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Abstract A stochastic prognostic framework for modeling the population dynamics of convective clouds
and representing them in climate models is proposed. The framework follows the nonequilibrium statistical
mechanical approach to constructing a master equation for representing the evolution of the number of
convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In
this framework, referred to as STOchastic framework for Modeling Population dynamics of convective
clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convec-
tive cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP
models are constructed and evaluated against CPOL radar observations at Darwin and convection permit-
ting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these
three key parameters and the realisms of these models are evaluated. It is shown that in a model where
convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of con-
vective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model
also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux
variability under diurnally varying forcing. In addition to its use in developing understanding of convection
processes and the controls on convective cell size distributions, this modeling framework is also designed
to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

Plain Language Summary A new approach to modeling the evolution of the size spectrum of
populations of convective clouds is proposed. This nonequilibrium, probabilistic modeling framework is
designed to provide (i) understanding of cloud-cloud and cloud-environment interactions and (ii) enable
representation of these interactions in cumulus parameterizations.

1. Introduction

In traditional cumulus parameterizations, cumulus convection is assumed to be in statistical equilibrium
with a slowly varying environment and to respond to any changes in forcing almost instantaneously and
deterministically with little memory or internal variability of its own. Such an assumption implicitly requires
model grid columns to be large compared to the mean distance between convective elements so that the
columns contain a meaningful number of updrafts. However, it has been known since the Global Atmo-
spheric Research Program’s Atlantic Tropical Experiment (GATE; Houze & Betts, 1981) that large, long-
lasting mesoscale convective systems (MCSs) make important contributions to heat, moisture and
momentum budgets, and that scale-separation is not present in either time or space (Moncrieff, 2010).
Advances in computational resources have made operational global weather and experimental climate
models with spatial resolution� 10 km (H�olm et al., 2016; Satoh et al., 2014) possible, which makes such
assumptions even more problematic, not least because stochastic effects become increasingly relevant
(e.g., Jones & Randall, 2011; Plant & Craig, 2008). On the other hand, radar, aircraft and satellite observa-
tions, as well as cloud-resolving limited-area simulations are providing deeper understanding of processes
within the cloud population and interactions with the environment at various scales (Burleyson et al.,
2016; Heinze et al., 2017).

These challenges, advances and opportunities require rethinking of the community’s approach, specifically
for the issues of departures from quasi-equilibrium, internal cloud population dynamics and the associated
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stochasticity (Holloway et al., 2014; Randall, 2013). In order to discuss these challenges and efforts at
addressing them and put this work in context, we consider the original pair of energy equations of Arakawa
and Schubert (1974) for an ensemble of convective updrafts, written here in discrete form.

dAi

dt
52

XN

j51

cijMBj1Fi (1)

dKi

dt
5Ai MBi2

Ki

sd
(2)

Here the subscript i represents a convective cell (for example, with a given entrainment rate, or, as we shall
later consider here, with a given cell size). As will be discussed in detail in the next section, a cell is defined
as a contiguous area (a set of connected pixels) within which much of upward mass transport and convec-
tive precipitation takes place. Fi is the external forcing acting on cloud type i Ki is the convective kinetic
energy, Ai is the vertical integral of in-plume buoyancy (also called the ‘‘cloud work function’’) and MBi is the
cloud-base mass flux. cij represents the effect of a unit of mass flux associated with cloud type j on the
potential energy for type i. Although negative values can arise (Yano & Plant, 2012a), the elements of c are
often assumed to be positive in accordance with the overall stabilizing effect of convective clouds: i.e., con-
vective damping via warming of the troposphere.

The most common and drastic simplifications to the above equations are to average over the ensemble of
cloud types in order to produce a ‘‘bulk plume,’’ and to apply the quasi-equilibrium assumption. For exam-
ple, in equation (1), the quasi-equilibrium assumption means that the two terms on the right-hand side
approximately balance, while the first of these terms is greatly simplified because the interaction matrix cij

reduces to a single quantity c that multiplies the bulk cloud-base mass flux. These have been very common
simplifications in convective parameterizations (e.g., Fritsch & Chappell, 1980; Gregory & Rowntree, 1990;
Tiedtke, 1989). Over recent years, stochastic fluctuations about an equilibrium solution have been proposed
and included in some convective parameterizations, based on either a bulk plume formulation (Palmer
et al., 2009; Sakradzija et al., 2016) or allowing a spectrum of cloud types (Plant & Craig, 2008; Wang &
Zhang, 2016).

Early efforts at removing the quasi-equilibrium assumption were made by Randall and Pan (1993) and Pan
and Randall (1998) who explained how a diagnostic relationship between convective kinetic energy and
cloud-base mass flux would be sufficient to close the pair of equations and allow them to be used prognos-
tically. They postulated the form K5aM2

B and showed that in General Circulation Model (GCM) tests the
parameter a controls the relative frequency of shallow convection. Later Yano and Plant (2012b) argued for
K5bMB as a more appropriate postulate and demonstrated that for that relationship under constant forc-
ing, a nonlinear oscillation can occur between ‘‘discharging’’ and ‘‘recharging’’ states.

Another development from equations (1) and (2) is to try to solve them for the population dynamics of
clouds and obtain the spectral distribution of mass flux MBi for a set of types i. One advantage of a spectral
approach to representing convective clouds is that microphysical processes, aerosol and radiative processes
can be considered for individual cloud types rather than as averages over the population. Thus, size-
dependent nonlinear processes (entrainment/detrainment for example) can be treated directly. However, it
should still be recognized that a steady-plume hypothesis is normally made in the representation of each
type without any consideration of the individual cloud lifecycle (Yano, 2015). Moreover, the advantages
come with the challenge of understanding and modeling the cloud-cloud and cloud-environment interac-
tions that shape the cloud spectrum. In the Wagner and Graf (2010) scheme, for example, the cloud types
are assumed to compete in a manner similar to competitive Lotka-Volterra (Volterra, 1928) systems for pop-
ulation dynamics. Their system is integrated so as to satisfy convective quasi-equilibrium conditions (Plant
& Yano, 2011). In the European Center Hamburg Atmospheric Model (ECHAM; Roeckner et al., 2003), the
Wagner and Graf (2010) scheme improves the spatial and temporal variability of convective events in com-
parison to a bulk mass flux scheme.

Stochastic models of convective clouds using birth-death processes and interactions among them were
introduced by Khouider (2014) Khouider et al. (2010), and recent developments of the approach can be
found in Gottwald et al. (2016) and Dorrestijn et al. (2015). These multicloud models consider three modes
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of convective heating (deep, congestus and stratiform) and are concerned with the interplay between these
modes and their couplings to aspects of the large-scale flow, particularly moisture and large-scale vertical
velocity (e.g., Peters et al., 2017). Bengtsson et al. (2013) and Bengtsson and K€ornich (2016) use a cellular
automata model for convective area fraction as a way to introduce stochasticity and estimate uncertainty
associated with lateral communication of convection fluctuations in a numerical weather prediction model.
They show some improvement in short term forecast of accumulated precipitation.

Plant (2012) also proposed a stochastic cloud population model. It evolves according to probabilities of
transitions using a master equation, and the focus was to make direct contacts with equations (1) and (2)
(for different assumed K-MB relationships) in the limit of large system size. Although studied for a single
cloud type in an idealized setting, the method allows prognostic treatments that are consistent with the
energy equations to be combined with the stochastic nature of the assumed underlying processes. In this
study, we also consider a probabilistic representation for the nonequilibrium dynamics of cloud popula-
tions. Of major interest here is the resulting distribution of the full spectrum of cloud sizes, and its develop-
ment due to evolution of the imposed forcing. Those are not issues addressed by the previous work
described above. In radiative convective equilibrium, distributions of cloud number and mass flux can be
predicted from equilibrium statistical mechanics (Craig & Cohen, 2006) and these have proved robust in
cloud-resolving simulations even for convection exhibiting some organization (Cohen & Craig, 2006) or with
some departures from equilibrium (Davoudi et al., 2010). However, our investigations here will include con-
sideration of diurnally varying forcings that may be far from equilibrium. We attempt to construct possible
representations for the evolution of the cloud size distribution over the day. The representations considered
will be informed by analysis of radar observations and convection permitting model (CPM) simulations. The
framework that is developed is designed to contribute to (i) the testing of hypotheses regarding the roles
of specific physical processes that could influence the evolution of the size distribution of convective cells
including direct cloud-cloud interactions and (ii) the development of a stochastic, prognostic parameteriza-
tion that includes a realistic representation of cloud population dynamics.

In the next section, the observational data and model simulations used are described. In the subsequent
section, a detailed description of the modeling framework and the behavior of multiple models constructed
under various simplifying assumptions are examined.

2. Description of Observational Data and CPM Simulations

In order to inform the development of the stochastic framework, we examine the cloud population dynam-
ics from radar observations and CPM simulations. While the primary purpose of the study is not to exten-
sively compare radar observations and the CPM simulations, as will be shown throughout the paper, their
consistency provides us with confidence on the conclusions inferred to develop the stochastic framework.
The radar observations used in this study are obtained from the C-band polarimetric (CPOL) scanning radar
located at Darwin, Australia (Kumar et al., 2013a, 2013b). We use three wet seasons of CPOL data collected
between November 2005 to March 2006, October 2006 to March 2007, and December 2009 to April 2010.
In total, approximately 11,760 hours of CPOL volumetric data are used to construct the cloud population
statistics. The CPOL radar collects a 3-D volume of data within a 150 km radius (Figure 1a) every 10 min.
Each volume scan consists of a total of 16 sweeps at elevation angles ranging from 0.58 to 428. The sweep
data are then gridded to a Cartesian grid of (DX, DY, DZ) 5 (2.5, 2.5, 0.5) km. The vertical extent of the
gridded data is from 0.5 to 20 km. Although the CPOL radar collects polarimetric observations that provide
insights into microphysical processes, only the horizontal reflectivity is used for this study. For more details
of the CPOL radar data processing, see Kumar et al. (2013a).

To identify convective cells from the CPOL radar data, the Steiner et al. (1995) algorithm is applied to the
radar reflectivity field at 2.5 km height. The Steiner algorithm mainly uses the horizontal texture (i.e.,
peakedness) of radar reflectivity to identify areas of intense radar echo return and designates them as con-
vective. An individual radar pixel is classified as convective if 1) its reflectivity value is above 40 dBZ, or 2) it
exceeds its area-averaged background reflectivity within an 11 km radius centered on the pixel. Surround-
ing pixels up to 5 km radius (based on background reflectivity value) can also be assigned as convective. All
connected convective pixels are grouped and, a collection of at least five connected pixels is labeled as a
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convective cell. Thus, the smallest cells that are considered to be resolved by the gridded CPOL radar have
an area of 31.5 km2.

For each convective cell, the averaged 10 dBZ echo-top height of the cell is determined as a proxy for the
intensity of the convection (i.e., deeper echo-top heights indicate stronger updrafts lofting larger particles
up in the troposphere). For better estimate of echo-top heights, only data in the range 20–140 km from
CPOL are analyzed. The radar processing procedures described above have been used in previous studies
over Darwin region (e.g., Kumar et al., 2013a) and over tropical Indian Ocean region (e.g., Hagos et al.,
2014a, 2014b).

The CPM component of this study focuses on the 1 January 2006 to 28 February 2006 monsoon period,
within the first CPOL season. The Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) is
used, with details of the model set-up provided in Table 1 and the simulation domain shown in Figure 1b.
The domain covers the region between 258S-58S and 1208E-1508E, with 2.5 km grid spacing and the simula-
tion is run without a cumulus parameterization. Lateral and surface boundary conditions are obtained from
ERA-Interim reanalysis (Dee et al., 2011) and are updated 6 hourly. Sea surface temperatures are prescribed
and are also updated 6 hourly. The reflectivity from the model is calculated online from a particle size

Table 1
Convection Permitting Model Simulation Configuration

Parameter or initial condition Configuration

Horizontal grid spacing
Cumulus
Longwave radiation

2.5 km
None
The Rapid Radiative Transfer Model (Mlawer et al., 1997)

Shortwave radiation The Rapid Radiative Transfer Model (Morcrette et al., 2008)
Microphysics Thompson (Thompson et al., 2008)
Boundary layer Yonsei State University scheme (Hong et al., 2006)
Surface, initial and boundary

condition data
Nu

ERA-Interim, updated every 6 hours

Number of vertical levels
Model top

30
50 hPa

Figure 1. (a) Example radar reflectivity snapshot at 2.5 km height showing the C-Pol radar site at Darwin, Australia. The black dot indicates the site and the red cir-
cle marks the approximate 150 km range of the radar. (b) Example simulated reflectivity snapshot at 2.5 km height showing the WRF model domain. The red circle
marks the CPOL area and the black circles mark the ‘‘virtual radar’’ areas, from which the reflectivities and convective cell mass fluxes simulated by the model are
extracted for analysis.
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distribution using a radar simulator (Smith, 1984). Evaluations of the model performance in representing
the radar-observed aspects of the convection are discussed throughout this paper, along with the analysis
of the results. In order to increase the sample size of simulated radar reflectivity from the 2 month long
model simulation, thirteen additional ‘‘virtual radar’’ sites are considered along the northern coast of Austra-
lia in addition to the Darwin CPOL site and the reflectivity fields from circular areas equivalent in size to the
CPOL radar domain (i.e., 150 km radius) are extracted (Figure 1b). The identification of convective cells
within the domains of fourteen ‘‘virtual radars’’ was done in the same way as for the observations.

For each of the convective cells identified in the simulation, the cloud-base mass flux was calculated. This
was done in two steps. First, the cloud-base height was identified for every grid column c identified as part
of a convective cell. The base was defined as the lowest level zbc for which the cloud liquid water content
qcloud zð Þ was both larger than a threshold value of 1025 kg kg21 and was below the level of peak qcloud . Sec-
ond, the cloud-base mass-flux per unit area for a convective cell was calculated as:

mb5
1
N

XN

c51

q zbcð Þw zbcð Þ (3)

where q is the density in kg m23 and w the vertical velocity in m s21 for the N individual grid columns com-
prising the cell. The cell mass flux is then

MB5mba5mbNDa (4)

with a the cell area and Da the area of a grid column. The distinction between the cell mass flux per unit
area, mb, and the cell mass flux, MB, is important for the discussion later.

3. Stochastic Modeling Framework

3.1. General Description
As discussed in the Introduction, this study aims to develop a modeling framework for representing the
evolution of the size distribution of convective cells. The general framework presented in this section is
common to the hierarchy of models we develop in this study. In the subsequent section, specific models
are constructed and evaluated against observations and the CPM simulations.

We define a state of the cloud population in a given domain by the size distribution of the convective cells:
i.e., a vector n, with elements ni denoting the number of cells of each possible size ai5iDa, where Da is the
area of a single grid point. Often in statistical mechanics population-dynamics problems like the one at
hand can be formulated in the form of a master equation. We follow that approach below, although the
dynamics will be evaluated numerically and we do not seek an analytic solution. In this context, the master
equation for the evolution of ni is given by:

dni

dt
5
X

j 6¼i

Wjinj2Wijni
� �

(5)

Wji is a transition rate from size aj to size aj and Wij is a transition rate from size ai to size aj . It is convenient
to define a size bin of zero area, a0, with n051, so that equation (5) describes the evolution for all i � 1 and
where W0i represents the formation of new clouds of size ai and Wi0 represents the removal of clouds of
size ai . For nonzero values of the indices, the first term on the right hand side represents the gain in the
number of clouds of size ai that have evolved from other sizes aj while the second term represents the loss
in the clouds of size ai due to their evolution into clouds of other sizes aj . For the origins, derivation and
applications of the master equation in other fields see for example, Gardiner (2004), van Kampen (2007),
and Liang and Qian (2010). In order to solve this set of coupled differential equations one has to know the
transition rates under the given environmental conditions. Obviously Wij and Wji are not known for general
conditions for all pairs of cell sizes but here we consider whether some simple assumptions may nonethe-
less be sufficient to produce W elements that give a reasonable description of the size distribution.

At any given time, we consider a number of convective pixels p within the domain of interest, so that the
fraction of the domain f covered by convective pixels is:
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f 5
pDa

Adomain
(6)

where Adomain is the area of the grid box. The model is evolved by removing and adding pixels with rates that
are determined respectively by the first and second terms on the right-hand side of the following equation:

dp
dt

5
1

a1mb1
2

P
iMBi

s
1�F

� �
(7)

a15Da is the area of a single pixel and mb1 is the cloud-base mass flux per unit area for such a pixel. The
forcing F with dimensions of mass flux per unit time dictates the rate of formation of new pixels and is
assumed to be provided as an input to the model according to the prevailing large-scale conditions. For
application in a GCM, F could be provided by an existing equilibrium-based closure calculation. When
divided by the denominator it becomes the number of pixels being added to the system per unit time. MBi

represents the cloud-base mass flux associated with the convective cells of size ai and the removal rate is
assumed to be such as to produce a simple Newtonian damping of the mass flux with an associated con-
vective relaxation timescale s. The damping characterizes the dissipation of momentum and thermal con-
trasts as the convective air mixes with the environment and instability is removed. The key assumption in
(7) is that the imbalance between cloud-base mass flux and the external forcing controls the amount of
instability for further growth of existing convective cells or formation of new cells. However the equation
does not specifically determine how this instability is distributed spatially and hence the size distribution of
the cells (i.e., the connections among convective pixels or lack thereof). This process presumably involves
internal variability as well as some degree of randomness. Furthermore note that equation (7) is perforce an
approximation, since the number of pixels is an integer which is written above as a continuous variable.
Whenever a pixel is added or removed in the model, it is further necessary to specify how that relates to
the existing state vector n in order to complete the definition of the transition matrix elements W.

Equation (7) is inspired by equation (1) with some key similarities and differences. A destabilizing role of the
forcing and a stabilizing role of the cloud-base mass flux are preserved in equation (7) but we assume the
large-scale forcing to be manifest directly in terms of the resulting area fraction of convection rather than
via an instability measure. In other words, the forcing for pixel number in equation (7) is assumed to be
related to the instability forcing in equation (1) by a factor of the form 1=cs that is treated as constant. The
obvious advantage of framing the forcing in this way is that the area fraction is directly observable using
radars. Moreover the large-scale forcing only determines the evolution of the total convective area fraction
and does not specifically determine what cloud sizes/types will be produced. Rather, the size distribution is
assumed to be controlled by internal cloud population dynamics that we aim to model below. Instead of
using equation (2) and an ansatz for the relationship between cloud-base mass flux and kinetic energy, we
make use of the CPM results (with support from the observations) to specify the relationship between
cloud-base mass flux and cell size as will be discussed below.

To determine the relation of an added pixel to the existing ones, we define a probability of growth vector
G such that Gi50 represents the probability that the new pixel will be located in free space away from exist-
ing cells while Gi>0 represents the probability that the new pixel will be located adjacent to an existing cell
of size ai and so will constitute growth of that cell. The probability that the pixel will land on a cloud free
space can be expressed as

G0512
X
i>0

Gi (8)

If a pixel is added to the free space then the state vector is updated by

n1 t1dtð Þ5n1 tð Þ11 (9)

whereas if a convective cell of size ai gains a pixel according to this procedure then the state vector is
updated by

ni11 t1dtð Þ5ni11 tð Þ11; ni t1dtð Þ5ni tð Þ21 (10)

Similarly the probability of decay vector D is defined as Di for i> 0 as the distribution of the probability that
cells of a given size will lose a pixel when a pixel is removed from the domain. If a pixel is removed from a
cell of size ai>1 then the corresponding state vector update is
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ni t1dtð Þ5ni tð Þ21; ni21 t1dtð Þ5ni21 tð Þ11 (11)

whereas the removal of a single-pixel cell corresponds to the update

n1 t1dtð Þ5n1 tð Þ21 (12)

The final n t1dtð Þ size distribution is obtained when all the dp pixels are added/removed to the domain one
at a time according to the procedure discussed above. The flow chart in Figure 2 summarizes the procedure.
For a given time-step, which in this case is 10 minutes (motivated by the amount of time it takes for the
CPOL radar to make a full circle), the given forcing determines the number of pixels to be added. These pix-
els are added one at a time as discussed above. The cells that gain these pixels are randomly drawn accord-
ing to the probability of growth G, and n is updated. The number of pixels to be removed is determined by
the cloud-base mass flux and they are removed by the process above. The cells that lose pixels are
randomly drawn according to the probability of decay D, and n is once again updated. The final n is then
used to calculate the new cloud-base mass flux, G and D for use in the next time step. In order to use
equation (7), it remains to specify a relationship for the cloud-base mass flux MBi , as a function of the ni cells
in that area category ai . Two different possibilities for such a relation will be considered in the models below.

Specific models constructed under this framework are defined by the assumed functional forms of the
probability of growth vector G, the probability of decay D and the cloud-base mass flux relationship. Hereaf-
ter we refer to these models as STOchastic Models for Population dynamics of convective clouds (STOMP).
Below we present and discuss the specific models, their corresponding assumptions, and evaluate their
degree of realism. The consideration of G and D leads to a tridiagonal transition matrix which does not take
account of (for example) merging and splitting of pre-existing cells. In the future, we aim to explore further
populating the transition matrix with observation-based and physically-sound elements to represent such
processes.

3.2. A Uniform Probability Model (STOMP-UP)
In the uniform probability (UP) model, we assume that new pixels can land anywhere in the domain inde-
pendent of the spatial distribution of the existing pixels. In other words, the existing convective cells have
no effect on where the new pixel is added. As we show and discuss below, such a model excludes impor-
tant processes that are likely to be important for the cloud population dynamics, but it constitutes a useful
base case for later developments. The growth vector in this model is thus defined only by the areas cur-
rently occupied by the corresponding cells: specifically, the probability that an existing cell of size ai will
grow by acquiring the new pixel is

Gi5
niai

Adomain
(13)

and the probability of formation of a new single-pixel cell G0 is given by the probability that the pixel lands
on the convection-free area, which is related to the convective area fraction f as

Figure 2. A flow-chart of the stochastic framework for modeling the population dynamics of con- vective clouds. In this
framework a model is defined by how the probability of growth (G), the probability of decay (D) vectors and the relation-
ship of mass flux with the convective cell size are specified.The green and red arrows represent a calculation at the cur-
rent time-step and input from the previous time-step respectively.
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G0512f (14)

Similarly the decay vector is defined so that all convective pixels in the domain have equal probability of
being removed, such that

Di5
ni
�ai

ðf �AdomainÞ
(15)

A relationship between convective cell size and cloud-base mass flux is also needed and the simplest possi-
bility is to assume a linear relationship. This is consistent with the common assumption that cloud-base
mass flux variations are dominated by the variation in the total area fraction and that variation in vertical
velocity is secondary (e.g., Kumar et al., 2015; Robe & Emanuel, 1996). Therefore the cloud-base mass flux
per unit area, mb in equation (4), is set to be constant, mbi5mb50:78 kg m22 s21, a mean value obtained
by averaging the cloud-base mass flux per area obtained from all of the convective cells in the CPM simula-
tion, regardless of their size.

Before discussing the behavior of this model, the nature and magnitude of the forcing deserves a brief dis-
cussion. No particular assumption is made about the origin of the forcing other than it maintains a certain
amount of average cloud-base mass flux in long-term sense while maintaining temporal behavior of inter-
est. In this particular study it either follows the solar cycle or it is constant in time. It is imposed on the sys-
tem in a form of a rate of change of cloud-base mass flux (equation (7)). Its long-term mean is given by a
domain-average cloud-base mass flux obtained from the CPM simulation of 0.01 kg m22 s21 divided by the
prescribed adjustment time s. This form of forcing is meant to make the coupling of stochastic model to a
broad range of traditional cumulus parameterizations rather straightforward. Given the rate of change of
deterministic mass flux from a traditional closure, this model would produce the stochastic cloud-base mass
flux without any reference to how the deterministic mass flux is calculated in the first place.

STOMP-UP is run for 10 years with a diurnally-varying forcing that mimics the solar cycle and its behavior is
examined for two adjustment times of s51 h and s54 h. Such values for the adjustment timescale are con-
sistent with values found in the literature for weak-temperature gradient studies of the interactions of con-
vection and the large scale (e.g., Daleu et al., 2015) and are representative of the time taken for gravity
wave signals to propagate across the domain and adjust the large-scale atmospheric state. Figure 3 shows
the mean diurnal cycle of the prescribed forcing (dashed line) and the response of the domain-mean cloud-
base mass flux for the two adjustment times. As one might expect the lag between the forcing and the

cloud-base mass flux is quite sensitive to the adjustment time: for a
smaller adjustment time the mass flux is closer to the phase of the
forcing, and the model would reduce to quasi-equilibrium for s! 0.
With s54 h the mass flux lags behind the forcing by about three
hours in agreement with the CPM simulated diurnal cycle of the
cloud-base mass flux.

Note that since the cloud-base mass flux is a linear function of cell
area (i.e., the mass flux per area is independent of cell size by design),
the total cloud-base mass flux in this case depends only on the total
convective area fraction, and not on the cell size distribution. None-
theless it is instructive to compare the cell size distribution from the
stochastic model (STOMP-UP) with those obtained from radar obser-
vations and the CPM simulation. That comparison is shown in Figure 4
as a function of the total convective area fraction. Since the numbers
of convective cells in the various size bins cover a broad range of
scales the frequency of cells is shown on a log-scale. It is immediately
apparent that the uniform probability model greatly underestimates
the frequency of large cells: for example, cells larger than 100 km2 are
practically absent. Clearly chance alone cannot explain the existence
of large convective cells found in both the CPOL observations and the
CPM simulation. Rather some physical mechanism must exist that
favors the formation of convective pixels in the neighborhood of

Figure 3. (a) Diurnal cycle of cloud base mass flux from the two STOMP-UP
simulations (color), from the CPM simulation. The prescribed diurnal forcing is
displayed in black dashed line. It is normalized by the daily mean and is there-
fore dimensionless.
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existing cells and hence allows growth of large cells. In other words the empty spaces among convective
cells must be less favorable for the formation of new convection than what a uniform probability suggests,
and the STOMP-UP model likely underestimates the probability of existing cells growing as their lifecycle
develops (Gi>0) and overestimates probability of new cell formation (Gi50).

It is well known that formation of new convective cells is not random. L�opez (1973, 1976, 1977) and Houze
and Cheng (1977) showed that the smaller convective cell sizes (below mesoscale dimension) over tropical
oceans follow a lognormal rather than a normal distribution. L�opez (1976) demonstrates mathematically
how the lognormal distribution is the frequency distribution of a variable that is subject to the law of pro-
portionate effects, i.e., a variable whose change in value at any step of a process is a random proportion of
the previous value of the variable. This interpretation is discussed in the book of Aitcheson and Brown
(1957), who traced the interpretation back to much earlier statistical work. If the change in a value of a vari-
able x is a random proportion of its current value, then after n steps the logarithm of x is normally distrib-
uted. Thus, it is evident that the growth mechanism of cells is important for determining their population
statistics. The growth of a cell is not a completely random amount but likely depends on the current size of
the cell.

While not accurate, the uniform probability stochastic model is informative to the extent that it identifies
the limitations of a purely random process for convective cell formation and growth. In the next subsection,
we take a closer look at the CPOL observations and CPM simulation to obtain a deeper insight into aspects
of the physics missing in the simple stochastic model and develop a more complex version that aims to
address these issues.

3.3. An Aggregation Probability Model (STOMP-AP)
As discussed above, an obvious limitation of the STOMP-UP model is that the uniform probability assump-
tion leads to a large number of isolated convective cells. These cells do not grow by chance because they
cover only a small fraction of the domain. In reality however, small cells grow quite readily and certainly
more strongly than their size suggests (Figure 4). Thus a physical mechanism for growth has to be incorpo-
rated, allowing convective pixels to aggregate into fewer, larger cells. Another important issue to consider is
the lifecycle of convective cells. In STOMP-UP, it is assumed that the convective cells grow by acquiring the
pixels assigned to them randomly with probability proportional to the fraction of the domain they cover. If
that is the case, the mean size of convective cells in a scene at any time is proportional to the number of
cells in the scene. Figure 5 shows the diurnal cycles of the number of convective cells and mean cell sizes
from STOMP-UP model compared with those from the CPM simulation and the CPOL observations. In addi-
tion to the expected differences in the magnitude of size and number of cells, there is a phase difference in
the diurnal cycle. For STOMP-UP, the evolution of the number of convective cells and mean cell size are in
phase while the larger cells appear several hours after the peak number of cells for the CPM or for the CPOL
radar observed cells.

One potential growth mechanism arises through humidification by detrainment from the clouds. As Cohen
and Craig (2004) and Craig and Mack (2013) note, the subsidence effect of a convective cell is more or less

Figure 4. The logarithm of size distribution of convective cell size as a function of the total area fraction for (a) the STOMP uniform probability model, (b) CPM sim-
ulation, and (c) C-Pol observation.
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uniformly distributed in the surrounding space through the rapid action of gravity waves, while the moist-
ening effect is a much slower process because moisture has to be carried away from the cell by much
slower advection processes. This could make environments near existing convection relatively humid and
so potentially more favorable for the development of new convection. In an idealized modeling study, Craig
and Mack (2013) demonstrated that the incorporation of such a distinction between the warming and
moistening effects of convection can lead to the formation of larger dry and moist areas through a process
which they refer to as coarsening.

A simple way to represent a localized moistening process (or lifecycle processes in the development of cells,
other indeed any other processes which favor the local growth of convection) in our framework is to modify
the probability of growth vector G. Specifically we introduce a single parameter d to describe the relative
probability of growth of existing cells to the formation of new cells. Equations (13) and (14) are modified to

Gi>05
dniai

Adomain
(16)

and

G05ðmaxð12d�f Þ; 0Þ (17)

respectively. The probability vector G is normalized such that the sum
of its elements is 1.0. Physically d can be interpreted as determining
how likely a new convection pixel is to be formed in the vicinity of an
existing convective cell in comparison to a clear environment.

One could also modify the representation of the warming and stabiliz-
ing effect of convection, but as Craig and Mack (2013) argued, the
warming effect of convection is likely to act relatively uniformly across
the whole domain. Lacking a strong motivation to do otherwise, we
leave the probability of decay vector D unchanged.

We consider the effect of the d parameter on the diurnal cycle of con-
vective cell count and mean cell size. Figure 6 shows the diurnal cycle
of these quantities for d 5 1 (as in STOMP-UP), 15 and 30. As intended,
with increasing d the number of small isolated cells decreases and so
the mean cell size increases. Importantly, the mean cell size peaks sev-
eral hours after the cell number for the case of d 5 30 rather than
peaking at around the same time as in d 5 1. A larger d parameter
results in qualitatively better agreement with the observations and
CPM simulation. This can be interpreted as that the probability of
forming a convective pixel in the vicinity of an existing cell is around

Figure 5. The mean diurnal cycle of the number of convective cells (blue) and mean cell size (red) for (a) the STOMP uniform probability model, (b) the CPM simu-
lation and (c) C-Pol radar.

Figure 6. Same as Figure 5, for STOMP Uniform Probability (d 5 1.0, solid lines)
and STOMP Aggregation Probability model with d 5 15.0 (dashed lines) and
d 5 30.0 (dotted lines).
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30 times more likely than forming a new isolated pixel. We could conceivably develop a more sophisticated
representation of G with dependencies on environmental conditions, or on the sizes and number of existing
cells, according to the dominant local enhancement process that is assumed. The constant d parameter
introduced here is simply a demonstration of the framework.

In developing the reference STOMP-UP model discussed in the last section and in modifying G as just dis-
cussed above, the cloud-base mass-flux per area was assumed to be constant and so the way in which con-
vective pixels are spatially distributed has no bearing on the total cloud-base mass flux. Thus, the total cloud-
base mass flux in the domain is proportional to the number of pixels irrespective of whether the pixels exist
as individual cells or are connected into a large convective cell. This assumption can be tested using the CPM
simulation results and the CPOL observations. Figure 7a shows the CPM simulation results for the mean
cloud-base mass flux per unit area plotted as functions of cell area and convective area fraction. It is apparent
that for given the area fraction, the cloud-base mass flux per unit area increases with the cell area. This implies
that even for the same total area fraction (the same number of convective pixels), the scenes with larger cells
will have a larger domain-average cloud-base mass flux. The dependence may be interpreted in terms of the
entrainment and detrainment of mass into and out of convective cells (e.g., de Rooy et al., 2013). Smaller con-
vective plumes have a larger perimeter to area ratio rendering them relatively more exposed to the drier and
less buoyant environment. In comparison larger convective cells are more likely to have individual updrafts

enclosed within the interior of the cell and shielded from direct interac-
tions with environmental air. Convectively induced cold pools are
reported to facilitate such cloud-cloud and cloud-environment interac-
tions (Feng et al., 2015). As a consequence of the interactions, larger
cells are more likely to grow deep, and this may be observed from the
corresponding cell-average 10 dBZ echo-top heights (Figure 7c). Unfor-
tunately cell-level observation of cloud-base mass flux is not directly
available from the radar observations and so we consider the cell-
average 10 dBZ echo-top height from the CPOL radar as a proxy.
Remarkably the relationship between cell size and echo-top height
from the CPM simulation is in good agreement with the observation in
describing how the observed cell-average echo-top height increases
with cell size, consistent with the behavior of organized convection
associated with the Madden-Julian Oscillation over tropical oceans
(Hagos et al., 2014a). This point provides us with some confidence that
the CPM simulation results are fit for the purpose of deriving a relation-
ship between cloud-base mass flux and convective cell area.

Figure 8 shows the CPM relationship between convective cell size ai

and the cloud-base mass flux per unit area mbi . The cloud-base mass

Figure 7. (a) cloud base mass flux from the CPM simulation, (b) 10dBZ echotop height as a function of total convective area fraction and cell size for the CPM simu-
lation and (c) same for the C-Pol radar.

Figure 8. The relationship between cloud-base mass flux per unit area and con-
vective cell size. The red regression lines are used to parameterize the
relationship.
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flux increases by around a third up to a cell area of about 500 km2 and more gradually for larger cell areas.
A reasonable and simple approximation is provided by two linear relationships of the form

mbi5k1l
ai2a1

a1

� �
(18)

where k and l are the fitted parameters corresponding to the red lines in Figure 8. Substituting equation (18)
into equation (4) results in a nonlinear relationship between the cell cloud-base mass flux MBi and cell area:

Mbi5 k1l
ai2a1

a1

� �� �
ni ai (19)

Specifically, for ai � 500 km2, we use k5 0.3 kg m22 s21, l5 0.023 kg m22 s21, and for ai > 500 km2, we
use k50.54 kg m22 s21, l5 0.0027 kg m22 s21, respectively.

Figure 9. 30 day timeseries of the area average convective mass flux from (a,b) STOMP-UP and (c,d) STOMP-AP using the linear (red lines) or nonlinear (blue lines)
relationship between cloud- base mass flux and cell area. The adjustment time (s) used is 1 h for Figures 9a and 9c and 4 h for Figures 9b and 9d.

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001214

HAGOS ET AL. 459



In the remainder of this section we present the model behavior with modified G under the linear and non-
linear relationship between cloud-base mass flux and cell size. For brevity this version of the model will be
referred to as STOMP-AP (Aggregation Probability) to highlight the fact that the probability of cell growth
favors aggregation.
3.3.1. Response to Constant Forcing
The behaviors of the linear and nonlinear versions of the STOMP-AP model in comparison to those of
STOMP-UP are examined. Eight one year long simulations are performed. The simulations differ by whether
they are linear (equation (4)) or nonlinear (equation (18), the relationship between cloud-base mass flux and
cell area, as discussed in section 3b), the stochastic model used (STOMP-UP with d 5 1 and STOMP-AP with
d 5 30 in equations (16) and (17)) and the adjustment time (s 5 1 h or 4 h). A steady forcing equivalent to
adding 8 and 2 pixels of area a1531:5 km2 every 15 minutes for adjustment timescales of one and four
hours respectively is prescribed. In both cases the forcing results in the equilibrium cloud-base mass flux
per area of 0.0097 kg m22 s21 and 0.0078 kg m22 s21, respectively, which are comparable to the long-term
mean obtained from the CPM simulation.

Time series for the area-averaged cloud-base mass flux in the simulations are shown in Figure 9. As
expected, all of the linear simulations produce a steady equilibrium solution, and because the cloud-base
mass flux per area is independent of cell size in these runs, any stochasticity of the cell sizes has no impact
on this diagnostic. For the nonlinear solutions, however, the cloud-base mass flux per unit area depends on
cell size, and hence the stochasticity in the instantaneous distribution of cell sizes manifest in modifying the
averaged mass flux. Using the STOMP-UP formulation, the cell size variability is small (recall Figure 4a) and
so the stochasticity remains weak and the solution for averaged cloud-base mass flux remains close to the
corresponding linear simulations (Figures 9a and 9b). As we investigate in more detail below, the STOMP-
AP formulation produces cells covering a broader range of sizes. With d510:0 the amplitude of the cloud-
base mass flux fluctuation increases dramatically (Figures 9c and 9d).

In order to understand what is happening in this case, suppose that the system starts in a quiescent state
with a few small cells. By virtue of their small number and size, these cells are unlikely to grow and instead
new cells will be formed. The cloud-base mass flux increases rather gradually with the increase in the num-
ber of cells. Later, as some cells grow larger, the nonlinear effects of aggregation G on one hand and the
nonlinear dependence on mass flux on the other result in a rapid increase of cloud-base mass flux. This can

produce cloud-base mass flux that overshoots the equilibrium. The
damping term D in the pixel evolution equation (equation (15)) then
becomes more important than the forcing and leads back toward a
quiescent period. Such an evolution is reminiscent of the recharge-
discharge cycle response to steady forcing found by Yano and Plant
(2012), albeit with a different origin for the nonlinear growth phase.
Here the nonlinearity arises because larger cells account for more
than their share (by area) of the cloud-base mass flux in the system
and because those larger cells are allowed to develop preferentially
over small isolated cells. The adjustment timescale influences the fre-
quency of this oscillation. Larger adjustment time-scale leads to the
appearance of lower frequency of oscillation and episodes of poten-
tially large cloud-base mass flux because some convective cells would
have more time to grow.
3.3.2. Response to Diurnal Forcing
We now consider the response of the STOMP-AP model to a diurnally-
varying forcing. The diurnal variation of the forcing is identical to that
shown in Figure 3, with its amplitude chosen to produce a mean
cloud-base mass flux that is comparable to that obtained from the
CPM simulation about 0.01 kg m22 s21. For this case we set d 5 30
and s 5 4 h.

Figure 10 shows the diurnal cycle of the cloud-base mass flux. The lin-
ear and nonlinear models produce similar lags of the mass flux peak
compared to the forcing, in agreement with that in the CPM

Figure 10. 100 day average of the diurnal cycle of cloud-base mass flux from
STOMP-AP simulations using the linear (red) or nonlinear (blue) relationship
between cloud-base mass flux and cell area. Also shown are results from the
CPM simulation (green). The forcing (displayed in dashed line) is normalized by
the daily mean and is therefore dimensionless.
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Figure 11. An example of the evolution of convective cell population simulated by STOMP Aggre gation Probability model under diurnally varying forcing (dashed
solid line, Figure 10).
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simulation. However, it is noteworthy that the nonlinear model produces an additional lag of around an
hour relative to its linear counterpart. In the linear case, the area-averaged cloud-base mass flux depends
only on the total area fraction and hence the lag is determined by the adjustment time, as previously dis-
cussed. Recall that by design the STOMP-AP model has a lag between the peak number of cells and the
peak in the mean cell size (Figure 6) as also found in observations and the CPM simulation (Figure 5). For
the nonlinear model a large number of small cells provides less cloud-base mass flux than a small number
of large cells, and hence the delay of STOMP-AP in producing large cell sizes also induces a delay in the
mass flux peak.

To illustrate these points, an example diurnal cycle of cell number and size evolution in STOMP-AP for an
arbitrary day is shown in Figure 11. In conjunction with Figure 6, it suggests that the diurnal cycle of cloud
populations can be considered in three stages.

1. With the onset of the forcing at 06 AM, small convective cells start to appear and their number increases
throughout the morning, peaking around noon.

2. From early afternoon larger cells start to appear. The mean size of the cells peaks around 03 PM, by
which time the number of cells is reduced because of the preferential growth of the larger cells (or,
equivalently, due to the relatively unfavorable environment for new, isolated, convective pixels).

Figure 12. The logarithm of the size distribution of convective cells as a function of area fraction for (a) STOMP-AP with linear dependence of cell mass flux on cell
area, (b) STOMP-AP with nonlinear dependence of cell mass flux on cell area, uniform probability model, (c) CPM simulation, and, (d) C-Pol observations.
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3. Late in the afternoon and through the night, as the forcing declines, the convective cells decay, with
reductions to both mean number and size.

Having demonstrated some interesting and encouraging behavior from the STOMP-AP model we can now
revisit our objective of using it to predict the size distribution of convective cells, and the dependence of
that distribution on the total area fraction. Figure 4 shows that the STOMP-UP model greatly overestimates
the number of small cells and underestimates the number of larger cells. Such limitations motivated the
development of STOMP-AP, which can account for aggregation of cells and the nonlinearity of mass flux
dependence on cell size. Comparison of Figure 12 and Figure 4a shows that both the linear and nonlinear
forms of STOMP-AP greatly improve the size distribution over STOMP-UP. There is slight difference between
the two in that the nonlinear model generally produces larger cells, in better agreement with observations
and the CPM simulation. On the other hand, the nonlinear model somewhat underestimates the frequency
of smaller cells and overestimates the frequency of larger cells at the higher values of the total area fraction.

4. Conclusion

This article proposes a new prognostic framework for understanding the population dynamics of convective
clouds and representing them in climate models. The approach used follows the nonequilibrium statistical
mechanical approach to modelling population dynamics through a master equation. The aim is to represent
the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux,
given a large-scale forcing for the convective area.

In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective
clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics, which may
depend on the convective cell size ai . These characteristics are (i) the probability of growth Gið Þ, (ii) the
probability of decay Dið Þ, and (iii) the cloud-base mass flux MBi . STOMP models are constructed and evalu-
ated against CPOL radar observations at Darwin, Australia and CPM simulations. In the first model, the evo-
lution of convective cell sizes is treated through the random addition and removal of convective pixels with
a uniform probability (STOMP-UP) across the domain. Thus, a new pixel is sited irrespective of whether the
location is currently convective or environmental. The cloud-base mass flux of a cell is assumed to be a lin-
ear function of cell size. It was shown that STOMP-UP underestimates the frequency of large convective cells
(Figure 4) and that it has diurnal cycles of the mean numbers of cells and mean cell sizes in phase, while for
observations and the CPM the latter lags by about three hours (Figure 5).

To overcome those deficiencies we developed the STOMP-Aggregation Probability model (STOMP-AP), in
which the probability of growth is modified such that a simple aggregation parameter d allows growth of
existing cells to be favored over the formation of new ones. The aggregation parameter was chosen to
reproduce the observed lag between the diurnal cycles of the mean numbers of cells and the mean cell
sizes (Figure 6). We also used CPM simulation results to develop the model further, demonstrating that
cloud-base mass flux is a nonlinear function of cell size (Figures 7 and 8), and incorporated the fitted rela-
tionship within STOMP-AP. Under steady forcing, the model with aggregation and with nonlinear depen-
dence of mass flux on convective cell size can result in a solution with a stochastic oscillation: this is
between a ‘‘recharge’’ period when small convective cells increase in number but mass flux and mean cell
size are relatively low, and a ‘‘discharge’’ period when large cells appear and the damping due to their asso-
ciated mass flux overwhelms the forcing, thereby reducing the number of convective cells (Figure 9d).
Under a diurnally-varying forcing, the nonlinearity increases the lag between peak forcing and the mass
flux peak because much of the mass flux is carried by the larger cells which form later in the afternoon (Fig-
ure 10). Finally it was shown that the treatment of aggregation and (to a lesser extent) the nonlinearity leads
to much-improved cell size statistics for a given total convective area fraction (Figure 12) compared to the
linear model.

Besides its use in developing understanding of convection processes and the controls on convective size
distributions, this framework is also designed to be capable of providing alternative, nonequilibrium, closure
formulations for spectral mass flux parameterizations. Given the appropriate forcing from the host climate
model (which could be estimated from the pre-existing closure method in many GCMs), the framework can
be used to evolve the cloud-base mass flux according to the assumed cloud population dynamics. In addi-
tion it provides a spectrum of convective cell sizes, which may be used to close a spectral parameterization
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(e.g., Plant & Craig, 2008; Wagner & Graf, 2010; Zhang & McFarlane, 1995) for which cloud processes can be
treated more directly at the cloud scale, with possible benefits for radiative processes, aerosols and micro-
physical processes (e.g., Song et al., 2012) involved in the formation of stratiform rain and MCSs. The cell
size distribution may also be useful for the treatment of scale-awareness in grey zone parameterizations,
through including only a suitable part of the convective cell size spectrum for the calculation of unresolved
mass flux. Future work will involve incorporation of this framework into a mass flux cumulus scheme and
examination of its impact on model climatology and variability.
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