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1 Introduction

While international trade continues to expand, businesses 
are striving to increase reliability and reduce their environ-
mental impact. As a result, demand for rail freight increases 
every year and rail-freight carriers attempt to maximize their 
eiciency. The crew cost constitutes 20–25% of the total 
rail-freight operating cost and is second only to the cost of 
fuel. Therefore, even a small improvement in the scheduling 
processes can save a company millions of dollars a year.

Daily crew planning starts after the train schedule has 
been inalized. It consists of two phases: crew scheduling 
and crew rostering. Crew scheduling involves grouping a 
sequence of train trips into shifts. Crew rostering, on the 
other hand, concerns assignment of drivers to each shift.

Within the industry, the driver’s schedule is called a dia-

gram. Each diagram contains instructions for the driver of 
what he or she should do on a particular day. Each diagram 
must start and end at the same station and obey all labour 
laws and trade union agreements. These rules regulate the 
maximum diagram duration, maximum continuous and 
aggregate driving time in a diagram, and minimum break 
time. As diagrams lasting more than 1 day are rare in the 
UK, the assumption of this research is that the maximum 
duration is 24 h. In addition, the terms trip and journey will 
be used interchangeably.

All drivers are located in depots where they start and in-
ish their work. Depots are distributed fairly evenly across the 
UK. Sometimes in order to connect two trips that inish and 
start at diferent locations, a driver has to travel on a passen-
ger train, taxi or a freight train driven by another driver. The 
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situation of a driver travelling as a passenger while on duty 
is called deadheading. The cost of deadheading varies and 
depends on the means of transportation and business agree-
ments between operating companies. Despite the potential 
cost, deadheading is sometimes inevitable and it can beneit 
the overall schedule [1].

Due to the employment contract terms, the drivers are 
paid the same hourly rate for any time spent on duty regard-
less of the number of hours they have actually been driving 
the train. Moreover, in accordance with collectively bar-
gained contracts, each driver has a ixed number of working 
hours per year, so the company is obliged to pay for all the 
stated hours in full even if some of the hours are not utilized. 
Paid additional overtime hours can be worked at the driver’s 
discretion. Thus, it is in the best interests of the company 
to use the agreed driving hours in the most eicient and 
economical way.

Taking all of this into consideration, the operational 
objectives for the diagrams are:

1. Minimize a number of unused and excess contract hours 
at the end of the year. To achieve this objective, it is 
preferable for each diagram to be of approximately the 
same average length of time, which is the annual con-
tract hours divided by the number of the working days.

2. Maximize the throttle time, Tthrottle, i.e. the proportion 
of the work shift that is actually spent driving a train. 
It excludes time for deadheading and waiting between 
trips.

2  Approaches to crew scheduling

The crew-scheduling problem (CSP) is usually solved in 
two stages. At the irst stage, all possible diagrams satisfy-
ing the industrial constraints are enumerated. At the sec-
ond stage, only the set of diagrams that covers the entire 
schedule in the most cost-efective way is identiied. Dia-
grams are usually modelled as binary vectors (Table 1) 
where ‘1’ denotes that the trip i is included in the dia-
gram j, otherwise ‘0’ is inserted. Each diagram has its own 
cost. The deadhead journeys are displayed by including 
the same trip in more than one diagram. In the rest of 

|Tdiagram − T| → min

Tdiagram = Tdriving + Tdeadheading + Tbreak + Tidle

T =

Tcontract

Ndays

Tthrottle =

Tdriving

Tdiagram

the article the terms diagram and column will be used 
interchangeably.

Although the generation of the diagrams can be per-
formed in a simple and relatively straightforward manner 
using various graph search and label-setting techniques 
[2], inding an optimal set of diagrams may be highly time-
consuming. The problem boils down to the solution of 
the 0–1 integer combinatorial optimization set covering 
problem (SCP): 

where aij is a decision variable indicating whether a trip i is 
included in the diagram j; xj shows if the diagram is included 
in the schedule; cj is the cost of the diagram.

The complete enumeration of all possible diagrams is 
likely to be impractical due to the large geographical scope 
of operations, the number of train services, and industry 
regulations. Typically, the number of generated diagrams 
reaches 300,000–400,000 for small problems and can be 
up to 50–75 million for the large ones [3, 4].

Country-wide planning creates a large number of oppor-
tunities for drivers to change freight trains, while passen-
ger trains and taxi services connecting a large number of 
stations exponentially expand the graph topology. Further-
more, checks such as maximum driving time, minimum 
breaks and maximum diagram length need to be conducted 
while traversing the graph. These checks ensure compli-
ance with industrial regulations, but substantially increase 
the computation time at the diagram creation stage.

Minimize

m
∑

j=1

cjxj

Subject to ∶

n
∑

i=1

aijxj ≥ 1

xj ∈ {0, 1}

i = 1, 2… n trips

j = 1, 2…m diagrams

Table 1  Diagrams

Diagram 1 Diagram 2 Diagram 3 Diagram 4

Trip1 1 0 0 1

Trip2 0 1 1 0

Trip3 0 1 0 1

Trip4 0 1 0 1

Trip5 1 1 0 0
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2.1  Branch-and-price

Linear programming methods such as branch-and-price [5, 
6] have been popular for the solution of medium-sized CSPs 
in the passenger train and airline industries [7]. These meth-
ods usually rely on a column-generation approach, where the 
main principle is to generate diagrams in the course of the 
algorithm, rather than having them all constructed a priori. 
Despite the ability of the algorithm to work with an incom-
plete set of columns, the column generation method alone 
does not guarantee an integer solution of the SCP. It is usu-
ally used in conjunction with various branching techniques 
that are able to ind the nearest integer optimal solution. 
However, this approach is less suitable for the CSP in rail 
freight, where the possible number of diagrams tends to be 
considerably higher.

2.2  Genetic algorithms

Linear programming (LP) has been used for CSPs since the 
1960s [8], but genetic algorithms (GAs) were introduced 
more recently [9]. GAs have been applied either for the pro-
duction of additional columns as a part of column generation 
[8] or for the solution of an SCP from the set of columns 
generated prior to the application of a GA [9–12], but there 
are not yet any reports of them solving both stages of the 
problem. Since the diagrams are generated outside the GA 
in advance, the GA cannot change or add new columns. The 
GA is therefore conined to inding only good combinations 
from a pre-determined pool of columns.

For the solution of a CSP with a GA, chromosomes are 
normally represented by integer or binary vectors. Integer 
vector chromosomes contain only the numbers of the dia-
grams that constitute the schedule. This approach requires 
knowledge of the minimum number of diagrams in the 
schedule and this information is usually obtained from 
the cost lower bounds. Lower bounds are usually acquired 
through the solution of LP relaxation for an SCP [13]. Since 
the number of diagrams in the optimal solution tends to be 
higher than the lower bound, Costa et al. [14] have sug-
gested the following approach. In the irst population, the 
chromosomes have a length equal to the lower bound. Then, 
if a solution has not been found within a certain number of 
iterations, the length of the chromosome increases by one. 
This process repeats until the termination criteria are met.

In the binary vector representation, each gene stands 
for one diagram. The igure ‘1’ denotes that the diagram is 
included in the schedule, otherwise it is ‘0’. Although the 
detailed information about times and locations is stored sep-
arately and only applied when a chromosome is decoded into 
the schedule, such chromosomes usually consist of several 
hundred thousand genes. The number of diagrams can be 

unknown and the algorithm is likely to need a large number 
of iterations in order to solve the problem.

The application of genetic operators often violates the fea-
sibility of the chromosomes, resulting in certain trips being 
highly over-covered (i.e. more than one driver assigned to 
the train) or under-covered (i.e. no drivers assigned to the 
train). One way of resolving this diiculty is to penalize 
the chromosome through the itness function in accordance 
with the number of constraints that have been violated. 
However, the development of the penalty parameters can be 
problematic as in some cases it is impossible to verify them 
analytically and they are usually designed experimentally 
[15]. The penalty parameters are therefore data-dependent 
and likely to be inapplicable to other industries and compa-
nies. Moreover, the feasibility of the entire population is not 
guaranteed and might be achieved only after a large number 
of iterations.

Another more straightforward approach to maintain-
ing the feasibility is to design heuristic “repair” operators. 
These operators are based on the principles “REMOVE” 
and “INSERT”. They scan the schedule and remove certain 
drivers from the over-covered trips and assign those drivers 
to under-covered journeys [13, 15]. This procedure might 
have to be repeated several times, leading to high memory 
consumption and increased computation time.

2.3  Adaptable genetic algorithm

Two of the common challenges associated with design 
of GAs are stalled evolution and premature convergence. 
Multiple genetic operators, random ofspring generation, 
and dynamic parameter adjustment are among the meth-
ods for tackling these problems [16, 17]. The challenges in 
the design of an eicient GA with multiple operators are: 
identiication of the optimal quantity of genetic operators, 
selection of those operators that would complement each 
other’s strengths, and deinition of utilization rules. Creation 
of ofspring at random, rather than through the crossover 
operator, can be ineicient for a large-scale problem due to 
the large number of potential gene permutations, lowering 
the probability of producing more it and diverse ofspring.

Genetic parameters such as crossover rate and mutation 
rate govern the exploration and exploitation phases. Poor 
selection can lead to premature convergence due to reduced 
diversity in the population over several iterations [18]. While 
the mutation operator is usually responsible for the mainte-
nance of diversity, an extremely high level of mutation at 
the beginning can impede convergence on the solution. On 
the other hand, a very low level of mutation at the beginning 
might lead to poor exploration of the search region and the 
algorithm might not be able to arrive at the optimal solution.

To achieve a balance, several adaptive techniques that 
dynamically adjust the mutation and crossover rates have 
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been proposed. One approach modiies the values of GA 
parameters proportionally to the distance between the best 
and average itness in the population [19]. Designing an 
evolutionary algorithm for the crew scheduling problem, 
Kwan et al. [20] suggest selecting the mutation probability 
individually for each chromosome rather than for the entire 
population. The longer the individual has been in the popu-
lation, the higher its probability of undergoing mutation. 
Both approaches rely on pre-deined crisp rules. However, 
the criteria for optimal selection of crossover and mutation 
are ambiguous and hard to model. Crisp rules cannot always 
adequately deal with the intricacies of the parameter adjust-
ment process. For this reason, fuzzy-logic controllers, which 
are able to handle uncertainty and imprecision, have been 
applied in this research.

Wang et al. [21] were amongst the irst researchers to pro-
pose the incorporation of fuzzy logic controllers within GAs 
in order to optimize the GA parameters. The coniguration 
of a standard fuzzy-logic controller (FLC) is illustrated in 
Fig. 1. At each iteration of the GA, the information about its 
current performance is passed onto the FLC. The FLC then 
processes it and produces a recommendation for how the 
GA parameters should be altered in order to achieve more 
optimal execution. There are four critical components that 
support the FLC: a rule-base, a fuzziication unit, an infer-
ence engine, and a defuzziication unit.

The rule-base contains expert knowledge, expressed in 
the form of IF-THEN rules, which determine the relation-
ship between the input and output. When applied to GA 
parameter management, the typical principle is to increase 
the mutation rate and decrease the crossover rate when the 
algorithm is converging [22–26].

Following the rules stored in the rule-base, the fuzzii-
cation unit estimates the degree to which the parameters 
belong to fuzzy sets. In the context of GA parameter control, 
fuzzy sets represent the crossover and mutation rates. The 
membership functions of the fuzzy sets are deined by lin-
guistic variables (i.e. Low, Medium, and High).

The role of the inference engine is to identify the required 
level of changes to the GA parameters at a given itera-
tion. The decision is made on the basis of the information 
received from the rule-base and fuzziication units. Finally, 
the defuzziication element returns scalar values of crossover 
and mutation rates.

While the architecture of the FLC remains the same 
across diferent ields of research and applications, the 
input parameters vary signiicantly. The input parameters 
can be broken down to two types: phenotype-based and 
genotype-based parameters. The irst group deals with 
changes in the itness function, whereas the genotype-
based group concerns the structure of chromosomes.

As an example of phenotype measurements, Herrera 
and Lozano [22] utilize the convergence measure (CM), 
deined as the ratio between the best itness on the cur-
rent iteration and the best itness on the previous iteration. 
In another experiment, they enhance this ratio with the 
number of generations of unchanged best itness and the 
variance of the itness, in order to amend both mutation 
and crossover rates. Hongbo et al. [25] use the average it-
ness value in relation to the best itness in the population 
and changes of the average and best itness over several 
iterations to solve the crew grouping problem in military 
operations. This approach was adopted later for the detec-
tion of high-resolution satellite images [23] and for opti-
mal wind-turbine micrositing [26]. Homayouni and Tang 
[27] propose the use of indicators such as the best value 
of the itness function, the frequency of the chromosomes 
with the similar best value, and the percentage of the same 
chromosomes in the population. In contrast, another FLC 
[28] relies on the changes in the value of the best itness 
and population diversity.

Along with phenotype attributes, some authors con-
sider genotype properties [24, 29]. They assess the Ham-
ming distance between the chromosomes with the best 
itness and the worst itness in relation to the length of 
the chromosome. This approach promotes diversity, not 
only in the itness functions, but also in the structure of 
the individuals.

3  GA-generated crew schedules

This section presents the use of a genetic algorithm to gener-
ate crew schedules in the context of UK freight-train logis-
tics. It starts with an explanation of the input data types 
and chromosome encoding procedure. Then the designed 
crossover and mutation operators are presented.

Fig. 1  Fuzzy-logic controller GA statistics:

• Best fitness function

• Fitness diversity in population

• Chromosome diversity

• Number of iterations with 
unchanged fitness

• Crossover rate

• Mutation rate

Rule-base

Inference engine

Fuzzification Defuzzification

Adjusted GA 

parameters: 

• Crossover rate

• Mutation rate
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3.1  Initial data

The process starts with a user uploading the freight train and 
driver data (Fig. 2). Each train has the following attributes: 
place of origin, destination, departure time, arrival time, 
type of train, and route code. The last two attributes indicate 
the knowledge that a driver must have in order to operate a 
particular train. The system also stores information about 
the drivers, i.e. where each driver is located and his or her 
traction and route knowledge. In the boxes marked ‘traction 

knowledge’ and ‘route knowledge’, each row represents a 
driver and each column denotes either a route or traction 
code. The binary digits indicate whether a particular driver 
is capable of driving a certain train or knows a certain route. 
The program also captures all the passenger trains and dis-
tance between cities, which is needed to calculate any taxi 
costs (Fig. 3).

After all the necessary data have been uploaded, the GA 
is applied to construct an eicient schedule. The proposed 
algorithm overcomes the aforementioned challenges through 

Fig. 2  Freight trains and driv-
ers

Fig. 3  Passenger trains and 
taxis
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a novel alternative chromosome representation and special 
decoding procedure. It allows the feasibility of chromosomes 
to be preserved at each iteration without the application of 
repair operators. As a result, the computational burden is 
considerably reduced.

3.2  Chromosome representation

The chromosome is represented by a series of integers, 
where each integer stands for the number of the trip (Fig. 4). 
The population of chromosomes is generated at random and 
then the trips are allocated in series to the diagrams using a 
speciic decoding procedure, which is discussed below and 
summarized in Table 2.

Starting from the leftmost gene, the procedure inds a 
driver with the necessary route and traction knowledge to 
operate that trip and creates a new diagram for him or her. 
Then the procedure checks if the same driver is able to drive 
on the next journey (i.e. the second gene). If it is possible, 
then that trip is added to his or her diagram. If the origin sta-
tion for the current trip difers from the destination station of 
the previous trip, the algorithm irst searches for passenger 
trains and the freight company’s own trains that can deliver 
a driver within the available time slot to the next job loca-
tion, e.g. Diagram 1, between trips 3 and 8 (Fig. 4). If no 
such trains have been found, but there is a suicient interval 
between the trips, then the algorithm inserts a taxi journey.

The information regarding driving times and the current 
duration of the diagrams is stored. Before adding a new trip, 
the algorithm inserts breaks if necessary. If the time expires 
and there are no trains to the home depot that a driver can 
drive, the deadheading activity completes the diagram, as in 
Diagram 2 (Fig. 4). If a trip cannot be placed in any of the 
existing diagrams, the procedure takes another driver from a 
database and creates a new diagram for him or her.

On rare occasions, a few diagrams might be left with 
only a few trips and a duration that is less than the minimum 
(as shown in lines 38–52 in the pseudocode). This is due 
to the fact that other drivers are either busy at this time or 
located at diferent stations. In order to tackle this problem, 
a mechanism has been added for inding and assigning a 

driver from a remote depot with the lowest workload. This 
approach not only solved the problem of the short diagrams, 
but also helped in distributing the workload more equally 
across the depots. After the implementation of this pro-
cedure, the algorithm has been tested on various data sets 
including real and randomly generated data. None of the 
chromosomes has been reported to violate the constraint.

The given representation has a visual resemblance to 
the light-graph representation suggested by Ozdemir and 
Mohan [30], but the decoding procedures are diferent. The 
light-graph representation generates trips based on a depth-
irst graph search, whereas in the proposed GA they are 
produced at random. Random generation is beneicial since 
it does not exclude situations where a driver can travel to 
another part of the country to start working in order to have 
even workload distribution across the depots, while depth-
irst search usually places only geographically adjusted trips 
together.

The advantage of the proposed chromosome representa-
tion is that it creates both the crew schedule and the crew 
roster for a single day within the same algorithm, thereby 
giving the GA greater control over the solution. It also does 
not require the generation of a large number of diagrams at 
the beginning. In addition, this representation does not leave 
under-covered trips and ensures that no unnecessary over-
covering happens. This is because chromosome scanning 
and trip allocation continue until all the trips are placed into 
diagrams, even if a new diagram is created for a single trip. 
Over-covering only occurs when a deadhead is required and 
does not occur otherwise. It is possible that at the beginning 
of the algorithm this chromosome representation might pro-
duce schedules with a high number of deadheads. However, 
due to the speciic itness function and genetic operators, the 
number of chromosomes containing deadheads decreases 
rapidly with evolution.

3.3  Cost function

The objective function, i.e. the function to be opti-
mized, is represented as the cost of the schedule. The 
cost (to be minimized) is the opposite of the itness (to 

Fig. 4  Chromosome represen-
tation and decoding procedure
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Table 2  Pseudocode: decoding 
procedure
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be maximized). The direct cost consists of the drivers’ 
working hours and expenses for additional transportation. 
In order to penalize those solutions with unequal workload 
distribution or where the diagram length deviates from the 
target value, the second part of the cost function repre-
sents potential losses associated with these two additional 
criteria: 

Cost =

N∑

i=1

(
Tdiagrami

× CHourlyRate +Cdeadheadingi

+|Tdiagrami
− T̄diagram | × CHourlyRate

)

+

√
1

m

(
Tdepotm

− T̄depot

)
× CHourlyRate

Table 2  (continued)
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where i is the number of trips, m is the number of depots, 
and the average diagram duration is assumed to be 8.5 h

3.4  Selection

Preference was given to binary tournament selection due to 
the smaller bias towards ittest individuals, lower selection 
pressure, non-reliance on population sorting and ranking 
procedures, and execution time and memory eiciency [31]. 
It is also a popular selection strategy that is used in numer-
ous GAs for CSP [9, 30]. Binary tournament selection can be 
described as follows. Two individuals are selected at random 
from the population and the ittest among them constitutes 
the irst parent. The same process repeats for the selection 
of the second parent.

3.5  Crossover and mutation

Since one- or two-point crossover might produce invalid of-
spring by removing some trips or copying the same journey 
several times, a crossover mechanism has been designed to 
utilize domain-speciic information without interfering with 
the number of the trips. The process is illustrated in Fig. 5. 
Firstly, the process detects genes responsible for diagrams 
with a high throttle time in the irst parent. As the throttle 
time shows the proportion of productive work time in the 
diagram, the higher the throttle time, the fewer deadhead 
trips and unnecessary breaks between the trips are included 
in the diagram. The trips constituting diagrams with a higher 
throttle time are shown in darker shades in Fig. 5. Typically, 
these diagrams consist of a large number of trips. However, 
in some cases, they can comprise just a few trips of long 
duration. In both scenarios, the throttle time would be high.

Once diagrams with high throttle times have been iden-
tiied, these genes are copied to the irst child and the rest 
of the genes are added from the second parent. The same 
procedure is then used to form the second child. By pre-
serving the good parts of the chromosome accumulated 
through evolution, the implemented crossover was able to 
provide a schedule with a high throttle time much faster than 

traditional crossover that randomly mixes the parents’ genes 
to form their ofspring.

In order to maintain diversity in the population, randomly 
selected genes are mutated with 40% probability. The muta-
tion is performed by swapping two randomly identiied 
genes. The mutation probability was determined through 
numerous tests and empirical observations.

4  Fuzzy-logic controller

Unlike the algorithm devised by Ozdemir and Mohan [30], 
the proposed algorithm manipulates both the crossover and 
mutation rates. Both adjustments are required for the attain-
ment of an optimal balance between the exploration and 
exploitation phases. The aim was to maintain a substantial 
level of diversity, while at the same time attempting to avoid 
random walking [24]. The technique is a modiication of the 
algorithms proposed by [25, 32] and is presented in more 
detail below.

The population statistics are computed after each iteration 
using the following formulas: 

where CF is the increase in the objective function from 
the previous iteration, VF is the variance of the itness in 
the population, and UF is the number of iterations without 
improvement in the itness function. These parameters are 
sent to the FLC for processing. Three linguistic variables 
{Low, Medium, High} are employed. The corresponding 
membership functions for fuzziication of CF, VF and UF 
are illustrated in Fig. 6a–c. The output is the level of adjust-
ment of the mutation and crossover rates (∆pm and ∆pc, 
respectively). Figure 6d shows some possible alterations in 
mutation and crossover rates. While the expert knowledge 
and fuzzy rules were derived from published work [31], the 
membership parameters were obtained experimentally. The 
general principle for these rules is to increase the muta-
tion rate when the itness function remains unchanged in 
order to facilitate exploration. Conversely, the crossover 
rate is increased as necessary to facilitate exploitation, i.e. 
to encourage algorithm to converge faster. The fuzzy rules 
that have been applied are presented in Table 3 and can be 
expressed textually as follows:

CF =

(

Cost
best(t−1)

Cost
best

− 1

)

× 100%

VF =
Cost(t) − Cost

best(t)

Cost
best(t)

Parent 1

1 3 6 4 7 2 5

Parent 2

7 2 4 3 5 1 6

Child 1

6 4 7 2 3 5 1

Child 2

2 4 5 1 3 6 7

Fig. 5  Crossover. Trips enabling higher throttle time are shown in 
darker shades
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If CF is high and UF is low, then p
m
 becomes low and p

c
 

becomes high
If CF is medium and UF is low, then p

m
 becomes low and 

p
c
 becomes high

If CF is low and UF is high, then p
m

 becomes high and 
p

c
 becomes low

If CF is low and UF is medium, then p
m
 and p

c
 become 

medium
If CF is low and UF is low, then p

m
 becomes low and p

c
 

becomes high
If UF is low and VF is low, then p

m
 becomes high and p

c
 

becomes medium
If UF is low and VF is medium, then p

m
 and p

c
 become 

medium

After processing these parameters and performing cen-
troid defuzziication, the FLC updates the mutation and 
crossover rates that are applied in the next generation.

5  Experimental results

A standard genetic algorithm (SGA) has been tested on a full 
daily data set obtained from one of the largest rail-freight 
operators in the UK. These real-world data comprised 
2000 freight-train legs, 500 cities, 39 depots, 1240 driv-
ers, 500,000 passenger-train links, and taxi trips connecting 
any of the stations at any time. Figures 7 and 8 illustrate a 
3-h run of the algorithm. The SGA reduced the cost of the 
schedule while achieving the two operational objectives of 
maximized throttle time and minimized deviation from the 
average shift duration. Increasing the throttle time indicates 
a reduction in deadheads and unnecessary waiting, thereby 
reducing the number of drivers required to operate the given 
trains. The decrease in deviation of the diagram duration 
from the average can be translated into equal utilization of 
the contract hours during the year.

In our previous work [33], the eiciency of the stand-
ard genetic algorithm (SGA) customized for the CSP 
(known as GACSP) was compared against two established 
approaches. The irst was branch-and-price (B&P), i.e. the 

Fig. 6  a Membership functions for CF. b Membership functions for 
VF. c Membership functions for UF. d Membership functions for 
∆pm and ∆pc

Table 3  FLC rules

Input variables to fuzzy rules Controlled parameters

CF UF VF p
m

p
c

High Low High Low High

High Low Medium Low High

High Low Low Low High

Medium Low High Low High

Medium Low Medium Low High

Medium Low Low Low High

Low High High High Low

Low High Medium High Low

Low High Low High Low

Low Medium High Medium Medium

Low Medium Medium Medium Medium

Low Medium Low Medium Medium

Low Low High Low High

Low Low Medium Low High

Low Low Low Low High

High Low Low High Medium

Medium Low Low High Medium

Low Low Low High Medium

High Low Medium Medium Medium

Medium Low Medium Medium Medium

Low Low Medium Medium Medium
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combination of column generation and branch and bound 
methods [6]. The second comparator was Genetic Algo-
rithm Process Optimization (GAPO), a genetic algorithm 
for CSP enhanced with repair and perturbation operators 
[9]. A reduced data set of six cities, 180 train legs, and 500 
passenger-train links was used, as the B&P method failed to 
converge with the full data set. For the GAs, the population 
size was 20, crossover rate 90%, and mutation probability 
40%. The tests showed that the SGA produces an accept-
able solution within a shorter timeframe than either of the 
alternatives (Table 4).

In order to evaluate the contribution of the fuzzy-logic 
controller, we experimentally compared a fuzzy genetic 
algorithm (FGA) against the SGA. They were both imple-
mented in C++ Builder and run on a computer with 4 GB 
RAM and a 3.4 GHz Dual Core processor. For both SGA and 
FGA, the population consisted of 100 individuals. Through-
out the SGA execution, the crossover and mutation rates 
were ixed at 90% and 40% respectively. These same rates 
were used as initial values for the irst iteration of the FGA.

Figure 9a illustrates the reduction of the cost deined 
in Sect. 3.3 as each algorithm progresses through each of 
2000 iterations. Figure 9b shows the changes in mutation 
and crossover probabilities in the FGA.

Although the FGA started from a worse solution than that 
of the SGA, the cost descended faster and it successfully 

outperformed the SGA. The crossover rate initially increased 
while the mutation rate decreased, allowing better exploita-
tion of the beneicial aspects of the existing solutions. From 
that point onwards, the crossover rate fell while the mutation 
rate grew, thereby balancing population diversity and explo-
ration of the search space with exploitation of the optimal 
region.

In order to validate the comparison, additional experi-
ments were carried out on ten test instances. The artiicially 
generated data imitated the real data sets. Each instance was 
tested 20 times. In order to provide fair comparison and to 
give an equal chance to all data sets to complete both stages 
of exploitation and exploration, the number of iterations was 
allocated in accordance with their sizes. The structure of 
the ten randomly created data sets and the summary of the 
results for each data set are displayed in Table 5. Figure 10 
demonstrates the diference between the average results 
obtained through a standard GA and the GA enhanced by 
the fuzzy-logic parameter controller.

The FGA yields better results than the SGA in terms of 
the average and minimum cost. While the FGA outperforms 
the SGA in all instances regardless of the size of the prob-
lem, the best results were achieved on instance 7, where 
the FGA outperformed the SGA by more than 10%. From 
a inancial perspective, this improvement can be translated 
into a substantial cost saving of £105,801.

Fig. 7  Maximizing average 
throttle time

Fig. 8  Minimizing deviation 
from the average shift length 
of 8.5 h
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In terms of the standard deviation of the results, the 
FGA was found to be less stable than the SGA. This can be 
explained by the fact that the fuzzy-logic controller forced 
the algorithm to explore a broader search space, and the 
FGA did not converge to the same degree as the SGA within 
the same number of iterations. It also can be noticed that 
the level of standard deviation increases with the size of the 

problem, which can be related to a larger number of pos-
sible permutations of the trips and hence higher population 
diversity.

Finally, Table 6 displays a user-friendly example of the 
solution, i.e. one of the diagrams produced. It shows the 
sequence of trips and breaks that a driver needs to take on 
a particular day.

As such complex and large-scale scheduling operations 
are currently performed manually, automation of these oper-
ations can result in substantial operational beneits. These 
include enhancement of the schedule quality, reduction in 
the cost of generating the schedule, and faster schedule 
creation. Schedule cost savings can be invested in business 
development. Saved time can be spent on dealing with last-
minute customer requests, and the staf can be allocated to 
less routine and more value-added business activities.

6  Potential implementation and integration issues

The most common implementation problems with software 
for scheduling transit systems concern robustness [34], i.e. 
the ability of the schedule to remain valid despite distur-
bances such as delays and cancellations. An example of 
such disturbances might be the delay of the previous train, 
resulting in the driver being unable to catch the planned 

Table 4  Comparison of experimental results using a reduced data set

Computation time  
(mins)

B&P GAPO GACSP

60 120 228 60 120 228 60 120 228

Number of diagrams − − 22 32 28 26 25 23 23

Throttle time (%) − − 63 50 56 59 60 62 62

Average Number of  
deadheads per shift

− − 1.36 2.21 1.85 1.60 1.66 1.47 1.47

Deviation from the  
average (mins)

− − 46 51 48 47 62 57 57

(a)

(b)
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train. In our system, the transfer time regulates how much 
time is allocated for a driver to leave the previous train 
and start working on the next one. The larger the interval 
between trips, the lower the risk that the next freight train 
will be delayed by the late arrival of the previous one. On 
the other hand, a large transfer time decreases the throttle 
time and requires more drivers to cover the trips. The best 
way to tackle this situation is to have an efective re-sched-
uling mechanism that makes changes in as few diagrams as 
possible.

In addition, the crew scheduling process is extremely 
complex. It is not always possible to model all the rules, 
nuances and exceptions of the schedule. For this reason, the 
system-generated diagrams have to be revised and amended 
by an experienced human planner until all the knowledge 
has been fully acquired.

Finally, although GAs are able to find an acceptable 
solution relatively quickly, their susceptibility to premature 
convergence around a sub-optimal solution has inspired the 
current investigation into a fuzzy controller for parameter 
adjustment. Convergence can be controlled either by embed-
ding variations in the selection procedure or by changing the 
mutation and crossover rates.

7  Conclusions

In this paper, the complexities of the CSP in the rail-freight 
industry in the UK have been described. Due to a high mon-
etary cost of train crews, the proitability and success of a 
freight company might rely heavily on the quality of the 
constructed crew schedule. Given the wide geographical 
spread, numerous regulations, and severely constrained plan-
ning time, an efective automated crew scheduling system 
can increase staf productivity and equip a company with 
valuable decision-making support.

In order to solve the CSP problem, we have proposed a 
novel FGA. The permutation chromosome representation 
and genetic operators are able to preserve the validity of 
the chromosomes. This design enables the user to retrieve a 
feasible schedule at any iteration. It also eliminates the need 
for additional repair operators or penalty functions, thereby 
saving memory resources.

Unlike other GAs for CSP, the FGA has the ability to 
amend its mutation and crossover probabilities so as to 
reduce the risk of being trapped in a local optimum. While 
the parameters for the fuzzy membership functions would 
ideally be adjusted for a speciic data set, the suggested 

Table 5  Comparative results of SGA and FGA

A cost function is used, so the lower the result the better the performance of the algorithm

# Depots Trips Iterations Standard GA Fuzzy GA

Min Avr Std Dev Min Avr Std Dev

1 2 50 5281 99,063 99,102 38 94,104 94,152 47

2 3 123 8791 225,019 225,300 269 213,818 214,117 291

3 5 196 11,401 348,159 349,069 883 313,572 314,536 927

4 7 269 16,033 477,144 478,059 875 449,388 450,471 1033

5 9 342 18,215 633,389 635,192 1756 586,888 588,785 1798

6 13 488 25,056 909,782 911,675 1848 855,522 857,798 2150

7 11 415 22,794 1,025,868 1,028,727 2773 920,068 923,026 2839

8 15 561 30,949 1,099,869 1,102,817 2835 1,005,723 1,008,938 3136

9 17 634 45,500 1,166,330 1,170,042 3570 1,079,760 1,083,672 3813

10 19 707 55,735 1,322,024 1,327,044 4743 1,234,070 1,239,144 4832

Table 6  A typical diagram, i.e. 
driver schedule

Driver Start time End time Activity Origin Destination

113 12:18 12:28 Book on Westbury Westbury

113 12:28 13:35 Driving Westbury Swindon

113 13:47 15:07 Driving Swindon Wootton Wawen

113 15:07 15:49 Break Wootton Wawen Wootton Wawen

113 15:59 17:29 Driving Wootton Wawen Swindon

113 17:37 21:00 Passenger Train Swindon Westbury

113 21:00 21:10 Book of Westbury Westbury

Diagram length: 8:52 Throttle time: 46%
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parameters proved their applicability to a wide range of data 
sets from 50 to 707 trips.

In future work, it would be interesting to study the suita-
bility of the FGA with the proposed parameters on other data 
instances and other permutation problems. As the crossover 
and mutation operators have a strong impact on the chromo-
some formation and the algorithm’s behavior, it would be 
informative to investigate whether their dynamic change in 
the course of the algorithm might improve the algorithm’s 
performance.
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