

abstraction does model potential failure of any or all of the worker nodes. It checks that

the model potentially kills one or more mortal workers, and SPIN is used to find counter-

example executions when one of the workers terminates.

5.2 HdpH-RS Abstraction

Promela programs consist of processes, message channels, and variables. Processes are

global objects that represent the concurrent nodes in HdpH-RS. The HdpH-RS scheduler

has been simplified to its core supervision behaviours that ensure task survival. The model

considers tasks scheduled with spawn in HdpH-RS — as the location of threads scheduled

with spawnAt is always known and would not elicit race conditions on location tracking

REQ and ACK messages.

Scope The Promela model is an abstraction that encapsulates behaviours necessary for

guaranteeing the evaluation of sparks. There are six characteristics of the HdpH-RS sched-

uler in the Promela model:

1. One supervisor that initially puts a spark into its local sparkpool. It also creates

spark replicas when necessary (item 6). The supervisor does not die.

2. Three workers that attempt to steal work from the supervisor and each other. Failure

of these nodes is modeled by terminating the Promela process for each node. The

workers can die.

3. Computation of a spark may happen at any time by any node that holds a copy of

the spark. This simulates the execution of the spark, which would eventually invoke

an rput call to fill the IVar on the supervisor. It is modeled by sending a RESULT

message to the supervisor.

4. Failure of a worker node means that future messages to it are lost. The (dead)

transition rule is modelled with a non-deterministic suicidal choice any of the three

worker nodes can make. This choice results in a node asynchronously broadcasting

its death to the remaining healthy nodes and then terminating. Failure detection is

modeled by healthy nodes receiving DEADNODE messages.

5. Asynchronicity of both message passing and failure detection is modeled in Promela

using buffered channels. Buffered channels model the buffered FIFO TCP connec-

tions in HdpH-RS.

6. Replication is used by the supervisor to ensure the safety of a potentially lost spark

in the presence of node failure. The model includes spark replication from Section

4.4, honouring the (recover spark) small-step transition rule in Section 3.4. Replica-

tion numbers are used to tag spark replicas in order to identify obsolete spark copies.

Obsolete replica migration could potentially invalidate location records for a spark.

Therefore, victims are asked to discard obsolete sparks.

ZU064-05-FPR SGP2 23 May 2016 10:40

22

Termination of the scheduling algorithm is enforced in the model by aging the spark

through transitions of the model. The age of the spark is zero at the initial system state.

Each time it is scheduled to a node, its age is incremented. Moreover, each time it must be

replicated by the supervisor its age is again incremented. When the age of the spark reaches

100, it is executed immediately. This models the HdpH-RS assumption that a scheduler

will eventually execute the spark in a sparkpool and send a result to an empty IVar with

an rput call.

Some aspects of the HdpH-RS scheduler design and implementation are abstracted away

in the Promela model, because they are not part of the fault tolerance mechanism. The

model involves only one IVar and one spark, which may manifest into multiple replicas

— one active and the rest obsolete. Multiple IVars are not modeled, nor are threads created

with spawnAt.

5.3 Scheduling Model

Nodes interact with message passing: ! to send and ? to receive. The channels in the

Promela model of HdpH-RS are asynchronous, so that messages can be sent to a channel

buffer, rather than being blocked waiting on a synchronised participatory receiver. This

reflects the data buffers in the underlying TCP sockets and the asynchronous HdpH-RS

model.

Supervisor Node The supervisor is modeled as an active proctype, so is instantiated in

the initial system state. The supervisor executes a repetitive control flow that receives work

stealing messages from worker nodes and authorisation messages from the supervisor,

shown in Listing A 1. It creates the initial spark copy and then initiates the three workers.

The underlying automaton is a message handling loop from SUPERVISOR RECEIVE. The

exception is when the spark has migrated 100 times the supervisor sends a RESULT message

to itself to force termination. The label SUPERVISOR RECEIVE is re-visited after the non-

deterministic message handling choice, and is only escaped if a RESULT message has been

received. In this case the IVar becomes full and the supervisor terminates.

Worker Nodes Each worker executes a repetitive control flow that receives work stealing

message from worker nodes and authorisation messages from the supervisor, shown in List-

ing A 2. The underlying automaton is a message handling loop from WORKER RECEIVE.

The exception is when the spark has migrated 100 times a RESULT message is sent to

the supervisor. Otherwise the control flow takes one of three non-deterministic choices:

the node may die; it may send a RESULT message to the supervisor if it holds a replica; it

may receive a work stealing message from a work or scheduling request response from the

supervisor. The WORKER RECEIVE label is re-visited after the non-deterministic message

handling choice, and is only escaped if it has died or the IVar on the supervisor is full. In

either case the worker terminates.

The HdpH-RS transport layer sends DEADNODE messages to the scheduler message han-

dler on each node when a connection with a remote node is lost. Failure is modeled by

a non-deterministic choice that worker nodes can make whilst waiting for messages to

arrive. A node can choose to die, which triggers the sending of a DEADNODE message to all

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 23

typedef Sparkpool
{ int spark_count; /* #sparks in pool */

int spark; } /* highest #replica */

typedef Spark
{ int highestReplica=0;

Location location;
int age=0; }

mtype = { ONNODE , INTRANSITION };
typedef Location
{ int from;

int to;
mtype context=ONNODE;
int at=3; }

typedef SupervisorNode
{ Sparkpool sparkpool;

bool waitingSchedAuth=false;
bool resultSent=false;
bit ivar=0; }

typedef WorkerNode
{ Sparkpool sparkpool;

int waitingFishReplyFrom;
bool waitingSchedAuth=false;
bool resultSent=false;
bool dead=false; }

Fig. 9: State Abstraction in Promela Model

remaining alive nodes. Sending this message to all four nodes is not executed atomically

in the Promela model, reflecting the different failure detection latencies on each HdpH-RS

node. SPIN is therefore able to search through state transitions whereby a node failure is

only partially detected across all nodes.

5.3.1 Node State

The supervisor and worker nodes each have a local sparkpool. The state of the supervisor,

each worker node and a sparkpool is in Listing 9. The sparkpool either holds a spark (where

spark count >1), or it is empty. When it holds a spark, its replication number spark

is used to send messages to the supervisor: to request scheduling authorisation in a REQ

message, and confirm receipt of the spark with an ACK message.

The spark’s location is stored in the Location typedef. The from, to, at and context

fields are modified by the supervisor’s REQ and ACK message handlers. The most recently

allocated replica number is held in highestReplica and is initially set to 0. The age of

the spark on line 4 is initially set to 0, and is incremented when the spark is scheduled to

another node or when it is replicated.

In the initial system state, it adds the spark to its sparkpool, which may be fished away

by a worker node. To minimise the size of the state machine, the supervisor does not try to

steal the spark or subsequent replicas once they are fished away. The IVar is represented

by a bit on line 5, 0 for empty and 1 for full. Lastly, a waitingSchedAuth (line 3) is used

to reject incoming REQ messages, whilst it waits for an AUTH from itself if it is targeted by

a thief.

When a thieving node proactively sends a fish to another node, the channel index identi-

fier is stored in waitingFishReplyFrom for the victim i.e. 0, 1 or 2 if targeting a worker

node, or 3 if targeting the supervisor. The value of waitingFishReplyFrom is reset to−1

when a SCHEDULE is received, or NOWORK message is received allowing the node to resume

fishing. When a victim has sent a REQ to the supervisor, the waitingSchedAuth boolean

on line 4 is used to reject subsequent fishing attempts from other thieves until it receives

a AUTH or NOWORK. To avoid infinite work stealing attempts between a thief and a victim,

ZU064-05-FPR SGP2 23 May 2016 10:40

24

thief keeps track of which nodes it has failed to steal a spark from and does not repeat the

fishing request to these nodes (Stewart, 2013b).

5.3.2 Spark Location Tracking

When the task tracker records on the supervisor is ONNODE, then it can be sure that the node

identified with spark.location.at is holding the spark. If the node fails at this point,

then the spark should be recreated as it has certainly been lost. However, when a spark is

in transition between two nodes i.e INTRANSITION, the supervisor cannot be sure of the

location of the spark; it is on either of the nodes identified by spark.location.from

or spark.location.to. To overcome this uncertainty, the model faithfully reflects the

HdpH-RS pessimistic duplication strategy when a DEADNODE is received. This potentially

generates replicas that concurrently exist in the model and they are handled using replica

counts (Section 4.3).

5.4 Correspondence with Operational Semantics

An example of location tracking with the migrate spark rule (Section 3.4) is shown in

Figure 10. It is a more detailed version of the fault tolerant fishing protocol from Figure 7.

The Promela message passing syntax in the message sequence diagram is an abstraction of

send and receive Haskell function calls in the HdpH-RS implementation. Node B is the

victim, and node C is the thief. The states for the IVar and the spark are i{〈〈M〉〉{B}}A and

〈〈M〉〉B, showing that the supervisor A holds IVar i and that its corresponding spark is on

node B. The (track) rule is fired before sending AUTH to the victim. The (migrate) rule is

fired when the thief receives the SCHEDULE message containing the spark. The (track) rule

is fired when the supervisor receives an ACK message from the thief. Once this message

sequence is executed, the new states for the IVar and the spark are i{〈〈M〉〉{C}}A and

〈〈M〉〉C.

5.5 Model Checking Results

/* IVar on the supervisor node is full */
#define ivar_full (supervisor.ivar == 1)

/* IVar on the supervisor node is empty */
#define ivar_empty (supervisor.ivar == 0)

/* No worker nodes have failed */
#define all_workers_alive (!worker[0].dead && !worker[1].dead && !worker[2].dead)

/* One or more nodes have transmitted a value to supervisor to fill IVar */
#define any_result_sent

(supervisor.resultSent || worker[0].resultSent
|| worker[1].resultSent || worker[2].resultSent)

Listing 5: Propositional Symbols used in LTL Formulae of Fault Tolerant Properties

LTL is used to reason about causal and temporal relations of the HdpH-RS scheduler

properties. The propositional symbols used in the verification of scheduling Promela model

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 25

Node A

supervisor

Node B

victim

Node C

thief

holds ..j
B ! FISH C

OnNode B FISH C

B ? FISH C

A ! REQ i r0 B C

REQ i r0 B C

A ? REQ i r0 B C

B ! AUTH i C

AUTH i C

InTransition B C B ? AUTH i C

C ! SCHEDULE ..j B

SCHEDULE ..j B

C ? SCHEDULE ..j B

A ! ACK i r0
ACK i r0

A ? ACK i r0

OnNode C

(a) Message sequence

i{〈〈M〉〉{B}}A | 〈〈M〉〉B









y

(track)

i{〈〈M〉〉{B,C}}A | 〈〈M〉〉B








y

(migrate)

i{〈〈M〉〉{B,C}}A | 〈〈M〉〉C








y

(track)

i{〈〈M〉〉{C}}A | 〈〈M〉〉C

(b) State transitions

Fig. 10: Location Tracking with (migrate) and (track) rules

LTL Formula Counter property Depth States Transitions Memory

� all workers alive Yes 11 5 5 0.2Mb

� (ivar empty U any result sent) No 124 3.7m 7.4m 83.8Mb

♦ � ivar f ull No 124 8.2m 22.4m 84.7Mb

Table 2: Model Checking Results

are shown in Listing 5. The results of model checking the three LTL properties are in Table

2. Taking the ♦ � ivar f ull property as an example, the results can be interpreted as

follows. A reachable depth of 124 is found by SPIN for the model. The reachable state

space is 8.2 million. A total of 22.4 million transitions were explored in the search. Actual

memory usage for states was 84.7Mb.

The IVar is Empty Until a Result is Sent To check that the model is faithful to the

fact that an IVar is empty at least until its corresponding task has been evaluated, the

� (ivar empty U any result sent) formula is verified. SPIN searches for two violat-

ing system states. First, where ivar empty is false before any result sent is true.

Second, a cycle of identical system states is identified while any result sent remains

false. This is due to the nature of the strong until connective stipulating that the symbol

any result sent must eventually be true in some future state. SPIN cannot find a

violating system state after exhaustively searching 3.7 million reachable states up to a

depth of 124.

ZU064-05-FPR SGP2 23 May 2016 10:40

26

The IVar is Eventually Always Full The key property for fault tolerance is that the

IVar on the supervisor must eventually always be full. This would indicate that either a

worker node has sent a RESULT message, or the supervisor has written to the IVar locally.

To verify, SPIN searches for a system state cycle when ivar full remains false i.e.

supervisor.ivar==0.

This LTL property checks for the fatal scenario when the supervisor does not replicate

the spark in the model, when instead it must ensure the existence of at least one replica.

This would happen if the HdpH-RS fault tolerant fishing protocol algorithm (Section 4)

did not correctly track spark location. This may cause a supervisor to ignore DEADNODE

message when it instead should replicate a spark, which would mean no RESULT message

would be sent to the supervisor – a cause of deadlock in the HdpH-RS implementation. To

verify SPIN searches for states where the spark count value is 0 for all nodes, and the

supervisor does not create a replica in any future state. SPIN cannot find a violating system

state after exhaustively searching 8.2 million reachable states up to a depth of 124.

Validating the Possibility of Worker Node(s) Fail To check that worker nodes are able

to fail in the model, a verification attempt is made on the � all workers alive LTL

formula. To check that the model has the potential to kill mortal workers, SPIN searches

for a counter-example system state with any of the worker[0].dead , worker[1].dead or

worker[2].dead fields set to true . SPIN trivially identifies a counter example after search-

ing 5 system states by executing the choice to kill a node.

6 Implementation

6.1 HdpH-RS Architecture

The HdpH-RS architecture is closely based on the HdpH architecture (Maier & Trinder,

2012), and both share some components with Cloud Haskell as outlined in Section 2. The

architecture supports semi-explicit parallelism with work stealing, message passing and

the remote writing to IVars. The reliable scheduler is an implementation of the design

from Section 4. Inter-node communication is abstracted into a communication layer, that

provides startup and shutdown functionality, node IDs, and peer-to-peer message deliv-

ery between nodes. The communication layer detects and reports faults to the scheduler.

Each node runs several thread schedulers, typically one per core. Each scheduler owns a

dedicated threadpool that may be accessed by other schedulers for stealing work. Each

node runs a message handler, which shares access to the sparkpool with the schedulers. In

extending HdpH, one module is added for the fault tolerant strategies, and 14 modules are

modified. The fault detection, fault recovery and task supervision functionality amounts to

approximately 2500 lines of Haskell code in HdpH-RS, and an increase of approximately

50% over HdpH.

6.2 Recovering Supervised Sparks and Threads

When a supervisor receives a DEADNODE message indicating a node failure (Section 4.4), it

may replicate tasks if their survival is at risk. This is decided by the DEADNODE handler in

Algorithm 1 of Section 4. It uses replicateSpark and replicateThread in Listing 6.

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 27

scheduler scheduler

Node 1

IO threads IO threads

Node 2

thread pools

node table

msg handler

scheduler

msg handler

registry IVars

thread pools

Haskell heaps

TCP network

registry IVars node table

guard post guard postspark poolspark pool

Fig. 11: HdpH-RS System Architecture

Both return a Maybe type, due to a potential race condition whereby another local scheduler

or node writes a value to the IVar during the local recovery operation. If the IVar becomes

full, then a Nothing value is returned indicating a full IVar and no recovery action needs

taking.

data SupervisedSpark m = SupervisedSpark
{clo :: Closure (ParM m ()) , gref :: GRef , replicaNum :: Int }

replicateSpark :: IVar a → IO (Maybe (SupervisedSpark m))
replicateThread :: IVar a → IO (Maybe (Closure (Par ()))

Listing 6: Replicating Sparks & Threads in Presence of Failure

The replicateSpark and replicateThread functions both take an IVar as an ar-

gument. The DEADNODE handler has determined the safety of the corresponding task to be

at risk as a consequence of node failure. Globalised IVar references are used to match

remote tasks with locally hosted futures. The DEADNODE handler increments the replication

number replicaNum in the IVar. A new task is created from a copy of the lost task

(stored in SupervisedSpark as clo), and is scheduled according the recover spark

and recover thread transition rules in the operational semantics (Section c). If a spark

is being recovered, a SupervisedSpark is returned and added to the local sparkpool. If a

thread is being recovered, a Closure (Par ()) is returned, unpacked with unClosure,

and added to a local threadpool.

6.3 Fault Detecting Communications Layer

Any fault in an MPI setting will typically bring down the entire MPI communicator, making

this an unsuitable backend for fault. Instead, HdpH-RS uses a TCP-based transport layer,

and nodes discover other nodes using UDP. The distributed virtual machine software stack

is shown in Figure 12.

TCP is an idle protocol, so if neither side sends any data once a connection has been es-

tablished, then no packets are sent over the connection (Cleary, 2009). The act of receiving

ZU064-05-FPR SGP2 23 May 2016 10:40

28

Sockets API

Ethernet

IP

TCP

Sockets API

Ethernet

IP

TCP

Sockets API

Ethernet

IP

TCP

Network−Transport API Network−Transport API Network−Transport API

Node A (root) Node CNode B

HdpH−RS API

Executable instance

Threadpools

HdpH−RS API

Executable instance

Threadpools

HdpH−RS API

Executable instance

ThreadpoolsSparkpool SparkpoolSparkpool

HdpH−RS Distributed Virtual Machine

Fig. 12: HdpH-RS Distributed Virtual Machine Software Stack

data is completely passive in TCP, and an application that only reads from a socket cannot

detect a dropped connection.

Two options are available for detecting failure with TCP. The first is to transmit keep-

alive messages over a connection. The second is to assume the worst, and implement

timers for receiving messages on connections. If no packets are received within the time-

out period, a connection may be regarded as lost. As architectures scale to thousands of

nodes, error propagation through work stealing message transmissions cannot be relied

upon. The HdpH-RS keep-alive messages is a guarantee of periodic traffic between nodes

independent of work stealing messages, enabling nodes to discover failure by discovering

lost connections.

Whilst the transmission of work stealing messages will probably trigger timely TCP

failures for smaller architectures, there is a high failure detection latency in larger networks.

This has an important implication for performance in HdpH-RS. Take an example where

node A creates a supervised spark spark1 and IVar i1 with the execution of spawn. Node

B fishes spark1, and later suffers a power outage. Node A may not receive a TCP FIN

message from B due to the sudden failure. Node A does not send any work stealing

messages to B, but is waiting for the value of evaluating spark1 to be written to i1. To ensure

a more reliable failure detection of B, node A needs some other message transmission

mechanism than just work stealing.

The keep-alive implementation in HdpH-RS is simple. As TCP failures are detected on

send attempts, the keep-alive is silently ignored on the receiving end. After N seconds,

a node broadcasts a HEARTBEAT to all other nodes. When a node receives a HEARTBEAT

message, it is silently ignored. For small architectures, heartbeats are unlikely to be the

trigger that detects failure. On large architectures, work stealing messages between any two

nodes are less likely to be transmitted within the keep-alive frequency, so the keep-alive

messages are an important mechanism for failure detection. If a node detects the failure of

another node, that remote node is removed from the list of peers returned by future calls to

allNodes.

The main drawback to this failure detection strategy is the dependency on connection

oriented protocols like TCP. There are two main weaknesses. First, the failure detection

strategy of using connection-oriented transmission attempts would not work for connec-

tionless protocols like UDP (Postel, 1980). Second, the design assumes a fully connected

network. Every node has a persistent connection with every other node. The scalability

limitations of TCP connections are well known (Ha et al., 2008).

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 29

6.4 HdpH and HdpH-RS Pragmatics

In the design and semantics presented in Section 3, the fault tolerant spawn primitives have

identical names to the HdpH primitives, making it trivial to switch between normal and

fault tolerant execution. However in the current HdpH-RS implementation the fault tolerant

primitives have different names, i.e. supervisedSpawn and supervisedSpawnAt, as do

the HdpH-RS skeletons, e.g. parMapSlicedFT and pushMapSlicedFT. However, both

primitives and skeletons preserve the same types, so switching between normal and fault

tolerant versions of a program is a trivial alpha conversion. A more elegant solution would

be to use the same name for the spawning primitives, and hence have identical skeleton im-

plementations. Better still would be to integrate the HdpH and HdpH-RS implementations,

then programmers could switch between reliable and normal schedulers with a runtime

flag.

7 Evaluation

7.1 Measurement Platform

Benchmarks The runtime performance of HdpH-RS is measured using the four bench-

marks in Table 4. Existing Haskell parallel implementations are ported to HdpH-RS from

GpH (Hammond et al., 2007) and monad-par (Marlow & Newton, 2013) and parallelised

using fault tolerant and non-fault tolerant skeletons. An open access dataset (Stewart et al.,

2015) accompanies this paper, which includes the SPIN model (Section 5), scripts for

collecting and plotting results and the Haskell source code for the following benchmarks.

Benchmark Skeleton Code Origin Regularity code size (lines)

Sum Euler chunked parallel maps HdpH Some 2

Summatory Liouville sliced parallel map GUM Little 30

N-Queens divide-and-conquer monad-par Little 11

Mandelbrot MapReduce monad-par Very little 12

Table 3: HdpH-RS Benchmarks

Sum Euler is a symbolic benchmark that sums Euler’s totient function φ over long lists

of integers. Sum Euler is an irregular data parallel problem where the irregularity stems

from computing φ on smaller or larger numbers.

The Liouville function λ (n) is the completely multiplicative function where λ (p) =−1

for each prime p. Summatory Liouville L(n) denotes the sum of the values of the Liouville

function λ (n) up to n, where L(n) := ∑
n
k=1 λ (k).

The Mandelbrot set is the set of points on the complex plane that remains bounded to

the set when an iterative function is applied to that. It consists of all points defined by

the complex elements c for which the recursive formula zn+1 = z2
n + c does not approach

infinity when z0 = 0 and n approach infinity. A depth parameter is used to control the cost

of sequential Mandelbrot computations. A higher depth gives more detail and subtlety in

the final image representation of the Mandelbrot set (Boije & Johansson, 2009).

ZU064-05-FPR SGP2 23 May 2016 10:40

30

The N-Queens problem computes how many ways n queens can be put on an n×n chess-

board so that no 2 queens attack each other (Rivin et al., 1994). The implementation uses

divide-and-conquer parallelism with an explicit threshold. An exhaustive search algorithm

is used.

Hardware Platforms and Configurations The HdpH-RS benchmarks are measured on

two platforms. The first is a Beowulf cluster and is used to measure supervision overheads,

and recovery latency in the presence of simultaneous and random failure. Each Beowulf

node comprises two Intel Xeon E5504 quad-core CPUs at 2GHz, sharing 12Gb of RAM.

Nodes are connected via Gigabit Ethernet and run Linux CentOS 5.7 x86 64. Benchmarks

are run on up to 32 HdpH-RS nodes, one per Beowulf node, scaling up to 256 cores.

The second is HECToR, a national UK high-performance computing service. The HEC-

ToR compute hardware is contained in 30 cabinets and comprises 704 compute blades,

each containing four compute nodes running Compute Node Linux. Each node has two

16 core AMD Opteron 2.3GHz Interlagos processors split into four NUMA regions, with

16Gb memory. Benchmarks are run on up to 200 HdpH-RS nodes, one per NUMA region,

scaling up to 1400 cores. Peer discovery with UDP is not supported on HECToR, so

the HdpH-RS fault detecting TCP-based transport layer cannot be used. The MPI-based

HdpH transport layer has been retrofitted in to HdpH-RS for the purposes of assessing

the scalability of the supervised work stealing in HdpH-RS on HECToR in the absence of

faults.

HdpH-RS nodes on both the Beowulf and HECToR have 8 cores, 7 of which are used

by the HdpH-RS node. This is common practice to limit performance variation on shared-

memory nodes (Harris et al., 2005; Maier & Trinder, 2012). For every data point, the mean

of 5 runs are reported along with standard error.

7.2 Performance With No Failure

Figure 13 shows runtime and speedup graphs for Summatory Liouville, though Figures 13a

and 13c omit runtimes on 1 core for readability. Table 4 summarises the relative speedups

obtained in strong scaling for the benchmarks with and without fault tolerance. Strong

scaling uses the same input on 1 core as on many cores, and relative speedup compares

with the same, potentially-parallel, program running on a single core. A complete set of

performance results is available in (Stewart, 2013b).

The speedup measurements compare eager and lazy, and normal and fault tolerant skele-

ton implementations of the benchmarks. On the Beowulf Sum Euler to 250k is computed

with parMapSliced skeletons and a threshold of 1k. Summatory Liouville is computed

with parMapSliced skeletons to 200m and a threshold of 500k on the Beowulf, and to

500m with a threshold of 250k on HECToR. Mandelbrot is computed mapReduce skeletons

with a dimension of 4096× 4096 and a threshold of 4 and a depth of 4000 on the Beowulf,

and threshold 4, depth 8000 on HECToR.

The results show that the overheads of fault tolerance are low in the absence of faults as

the maximum speedups for the fault tolerant and normal versions are very similar. Eager

scheduling consistently out performs lazy work distribution for these programs that have

limited irregularity. The parallel efficiency with eager scheduling is approximately 50%,

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 31

●

●

●

●

●
● ● ● ● ●

100

200

300

400

500

50 100 150 200
Cores

R
un

tim
e

(S
ec

on
ds

)

● parMapSliced
parMapSliced (RS)
pushMapSliced
pushMapSliced (RS)

Input=200m, Threshold=500k

(a) Beowulf Runtime

●

●

●

●

●

●

●
●

●

●
●

50

100

50 100 150 200
Cores

S
pe

ed
up

● parMapSliced
parMapSliced (RS)
pushMapSliced
pushMapSliced (RS)

Input=200m, Threshold=500k

(b) Beowulf Speedup

●

●

●

●
●

●
●

● ●
●

25

50

75

100

500 1000
Cores

R
un

tim
e

(S
ec

on
ds

)

● parMapSliced
parMapSliced (RS)
pushMapSliced
pushMapSliced (RS)

Input=500m, Threshold=250k

(c) HECToR Runtime

●

●

●

●

●
●

●
●

● ●
●

200

400

600

500 1000
Cores

S
pe

ed
up

● parMapSliced
parMapSliced (RS)
pushMapSliced
pushMapSliced (RS)

Input=500m, Threshold=250k

(d) HECToR Speedup

Fig. 13: Summatory Liouville on Beowulf & HECToR

e.g. a speedup of 752 on 1400 cores, far lower than for regular HPC parallelism, but entirely

acceptable for irregular symbolic computation. The exception is N Queens, which doesn’t

scale beyond 8 nodes, and we attribute this to a high communication to computation ratio.

7.3 Performance With Recovery

The HdpH-RS scheduler is designed to survive simultaneous failures. Recovery from node

failure is distributed and asynchronous, the failure of a node will eventually be detected by

all healthy nodes. A node replicates tasks corresponding to the supervised futures it hosts,

in accordance with the DEADNODE message handler in Algorithm 1 from Section 4.4.

The experiment inputs in this section are set so that failure-free runtime is a little more

than 60s on 20 Beowulf nodes. Five nodes are scheduled to die from 10s to 60s, at 10s

intervals, from the start of execution. The runtimes are compared to failure-free runs using

the equivalent non-fault tolerant skeleton to assess recovery times. Two benchmarks are

ZU064-05-FPR SGP2 23 May 2016 10:40

32

244 Beowulf cores 1400 HECToR cores

lazy eager lazy eager

N-FT FT N-FT FT N-FT FT N-FT FT

N-Queens 4 5 1 2 - - - -

Sum Euler 85 73 113 114 - - - -

Summatory Liouville 94 81 135 146 340 333 757 752

Mandelbrot 60 57 57 57 50 56 91 93

Table 4: HdpH-RS Speedup Summary (Strong Scaling)

used to measure recovery overheads, Summatory Liouville for task parallelism and Man-

delbrot for divide-and-conquer parallelism. All Summatory Lioville tasks are generated by

the root node, and tasks are not recursively decomposed. Executing Mandelbrot generates

divide-and-conquer supervision pattern, i.e. generates futures across multiple nodes. The

recovery costs of simultaneous failure are in Figure 14. The annotated horizontal dashed

lines show mean of 5 runtimes in the absence of failure.

●

●

●

●

●

●

parMapSliced

pushMapSliced

40

60

80

100

120

20 40 60
Time of Simultanous 5 Node Failure (Seconds)

R
un

tim
e

(S
ec

on
ds

)

Variant
● parMapSliced (RS)

pushMapSliced (RS)

Input=140m, Threshold=2m

(a) Summatory Liouville

●

●

●

●

●

●

parMapReduceRangeThresh

pushMapReduceRangeThresh

50

100

150

200

20 40 60
Time of Simultanous 5 Node Failure (Seconds)

R
un

tim
e

(S
ec

on
ds

)

Variant
● parMapReduceRangeThresh (RS)

pushMapReduceRangeThresh (RS)

Input=4096x4096, Depth=4000

(b) Mandelbrot

Fig. 14: Recovery Costs of Simultaneous Failure of Five Beowulf Nodes

Summatory Liouville The recovery costs of Summatory Liouville are shown in Figure

14a. 70 tasks are generated. The mean runtime with parMapSliced is 66.8s, and 42.8s

with pushMapSliced. When eager scheduling is used, the recovery overheads are more

substantial early on i.e. at 10s, 20s and 30s. These overheads compared with fault-free

execution with pushMapSliced with RS are 158%, 172% and 140% respectively. As more

tasks are evaluated, the recovery costs reduce. There are no measurements taken at 50s and

60s as the mean failure-free runtime with pushMapSliced is 43s, so killing the nodes at

these times have no effect. Using lazy work stealing with parMapSliced with RS, the

mean runtime is shorter than failure-free execution with parMapSliced by 14%, likely

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 33

due to the small tasks resulting from the inputs to the program – executing them on the

root node is cheaper than transmitting them for remote execution. As the delay until failure

is increased to 20, 30, 40 and 50s, the recovery overheads are 2%, 13%, 18% and 22%.

Most futures on the root node are full towards the 60 second runtime, so few or no sparks

need replicating which accounts for the runtimes with failure at 60s matching runtimes

with no failure.

Mandelbrot The recovery costs for Mandelbrot are shown in Figure 14b. The inputs for

Mandelbrot are X = 4096, Y = 4096, threshold = 4 and depth = 4000. 1023 tasks are

generated. The mean runtime with parMapReduce is 66s, and 92s with pushMapReduce.

The recovery overheads for the lazy parMapReduce skeleton with RS are low, even as the

number of generated supervised futures increases. The recovery overheads for the eager

pushMapReduceRangeThresh skeleton with RS increases as more threads are replicated

needlessly, e.g. memoization (Michie, 1968) is not employed. When the 5 node failure

occurs at 20, 30, 40, 50 and 60s, the recovery costs increase, with recovery overheads of

44%, 18%, 59%, 80% and 110% respectively.

7.4 Random Fault Injection with Chaos Monkey

Random failure can be introduced to HdpH-RS programs, analogous to Netflix’s Chaos

Monkey (Hoff, 2010). This mechanism is used to ensure that HdpH-RS returns a result

in chaotic and unreliable environments. The Chaos Monkey implementation for HdpH-

RS is described in (Stewart, 2013b). A unit testing suite implemented with the HUnit test

framework (Herington, 2006–2013) is used on the four HdpH-RS benchmarks running on

10 Beowulf nodes to check that results computed by HdpH-RS in the presence of random

failure are correct. The test-suite passes 100% of the unit tests.

Chaos Monkey Results The results of chaos monkey unit testing is shown in Table B 1 in

Appendix B. It shows a list of integers indicating failures. Each value in the list indicates

the time in seconds when each node failed. It also shows the sum of tasks that were

replicated to recover from these failure(s). For the lazy scheduling skeletons, only sparks

are generated and thus recovered. For the eager scheduling skeletons, only threads are

generated and recovered.

For all benchmarks, lazy scheduling reduces recovery costs in the presence of failure.

For example, the N-Queens benchmark generates 65234 tasks. There is an execution with

eight node failures between 3s and 48s, resulting in 40696 tasks being replicated and

eagerly distributed. This results in a runtime of 650s, compared to the mean failure-free

runtime with eager scheduling of 15s. This is probably due to multiple replications of

tasks, due to losses of tasks higher in the supervision tree. In contrast, N-Queens with lazy

scheduling and eight node failures results in only 8 tasks being replicated as sparks. The

runtime is 52s, compared to a failure-free runtime with lazy scheduling of 28s – a much

lower overhead than recovery with eager scheduling. A similar recovery pattern for lazy

versus eager scheduling is shown for Sum Euler, Summatory Liouville and Mandelbrot.

For example, Mandelbrot executions with 6 and 8 node failures incur 419 and 686 task

ZU064-05-FPR SGP2 23 May 2016 10:40

34

replications (of the total 1023 tasks) respectively. Two Mandelbrot executions with 8 node

failures incur 0 and 6 task replications respectively.

SCHEDULE

Node A Node B

Supervised Spark
Replicated Once

1

(a) Supervision with Lazy Scheduling

PUSH

Node A Node B

Thread Replicated
More Than Once

Thread Replicated
Once

3

2

2

1

1

(b) Supervision with Eager Scheduling

Fig. 15: Recovering Lazy & Eager Scheduling

Recovery Overheads with Eager Scheduling The Chaos Monkey results shows that

eager scheduling incurs high levels of task replication and high runtime recovery costs.

It is very likely that many threads are unnecessarily re-scheduled, as HdpH-RS does not

currently cache completed task results. For the simple example of lazy scheduling shown

in Figure 15a far fewer tasks are exposed to the risk of remote node failure as nodes only

obtain a task when they are idle. The reason for the high level of rescheduling with eager

skeletons is illustrated in Figure 15b, namely more tasks are vulnerable to node failure.

Moreover, the supervision tree will be regenerated at each level, replicating children further

down the task graph multiple times, even if tasks at the leaves have completed.

8 Conclusion

We investigate an alternative to Erlang style explicit supervision and recovery of stateful

distributed actors, namely the transparent supervision and recovery of idempotent tasks.

We introduce the HdpH-RS DSL which transparently adds Reliable Scheduling to HdpH.

That is, the distributed fork/join-style API of HdpH carries over to HdpH-RS unchanged,

including libraries of high-level skeleton abstractions like parMapSliced (Section 3.1).

We provide an operational semantics for HdpH-RS, modeling task migration due to work

stealing and task replication due to fault recovery (Section 3.4). Fault recovery is seman-

tically unobservable, i.e. does not change the result of computations provided all tasks are

idempotent.

We present the fault tolerant distributed work stealing protocol of HdpH-RS in detail.

Under the protocol a task’s creator becomes its supervisor: tracking the task’s migration

due to work stealing, and replicating the task if it may have been lost due to node failure

(Sections 4, 6). We use model checking to validate that the protocol honours the operational

semantics (Section 5).

Performance evaluation shows that all benchmarks survive Chaos Monkey fault injec-

tion; and that fault tolerance overheads are consistently low in the absence of faults. HdpH-

RS well scales on both conventional clusters and HPC architectures. With tasks of similar

sizes, eager scheduling scales better than lazy work stealing, but when failures occur the

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 35

overheads of recovery are much lower with lazy work stealing as there are fewer tasks to

recover (Section 7).

The current fault tolerance model in HdpH-RS has a number of limitations that could

be addressed in future work. It would be intriguing to thoroughly explore the determinism

properties of transparent fault tolerance in languages like HdpH-RS. The implementation

could be improved in various ways: by integrating HdpH-RS with the the topology aware

HdpH implementation (Section 6.4); by extending the communication layer to allow nodes

to join a computation; and by avoiding the scalability limitation imposed by instantiating a

fully connected graph of nodes during execution as in SD Erlang (Chechina et al., 2014).

The current implementation re-evaluates any tasks created by a lost task, and this may

be very expensive e.g. as we have seen for divide-and-conquer programs. Some form of

memoization could avoid this re-evaluation. HdpH-RS could be made a more complete

reliable language by providing support for reliable distributed data structures, e.g. a repli-

cated distributed hash table or Erlang’s MNesia (Mattsson et al., 1999). Such a language

would support reliable big computation over reliable distributed data structures.

Acknowledgments

The work was funded by EPSRC grants HPC-GAP (EP/G05553X), AJITPar (EP/L000687/1) and

Rathlin (EP/K009931/1), and EU grant RELEASE (FP7-ICT 287510). The authors thank Blair

Archibald and the anonymous referees for helpful feedback.

References

Aljabri, Malak, Loidl, Hans-Wolfgang, & Trinder, Phil W. (2014). The Design and Implementation of

GUMSMP: A Multilevel Parallel Haskell Implementation. Pages 37–48 of: Proc. Implementation

and Application of Functional Languages (IFL’13). New York, NY, USA: ACM.

Armstrong, Joe. (2010). Erlang. Communications of the ACM, 53(9), 68–75.

Barroso, Luiz André, Clidaras, Jimmy, & Hölzle, Urs. (2013). The Datacenter as a Computer. 2nd

edn. Morgan & Claypool.

Boije, Jenny, & Johansson, Luka. 2009 (December). Distributed Mandelbrot Calculations. Tech.

rept. TH Royal Institute of Technology.

Borwein, Peter B., Ferguson, Ron, & Mossinghoff, Michael J. (2008). Sign changes in Sums of the

Liouville Function. Mathematics of Computation, 77(263), 1681–1694.

Cappello, Franck. (2009). Fault Tolerance in Petascale/ Exascale Systems: Current Knowledge,

Challenges and Research Opportunities. IJHPCA, 23(3), 212–226.

Chandy, K. Mani, & Lamport, Leslie. (1985). Distributed Snapshots: Determining Global States of

Distributed Systems. ACM Transactions Computer Systems, 3(1), 63–75.

Chechina, Natalia, Li, Huiqing, Ghaffari, Amir, Thompson, Simon, & Trinder, Phil. (2014).

Improving Network Scalability of Erlang. Submitted to Journal of Parallel and Distributed

Computing, December.

Cleary, Stephen. 2009 (May). Detection of Half-Open (Dropped) Connections. Tech. rept. Microsoft.

http://blog.stephencleary.com/2009/05/detection-of-half-open-dropped.html.

Cole, Murray I. (1988). Algorithmic Skeletons: A Structured Approach to the Management of Parallel

Computation. Ph.D. thesis, Computer Science Department, University of Edinburgh.

Dean, Jeffrey, & Ghemawat, Sanjay. (2008). MapReduce: Simplified Data Processing on Large

Clusters. Communications of the ACM, 51(1), 107–113.

http://blog.stephencleary.com/2009/05/detection-of-half-open-dropped.html

ZU064-05-FPR SGP2 23 May 2016 10:40

36

Dinu, Florin, & Ng, T. S. Eugene. (2011). Hadoop’s Overload Tolerant Design Exacerbates Failure

Detection and Recovery. 6th International Workshop on Networking Meets Databases, NETDB

2011. Athens, Greece., June.

Edinburgh Parallel Computing Center (EPCC). (2008). HECToR National UK Super Computing

Resource, Edinburgh. https://www.hector.ac.uk.

Elnozahy, E. N., Alvisi, Lorenzo, Wang, Yi-Min, & Johnson, David B. (2002). A Survey of Rollback-

Recovery Protocols in Message-Passing Systems. Acm computing surveys, 34(3), 375–408.

Epstein, Jeff, Black, Andrew P., & Jones, Simon L. Peyton. (2011). Towards Haskell in the Cloud.

Pages 118–129 of: Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, Haskell 2011,

Tokyo, Japan, 22 September 2011.

Gupta, Munish. (2012). Akka essentials. Packt Publishing Ltd.

Ha, Sangtae, Rhee, Injong, & Xu, Lisong. (2008). CUBIC: A New TCP-Friendly High-Speed TCP

Variant. Operating systems review, 42(5), 64–74.

Halstead Jr., Robert H. (1985). Multilisp: A Language for Concurrent Symbolic Computation. ACM

Transactions on Programming Languages and Systems, 7(4), 501–538.

Hammond, Kevin, Zain, Abdallah Al, Cooperman, Gene, Petcu, Dana, & Trinder, Philip W. (2007).

SymGrid: A Framework for Symbolic Computation on the Grid. Pages 457–466 of: 13th

International Euro-Par Conference, Rennes, France, August 28-31, 2007, Proceedings.

Harris, Tim, Marlow, Simon, & Jones, Simon L. Peyton. (2005). Haskell on a Shared-Memory

Multiprocessor. Pages 49–61 of: Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell

2005, Tallinn, Estonia, September 30, 2005.

Herington, Dean. (2006–2013). Haskell library: hunit package. A unit testing framework for

Haskell. http://hackage.haskell.org/package/HUnit.

Hoff, Todd. 2010 (December). Netflix: Continually Test by Failing Servers with Chaos Monkey.

http://highscalability.com.

Holzmann, Gerard J. (2004). The SPIN Model Checker - Primer and Reference Manual. Addison-

Wesley.

John, Annu, Konnov, Igor, Schmid, Ulrich, Veith, Helmut, & Widder, Josef. (2013). Towards

Modeling and Model Checking Fault-Tolerant Distributed Algorithms. Pages 209–226 of: Model

Checking Software - Proceedings of 20th International Symposium, SPIN 2013, Stony Brook, NY,

USA, July, 2013.

Kuper, Lindsey, Turon, Aaron, Krishnaswami, Neelakantan R., & Newton, Ryan R. (2014). Freeze

After Writing: Quasi-Deterministic Parallel Programming with LVars and Handlers. POPL 2014,

San Diego, USA. ACM.

Lamport, Leslie. (1978). Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the acm, 21(7), 558–565.

Litvinova, Antonina, Engelmann, Christian, & Scott, Stephen L. 2010 (Feb. 16-18,). A Proactive

Fault Tolerance Framework for High-Performance Computing. Proceedings of the 9th IASTED

International Conference on Parallel and Distributed Computing and Networks (PDCN) 2010.

Loogen, Rita, Ortega-Mallén, Yolanda, & Peña-Marı́, Ricardo. (2005). Parallel functional

programming in Eden. J. funct. program., 15(3), 431–475.

Maier, Patrick, & Trinder, Phil. (2012). Implementing a High-level Distributed-Memory Parallel

Haskell in Haskell. Pages 35–50 of: Implementation and Application of Functional Languages,

23rd International Symposium 2011, Lawrence, KS, USA, October 3-5, 2011. Revised Selected

Papers. Lecture Notes in Computer Science, vol. 7257. Springer.

Maier, Patrick, Livesey, Daria, Loidl, Hans-Wolfgang, & Trinder, Phil. (2014a). High-performance

computer algebra: A Hecke algebra case study. Pages 415–426 of: Silva, Fernando M. A.,

de Castro Dutra, Inês, & Costa, Vı́tor Santos (eds), Euro-par 2014 parallel processing - 20th

https://www.hector.ac.uk
http://hackage.haskell.org/package/HUnit
http://highscalability.com

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 37

international conference, porto, portugal, august 25-29, 2014. proceedings. Lecture Notes in

Computer Science, vol. 8632. Springer.

Maier, Patrick, Stewart, Robert J., & Trinder, Philip W. (2014b). Reliable Scalable Symbolic

Computation: The Design of SymGridPar2. Computer Languages, Systems & Structures, 40(1),

19–35.

Maier, Patrick, Stewart, Robert J., & Trinder, Phil. (2014c). The HdpH DSLs for Scalable Reliable

Computation. Pages 65–76 of: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell,

Gothenburg, Sweden, September 4-5, 2014. ACM.

Marlow, Simon, & Newton, Ryan. (2013). Source code for monad-par library. https://github.

com/simonmar/monad-par.

Marlow, Simon, Jones, Simon L. Peyton, & Singh, Satnam. (2009). Runtime Support for Multicore

Haskell. Pages 65–78 of: Icfp.

Marlow, Simon, Newton, Ryan, & Jones, Simon L. Peyton. (2011). A Monad for Deterministic

Parallelism. Pages 71–82 of: Proceedings of the 4th ACM SIGPLAN Symposium on Haskell,

Haskell 2011, Tokyo, Japan, 22 September 2011.

Mattsson, Hkan, Nilsson, Hans, & Wikstrm, Claes. (1999). Mnesia - A Distributed Robust DBMS

for Telecommunications Applications. Pages 152–163 of: PADL.

Meredith, Marsha, Carrigan, Teresa, Brockman, James, Cloninger, Timothy, Privoznik, Jaroslav,

& Williams, Jeffery. (2003). Exploring Beowulf Clusters. Journal of Computing Sciences in

Colleges, 18(4), 268–284.

Michie, Donald. (1968). ”Memo” Functions and Machine Learning. Nature, 218(5136), 19–22.

Peyton Jones, Simon. (2002). Tackling the Awkward Squad: Monadic Input/Output, Concurrency,

Exceptions, and Foreign-Language Calls in Haskell. Pages 47–96 of: Engineering Theories of

Software Construction.

Pnueli, Amir. (1977). The Temporal Logic of Programs. Pages 46–57 of: 18th Annual Symposium

on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November

1977. IEEE Computer Society.

Postel, J. 1980 (August). User Datagram Protocol. RFC 768 Standard. http://www.ietf.org/

rfc/rfc768.txt.

Prior, Arthur N. (1957). Time and Modality. Oxford University Press.

Ramalingam, Ganesan, & Vaswani, Kapil. (2013). Fault Tolerance via Idempotence. Pages 249–262

of: Popl.

Rivin, Igor, Vardi, Ilan, & Zimmerman, Paul. (1994). The N-Queens Problem. The American

Mathematical Monthly, 101(7), pp. 629–639.

Scholz, Sven-Bodo. (2003). Single Assignment C: Efficient Support for High-level Array Operations

in a Functional Setting. J. Funct. Program., 13(6), 1005–1059.

Schroeder, Bianca, & Gibson, Garth A. (2007). Understanding Failures in Petascale Computers.

Journal of Physics: Conference Series, 78, 012022 (11pp). http://stacks.iop.org/

1742-6596/78/012022.

Scott, J., & Kazman, R. (2009). Realizing and Refining Architectural Tactics: Availability. Technical

report. Carnegie Mellon University, Software Engineering Institute.

Stewart, Robert. 2013a (December). Promela Abstraction of the HdpH-RS Sched-

uler. https://github.com/robstewart57/phd-thesis/blob/master/spin_model/

hdph_scheduler.pml.

Stewart, Robert. 2013b (November). Reliable Massively Parallel Symbolic Computing: Fault

Tolerance for a Distributed Haskell. Ph.D. thesis, Mathematical and Computer Sciences, Heriot-

Watt University, Edinburgh, Scotland.

Stewart, Robert, & Maier, Patrick. (2013). HdpH-RS source code. https://github.com/

robstewart57/hdph-rs.

https://github.com/simonmar/monad-par
https://github.com/simonmar/monad-par
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt
http://stacks.iop.org/1742-6596/78/012022
http://stacks.iop.org/1742-6596/78/012022
https://github.com/robstewart57/phd-thesis/blob/master/spin_model/hdph_scheduler.pml
https://github.com/robstewart57/phd-thesis/blob/master/spin_model/hdph_scheduler.pml
https://github.com/robstewart57/hdph-rs
https://github.com/robstewart57/hdph-rs

ZU064-05-FPR SGP2 23 May 2016 10:40

38

Stewart, Robert, Maier, Patrick, & Trinder, Phil. 2015 (June). Open access dataset for ”Transparent

Fault Tolerance for Scalable Functional Computation”. http://dx.doi.org/10.5525/gla.

researchdata.189.

Trinder, Philip W., Hammond, Kevin, Jr., James S. Mattson, Partridge, A. S., & Jones, Simon

L. Peyton. (1996). GUM: A Portable Parallel Implementation of Haskell. Pages 79–88 of: Proc.

ACM Programming Language Design and Implementation (PLDI’96), Philadephia, Pennsylvania,

May.

White, Tom. (2012). Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale (3. ed.,

revised and updated). O’Reilly.

Xu, Chengzhong, & Lau, Francis C. (1997). Load Balancing in Parallel Computers: Theory and

Practice. Norwell, MA, USA: Kluwer Academic Publishers.

http://dx.doi.org/10.5525/gla.researchdata.189
http://dx.doi.org/10.5525/gla.researchdata.189

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 39

A Promela Abstraction of the Verified HdpH-RS Scheduler

active proctype Supervisor() {
int thiefID, victimID, deadNodeID, seq, authorizedSeq, deniedSeq;
supervisor.sparkpool.spark_count = 1;
run Worker(0); run Worker(1); run Worker(2);

SUPERVISOR_RECEIVE:
if :: (supervisor.sparkpool.spark_count > 0 && spark.age > maxLife) →

atomic { supervisor.resultSent = 1; supervisor.ivar = 1;
goto EVALUATION_COMPLETE; }

:: else →
if :: (supervisor.sparkpool.spark_count > 0) →

atomic { supervisor.resultSent = 1; supervisor.ivar = 1;
goto EVALUATION_COMPLETE; }

:: chans[3] ? DENIED(thiefID, deniedSeq,null) →
supervisor.waitingSchedAuth = false;
chans[thiefID] ! NOWORK(3, null, null) ;

:: chans[3] ? FISH(thiefID, null,null) → /* React to FISH request */
if :: (supervisor.sparkpool.spark_count > 0 && !supervisor.waitingSchedAuth) →

supervisor.waitingSchedAuth = true;
chans[3] ! REQ(3, thiefID, supervisor.sparkpool.spark);

:: else → chans[thiefID] ! NOWORK(3, null,null) ; /*We don’t have the spark */
fi;

:: chans[3] ? AUTH(thiefID, authorizedSeq, null) →
d_step { supervisor.waitingSchedAuth = false;

supervisor.sparkpool.spark_count--; }
chans[thiefID] ! SCHEDULE(3, supervisor.sparkpool.spark ,null);

:: chans[3] ? REQ(victimID, thiefID, seq) →
if :: seq == spark.highestReplica →

if :: spark.context == ONNODE && ! worker[thiefID].dead→
d_step { spark.context = INTRANSITION;

spark.location.from = victimID ;
spark.location.to = thiefID ; }

chans[victimID] ! AUTH(thiefID, seq, null);
:: else → chans[victimID] ! DENIED(thiefID, seq, null);

fi
:: else → chans[victimID] ! OBSOLETE(thiefID, null, null);

fi
:: chans[3] ? ACK(thiefID, seq, null) →

if :: seq == spark.highestReplica →
d_step { spark.context = ONNODE;

spark.location.at = thiefID ; }
:: else → skip ;

fi
:: atomic { chans[3] ? RESULT(null, null, null);

supervisor.ivar = 1; goto EVALUATION_COMPLETE; }
:: chans[3] ? DEADNODE(deadNodeID, null, null) →

bool should_replicate;
d_step { should_replicate = false;

if :: spark.context == ONNODE \
&& spark.location.at == deadNodeID → should_replicate=true;

:: spark.context == INTRANSITION \
&& (spark.location.from == deadNodeID \

|| spark.location.to == deadNodeID) → should_replicate=true;
:: else → skip;

fi;
if :: should_replicate →

spark.age++; supervisor.sparkpool.spark_count++; spark.highestReplica++;
supervisor.sparkpool.spark = spark.highestReplica ; spark.location.at=3 ;
spark.context = ONNODE;

:: else → skip;
fi;

}
fi; fi;

if :: (supervisor.ivar == 0) → goto SUPERVISOR_RECEIVE;
:: else → skip;

fi;
EVALUATION_COMPLETE: }

Fig. A 1: Repetitive Control Flow Options for Supervisor

ZU064-05-FPR SGP2 23 May 2016 10:40

40

proctype Worker(int me) {
int thiefID, victimID, deadNodeID, seq, authorisedSeq, deniedSeq;

WORKER_RECEIVE:
if :: (worker[me].sparkpool.spark_count > 0 && spark.age > maxLife) →

atomic { worker[me].resultSent = true;
chans[3] ! RESULT(null,null,null);
goto END; }

:: else →
if :: skip → /* die */

worker[me].dead = true;
report_death(me);
goto END;

:: (worker[me].sparkpool.spark_count > 0) →
chans[3] ! RESULT(null,null,null);

:: (worker[me].sparkpool.spark_count == 0
&& (worker[me].waitingFishReplyFrom == -1) && spark.age < (maxLife+1)) →
int victim;
d_step {
if
:: (0!=me)&&!worker[0].dead&&(worker[me].lastTried-0) → victim=0;
:: (1!=me)&&!worker[1].dead&&(worker[me].lastTried-1) → victim=1;
:: (2!=me)&&!worker[2].dead&&(worker[me].lastTried-2) → victim=2;
:: skip → = 3; /* supervisor */
fi;
worker[me].lastTried=victim;
worker[me].waitingFishReplyFrom = victim;

};
chans[chosenVictimID] ! FISH(me, null, null) ;

:: chans[me] ? NOWORK(victimID, null, null) →
worker[me].waitingFishReplyFrom = -1; /* can fish again */

:: chans[me] ? FISH(thiefID, null, null) → /* React to FISH request */
if :: (worker[me].sparkpool.spark_count > 0 && ! worker[me].waitingSchedAuth) →

worker[me].waitingSchedAuth = true;
chans[3] ! REQ(me, thiefID, worker[me].sparkpool.spark);

:: else → chans[thiefID] ! NOWORK(me, null, null) ;
fi

:: chans[me] ? AUTH(thiefID, authorisedSeq, null) →
d_step { worker[me].waitingSchedAuth = false;

worker[me].sparkpool.spark_count--;
worker[me].waitingFishReplyFrom = -1; }

chans[thiefID] ! SCHEDULE(me, worker[me].sparkpool.spark, null);
:: chans[me] ? DENIED(thiefID, deniedSeq, null) →

worker[me].waitingSchedAuth = false;
chans[thiefID] ! NOWORK(me, null, null) ;

:: chans[me] ? OBSOLETE(thiefID, null, null) →
d_step { worker[me].waitingSchedAuth = false;

worker[me].sparkpool.spark_count--;
worker[me].waitingFishReplyFrom = -1; }

chans[thiefID] ! NOWORK(me, null, null) ;
:: chans[me] ? SCHEDULE(victimID, seq, null) →

d_step { worker[me].sparkpool.spark_count++;
worker[me].sparkpool.spark = seq ;
spark.age++; }

chans[3] ! ACK(me, seq, null) ; /* Send ACK To supervisor */
:: chans[me] ? DEADNODE(deadNodeID, null, null) →

d_step { if :: worker[me].waitingFishReplyFrom > deadNodeID →
worker[me].waitingFishReplyFrom = -1 ;

:: else → skip ;
fi ; };

fi; fi ;

if :: (supervisor.ivar == 1) → goto END;
:: else → goto WORKER_RECEIVE;

fi;
END: }

Fig. A 2: Repetitive Control Flow Options for a Worker

ZU064-05-FPR SGP2 23 May 2016 10:40

Journal of Functional Programming 41

B HdpH-RS Chaos Monkey Results

Benchmark Skeleton
Failed Nodes Recovery Runtime

Unit Test
(seconds) Sparks Threads (seconds)

Sum Euler
lower=0

upper=100000

chunk=100

tasks=1001

X=3039650754

parMapChunked - 126.1 pass

parMapChunked (RS)

[6,30,39,49,50] 10 181.1 pass
[5,11,18,27,28,33,44,60] 16 410.2 pass

[31,36,49] 6 139.7 pass
[37,48,59] 6 139.5 pass

[1,17,24,27,43,44,47,48,48] 17 768.2 pass

pushMapChunked - 131.6 pass

pushMapChunked (RS)

[4,34,36,37,48,49,58] 661 753.7 pass
[2,6,11,15,17,24,32,37,41] 915 1179.7 pass

[2,37,39,45,49] 481 564.0 pass
[4,7,23,32,34,46,54,60] 760 978.1 pass

[35,38,41,43,46,51] 548 634.3 pass

Summatory
Liouville
λ = 50000000
chunk=100000

tasks=500

X=-7608

parMapSliced - 56.6 pass

parMapSliced (RS)

[32,37,44,46,48,50,52,57] 16 85.1 pass
[18,27,41] 6 61.6 pass

[19,30,39,41,54,59,59] 14 76.2 pass
[8,11] 4 62.8 pass

[8,9,24,28,32,34,40,57] 16 132.7 pass

pushMapSliced - 58.3 pass

pushMapSliced (RS)

[3,8,8,12,22,26,26,29,55] 268 287.1 pass
[1] 53 63.3 pass

[10,59] 41 68.5 pass
[13,15,18,51] 106 125.0 pass
[13,24,42,51] 80 105.9 pass

Queens
14×14board

threshold=5

tasks=65234

X=365596

parDnC - 28.1 pass

parDnC (RS)

[3,8,9,10,17,45,49,51,57] 8 52.1 pass
[1,30,32,33,48,50] 5 49.4 pass

[8,15] 2 53.3 pass
[20,40,56] 2 49.9 pass

[] 0 52.8 pass

pushDnC - 15.4 pass

pushDnC (RS)

[14,33] 5095 57.1 pass
[3,15,15,23,24,28,32,48] 40696 649.5 pass

[5,8,26,41,42,42,59] 36305 354.9 pass
[0,5,8,10,14,28,31,51,54] 32629 276.9 pass

[31,31,58,60] 113 47.8 pass

Mandelbrot
x=4048

y=4048

depth=256

threshold=4

tasks=1023

X=449545051

parMapReduce - 23.2 pass

parMapReduce (RS)

[28,30,36,44,49,54,56,56] 0 29.1 pass
[] 0 27.8 pass

[7,24,25,25,44,53,54,59] 6 32.6 pass
[17,30] 0 55.4 pass
[0,14] 2 33.7 pass

pushMapReduce - 366.3 pass

pushMapReduce (RS)

[9,24,34,34,52,59] 419 205.3 pass
[7,8,11,22,32,35,44,46] 686 395.9 pass

[27,49] 2 371.8 pass
[] 0 380.4 pass

[9,33,50,50,52,53] 84 216.1 pass

Table B 1: Fault Tolerance Unit Testing: Chaos Monkey Runtimes

	Introduction
	Related Work
	Faults and Reliability
	Reliability of Large Scale Systems
	Fault Tolerant Distributed Languages

	Design
	HdpH-RS Language
	Algorithmic Skeletons
	Applicability
	Operational Semantics
	Transparent Fault Recovery

	Reliable Work Stealing Protocol
	Work Stealing Protocol
	Task Locality
	Duplicate Sparks
	Fault Tolerant Scheduling Algorithm

	Validating Reliable Work Stealing
	Desirable Scheduling Properties with Non-Deterministic Systems
	HdpH-RS Abstraction
	Scheduling Model
	Correspondence with Operational Semantics
	Model Checking Results

	Implementation
	HdpH-RS Architecture
	Recovering Supervised Sparks and Threads
	Fault Detecting Communications Layer
	HdpH and HdpH-RS Pragmatics

	Evaluation
	Measurement Platform
	Performance With No Failure
	Performance With Recovery
	Random Fault Injection with Chaos Monkey

	Conclusion
	References
	Promela Abstraction of the Verified HdpH-RS Scheduler
	HdpH-RS Chaos Monkey Results

