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Abstract

Motivation: The increasing rate of submission of genetic sequences into public databases is pro-

viding a growing resource for classifying the organisms that these sequences represent. To aid

viral classification, we have developed ViCTree, which automatically integrates the relevant sets of

sequences in NCBI GenBank and transforms them into an interactive maximum likelihood phylo-

genetic tree that can be updated automatically. ViCTree incorporates ViCTreeView, which is a

JavaScript-based visualization tool that enables the tree to be explored interactively in the context

of pairwise distance data.

Results: To demonstrate utility, ViCTree was applied to subfamily Densovirinae of family

Parvoviridae. This led to the identification of six new species of insect virus.

Availability and implementation: ViCTree is open-source and can be run on any Linux- or Unix-

based computer or cluster. A tutorial, the documentation and the source code are available under a

GPL3 license, and can be accessed at http://bioinformatics.cvr.ac.uk/victree_web/.

Contact: sejal.modha@glasgow.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The increasing rate at which sequence data are being deposited into

public databases is providing a tremendous resource for taxonomic

classification throughout biology. Phylogenetic analysis provides a

key means of integrating these data and inferring the evolutionary

relationships that form the basis of classification. However, prepar-

ing datasets for such analyses is often time-consuming, and the phy-

logenies obtained are typically not easy to update. Consequently,

systematic approaches are being developed that automate the vari-

ous steps involved.

The Ensembl Compara GeneTree pipeline (Vilella et al., 2009)

provides a comprehensive gene-orientated phylogenetic resource. It

has a powerful analytical backend for classifying genes and gene

families on the basis of detecting orthology among the complete gen-

omes available in the Ensembl framework. Automated phylogeny-

based classification is also implemented in the mor package

(http://www.clarku.edu/faculty/dhibbett/clarkfungaldb/), which has

been applied to fungal taxa by aligning 28S rRNA sequences from

GenBank and generating a phylogeny that can be updated by a

node-based classification approach (Hibbett et al., 2005). The 16S

and 18S rRNA sequences can also inform classification, and are em-

ployed in tools such as STAP (Wu et al., 2008) and EukRef (http://

eukref.org/curation-pipeline-overview/). A more general approach

is implemented in PUmPER (Izquierdo-Carrasco et al., 2014),

which has been applied to the classification of plants (http://port

noy.iplantcollaborative.org/view/tree/10b17429d13160ac1cd07e30

bb42fd9b). However, PUmPER employs PHLAWD (Smith et al.,

2009) to collate sequences and build multiple alignments, which

in turn relies on GenBank annotations to retrieve nucleotide

sequences.

The tools described above were developed for specific types of

non-viral organisms and have limited applications to the classification
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of viruses. Viruses exhibit an enormous range of sequence diversity

and cannot be integrated into a tree of life because they lack genes

that are universally conserved in other organisms and that therefore

may be used for barcoding (e.g. those encoding rRNAs or enzymes

such as cytochrome c oxidase subunit I and ribulose-bisphosphate

carboxylase). Also, GenBank annotations of viral genes are often not

standardized and are thus unreliable for retrieving sequences.

Moreover, none of the tools mentioned above presents both pairwise

distances and phylogenies. This dual facility is important in viral clas-

sification because precise distance thresholds are frequently stipulated

as demarcation criteria, and these may vary widely among families

and even among genera due to differences in evolutionary rate.

Viruses are classified formally by the International Committee

on Taxonomy of Viruses (ICTV; http://www.ictvonline.org/) into

three ranks (family, genus and species), and, in some cases, two fur-

ther ranks (order and subfamily). The huge diversity of viruses has

the effect that the criteria used and the relative emphasis placed on

each vary widely from family to family. However, sequence-based

criteria (typically based on amino acid, rather than nucleotide, se-

quences) are prominent, and include simple measures of distance

and increasingly powerful phylogenetic measures, as in the case of

family Parvoviridae discussed below (Cotmore et al., 2014). The

rapidly increasing volume of viral sequence information and the

limitations of existing tools in relation to viruses necessitates the de-

velopment of automated bioinformatic solutions that are suited spe-

cifically to viruses (Simmonds, 2015; Simmonds et al., 2017). At

least two tools in this category have been used in viral classification:

PASC provides a web-based interface for visualizing distances

among automatically aligned sequences (Bao et al., 2014), and

DEmARC takes a sophisticated approach to identifying taxonomic-

ally significant thresholds in the distribution of distance data

(Lauber and Gorbalenya, 2012). These tools were developed for

exploring the pairwise distance criteria used to define species and

genus boundaries within a taxon. ViPTree, a web-based classifica-

tion tool, employs a genome-wide similarity method to classify viral

sequences, and generates a static viral proteomic tree to illustrate the

phylogenetic relationships among the existing sequences available in

the GenomeNet/Virus-Host database (Nishimura et al., 2017).

Useful as these tools are, none of them presents the results of pair-

wise distances along with the phylogeny, a feature that is important

to viral taxonomists as they transition from using distance-based to

phylogeny-based classification methods.

As an aid to integrating GenBank data into taxonomic analyses

that can be updated automatically, we present ViCTree, a pipeline

that retrieves the relevant viral sequences from GenBank, aligns and

clusters them, and generates a maximum likelihood phylogenetic

tree combined with distance data. The results are rendered by using

ViCTreeView, which is a Javascript-based tool that enables users to

visualize and explore distances in the context of the tree. ViCTree is

automated so that the phylogenies are synchronized with the

GenBank data, and the results are versioned on GitHub. The pipe-

line is flexible and broadly applicable to examining the phylogenetic

relationships that underpin viral taxa.

2 Framework

All modules and tools implemented in ViCTree are open-source.

The framework is a combination of a Bash shell script for automat-

ically generating multiple sequence alignments and phylogenetic

trees, and JavaScript for visualizing and exploring the trees in com-

bination with the underlying distance data.

2.1 Phylogeny building
A curated set of seed protein sequences must be provided that spans

the known diversity of a viral taxon. These sequences and the rele-

vant GenBank taxonomic ID (specified at any rank) are submitted

to the start of the ViCTree pipeline (Fig. 1), and all available protein

sequences that bear the taxonomic ID are automatically down-

loaded from GenBank. Rather than filtering on the basis of

GenBank sequence annotations, which are sometimes incomplete or

incorrect, BLAST (Altschul et al., 1990) is used to compare the

downloaded sequences with all the seed sequences. Significant

Fig. 1. Data processing workflow of the ViCTree pipeline
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matches are extracted from the BLAST output on the basis of user-

specified parameters specifying the hit length threshold (the min-

imum number of amino acid residues in the alignment between the

query and subject sequences) and query coverage threshold (the min-

imum percentage of amino acid residues in the query sequence repre-

sented in the alignment). Significant matches are clustered by using

CD-HIT (Fu et al., 2012) with a user-specified identity threshold,

and a representative sequence from each cluster is selected for down-

stream analysis in order to reduce the size of the tree to a manage-

able scale. CD-HIT is used to cluster the sequences below species

level to generate a manageable sized phylogeny, with the default

clustering threshold set to 0.9. CD-HIT picks the longest sequence

as representative by default, and processes the classification of the

remaining sequences by comparing them to the representatives. This

arrangement has the advantage of not influencing the inter-species

or inter-generic relationships. An optional parameter enables the

user to provide a list of predefined sequences representing the clus-

ters instead of the default sequences derived by using CD-HIT, thus

allowing static tips to be maintained in an expanding phylogeny. A

multiple sequence alignment and a distance matrix are generated for

the final sequence set by using Clustal Omega (Sievers et al., 2011),

and an evolutionary tree is inferred by using RAxML (Stamatakis,

2014) under a user-defined evolutionary model or a default model

(PROTGAMMAJTT). The evolutionary tree can then be submitted

for automated species delimitation by mPTP (Kapli et al., 2017).

The output files include the tree in Newick format, the alignment

in Fasta format, a distance matrix, a comma-separated list of clus-

tered sequences, and a metadata file with GenBank accession num-

bers and taxonomic names (species and genus) if known. These files

are stored on GitHub in a predefined directory structure, thus allow-

ing previous versions of the alignment and tree to be retrieved and

enabling changes to be tracked over time. After an initial setup stage

for the viral group of interest, the phylogeny can be updated with lit-

tle or no manual intervention.

2.2 Tree visualization
ViCTreeView was inspired by VEG’s phylotree (https://github.com/

veg/phylotree.js) and enables the tree to be visualized. In

ViCTreeView, maximum likelihood phylogenetic trees are rendered

directly from the GitHub repository and visualized as a phylogram

with bootstrap values. It is possible to visualize the tree in ultramet-

ric representation instead of a phylogram. Different phylogenetic

tree instances available in the GitHub repository can be browsed

and visualized using by using the example menu. Attributes to in-

crease and decrease distances between branches and a zooming func-

tion styled after Google maps are implemented in ViCTreeView,

thus enabling users to explore specific parts of the phylogeny in de-

tail. This interactive web tool facilitates an integrated dynamic visu-

alization of the tree and the distance data represented as

percentages. When a user-defined distance threshold is specified, se-

quences that fall within it are highlighted in clusters of different col-

ours. This enables users to study and explore the sequences that

generate new clusters when a specific pairwise distance criterion is

applied. The highlighted versions of the tree with user-defined

thresholds are also available for downloading in SVG and PNG for-

mats. The automated phylogeny generated within ViCTree is mid-

point rooted and can be re-rooted to any nodes in the phylogeny.

Specific branches can be expanded and collapsed in order to explore

large phylogenetic trees in modular fashion. In addition, various fea-

tures are included to allow manipulation of the tree, including op-

tions for labelling the tips by GenBank accession number,

taxonomic ID, species name or genus name. These options, along

with the alignment files from GitHub repositories, enable users to

download the tree files in a specific format, and also facilitate easy

incorporation of data for newly discovered viruses into taxonomic

proposals. Links are also provided to the NCBI genomes page for

representative sequences and to the NCBI proteins page for the rep-

resentative and non-representative protein sequences clustered in the

phylogeny.

ViCTree can be run on any Linux/Unix or OSX Apple computer.

It was tested on an Apple iMac with a 4 GHz Intel Core i7 processor

and 32 GB RAM.

3 Results

3.1 Case study
The example framework (http://bioinformatics.cvr.ac.uk/victree/) is

setup for subfamilies Densovirinae and Parvovirinae of family

Parvoviridae and for family Herpesviridae, and is updated monthly

on an automatic schedule. To illustrate the application of ViCTree,

we present the results for subfamily Densovirinae.

Within the family Parvoviridae, viruses that infect invertebrates

and vertebrates are classified into the two subfamilies Densovirinae

and Parvovirinae, respectively. This division is strongly supported

by the protein sequence-based phylogeny of viral non-structural pro-

tein 1 (NS1) (Cotmore et al., 2014). All viruses within the same spe-

cies are required to be at least 85% identical to each other in this

protein, and at least 15% different from viruses in other species.

Viruses within the same genus are required to be monophyletic and

to encode NS1 proteins that are at least 30% identical to each other.

These demarcation criteria were applied to an analysis of subfamily

Densovirinae carried out by using ViCTree. The analysis took

552 min 34.983 s real time, 1019 min 38.773 s user time and 29 min

32.492 s system time.

The analysis of subfamily Densovirinae runs automatically every

month as a Cron job. In June 2017, 916 protein sequences available

under the relevant taxonomic ID (40120) were downloaded auto-

matically from GenBank. A subset of 21 NS1 protein sequences was

used as the seed set in a BLAST-based similarity search of all down-

loaded protein sequences. A subset of 187 sequences was generated

when hit length and query coverage thresholds of 100 and 50, re-

spectively, were applied to filter the BLAST output. These sequences

grouped into 103 distinct clusters when a CD-HIT clustering thresh-

old of 1.0 was applied. Distance analysis and multiple sequence

alignment were performed on the 103 representatives of these clus-

ters, and taxonomic and accession metadata were collected from

GenBank. A phylogeny was built for the aligned sequences, and the

tree file was submitted with metadata and distance matrix files to

ViCTreeView for visualization.

ViCTree identified all previously classified species and genera in

subfamily Densovirinae (Cotmore et al., 2014), including members

of genus Ambidensovirus that encode the NS1 protein on the oppos-

ite strand from members of the other genera. This success was due

to the breadth of diversity in the seed set and to the use of protein se-

quences in conducting the BLAST search. The analysis identified six

new species (Table 1), which were recognized subsequently by the

ICTV (Adams et al., 2017b) on the basis of proposals made by the

ICTV Parvoviridae Study Group. Although ViCTree is not a dedi-

cated taxonomic misclassification identification tool such as

SATIVA (Kozlov et al., 2016) it is able to identify misclassified se-

quences. Thus, the misclassification of an isolate of Helicoverpa

armigera densovirus (GenBank accession number JQ894784) in the

ViCTree 2197
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NCBI taxonomy was readily identified. This virus is described as

being a member of genus Iteradensovirus, but in fact belongs to

genus Ambidensovirus (species Lepidopteran iteradensovirus 5).

The in-built automated species delimitation using mPTP had

identified a total of 25 species from the phylogeny, of which 18 were

consistent with the current ICTV classification of subfamily

Densovirinae. The automated species delimitation combined

Decapod ambidensovirus 1 and Asteroid ambidensovirus 1 into a

species cluster, and Lepidopteran iteradensovirus 1, Lepidopteran

iteradensovirus 2 and Lepidopteran iteradensovirus 4 into another

species cluster. It also identified an additional six new species that

are not currently recognized by the ICTV (Supplementary Appendix

S1). Some of these species are not yet defined as new species by the

ICTV as the sequences may be from incomplete genome sequences

or may lack multiple sequences from the same species, both of which

are requirements for the assignment of new species.

Table 1. New species identified in subfamily Densovirinae by using ViCTree

Name of new species Representative isolate Genus

Asteroid ambidensovirus 1 Sea star-associated densovirus Ambidensovirus

Decapod ambidensovirus 1 Cherax quadricarinatus densovirus Ambidensovirus

Hemipteran ambidensovirus 2 Dysaphis plantaginea densovirus 1 Ambidensovirus

Hemipteran ambidensovirus 3 Myzus persicae densovirus 1 Ambidensovirus

Hymenopteran ambidensovirus 1 Solenopsis invicta densovirus Ambidensovirus

Orthopteran densovirus 1 Acheta domestica mini ambidensovirus Unassigned

Source: https://talk.ictvonline.org/ICTV/proposals/2016.003a, bD.A.v1.Densovirinae_6sp.pdf

Fig. 2. Phylogenetic tree for subfamily Densovirinae based on the NS1 protein and visualized in ViCTreeView. Sequences that fall within the 15% pairwise dis-

tance criterion are indicated as distinct clusters in different colours. Black arrows indicate new species identified using ViCTree
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3.2 Evaluation of accuracy
The accuracy of the ViCTree was tested by determining the propor-

tion of recognized species that it was capable of identifying in sub-

family Densovirinae (Fig. 2). Three parameters were varied: the

number of seed sequences (sets of 5, 10 or 20 randomly selected se-

quences), the hit length threshold, and the query coverage threshold

(Fig. 3). Accuracy increased with the number of seed sequences, and

was>95% for all seed sequence sets at a hit length of<400 and a

query coverage of<60. Accuracy was compromised by reducing

these values, due to increasing numbers of false positives. Hit length

and query coverage thresholds of 100 and 50, respectively, were

found to be optimal for subfamily Densovirinae.

4 Discussion

ViCTree is an integrated, automated pipeline for assisting taxo-

nomic classification in an era in which genomic and metagenomic

data are being actively accommodated by the ICTV (Adams et al.,

2017a; Simmonds, 2015; Simmonds et al., 2017). It is capable of

supporting the identification of novel viral species and pinpointing

taxonomic errors in public databases. Its automated approach to

finding the best reference sequences to represent a viral family or

subfamily provides a useful tool for virologists. It implements

GitHub-based versioning of alignments and phylogenies of any size,

thus allowing users to monitor taxonomic developments incremen-

tally. The built-in visualization tool (ViCTreeView) enables phyloge-

nies to be explored interactively in a web browser. These features

will contribute to the establishment and dissemination of

standardized phylogenetic and taxonomic data within the virology

community.

The initial setup of ViCTree for a taxonomic group requires sev-

eral optimization steps, which include setting the thresholds for seed

sequences, CD-HIT clustering, and BLAST hit length and query

coverage. These parameters were shown to be accurate in the case

study of subfamily Densovirinae, but will need to be improved itera-

tively as the taxonomy expands. They will differ for other viral taxa;

for example, a single DNA polymerase protein seed sequence was

sufficient to identify all species in family Herpesviridae. In a wider

context, the criteria used to classify viruses vary greatly from family

to family, and the flexibility of ViCTree allows appropriate thresh-

olds to be explored interactively. Accuracy determination for a spe-

cific viral group of interests is deemed to be an iterative process, as

classification parameters depend on the new sequences identified

and incorporated into the seed set used as a starting point for

ViCTree analysis. The ViCTree GitHub repository provides scripts

that enable users to identify optimal BLAST and seed set parameters

to study a viral taxonomic group using ViCTree. Novel sequences

that are yet to be submitted to GenBank can also be explored using

Fig. 3. Accuracy (y-axis) of ViCTree in relation to BLAST query coverage (0–100), BLAST hit length (0–849 amino acid residues) and number of seed sequences (5–20)
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the ViCTree framework, as ViCTree allows the incorporation of

these sequences by adding them to the seed sequence set.

Since ViCTree is a pipeline that integrates a number of existing

tools, it will suffer from their limitations. Clustal Omega was incor-

porated because it can align large numbers of protein sequences

quickly and accurately (Sievers et al., 2011). However, like other

progressive algorithms such as CLUSTAL W (Thompson et al.,

1994), MAFFT (Katoh et al., 2002; Katoh and Standley, 2013),

MUSCLE (Edgar, 2004) and T-COFFEE (Di Tommaso et al., 2011),

it may suffer from shortcomings in the handling of insertions and de-

letions. Other phylogeny-aware methods that have been developed

for accurately aligning closely related sequences, such as PRANK

(Löytynoja and Goldman, 2005, 2008), are less susceptible to these

problems and may improve ViCTree in future, particularly for de-

limiting genotypes within viral species.

ViCTree adds to a growing number of sequence-based tools that

are designed to inform viral classification specifically or that may

prove to be adaptable from other areas of biology. Pairwise distance

criteria currently being used across the field of viral taxonomy does

not provide an objective approach to classify groups of viruses and

other methods such as GMYC and PTP/mPTP should be explored

further in the context of speciation and identification of novel viral

groups. The current version of ViCTree uses protein sequences as in-

put because amino acid sequences are typically used to distinguish

taxa from the level of family (or sometimes order) down to species

(e.g. Parvoviridae and Herpesviridae). Although ViCTree was de-

veloped with viral classification in mind, it could be used to explore

the evolution of any protein.
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