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Abstract.  22 

The role of biomechanical stimuli, or mechanotransduction, in normal bone homeostasis and 23 

repair is understood to facilitate effective osteogenesis of mesenchymal stem cells (MSCs) in 24 

vitro. Mechanotransduction has been integrated into a multitude of in vitro bone tissue 25 

engineering strategies and provides an effective means of controlling cell behaviour towards 26 

therapeutic outcomes. However, the delivery of mechanical stimuli to exogenous MSC 27 

populations, post implantation, poses a significant translational hurdle. Here, we describe an 28 

innovative bio-magnetic strategy, MICA, where magnetic nanoparticles (MNPs) are used to 29 

remotely deliver mechanical stimuli to the mechano-receptor, TREK-1, resulting in activation 30 

and downstream signalling via an external magnetic array. In these studies, we have translated 31 

MICA to a pre-clinical ovine model of bone injury to evaluate functional bone repair. We 32 

describe the development of a magnetic array capable of in vivo MNP manipulation and 33 

subsequent osteogenesis at equivalent field strengths in vitro. We further demonstrate that the 34 

viability of MICA-activated MSCs in vivo is unaffected 48 hrs post implantation. We present 35 

evidence to support early accelerated repair and preliminary enhanced bone growth in MICA-36 

activated defects within individuals compared to internal controls. The variability in donor 37 

responses to MICA-activation was evaluated in vitro revealing that donors with poor osteogenic 38 

potential were most improved by MICA-activation. Our results demonstrate a clear relationship 39 

between responders to MICA in vitro and in vivo.  These unique experiments offer exciting 40 

clinical applications for cell-based therapies as a practical in vivo source of dynamic loading, in 41 

real-time, in the absence of pharmacological agents.  42 

Keywords: Magnetic nanoparticles, bone repair, pre-clinical ovine models, cell therapy, 43 

mechanotransduction, clinical translation.   44 
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Introduction. 45 

Large skeletal defects resulting from trauma, tumour resection and disease, remain a largely 46 

unresolved clinical problem, requiring a bone tissue engineering solution 1-3. Typically, with 47 

standard clinical intervention, the repair of a bone injury is achieved within 6 weeks owing to the 48 

highly efficient repair mechanisms involved in fracture healing. However, in 10% of all cases in 49 

which the volume of bone loss is significant, an inadequate bone healing response leads to the 50 

formation of a non-union or segmental defect 4-6. This condition represents a significant clinical 51 

challenge affecting people of all ages with substantial socio-economic implications in terms of 52 

treatment and hospital costs 7,8. While autologous bone grafts are considered the gold standard to 53 

address the issue of non-union fractions, there remain associated limitations leading to the 54 

development of alternative stem cell-based or regenerative medicine therapies 1,5,9,10.  55 

Bone homeostasis, remodelling and fracture repair mechanisms are regulated by a process 56 

known as mechanotransduction, the conversion of physical forces acting on a cell to internal 57 

biochemical signals 6,11-14.  Despite the many published in vitro studies identifying the need for 58 

mechanical conditioning of osteoblasts and their mesenchymal stem cell (MSC) precursors to 59 

drive osteogenesis and tissue maturation, few technologies have been successfully translated into 60 

pre-clinical studies of bone repair. While whole body rehabilitation programmes are routinely 61 

prescribed in a clinical setting, a technology of clinical human relevance which can translate 62 

physical stimuli into biological responses in a controlled and localised fashion has, to date, not 63 

been achieved. As such, mechanical stimuli are often lacking in stem cell-based therapeutic 64 

approaches for bone regeneration 9,13. This can impede stem cell differentiation in vivo and 65 

ultimately tissue synthesis, with a significant impact on the quality and quantity of bone formed 66 

thus affecting the clinical outcome of the treatment 13.  67 
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We have developed a pioneering bio-magnetic technology (MICA; Magnetic Ion Channel 68 

Activation) designed to remotely deliver directed mechanical stimuli to individual cells in culture 69 

or within the body, to promote osteogenesis 15-17. By targeting specific mechano-sensitive ion 70 

channels on the cell membrane of MSCs with functionalised, biocompatible, magnetic 71 

nanoparticles (MNPs), the opening of the ion channel can be controlled with an oscillating 72 

external magnetic field. The movement of the particle creates a pico-newton force that is 73 

transferred to the ion channel to which the MNPs have attached, propagating the mechanical 74 

stimulus via mechanotransduction pathways inside the cell 15-18.  One such mechano-sensitive 75 

ion channel is TREK-1, a potassium channel whose function is to maintain membrane potential 76 

and plays a critical role in the mechanotransduction signalling pathways in bone 17.  77 

In our earlier in vitro studies, we demonstrated using an electrophysiological patch clamping 78 

model that we could open and activate the 6 His tagged TREK-1 channel expressed in the 79 

membrane of cells using remote mechanical movement of Ni2+ labelled MNPs 17. Importantly, 80 

these studies demonstrated the specificity of this technique as no TREK-1 channel activation was 81 

observed when MNPs were coated with RGD (Arg–Gly–Asp) peptide, or when magnetic fields 82 

were applied in the absence of MNPs. Furthermore, we went on to demonstrate that we could 83 

deliver forces in the region of 8-15 pN onto the membrane channels using remotely controlled 84 

MNPs which lead to the differentiation of bone marrow-derived stromal stem cells in vitro 15.  85 

We have generated further proof of concept data showing activation of the TREK-1 ion channel 86 

in 2D models of osteogenesis 15, 3D cell-seeded constructs in vitro, and ex vivo bone tissue 87 

engineering models 13. Our preliminary study in a small animal model, showed controlled 88 

differentiation of bone marrow stromal stem cells in hydrogel capsules implanted subcutaneously 89 

in the dorsal region of nude mice 19.  90 
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This manuscript describes the translation of this technology to a relevant pre-clinical ovine bone 91 

defect model to explore the therapeutic potential of MICA for bone repair. Our aim is to 92 

demonstrate the relevance of MICA technology for use as a clinical therapy, and a potential 93 

solution for the control of therapeutic donor cells in regenerative medicine applications.  In 94 

addition, we consider the individual variation in responses between sheep donors to further 95 

understand “good” and “poor” responders within an ovine population.  96 

 97 
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Results. 111 

STRO-4 positive oMSCs from all donors demonstrate tri-lineage differentiation capacity. 112 

STRO-4 positive oMSCs (ovine mesenchymal stem cells) were characterised by their ability to 113 

undergo osteogenic, adipogenic and chondrogenic differentiation. Cells from all 12 donors 114 

(experiment 2, table 1) were successfully differentiated towards all 3 lineages with marked donor 115 

dependent variation (Fig.1A).  116 

Donors with lower osteogenic potential displayed an enhanced osteogenic response after 117 

MICA technology application in vitro.   118 

The response of each set of donor oMSCs (donors 1-11, experiment 2, table 1) to MICA 119 

activation was assessed in a 3D collagen hydrogel culture system. Variable mineralisation levels 120 

were observed across donors exposed to an osteogenic environment and to MICA activation. 121 

Donors displaying low mineralisation levels in the static groups exhibited significantly enhanced 122 

osteogenesis following MICA activation (P<0.001) (donors 1, 4, 11, 10, 6, 2, 9; Fig.1B i) with 123 

the fold-change increase ranging from 0.5-fold (donor 5) to 25-fold (donor 2). Donors with a 124 

stronger osteogenic response in static conditions were not influenced by MICA activation to the 125 

same extent (donors 3; P<0.05, donor 8; ns). Finally, a key finding relevant to this study was that 126 

only donor 7 demonstrated a slight, but significantly negative response to MICA activation 127 

(P<0.05). This data is supported by the density maps of each gel demonstrating regions of high 128 

density mineralisation as red (Fig.1B ii). 129 

 130 

 131 

 132 
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Design and development of the magnetic array for in vivo MICA activation.  133 

A vital component of this study was the development of a magnetic array compatible with the 134 

ovine model to enable activation of cells post-implantation. The external magnetic field strength 135 

required to activate MNP-labelled cells once implanted within the femoral condyle defect was 136 

determined in vitro using a HEK-293 NFK-β luciferase reporter cell line. Although greatest 137 

activation was achieved at the highest field strength, 2.55 KG (Kilogauss), cells stimulated with 138 

weaker fields (0.92, 0.56, 0.32, 0.13 KG) continued to demonstrate significantly enhanced 139 

activation compared to the static controls, albeit at reduced levels (Fig.2A). The minimum 140 

magnetic field strength required for in vivo MICA activation was thus determined to be 0.13 KG. 141 

Downstream osteogenesis was validated in 2D cell cultures (Fig.2B i) and resulted in an 142 

improvement in mineralisation in all MICA activated groups (Fig.2B ii), with a significant 143 

increase in the number of bony nodules compared to control groups (unlabelled and static 144 

condition) regardless of field strength (Fig.2B i and ii). The schematic (Fig.2C) represents the 145 

size and orientation of the femoral defect relative to the position of the magnetic array, defining 146 

the maximum working distance as 2.5 cm (“x” Fig.2C).  147 

Collectively, these data informed the primary design parameters of the array and were taken 148 

forward to fabricate six permanent magnetic arrays featuring magnets of varying dimensions and 149 

shapes (Fig.2D i). Arrays were validated against the primary design parameters, identifying 150 

arrays 1 and 4 as the only candidates capable of generating a field strength of 0.13 KG at 2.5cm 151 

(Fig.2D ii). Array 4 was selected for subsequent in vivo ovine studies. Magnets were inserted 152 

into the aluminium frame with adjacent alternating poles to generate the field gradient required 153 

for MNP manipulation (Fig.2D iii). Accelerometers were used to determine when sheep were 154 

most active as the changing magnetic field gradient was achieved with the movement of the 155 
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sheep leg (Fig.2E i). Through monitoring the activity of 3 sheep over 7 days, 2 periods of 156 

increased activity were observed; 08:00-11:00 and 15:00-18:00 (Fig.2E i). Arrays were placed in 157 

a pouch fitted around the back legs of each sheep corresponding to the location of the defect 158 

(Fig.2E ii) and worn in hours of peak activity. 159 

Surgical Model  160 

Surgery was tolerated well by all sheep without complications. No signs of adverse reactions to 161 

the ECM (extracellular matrix) hydrogel or MNP delivery were observed. C-Reactive Protein 162 

(CRP) levels were measured 2 days’ post implantation (experiment 1, table 1; data not shown) 163 

revealing no deviation from baseline levels. After an initial adjustment period, animals appeared 164 

to tolerate the magnet truss well with no irritation of the fresh wound and, importantly, no 165 

impaired mobility.   166 

ECM construct remains intact and 50% of cells remain viable 2 days after implantation. 167 

The short-term fate of delivered oMSCs and the impact of MICA activation on cell viability and 168 

construct integrity was assessed in experiment 1 (Table 1). Constructs were extracted fully intact 169 

(Fig.3A i) 48 hrs post-implantation with CM-DiI labelled oMSCs (implanted oMSCs) clearly 170 

visible throughout (red fluorescence) (Fig.3A ii). An increase in construct stiffness was observed 171 

post-harvest when compared to in vitro controls, with the general size remaining wholly 172 

unchanged (6.44±0.68 x 14.83±1.2 mm) compared to pre-implanted standard dimensions (8 x 173 

15mm). Lactate dehydrogenase (LDH) is an enzyme present in all living cells responsible for 174 

catalysing the reaction resulting in the blue staining of viable CM-DiI labelled cells (Fig.3B). 175 

Quantification of LDH stained cells (Fig.3C) revealed an approximate 50% loss in cell viability 176 

(P<0.001) across all groups compared to the corresponding in vitro control, with no influence of 177 

MNP-labelling nor MICA activation.  178 
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MICA treatment enhances early bone formation.  179 

Bone growth was evaluated by micro-CT at 13 weeks as an indication of early repair. To account 180 

for donor-dependent responses and eliminate biological variation, data was assessed on an 181 

individual sheep basis (Fig.4A i).  This was achieved by comparing bone volume in the left and 182 

right defects of the same sheep and expressing this as a percentage change in bone volume. In 183 

this way, the effectiveness of 2 independent treatments can be assessed in the same animal which 184 

has been treated with an identical population of autologous cells. MICA treated defects repaired 185 

to a greater degree in comparison to the control defect of the same animal in 5 out of the 6 sheep 186 

(Fig.4A i), with donor 7 identified as the non-responder. When grouped, an average 187 

improvement of 25±6.5% is detected in MICA treated animals by excluding the single non-188 

responder, donor 7 (P<0.05) (Fig.4A ii), and by 17.8±8.9 % by including donor 7 (Fig.4A iii) 189 

compared to the non-MICA animals. In comparison, sheep treated either with a MICA-control 190 

group or the ECM carrier alone in both legs demonstrated little differences in the degree of repair 191 

between the 2 defects (6.5 ±5.8% difference for non-MICA sheep and 6.1±5.4% difference for 192 

ECM carrier control sheep).  193 

This data is supported visually by micro-CT images of defects from the same sheep, where 194 

greater bone growth is observed in the proximal (top) and peripheral (side) regions in MICA 195 

treated defects compared to the contralateral MICA-control defect of the same donor for donors 196 

3, 5, 6, 8, and 10 but not for donor 7 (Fig.4B i). The gold standard treatment for large skeletal 197 

defects is typically autologous bone graft, which was used as the positive control in this study. In 198 

this short term study, this treatment group where autologous bone is implanted to fill the site can 199 

be seen to completely occupy the defect with autograft and autologous remodelled bone (Fig.4B 200 

ii; donor 16 L).  Finally, bone growth is seen in all groups originating at the boundaries of the 201 
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defect with new bone growth evident as regions of high density bone that is not seen in day 2 202 

scans (Fig.4B iii). Finally, considering the average population response, we demonstrate an 203 

increase in total new bone formation in MICA treated defects compared to non-MICA control 204 

groups (Fig.5A ii), significant only when donor 7 is excluded (P<0.05) (Fig.5A i).   205 

Good correlation between in vitro and in vivo donor response to MICA activation. 206 

Tracking the individual responses within the sheep enabled us to identify correlations between 207 

the good responders and the poor responders in vitro and in vivo. We observed a clear correlation 208 

(R2 = 0.7072; Fig.5C) between the in vitro performance (assessed as percentage change in 209 

mineralisation relative to the corresponding static control; Fig.1 B) and the in vivo bone fill 210 

(calculated as percentage change in bone fill relative to the non-MICA control leg of the same 211 

sheep; Fig.4B i) in this study.  212 

Bone of greater maturity observed in MICA treated defects with enhanced recruitment of 213 

endogenous cells.  214 

Implanted constructs were not present at 13 weeks, with evidence of new bone structures visible 215 

in all groups. Differences in the amount, distribution and maturity of new bone was observed 216 

between donors and treatment groups (Fig.6A). Although peripheral (side) bone growth from the 217 

surrounding trabeculae was observed in all groups (Fig.6A i), evidence of bone extensions across 218 

the defects was present only in the MICA group (Donor 3 L; Fig.6A i) and lacking in the 219 

contralateral MICA-control defect (Donor 3 R; Fig.6A i). Evidence of bone growth was also 220 

observed in non-MICA animals (Donor 12; Fig.6A i). Trabecular-like architecture was again 221 

evident only in the MICA defect with intense red osteoid staining surrounding new structural 222 

bone indicative of maturing bone and active osteogenesis (Donor 3 L; Fig.6A i). Although 223 

complete union was not achieved over this time period, bone marrow-like tissue was present 224 
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within defects of all groups, with collagen fibres dispersed throughout this matrix in all groups 225 

(Fig.6A ii). Toluidine blue staining highlighted the presence of new woven bone which is 226 

prominent in all groups, but higher intensity of staining was observed in MICA defects (Fig.6A 227 

iv).  A collagen rich soft tissue structure is present in the proximal (top) region of each defect 228 

(Fig.6A iii) with immuno-histochemical analysis revealing key bone extracellular matrix 229 

components, osteocalcin (Fig.6A v) and osteopontin (Fig.6A vi), embedded within this collagen 230 

structure. Furthermore, this region was found to be rich in osteopontin- and osteocalcin-positive 231 

cells suggesting the presence of functional osteoblasts and osteocytes involved in bone 232 

remodelling. ALP immunohistochemistry again revealed functional osteoblasts distributed 233 

within this region at a greater cellular density in the MICA defects and was associated with 234 

active remodelling (Fig.6A vii). Overall, greater cellular density of osteopontin-positive cells 235 

were observed in the MICA-treated defect (Donor 3 L) compared to the contralateral defect 236 

(Donor 3 R) and to either defects of donor 12 in which a similar cellular density was observed 237 

(Fig.6A v). Early signs of remodelling were observed in this region with early structural 238 

Haversian Canals (orange arrow) appearing to develop, lined by osteoblasts (green arrow). 239 

Evidence of the remnant cartilaginous tissue and hypertrophic chondrocytes (white arrows) were 240 

observed in all groups including the ECM-carrier group (Fig.6B). Furthermore, mineralisation of 241 

the cartilaginous tissue within cell based groups (MICA and cells only) appeared to have 242 

progressed further than the ECM treatment alone with regions of greater osteocalcin staining 243 

observed (Fig.6B). Calcified histological sections demonstrate fibrous capping in the proximal 244 

regions in all groups (Fig.6C). A large amount of callous was found at the edges of all defects, 245 

except in the bone graft group.  Signs of osteons and osteocytes are present with borders of 246 

osteoblasts and a visible osteoid layer at the interface between new bone and fibrous tissue.   247 
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Discussion. 248 

We describe an innovative remote bio-magnetic activation technique (MICA) which can be used 249 

to control the behaviour of MSCs in clinical stem cell-based therapies. Using an early stage pre-250 

clinical ovine model, we show that targeted activation of the TREK-1 ion channel, present in 251 

oMSCs, can lead to initial enhanced repair in donor-matched controls. Evidence of early elevated 252 

new bone formation and increased bone outgrowth across the defect were observed in MICA-253 

treated defects. Assessment of individual sheep, using internal controls to eliminate variations in 254 

the base-line levels of repair between sheep and donor stem cell behaviour, allowed for 255 

assessment of the early effects of MICA on defect repair and demonstrated a correlation in 256 

‘good’ and ‘poor’ responders between in vitro and in vivo studies.  257 

In recent years, MSCs have emerged as appealing therapeutic agents in the development of 258 

skeletal stem cell-based therapies and have demonstrated remarkable clinical potential. A 259 

limitation with using MSCs in clinical scenarios is the availability and expansion of these cells to 260 

therapeutic numbers. Typically, less than 0.001% of the bone marrow’s cell population are 261 

characterised as MSCs, therefore, efforts to enrich the proportion of MSCs are under 262 

development.  STRO-1 is a well-regarded cell surface antigen used in the characterisation of 263 

human MSC populations 20. Oreffo and colleagues have shown that by selecting with STRO-1, it 264 

is possible to enrich the MSC population during cell isolation 21.  Further to this, Zannettino et al  265 

have developed and characterised an analogous ovine marker, STRO-4, demonstrating efficient 266 

enrichment of oMSCs and for this reason implemented in the current study 22.  267 

Despite advances, the active control of stem cell behaviour remains a challenge once implanted 268 

in the body. Biomechanical forces are important stimuli for influencing stem cell behaviour and 269 
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are known to have a profound effect on bone repair 23,24. Evidence of this is presented in the 270 

early work of Lanyon and colleagues, where it was shown that mechanical loading above a 271 

critical threshold resulted in significant new bone formation in a rat model 25. This has been 272 

further validated in a number of small and large animal models to better understand the 273 

mechanisms of adaptation to mechanical loading in bone 26. Despite our understanding of how 274 

mechanics affect tissue remodelling and repair, clinical translation of mechanical stimuli has not 275 

been fully achieved in vivo at a cellular level. As such, implanted therapeutic cells lack the 276 

crucial mechanical stimuli required to direct repair in a physiological manner 27. This is largely 277 

attributed either to the limited translational potential of in vitro mechanical conditioning systems, 278 

concerns of direct mechanical loading causing further damage to the injured bone or scaffold 279 

stress shielding. Furthermore, recent data has shown that mechanical pre-conditioning of cell-280 

seeded constructs prior to implantation may result in less integration and remodelling in the 281 

repair site 28.  MICA addresses this challenge by non-invasively applying pico-newton forces 282 

directly to implanted MNP-labelled cells from outside the body using an external magnetic array, 283 

thereby activating mechanotransduction pathways. Furthermore, we demonstrate in this study for 284 

the first time that we can control stem cell behaviour remotely through mechanical forces in a 285 

pre-clinical animal model. 286 

Magnetic nanoparticles (MNPs) are versatile translational tools demonstrating value in several 287 

biomedical applications including targeted gene/drug delivery, magnetic hyperthermia and now 288 

in regenerative medicine. MNPs have received FDA approval for use as biocompatible MRI 289 

contrast agents enabling improved diagnostics and treatment of orthopaedic injuries 29. MNPs 290 

benefit from their capacity for remote magnetic manipulation and therefore offer a new source of 291 

cell control 30. Concerns of safety are at the forefront of any MNP-based research. We have 292 
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extensively investigated stem cell health and behaviour following MNP labelling with a range of 293 

MNPs demonstrating no adverse outcomes nor secondary uptake at optimised doses 31,32. In our 294 

hands, the viability and function of MSCs labelled with Nanomag revealed no detectable long-295 

term cytotoxicity either in vitro or in an in vivo subcutaneous mouse model 19. What remains 296 

unknown is the effect of MNP-labelling on cellular viability once implanted into the harsh 297 

microenvironment of the injured site. Importantly, the addition of the MNP label and the 298 

magnetic gradient did not elicit further cell death beyond that seen in all experimental groups 299 

(MNP-labelled and unlabelled cells). Limited survival rate at the repair site has been documented 300 

in other studies and is a well-accepted limitation of the of the cell therapy industry 33,34. Loss of 301 

cell viability can be attributed to a number of factors including a harsh inflammation 302 

environment, anoikis (lack of cell adhesion to the ECM) and limited oxygen and nutrients levels,  303 

all creating a hostile microenvironment leading to cell death 33,34. Our results, showing a 304 

reduction in cell number at 2 days’ post implantation in all groups, support these findings 34.  305 

Our results demonstrate initial enhanced bone repair in MICA treated defects in 5 out of 6 sheep 306 

when compared to the internal MICA-control contralateral defect. Histological and immuno-307 

histochemical analysis may suggest that MICA leads to bone of greater maturity and 308 

architecture. Defects from all groups were shown to repair via the endochondral ossification 309 

pathway as can be seen by the glycosaminoglycan molecules labelled by the toluidine blue stain 310 

35. This closely mimics the developmental pathways of bone responsible for long bones and axial 311 

skeletal growth during embryogenesis. The developmental pathway involves the initiation of a 312 

hypertrophic cartilage template which subsequently undergoes mineralisation and remodelling to 313 

form functional bone 36,37. Evidence of remnant cartilaginous tissue and hypertrophic 314 

chondrocytes were observed in all groups with signs of enhanced matrix mineralisation present 315 
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in MSC groups. This strongly suggests that the presence of exogenous MSCs work to promote 316 

soft tissue callus mineralisation towards mature mineralised bone as determined by micro-CT 317 

analysis 38.  In our findings, we show initial evidence that remote dynamic loading of implanted 318 

cells may further enhance maturation as seen by the increase in ALP staining within the newly 319 

formed bone extracellular matrix, with evidence of osteoid seams lining new trabecular-like bone 320 

structures which are otherwise not present in MICA-control defects.  321 

A strong periosteal reaction was observed within all defects from all groups. We hypothesize that 322 

MICA activation may further enhance this reaction, with increased bone mass observed at the 323 

proximal region of the defect resulting in bone outgrowth across the defect in all MICA treated 324 

defects, including donor 7, the non-responder. This region is rich in collagen, embedded with 325 

osteopontin and osteocalcin proteins and home to a variety of host cells including osteoblasts, 326 

osteoclasts, chondrocytes and endogenous MSCs, all contributing to repair and remodelling. In 327 

line with previous data generated in an ex vivo chick femur model 13,39, we hypothesise that one 328 

potential mode for action for MICA is through a paracrine effect initiating the secretion of 329 

cytokines and soluble factors from exogenous delivered MSCs to recruit and activate 330 

endogenous therapeutic cells 30. This assertion was supported by the increase in alkaline 331 

phosphatase staining, a marker of active remodelling, which may account for the new bone 332 

detected within that region. 333 

A time point of 13 weeks was chosen for this study to enable us to investigate the early phases of 334 

repair in a bone injury defect ovine model. The challenge at this early phase is taking into 335 

account the biological variation present in multiple sheep donors. Due to the low levels of 336 

growth in the repair site overall, the inherent differences in donors was evident and influenced 337 

our ability to show statistical significance using overall mean bone volume data (supplementary 338 
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figure 2). To study this in more detail and highlight the significance of the study, we have chosen 339 

to compare animals both individually and grouped using internal controls for MICA in the 340 

contralateral defects. In addition, cell efficacy and variability between the donors is known to 341 

result in variable animal responses.  Finally, using the internal controls ensures that matched 342 

donor cells are used for both experimental and control groups. 343 

The biggest challlenge faced in this study was translating the underlying MICA technology to the 344 

ovine animal model in a manner that is closly aligned to the in vitro bioreactor system which 345 

generated the proof of concept data from Henstock13 and Kanczler et al19. The sole purpose of 346 

this bioreactor was to deliver a defined magnetic field at an oscillation frequency of 1Hz to 347 

MNP-labelled cells in culture, using a permanent magnetic array where cells are exposed to a 348 

maximum field strength of 25 mT 13,40.  Achieving a similar field strength in vivo was 349 

problematic due to the increase in distance between the external magnet and the site of injury 350 

correlating to an exponential decrease in field strength. By mimicking this scenario in vitro using 351 

the MICA bioreactor, we were able to design a system compatible with the ovine model to 352 

confidently infer a force directly to MNP-labelled MSCs and manipulate the TREK-1 ion 353 

channel for downstream osteogenesis. These results can be translated to human orthopaedic 354 

conditions in the future with advances in electromagnetic technologies where penetration depths 355 

of greater than 2.5 cm can be achieved. Furthermore, customised and tailor-made orthopaedic 356 

cuffs can be designed to house the electromagnetic system and targeted to injuries of all sizes 357 

and extremities.  358 

We recognise that a limitation of this study was the lack of control over magnet oscillation where 359 

reliance was placed on animal activity to physically move the array. Despite efforts to schedule 360 

stimulation periods at moments of peak animal activity, this could not be standardised across 361 
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sheep nor over the duration of the study. This had further implications on stimulation times 362 

where the decision to activate cells for a period of 3 hrs in vivo, as opposed to the standard 1 hr 363 

implemented in vitro, was taken to account for animal rest periods ensuring that cells were 364 

stimulated for at least 1 hr in total. Further work is underway to define optimal magnetic dosing 365 

in vivo and develop a suitable means of controlling oscillation using a bandage across a repair 366 

site.  367 

As the prospect of stem-cell based therapies begin to enter the clinic, researchers and clinicians 368 

are encouraged to account for variability in stem cell function within a given patient population 369 

41. The therapeutic potential of MSCs amongst patients has been shown to vary significantly in 370 

terms of growth kinetics and differentiation potential with consequences on in vivo bone healing 371 

42.  In line with studies by De Boer et al, we not only demonstrate donor dependent tri-lineage 372 

potential, but also donor-dependent responses to biomechanical stimuli in vitro 42. A striking 373 

outcome from this study, was the profound effect of MICA activation on donors with low 374 

osteogenic potential in vitro and the clear correlation between levels of responses between in 375 

vitro and in vivo studies. Given that the pathogenesis of non-unions can, in many cases, be 376 

related to impaired osteogenesis, this data suggests that MICA-activation of autologous MSCs 377 

from non-union patients could have a stronger osteogenic response leading to improved clinical 378 

outcomes 43. This response is supported by data published by Charoenpanich et al, where 379 

uniaxial cyclic tensile strain was shown to dramatically enhance osteogenesis of human MSCs 380 

from osteoporotic patients compared to healthy patients 44. Although more work is required to 381 

further investigate this theory, we present the potential to incorporate a mechanism for dynamic 382 

loading into orthopaedic stem cells therapies and improve outcomes.  383 
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MICA further benefits from having a completely aligned in vitro system which could potentially 384 

be used to develop a predictive assay to determine “good” and “poor” responders prior to 385 

treatment. Whilst the predictive element of this technology was not incorporated into the design 386 

of the current study, the strong correlation between the in vitro response of oMSCs to MICA 387 

activation and ultimate in vivo bone repair for the same sheep supports the use of this approach 388 

as a predictive assay. For example, the only donor which responded poorly to MICA activation 389 

in vitro was donor 7 which demonstrated an impaired response to MICA in vivo as well. Also, 390 

donors 6 and 10 demonstrated greatest improvement in mineralisation as a result of MICA 391 

activation in vitro and were similarly shown to perform best in the in vivo study. Although this 392 

data is preliminary, it does offer the possibility that MSCs from patients can be pre-screened and, 393 

based on these results, the clinician could then define how successful a MICA therapy would be 394 

for a patient. Further work is required to fully validate this potential application.  395 

In our short term pre-clinical model, we present evidence to suggest that MICA technology can 396 

be used to augment and control cell based therapies in this case for a potential wide array of 397 

orthopaedic and other clinical applications.  The MICA system can be used to apply remote cell 398 

loading in a variety of cell-only and cell-seeded scaffolds with varying degrees of stiffness. This 399 

innovative approach enables cells within soft injectable hydrogels to be loaded in situ following 400 

implantation, which has not previously been possible due to the soft nature of the gels rendering 401 

them incapable of withstanding mechanical loading.  Furthermore, from a regulatory standpoint, 402 

where one-step surgical techniques are recommended, MICA can be adapted to match such 403 

scenarios 45. Finally, considering future clinical applications, our pre-clinical study supports the 404 

observation that inter-individual variation needs to be considered to better design human trials 405 

and predictive models 46.  406 
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Methods. 407 

Reagents were purchased from Sigma Aldrich, UK unless otherwise specified.  408 

Animal Experiments. 409 

Methods were conducted in accordance to the UK Home Office Regulations and protocols 410 

approved by the University of Nottingham Animal Welfare and Ethical Review Body. For all 411 

surgeries, animals were placed in lateral recumbency to allow access to the sternum and medial 412 

aspect of both hind legs. Sheep; Nineteen healthy, English Mule ewes aged 2-4 years with a 413 

mean weight of 77 kg were used and assigned randomly to each treatment groups (Table 1). It 414 

should be noted that each sheep received a different treatment in each leg. Bone Marrow 415 

Harvest; Autologous MSCs were isolated by bone marrow aspiration from the sternum of 416 

anesthetized animals using a 100 mm 8 Gauge Jamshidi needle, (UK Medical Ltd., Sheffield, 417 

UK). Aspirate was collected in αMEM containing 10% FBS, 1% L-glutamine, 1% antibiotic and 418 

anti-mycotic (AA) and heparin sodium to prevent clotting (5000 IU/ml, Wockhardt, Wrexham, 419 

UK). Defect; Three weeks post initial bone marrow harvest, a single cylindrical defect (8 mm 420 

diameter x 15 mm deep) was created in the cancellous bone region of the medial femoral condyle 421 

in the left and right hind leg of each animal. Throughout coring and reaming, the drills were 422 

cooled with sterile saline solution to prevent tissue damage. Cell delivery; Pre-set ECM 423 

constructs were immediately implanted within the defect using the customised delivery device 424 

(supplementary data, figure 1). Sheep truss; 24 hrs post defect surgery, sheep were fitted with 425 

the modified truss and either the magnetic array or the sham array aligned to the location of the 426 

defect. Trusses were worn for 3 hrs/day, 5 days/week. Sacrifice; Sheep were sacrificed either at 427 

2 days (experiment 1) or 13 weeks (experiment 2) post-op by pentobarbital overdose 428 



20 
 

administered intravenously. The femoral condyles were retrieved immediately and trimmed for 429 

further analysis (Micro-CT and histology). Samples were fixed in 10% neutral buffered formalin 430 

for 7 days before proceeding.  431 

Selection of STRO-4 positive MSCs. 432 

The mononuclear cell fraction from each donor was isolated by red blood cell (RBC) lysis 433 

treatment by initially filtering the aspirate using a 100 µm cell sieve and centrifuging (220 g; 30 434 

min). The supernatant was carefully removed, replaced with 2 ml of ice cold RBC lysis buffer 435 

and incubated (3 min; RT) with gentle agitation. Lysis buffer was quenched with 45 ml ice cold 436 

PBS and lysed cells removed by centrifugation (220 g; 5 min). This process was repeated until a 437 

white pellet appeared at which point 2 ml of blocking buffer (αMEM, 10% rat serum, 1% bovine 438 

serum albumin (BSA) and 5% FBS) was added to the pellet and incubated (30 min; 4oC). Cells 439 

were then washed with MACS buffer (PBS, 0.5% BSA and 2 mM EDTA disodium salt) and 440 

incubated with the STRO-4 IgG hybridoma (20 µg/ml; Adelaide University) for 30 min at 4oC. 441 

Cells were again washed with MACS buffer and incubated with 200 µl of the MACS anti-mouse 442 

IgG MicroBeads (Miltenyi Biotec, UK) (30 min; 4oC) prior to MACS separation using the LS 443 

MACS column (Miltenyi Biotec, UK). STRO-4 oMSCs were collected and plated in expansion 444 

media (αMEM media, 20% FBS, 1% L-Glutamine and 1% AA) and maintained at 37oC for 1 445 

week before further media changes. STRO-4 positive oMSCs were cultured under standard cell 446 

culturing conditions in αMEM (10% FBS, 1% L-glutamine and 1% AA) 447 

MNP labelling of STRO-4 positive oMSCs. 448 

Nanomag (Micromod, Germany), a commercially available 250 nm, carboxyl-coated MNP was 449 

functionalised with a TREK-1 antibody (Alomone Labs, APC-047, Israel) as described 450 
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previously 13. To label oMSCs, cells at 80-90% confluency were trypsinized, counted and 451 

washed in PBS to remove any residual FBS. Cells were then re-suspended in serum free media 452 

(SFM) and incubated with TREK-1 functionalised MNPs (1 mg/ml) at a ratio of 25 µg MNPs per 453 

106 cells with 1 µl DOTAP (1 µg/ml) (3 hrs; 37oC). The corresponding unlabelled cell groups 454 

were simultaneously incubated in SFM only. Unbound MNPs were removed and cells washed in 455 

PBS by centrifugation (1000 rpm; 5min). 456 

Encapsulation of oMSCs within a ECM gel construct for in vivo delivery.  457 

Preparation of the ECM digest (12.5 mg/ml) is described in a previously published article 47. In 458 

brief, 5x106 MNP labelled or unlabelled oMSCs from each donor were re-suspended in a 20% 459 

HEPES solution (prepared in SFM) and thoroughly mixed with the ECM digest at a ratio of 1:3 460 

to achieve a final volume of 0.8 ml. The subsequent gel mixture was then transferred to a 461 

customised sterile delivery device and allowed to set for 1 hr at 37 oC before hydrating with 500 462 

µl SFM. Pre-set constructs were maintained at 37oC and implanted the following day. Acellular 463 

constructs were prepared in a similar manner.  464 

In vitro donor response to MICA activation.  465 

Donor response to MICA activation was assessed in vitro using a collagen hydrogel system 466 

previously reported 13. Here, 2.5x105 oMSCs (P3) from each donor were encapsulated in 3.94 467 

mg/ml stock solution of rat tail type 1 collagen and neutralised with a 20% HEPES solution 468 

(prepared in SFM) to a final concentration of 2.5 mg/ml and volume of 300 µl. The collagen and 469 

cell suspension was seeded into non-adherent 48-well plates and allowed to set (1 hr; 37 oC) 470 

before hydrating with 1 ml of osteogenic differentiation media. Hydrogels were cultured for 28 471 

days in osteogenic media with a single media change per week. MICA groups consisted of MNP-472 
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labelled cells and were stimulated for 1 hr/day in the MICA bioreactor while the static groups 473 

consisted of unlabelled cells and were maintained in identical conditions without a magnetic 474 

field. Mineralisation levels were evaluated by micro-CT (micro-CT 50, Scanco, Switzerland) on 475 

day 28. Micro-CT scans were performed with beam energy of 55 kVp, intensity of 145 µA, a 476 

200 ms integration and spatial resolution of 10 µm. 477 

Assessment of Cellular Viability by LDH staining 478 

Construct preparation: ECM constructs were prepared as described above and implanted 479 

immediately within the femoral defect. Donor matched in vitro controls consisting of unlabelled 480 

oMSCs were simultaneously prepared and maintained in culture for the duration of the study (2 481 

days). SFM in control groups was changed to expansion media at the time of in vivo 482 

implantation. Construct harvest: Implanted ECM constructs were harvested from the defect of 483 

sacrificed sheep, transferred directly to expansion media to maintain cell viability and 484 

transported on ice. Constructs (implanted and in vitro controls) were embedded in optimum 485 

cutting temperature (OCT) medium (VWR, UK) and frozen by immersing in liquid nitrogen 486 

cooled isopentane and stored at -20 oC until cryosectioning (Bright, Clinicut Clinical Cryostat). 487 

LDH (Lactate dehydrogenase) Staining: Viable cells were identified post implantation by the 488 

presence of the active LDH enzyme. Sections (16 µm) were incubated in a staining solution 489 

consisting of 7.2 mg/dL NBT (nitro blue tetrazolium; Fisher Scientific) and 60 mg/dL NADH (β-490 

Nicotinamide adenine dinucleotide hydrate) prepared in 0.05 M TRIS buffer at pH 7.6. (30 min; 491 

37 oC). Unused reagents were removed by a single water wash and then in ascending and 492 

descending concentrations of acetone (30%, 60%, 90%). Slides were mounted with Hydromout 493 

and imaged (Nikon Eclipse, Ti-S). Implanted cells were identified by red fluorescence (CM-DiI 494 

staining) and viable cells by blue staining under bright field settings. Ten random field of views 495 
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were imaged per section in a total of 5 sections. Viability was evaluated by ImageJ by 496 

quantifying the proportion of dual LDH and CM-DiI staining relative to total CM-DiI staining.   497 

Micro-computed tomography (Micro-CT) evaluation of bone repair at 13 weeks.  498 

Bone growth was determined by micro-CT (Skyscan 1174, Skyscan, Kontich, Belgium). Micro-499 

CT scans were performed with beam energy of 50 kV, current of 800 µA, 0.50 µm aluminium 500 

filter and a voxel resolution of 32 µm. A threshold of 255/50 was selected to segment bone from 501 

surrounding tissue and includes both mineralised bone and immature bone. Transmission images 502 

were reconstructed using Skyscan supplied software (NRecon) with the resulting 2D image 503 

representing a single 32 µm slice (1/256).  504 

Statistical Analysis.  505 

GraphPad Prism 6.0 was used for all statistical assessments. In most cases, data is presented as 506 

the average value ± standard deviation (S.D) unless otherwise stated.  Fig.1B i: In vitro donor 507 

response to MICA activation.  Significance was determined by two-way ANOVA with a post-508 

hoc Sidaks multiple comparison test (Alpha=0.05). Fig.2A: Determining the minimum 509 

magnetic field strength required for cell activation. Data here, represents the mean value ± 510 

SEM with significance determined by one-way ANOVA and a Dunnetts multiple comparison 511 

test (Alpha=0.05). Fig.2B ii: Quantification of bony nodules. Significance was determined by 512 

one-way ANOVA with a post-hoc Tukey test (Alpha=0.05). Fig.3C: Quantification of cellular 513 

viability. Significance was determined by one-way ANOVA test with a post-hoc Tukey test 514 

(Alpha=0.05). Fig.4A (ii) and (iii): Averaged percentage change in bone fill. Data represents 515 

the average percentage change in bone fill ± SEM with significance determined by a one-way 516 

ANOVA with a post-hoc Tukey test (Alpha 0.05). Fig.5A (i) and (ii): Total bone formation. 517 

Data represents the average total bone volume ± SEM with significance determined by a two-518 
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way paired t test. In all cases; * is P<0.05, ** is P<0.01, *** is P<0.001, **** is P<0.0001 and 519 

ns is no significance and data is considered to be normally distributed except micro-CT data.  520 

 521 

For further method detail please refer to the “Supplementary Methods” section in supplementary 522 

information. 523 

 524 

Data availability.  525 

The data sets generated during and/or analysed during the current study are available from the 526 

corresponding author on reasonable request. 527 
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Figure Legends. 689 

Figure 1: In vitro assessment of donor cell differentiation potential. (A) Comparative tri-lineage 690 

differentiation of STRO-4 positive ovine mesenchymal stem cells (oMSCs) from 12 sheep 691 

donors. Images are presented in order of increasing differentiation potential for (Ai) 692 

Osteogenesis at day 28 (Alizarin Red staining) with corresponding (Aii) Adipogenesis at day 14 693 

(Oil Red O staining), (Aiii) Chondrogenesis at day 21 (Alcian Blue staining) and compared to a 694 

representative proliferation media control (n=3), scale bars; 100µm. (B) In vitro donor response 695 

to MICA activation in 3D collagen hydrogel cultures assessed by Micro-CT at day 28 and 696 

compared to static controls. (Bi) Mean percentage mineralisation ± S.D (n=9) and corresponding 697 

(Bii) representative 2D slices showing mineralisation (red regions) representing the central slice 698 

of the 3D hydrogel. Scale bar; 1 mm. Statistical significance is represented by * where, *is 699 

P<0.05, *** is P<0.001 and ns is no significance. 700 

Figure 2: Design and development of a magnetic array for in vivo MICA activation. (A) 701 

Determining the minimum magnetic field strength required for cell activation. MICA activation 702 

of MNP-labelled HEK-293 NFΚ-β reporter cells at increasing magnetic field strengths 703 

(corresponding to a decrease in distance between cells and the magnetic array). Data represents 704 

the mean luminescence (RLU) ± SEM (n=3). (Bi) MICA activation of MNP-labelled and 705 

unlabelled STRO-4 positive ovine mesenchymal stem cells (oMSCs) towards osteogenesis 706 

(Alizarin red staining) in 6-well plates at a field strength of 0.13 KG and 2.55 KG and compared 707 

to static and unlabelled controls (n=3), scale bar; 1 cm. (Bii) Quantification of the number of 708 

bony nodules generated as a result of MICA activation at either field strength (0.13KG and 709 

2.55KG) and compared to static and unlabelled controls. Data represents the average number of 710 

visible bone nodules across 3 wells of a six well plate. (C) Schematic representing the size and 711 
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location of the defect within the femoral condyle relative to the position of the magnetic array. 712 

“X” marks the location of MNP-labelled cells furthest away from the magnet i.e 2.5 cm in the 713 

ovine model. (Di) Fabrication of six magnetic arrays containing neodymium iron boron magnets 714 

of varying dimensions. (Dii) Comparative magnetic field strength from arrays 1-6 at a distance 715 

of 2.5 cm. Data represents the average magnetic field strength at 6 random points on each 716 

magnet per array ± S.D. Red dashed line represents minimum magnetic field strength (0.13 KG) 717 

required to activate cells. (Diii) 3D Magnetic profile of array 4 at a distance of 0.5 cm 718 

demonstrating alternating poles. (Ei) Accelerometer data for sheep 4, 6 & 12 highlighting most 719 

active periods (red boxes) within a 24 hr period. (Eii) Picture of a sheep fitted with the adapted 720 

truss housing magnetic array 4 within the pouch corresponding to the location of the defect. 721 

Statistical significance is represented by * where, *is P<0.05, *** is P<0.001 and ns is no 722 

significance. 723 

Figure 3: Assessment of oMSC fate 48 hrs post implantation. (Ai) Implanted ECM-constructs 724 

remained intact with (Aii) delivered oMSCs (CM-DiI-stained; red fluorescence) visibly 725 

distributed throughout the implanted construct; scale bar; 2 mm. (B) Representative cryo-726 

sectioned samples of the extracted in vivo construct and time-point matched in vitro controls 727 

constructs. (Bi) Viable oMSCs were identified by a distinct blue stain attributed to the LDH 728 

reaction. (Bii) Implanted oMSCs were identified by red fluorescent staining. (Biii) Viability of 729 

delivered cells was therefore determined by the co-localisation of blue and red-fluorescent stains. 730 

(C) Quantification of cellular viability for all in vivo groups (cells only, MICA and cells+MNPs) 731 

and compared to time-point matched in vitro controls. Data is presented as the average viability 732 

(proportion of duel LDH:DiI labelled cells relative to total DiI labelled cells) for 5 random 733 
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sections where 10 independent FOVs were analysed per section for each sample ± S.D (n=6). 734 

Statistical significance is represented by * where, *** is P<0.001 and ns is no significance. 735 

Figure 4: Micro-CT evaluation of bone repair at 13 weeks. (Ai) Percentage change in bone 736 

growth between defects of the same animal (n=1). (Aii) and (Aiii) Corresponding averaged 737 

percentage change for the same sheep (n=6) either excluding or including donor 7, the non-738 

responder respectively. (Bi) Representative Micro-CT slices for all 6 MICA treated sheep 739 

(donors 3, 5, 6, 7, 8 & 10) comparing the left (L) and right (R) defects of each sheep (MICA vs 740 

non-MICA) at 13 weeks. (Bii) Representative control groups include a non-MICA treated sheep 741 

(donor 11 L & R), a positive control (donor 16 L; bone graft), the negative control (donor 16 R; 742 

empty defect), a carrier control (donor 17 L & R) and (Biii) micro-CT images of a defect at day 2 743 

treated either with MICA or non-MICA (cells +MNPs). White dotted box represents the analysed 744 

region of interest. Red dotted box represents region corresponding to histological analysis. 745 

Statistical significance is represented by * where, *is P<0.05. 746 

Figure 5: Continuation of Micro-CT analysis. (Ai) and (Aii) Averaged total bone formation 747 

comparing MICA treatment to the contralateral MICA control (non-MICA) for donors 3, 5, 6, 7, 748 

8 & 10 either excluding or including donor 7 respectively. (B) Correlation of the in vitro and in 749 

vivo responses to MICA activation for donors 3, 5, 6, 7, 8, & 10 when comparing the percentage 750 

in change in mineralisation relative to donor matched static control and percentage change in 751 

bone fill relative to the non-MICA contralateral control leg of the same animal respectively.  752 

Dotted lines indicate the 95% confidence band. Line of best fit plotted with a R2 value of 0.7072.  753 

Figure 6: Histological evaluation of repair at 13 weeks. (A) Representative images from; Donor 754 

3 (MICA animal) treated with MICA (left defect) and cells only (right defect) and Donor 12 755 

(MICA-control animal) treated with cells only (left defect) and cells + magnet (right defect). 756 
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Histological staining; (Ai) Masson-Goldner trichrome staining identifying new bone callus in 757 

green, osteoid steams in red and focused on bone outgrowth over the top of the defect and along 758 

the peripheral edges (inserts). (Aii) and (Aiii) Picrosirius red staining of collagen rich structures 759 

in the central and proximal regions of each defect respectively. (Aiv) Toluidine blue staining 760 

identifying cartilage-like tissues rich in proteoglycans (indicative of bone growth via the 761 

endochondral ossification route) in purple. (Av) Osteocalcin (Avi) osteopontin and (Avii) ALP 762 

(alkaline phosphatase) immuno-histochemical (IHC) staining at the proximal region of each 763 

defect. (B) Representative ECM-carrier, MICA and cell only sections stained for Alcian blue and 764 

Osteocalcin IHC demonstrating areas of cartilage like tissue (Alcian blue) and areas of 765 

mineralised tissue (osteocalcin). (C) Representative calcified sections from each group stained 766 

with paragon and toluidine blue staining; new bone growth is identified by light pink staining 767 

while fibrous tissue is stained deep purple. Scale bar represents 500 µm (Ai, Aiii),100 µm (Aii, 768 

Aiv, Av, Avi, Avii, B,) or 1500 µm (C). Green arrow (OB); osteoblasts, orange arrow (HC); 769 

Haversian Canals, white arrows; hypertrophic chondrocytes, BM; Bone marrow. For further 770 

information on the anatomical location of each section, please refer to supplementary 771 

information, figure 3.  772 















Table 1:  

Experimental Groups 

Group Cells MNPs Magnet DiI stain Number of defect Time point 
Experiment 1; Effect of MICA treatment on in vivo cell fate. 

1 (MICA) + + + Yes 6 2 days 
2 + + - Yes 6 2 days 
3 + - + Yes 6 2 days  
4 + - - Yes 6 2 days  

Experiment 2; Effect of MICA treatment on bone repair 
1 (MICA) + + + No 6 13 weeks 
2 + + - No 6 13 weeks 
3 + - + No 6 13 weeks 
4 + - - No 6 13 weeks 
5 (ECM carrier alone) - - - No 6 13 weeks 
6 (BG) Bone graft - - - No 6 13 weeks 
7 (E) Empty - - - No 6 13 weeks 
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