
Ghita, Adrian and Pascut, Flavius C. and Sottile, Virginie 
and Denning, Chris and Notingher, Ioan (2015) 
Applications of Raman micro-spectroscopy to stem cell 
technology: label-free molecular discrimination and 
monitoring cell differentiation. EPJ Techniques and 
Instrumentation, 2 . 6/1-6/14. ISSN 2195-7045 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/49918/3/Applications.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


Ghita et al. EPJ Techniques and Instrumentation  (2015) 2:6 
DOI 10.1140/epjti/s40485-015-0016-8
REVIEW Open Access
Applications of Raman micro-spectroscopy to
stem cell technology: label-free molecular
discrimination and monitoring cell differentiation
Adrian Ghita1, Flavius C Pascut1, Virginie Sottile2, Chris Denning2 and Ioan Notingher1*
* Correspondence:
ioan.notingher@nottingham.ac.uk
1School of Physics and Astronomy,
University of Nottingham,
Nottingham NG7 2RD, UK
Full list of author information is
available at the end of the article
©
C
r

Abstract

Stem cell therapy is widely acknowledged as a key medical technology of the 21st
century which may provide treatments for many currently incurable diseases. These
cells have an enormous potential for cell replacement therapies to cure diseases
such as Parkinson’s disease, diabetes and cardiovascular disorders, as well as in tissue
engineering as a reliable cell source for providing grafts to replace and repair diseased
tissues. Nevertheless, the progress in this field has been difficult in part because of lack
of techniques that can measure non-invasively the molecular properties of cells. Such
repeated measurements can be used to evaluate the culture conditions during
differentiation, cell quality and phenotype heterogeneity of stem cell progeny.
Raman spectroscopy is an optical technique based on inelastic scattering of laser
photons by molecular vibrations of cellular molecules and can be used to provide
chemical fingerprints of cells or organelles without fixation, lysis or use of labels
and other contrast enhancing chemicals. Because differentiated cells are specialized
to perform specific functions, these cells produce specific biochemicals that can be
detected by Raman micro-spectroscopy. This mini-review paper describes applications
of Raman micro-scpectroscopy to measure moleculare properties of stem cells during
differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral
measurements that allow repeated investigation of live stem cells in-vitro.
Introduction
Tissue engineering and stem cells technology

The capacity of the human body to recover from injuries or diseases is limited and in

some situations almost non-existent. The standard medical procedures, which involve

surgery and drug based-therapies, have shown limitations in treating many complex

conditions. New alternatives to existing medical treatments are required as the inci-

dence of the medical conditions with clinical impact on society in terms of mortality,

morbidity and quality of life is continuously increasing. Tissue engineering is an emer-

ging field in modern medicine that aims to grow tissue in laboratories that can be used

for replacement of diseased tissue and organs, repair and regeneration. Tissue replace-

ment involves the growth of tissue and organs in-vitro that can be implanted in the

human body [1]. The repair involves medical treatment at the biological and molecular

level. The main advantages of these approaches are related to an increased availability
2015 Ghita et al.; licensee Springer on behalf of EPJ. This is an Open Access article distributed under the terms of the Creative
ommons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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of grafts and reducing the risks associated with viral infections (e.g. tissue rejection) or

negative immunological response [2].

A number of different sources of cells are considered for tissue engineering and regenera-

tive medicine. Mature fully differentiated somatic cells, adult and embryonic stem cells have

been used in different applications. The somatic cells extracted from the patients have no

risks associated with the integration and immune response, but these cells can be obtained in

limited numbers and have low proliferation rates. Adult stem cells are immature undifferenti-

ated cells extracted from the human body, usually bone marrow, and are capable of generat-

ing daughter cells. The self-renewal process occurs over the entire lifetime of the biological

host. However, the limited number of available adult stem cells in the human body gives rise

to impediments in the self-healing capabilities of the human body. Embryonic stem cells

(ESCs) are derived from the inner cell mass of mammalian blastocyst and can differentiate

spontaneously in-vitro giving rise to pluripotent cells [3]. ESCs can serve as a potential re-

search model for tissue development, cancer formation and metastasis, phenotype commit-

ment, stem cells based therapy, gene therapy strategies and drug design [4]. Despite their

clinical potential, the progress of stem cell therapy has been slow, mainly due to issues related

to cell quality, phenotype heterogeneity, delivery, integration, proliferation and differentiation

inside the host [5].
Review
Raman Micro-Spectroscopy (RMS)

During the last century, a plethora of chemical and imaging techniques have been de-

veloped to understand the molecular dynamics underpinning the fundamental cellular

processes such as proliferation, differentiation or apoptosis [6,7]. Each of these tech-

niques can address certain applications or particular biological problems or processes.

Optical microscopy techniques are particularly attractive due to their ability to provide

information with high-spatial resolution while using compact and cost-effective instru-

mentation. Nevertheless, conventional microscopy relies on refractive-index contrast

in a sample and does not provide molecular information. Fluorescence microscopy re-

lies on selective imaging of cellular molecules labelled with specific fluorescent dyes

[8,9]. Thus, its capabilities are affected by limited stability and photo bleaching of the

fluorophores, while the free radical released inside the cells during photo-excitation

can induce toxicity. Certain fluorescence labels may influence biochemical processes

in cells or cannot enter live cells to access cytoplasmic molecules (often fluorescence

imaging requires fixation of the cells).

The Raman effect is based on inelastic scattering of photons when electromagnetic

waves interact with molecules. As a consequence of the energy transfer between the vi-

brating molecules in the sample and the electromagnetic waves, the Raman scattered

photons have different frequencies compared to the incident photons, frequencies that

are related to the vibrational levels of the molecules. Thus, Raman spectroscopy is a

label-free analytical technique and molecular information can be obtained in a non-

destructive way with no sample preparation: light is used for excitation of the mole-

cules and the inelastically scattered light is detected for molecular analysis. Raman

spectroscopy has been extensively used for molecular analysis of biological tissues and

disease diagnostic [10-13].
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An important advantage of RMS is that the information regarding molecular vibrations

can be obtained using microscopy instrumentation operating in the visible and near-infrared

spectral regions. RMS has benefited enormously from the recent advances in high-power

laser technology, optical microscopy, fibre optics and detectors with high quantum efficiency

in this spectral range. Another important advantage of Raman micro-spectroscopy for live

cell imaging is that the background Raman signals from water are significantly weaker

compared to signals obtained from cell's molecules. Therefore, RMS can be used to measure

repeatedly the molecular properties of live cells maintained in culture media.
Label-free Raman spectral imaging of cells

The first Raman micro-spectrometer was demonstrated by Dhamelincourt and Delhaye

in 1973 [14] but it was not until 1990 when Puppels et al. reported the first Raman

spectra of individual cells [15]. Since then, Raman spectroscopy has been extensively

used for studies of cells, including detection of protein conformation in living cells

[16], chemical differences at different stages of the cell cycle [17,18], differences be-

tween cells of different phenotypes [19,20] or apoptotic cells [21]. Raman spectroscopy

can probe molecular information from living cells revealing distinct chemical features

between nucleus and cytoplasm [15,22-24], lipid structures inside cytoplasm [25], and

cell response to diverse stress stimuli [26,27]. High resolution Raman imaging provided

new insights into the spatial distribution of chemical species and organelles inside cells

[28-34]. RMS was used to follow the cellular uptake of the drugs [35-38] and cellular

dynamics [39]. Apoptosis, also known as programmed cell death, is an important bio-

logical phenomenon that involves morphological and chemical changes of the cell or-

ganelles. Raman spectral mapping of apoptotic cells showed changes in the distribution

of the nucleic acids [40,41] and detected the accumulation of lipids when cells were

treated with different apoptotic drugs [35,42-44].

Nevertheless, one of the most important features of the Raman spectroscopy is the abil-

ity to measure time-course molecular changes in live cells, revealing biochemical

processes not attainable with other imaging methods [43-47]. Such experiments are of

particular relevance to regenerative medicine and tissue engineering applications as

repeated Raman measurements can provide time- and spatially-resolved information

regarding the molecular properties of stem cells during differentiation or the growth and

development of the engineered grafts. Such information may be used for better under-

standing the biological processes as well as for improving the bioprocesses.

Raman spectroscopy was also used to study molecular changes at the early stages of

differentiation of stem cells [48] and for phenotypic identification of stem cell progeny.

The differentiation process describes a series of biochemical changes that are meant to

transform a stem cell into a fully functional somatic cell. These changes can be corre-

lated to changes in the Raman spectra of cells measured without using labels or affect-

ing their viability [49]. Recent studies have shown that Raman spectral markers can be

used to discriminate fully committed mature cells from undifferentiated cells [23,24,50]

and to assess the differentiation status of murine stem cells [51]. In addition, RMS may

be used for quality control of cell and tissue grafts prior to clinical use. Recent reports

discussed the potential of RMS as a non-invasive method for enrichment of cardiomyo-

cyte populations obtained by differentiation of human stem cells [52]. In this mini-
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review paper we present three applications of RMS for time- and spatially-resolved mo-

lecular characterisation of stem cells during in-vitro differentiation.
Instrumentation

Raman micro-spectroscopy is based on coupling a Raman spectrometer to an optical micro-

scope (Figure 1). Inverted optical microscopes are in particular suitable for time-course cell

imaging as the cells can be cultured in dedicated enclosed cell-chambers that allow efficient

collection of the Raman scattered light while maintaining the cells in culture media and

avoiding bacterial contamination. The instrument used for the applications described in this

paper was based on an inverted microscope (IX 71, Olympus, Essex, UK) equipped with an

environmental enclosure (Solent, Segensworth, UK) that maintains the live cells at 37°C and

5% CO2 atmosphere. A water immersion microscope objective (Olympus) 60×/1.2 N.A. was

used to focus the 785 nm laser beam (Toptica Xtra) and collect the Raman scattered

light, which was then analysed by an optical spectrometer (830nm diffraction grating, IDus

401 CCD, Andor Technologies, Belfast, UK). The spectrometer was connected to the micro-

scope through a 50 μm diameter optical fibre, providing a spectral resolution of ~4 cm-1. A

step motorize stage (Prior, Cambridge, UK) was attached to the microscope to raster scan

the sample area. The microscope also had an integrated wide-field fluorescence imaging sys-

tem that allowed imaging of the cells at the end of the Raman spectral measurements, after

staining with specific labelles. For typical experiments for cell imaging, the laser power at the

sample was in the 100–150 mW range and the exposure time per spot 0.5–2 s (total time re-

quired for the aquisiot of a Raman image of a cell ~20–40 minutes at 1 μm step-size).
Applications

Assessment of differentiation status of neuro-progenitor stem cells

Neural stem cells are responsible for the generation of neurons and glial cells and offer

great promise to develop treatments for Parkinson’s, Alzheimer’s diseases, chronic

inflammatory disorders of the central nervous system, spinal cord injuries or strokes
Figure 1 Schematic description of a Raman micro-spectrometer suitable for monitoring time- and
spatially-resolved molecular changes in live stem cells.
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[53]. The capacity of endogenous neural stem cells to proliferate and replace neural

cells in-vivo may be affected by chronic inflammatory processes [53]. Hence the repair

potential of endogenous stem cells may be limited and any medical procedures de-

signed to mobilize neural stem towards inflammatory sites may be limited. Thus, ther-

apies based on transplantation of neural stem cells from exogenous sources have been

developed recently [54].

Raman micro-spectroscopy was proposed as a label-free method for identification of

neural stem cells and discrimination of glial cells. Raman spectra of neuro-progenitor

cells and glial cells showed significant differences in the fingerprint spectral region

(600–1800 cm-1) (Figure 2A,B). A multivariate statistical model was developed that

allowed discrimination between neural stem cells and glial cells with 89.4% sensitivity

and 96.4% specificity [55]. The computed difference between the average Raman spec-

tra of neuro-progenitor and glial cells shows a close similarity with the Raman

spectrum of purified RNA (Figure 2B).

Focusing on the 700–830 cm-1 region, distinct spectral signatures from nucleic acid base

pairs can be observed: adenine (729 cm-1), uracil and cytosine (782 cm-1 and 785 cm-1). Ra-

man bands corresponding to the stretching vibrations of phosphate O-P-O backbone of nu-

cleic acids can also be identified: 788 cm-1 for B-DNA, and 788 cm-1 and 813 cm-1 for RNA

[56]. Raman spectra measured at different locations inside live neuro-progenitor stem

cells indicate that regions rich in RNA are found mostly in the cytoplasms of these cells

(Figure 2E, F).

Raman micro-spectroscopy can measure detailed molecular maps of cells to obtain

spatially-resolved chemical information inside the cells with spatial resolution down to
Neural stem cells C 

D 

E 

F 

A 

B 

Figure 2 Analysis of Raman spectra of neuroprogenitor and derived-glial cells. (A) Average Raman spectra
of neuro-progenitor stem cells and glial cells, and their computed difference. The side lines represent the standard
deviation calculated at each wavenumber. (B) Comparison between the computed difference spectrum in (A)
and the Raman spectra measured from purified RNA and DNA. (C) Fluorescence images of undifferentiated neural
stem cells (blue=nuclei, red=nestin), (D) glial cells (blue=nuclei, green=GFAP) recorded at the end of the Raman
measurements. (E) Brightfield images of live neuro-progenitor cells indicating the location of the nuclei (fluorescence
staining after Raman measurements). (F) Raman spectra measured from the live neuro-progenitor cells at locations
indicated by the marks. Scale bars: 10 μm.
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the diffraction limit (~750 nm in this case). Figure 3 presents Raman spectral maps

along with fluorescence and phase contrast images of neuro-progenitor and glial cells.

The Raman maps presented in Figure 3 were constructed by computing the peak area

of the 788 cm-1 and 813 cm-1 bands for each Raman spectrum after subtracting the

local baseline. The cells were raster scanned with a step size of 500 nm.

For neuro-progenitor cells (Figure 3), the Raman maps corresponding to the 788 cm-1

band is slightly larger than the DAPI staining of the cell nucleus as it contains spectral over-

lap signature from DNA and RNA. On the other hand, the band at 813 cm-1, specifically

assigned to RNA, reveals high amount of RNA in the cytoplasm. However, Raman maps re-

corded for glial cells (Figure 3H) fail to detect bands corresponding to RNA in the cytoplasm.

By developing a solution-based calibration model for RNA, the maximum concentration of

RNA in the cytoplasm of neuro-progenitor stem cells ranged from 3–5 mg/ml (accuracy in

this range is ±0.4 mg/ml) while for glial cells the concentration becomes lower than the de-

tection limit of RNA for our instrument, which is ~1 mg/ml

This finding was somehow surprising considering that the ribosomal RNA represents

the dominant type of RNA in cells and most somatic cells have abundant ribosomes.

However, the estimates of the cell volumes indicate that the increase in the cytoplasm

volume for glial cells by a factor of 4.5 may account for a decrease in the cytoplasm

RNA concentration during the differentiation of neuroprogenitor cells to the glial

phenotype. The higher intensities of Raman bands corresponding to RNA in neural

stem cells may also be related to a higher amount of RNA in the cytoplasm of undiffer-

entiated cells as suggested by earlier histological analysis of embryonic brain explants.

These studies showed that neuroepithelial progenitor populations in the ependymal

layer have a higher total RNA content than their mature differentiated progeny [57].

Increased concentration of non-translated mRNAs corresponding to the post-

transcriptional control of genes has been related to neurogenesis [58], neuronal func-

tion [59], as well as stem cell proliferation and embryogenesis [60,61]. For example,

high abundance of proteins which repress the translation of mRNAs and maintained

the undifferentiated state of neuroprogenitor stem cells have been found in the
A B 

C D 

E F 

G H 

Figure 3 Raman spectral imaging of neuroprogenitor and derived-glial cells. Phase contrast images
(A,E), DAPI (blue)/FITC (green) fluorescence staining (B,F) and Raman spectral images corresponding to the
788cm-1 band (C,G) and 813 cm-1 band (D,H) for typical fixed neuroprogenitor and glial cells respectively.
(Scale bars: 10 μm).
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cytoplasms of these cells [58]. Nevertheless, RMS has the ability to detect and quantify

the concentration of RNA in neuroprogenitor cells, with high spatial (less than 1 mi-

cron) and temporal resolution (minutes).
Time- and spatially-resolved monitoring of mineralisation of bone nodules in-vitro

Bone is one of the largest organs in the human body with numerous mechanical and

haematological functions. In addition to age-related diseases, there are congenital bone

deformation, bone cancer and bone trauma that may require a bone transplant. Current

bone reconstruction and replacement surgical procedures are based on allogeneic tissue

grafts. Because of a limited supply of allogeneic bone, tissue engineering and regeneration

of the bone based on mesenchymal stem cells has raised a major research interest. The

bone grafts obtained in-vitro can be used for clinical applications to restore the function-

ality of the skeletal system of the patients [1]. The growth of bone in-vitro requires a cul-

ture of mesenchymal stem cells (MSCs) in the osteogenic culture medium. Following

proliferation and differentiation, MSCs gives rise to the osteoblasts, which are specialized

cells responsible for the formation of the bone nodules. Changes during formation and

mineralisation of bone nodules can be observed in Raman bands associated to vibrations

of hydroxyapatite, mostly in the 950–960 cm-1 range [29,30]. RMS was used to record

time- and spatially-resolved molecular information during differecntiation of MSCs and

formation of bone nodules over 28 days time period.

Figure 4 presents phase contrast images of MSCs grown in osteogenic and non-

osteogenic media at different time-points. Mineralisation of the cultures grown in

osteogenic media was confirmed by alizarin red staining performed at the end of the

experiments. The difference between Raman spectra of MSCs grown in osteogenic and

non-osteogenic media are presented in Figure 5A. Mineralisation of bone nodules is in-

dicated by the strong Raman band at ~959 cm-1 corresponding to the PO3
− symmetric

stretching vibrations.

Principal component analysis (PCA) was used to extract temporal and spatial chemical in-

formation during differentiation of MSCs. The first four principal components (PCs) contain-

ing 99% from the total variance are presented in the Figure 5B. The loading of PC2

resembles the Raman spectrum of hydroxyapatite (HA) [62], which containes a sharp peak at

958 cm-1 assigned to PO3
− symmetric stretching and represents a strong indication of

mineralization. Images obtained by plotting the PC2 scores provides information regarding

the phase (disordered and crystalline) and spatial distribution of HA. Crystalline HA elicits a

sharp Raman band at 958 cm-1 while the disordered HA phase is indicated by a broader band

in the 940-945 cm-1 region. The intensity peak ratio I958/I945 represents a strong indicator of

spatial and temporal evolution of the HA phase (Figure 5C). This ratio was found to increase

over time, indicating a higher concentration of disordered phase at the beginning of bone

nodule formation leading to a phase transition towards crystalline phase at day 19.

Monitoring cardiac differentiation of human embryonic stem cells

The human heart is considered to be a non-regenerative tissue and the permanent loss of

cardiomyocytes can lead to cardiac muscle failure. For this reason stem cell therapy is

considered a desirable alternative to classical heart transplants for replacing the damaged

cardiac tissue. Although these technologies offer great promise for patient with cardiac

failure, in-vitro differentiation protocols are not optimised and currently produce cell
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Figure 4 Time course phase contrast images of mesenchymal stem cells (MSCs). (A) MSCs cultured in
osteogenic media. (B) MSCs cultured in control media. Alizarin staining was performed on day 28. Scale bars: 10 μm.
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populations with high phenotypic heterogeneity. Such cell populations require further en-

richment and purification prior to clinical use [63].

Pascut et. al. showed that RMS can be used for label-free discrimination of individual

live cardiomyocytes (CM), derived in-vitro from human embryonic stem cells [64] and

investigated the potential for developing Raman-activated cell-sorting of individual cells

[52]. A statistical multivariate model using principal component analysis of Raman

spectra from stem cell-derived CMs and non-CMs achieved 97% specificity and 96%

sensitivity [64]. It was found that the main spectral features that provided the discrim-

ination were related to Raman bands associated to glycogen and proteins [28]. Further-

more, online analysis of the beat frequency of individual cardiomyocytes analysed by

RMS showed no significant differences when exposed to the Raman laser, when com-

pared to control cells. In a recent study, RMS was used to monitor the molecular

changes in live stem cells during cardiac differentiation, and then to correlate these

changes to gold-standard fluorescence staining for the cardiac phenotype [65].

Figure 6A presents schematically the design of the experiment in which embryoid

bodies (EB) formed by aggregation of human embryonic were grown in conditioned

medium on the Raman microscope. The live EBs were grown in conditioned medium

to induce differentiation towards cardiac phenotype. Raman spectral maps were ac-

quired by raster-scanning at 24 hour intervals between days 5 and 9 of differentiation,

a window wherein cardiac markers were expected to be expressed (immuno-fluores-

cence on fixed EBs). Flow cytometry and immuno-fluorescence analysis using the CM

markers α-actinin and/or cardiac troponin I carried out on individual cells dispersed



A

C

B 

Figure 5 Time-course Raman spectroscopy of MSC grown in osteogenic medium. (A) Mean time-course
Raman spectra of typical 210 × 210 mm2 regions of the cultures shown in C. Raman spectra were acquired at
different time points for the same regions of the culture osteoblast in osteogenic medium and non-osteogenic
medium. (B) Principal components used to extract meaningful chemical information (C) Maps corresponding
to the PC2 scores recorded in the same culture regions at different measurements days. Scale bar: 10 μm.

Ghita et al. EPJ Techniques and Instrumentation  (2015) 2:6 Page 9 of 14
from EBs at day 12 of differentiation indicated that approximately 85% of the cells

present in beating EBs were CMs, whereas less than 1% were identified as CM in non-

beating EBs.

Figure 7 compares the time-course average Raman spectra of typical EBs, beating

(successful cardiac differentiation) and non-beating (unsuccessful cardiac differenti-

ation) with the Raman spectra of individual hESC-derived CMs and a non-CM. Signifi-

cant differences between the Raman spectra of EBs can be observed starting on day 7,

when the spectra of the beating EBs showed an increase in the intensity of the bands at

482 cm-1, 577 cm-1, 858 cm-1, 937 cm-1, 1083 cm-1 and 1340 cm-1. The increase in the

intensity of these bands was directly correlated with the increase in the number of

CMs, and intense bands at the same frequencies can be observed in the Raman spectra

of isolated beating CMs derived from hESCs (Figure 7A). These spectral changes were

attributed to the formation of myofibrils and accumulation of glycogen in the CMs.

These molecular changes are hallmarks for the formation of cardiac tissue and reflect

the development of the contractile machinery of the CMs [66,67]. A high accumulation

of glycogen in hESC-derived CMs was observed by transmission electron microscopy

for CMs derived from several hESCs lines [67] and was related to the increase in fuel

demand following the switch from the glycolytic metabolism to oxidative phosphory-

laion [68,69].
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Figure 6 Time-course Raman spectroscopy measurements on embryoid bodies (EBs) formed by
aggregation of human embryonic stem cells. (A) Schematic description of the time-course measurements. Cells
were maintained on the Raman microscope for 5 days, during differentiation days 5–9. (B) Immuno-staining of
control EBs grown in cardiac medium showing expression of cardiac markers α -actinin (red) and cardiac troponin I
(cTnI=green) at day 7, corresponding with the onset of spontaneous beating.
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RMS can also provide time-resolved 2D spectral maps of the EBs and is able to detect

the increase in the number of CMs during differentiation. Starting with day 7, the spec-

tral maps show the appearance of CMs in the beating EBs, while no relative increase in

the PC1 scores was detected in the non-beating EBs. It was also found that the areas of

high PC1 scores also matched the regions of the EBs where the beating was most pro-

nounced, as well as the expression of α-actinin obtained by immuno-fluorescence im-

aging at the end of the time-course experiments [65]. These recent studies show the

potential of RMS for non-invasive monitoring of stem cell differentiation, which may

enable a more efficient optimization of the relevant bioprocesses.
Conclusion
This paper reviews recent applications of Raman micro-spectroscopy for time- and

spatially-resolved molecular imaging of stem cells during differentiation in-vitro. By
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Figure 7 Raman spectroscopy of cardiomyocytes derived from human embryonic stem cel006Cs. (A)
Raman spectra of beating cardiomyocyte (CM) and non-cardiomyocyte (non-CM) obtained from human embryonic
stem cells. PC1 represents the map corresponding to the principal component used for discrimination of CMs and
non-CMs in ref [64]. (B) Time-course mean Raman spectra of a typical beating and a non-beating EB during days
5–9 (D5–9) of differentiation. *indicates the days at which beating of the EB was observed. (C) Raman maps
corresponding to PC1 scores for a beating and non-beating EB.
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integrating the Raman micro-spectrometer with an environmental enclosure, RMS can

be used for non-invasive monitoring time-dependent molecular changes in live cells

and can provide on-line information regarding the cells and their phenotypic characteris-

tics. RMS may be a useful technique for monitoring bioprocesses and help the refinement

and standardisation of differentiation protocols to induce the efficient differentiation of

pluripotent stem cells. Such non-invasive techniques are needed to help overcoming the

current bottlenecks in the manufacturing and quality assessment of stem cell populations,

which are key factors for the future advancement and widespread clinical use of regenera-

tive medicine therapies. In addition, information regarding molecular changes during

differentiation can advance the understanding of stem cell differentiation and the develop-

ment of in vitro models for embryo development. RMS can also provide an invaluable

platform for further fundamental studies on stem cells and the effect of various stimuli on

their differentiation (eg. mechanical stimulation for osteoblasts), as well as in-vitro testing

of new pharmaceuticals on cell models.
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