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Abstract

Background and purpose

Increasing evidence suggests that the omega-3 polyunsaturated acids (n-3 PUFA), docosa-

hexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are beneficial to cardiovascular

health, promoting relaxation of vascular smooth muscle cells and vasodilation. Numerous

studies have attempted to study these responses, but to date there has not been a system-

atic characterisation of both DHA and EPA mediated vasodilation in conduit and resistance

arteries. Therefore, we aimed to fully characterise the n-3 PUFA-induced vasodilation path-

ways in rat aorta and mesenteric artery.

Methods

Wire myography was used to measure the vasomotor responses of freshly dissected rat

mesenteric artery and aorta. Arteries were pre-constricted with U46619 and cumulative con-

centrations of either DHA or EPA (10 nM-30 μM) were added. The mechanisms by which n-

3 PUFA relaxed arteries were investigated using inhibitors of vasodilator pathways, which

include: nitric oxide synthase (NOS; L-NAME), cycloxygenase (COX; indomethacin), cyto-

chrome P450 epoxygenase (CYP450; clotrimazole); and calcium-activated potassium

channels (KCa), SKCa (apamin), IKCa (TRAM-34) and BKCa (paxilline).

Results

Both DHA- and EPA-induced relaxations were partially inhibited following endothelium

removal in rat mesenteric arteries. Similarly, in aorta EPA-induced relaxation was partially

suppressed due to endothelium removal. CYP450 also contributed to EPA-induced relaxa-

tion in mesenteric artery. Inhibition of IKCa partially attenuated DHA-induced relaxation in

aorta and mesenteric artery along with EPA-induced relaxation in mesenteric artery. Fur-

thermore, this inhibition of DHA- and EPA-induced relaxation was increased following the

additional blockade of BKCa in these arteries.
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Conclusions

This study provides evidence of heterogeneity in the vasodilation mechanisms of DHA and

EPA in different vascular beds. Our data also demonstrates that endothelium removal has

little effect on relaxations produced by either PUFA. We demonstrate IKCa and BKCa are

involved in DHA-induced relaxation in rat aorta and mesenteric artery; and EPA-induced

relaxation in rat mesenteric artery only. CYP450 derived metabolites of EPA may also be

involved in BKCa dependent relaxation. To our knowledge this is the first study indicating the

involvement of IKCa in n-3 PUFA mediated relaxation.

Introduction

Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide and according to

the World Health Organisation, CVDs account for up to 31% of all deaths globally. One of the

major risk factors associated with CVDs is endothelial and vascular dysfunction which causes

impairment of vascular relaxation and reactivity [1]. Endothelium lines the interior surface of

blood vessels and has a critical role in the production of various vasodilators such as nitric

oxide (NO), prostaglandins, endothelium-dependent hyperpolarization (EDH) and endothe-

lium-derived hyperpolarization factors (EDHFs) that include; hydrogen peroxide and cyto-

chrome P450 (CYP450) metabolites of arachidonic acid (AA) [2–6].

The cardioprotective effects of omega-3 long chain polyunsaturated fatty acids (n-3

PUFAs) or “fish oils” were first identified in Greenland and Japanese populations where the

mortality rate from CVDs were significantly less compared to Western populations [7, 8].

These beneficial effects were attributed to high consumption of fish; subsequently clinical and

epidemiological studies on n-3 PUFAs reported therapeutic benefits to health [9]. The benefi-

cial effects of n-3 PUFAs include providing protective cardiovascular effects, enhancing brain

function, attenuating the risk of cancer, and inhibiting inflammation [10–12]. There are three

main types of n-3 PUFAs found in fish: alpha linolenic acid (ALA, 18:3), eicosapentaenoic acid

(EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) [13]. DHA and EPA are primarily associ-

ated with the beneficial effects of n-3 PUFAs, including vasodilation [14].

Vascular studies have reported that dietary fats can affect endothelial function and overall

vascular tone [15]. For example, AA is an omega-6 PUFA involved in numerous signalling

pathways including vasodilation—reviewed in [4, 6, 16–18]. Different enzymes are involved in

the production of metabolites of AA, also known as eicosanoids, these include; cycloxygenase

(COX)-derived series-2 prostaglandins (e.g. PGI2) and cytochrome P450 epoxygenase

(CYP450)-derived epoxyeicosatrienoic acids (EETs) both of which are known to evoke vasodi-

lation [16, 17]. Similar to AA, n-3 PUFAs can also be found as free fatty acids and can be

released from membrane phospholipids via the activity of phospholipase A2 (PLA2) [19, 20].

n-3 PUFAs compete with AA as substrates for many enzymes including those involved in the

production of AA-derived eicosanoids [21, 22]. For example, EPA and DHA produce COX

metabolites (series-3 PGs), CYP450 metabolites known as epoxyeicosatetraenoic acids

(EpETEs) derived from EPA [23] and epoxydocosapentaenoic acids (EDPs) derived from

DHA [22] which are all involved in vasodilation [24–26].

n-3 PUFAs can improve endothelial function and vascular reactivity in both healthy volun-

teers and patients suffering from cardiovascular disorders [27–29]. These studies indicated an

increased arterial vasodilatation following the dietary inclusion of n-3 PUFAs; the mechanisms
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involved can differ depending upon the n-3 PUFA studied [28]. One mechanism proposed to

be involved in these responses is the improved bioavailability of NO [29]. However, n-3

PUFAs also compete with AA for various enzymes involved in vasodilation [30], indicating

that these vasodilator pathways also contribute to n-3 PUFA mediated relaxation. For example,

EDPs derived from DHA metabolism by CYP450s are involved in vasodilation of porcine cor-

onary arteries [25]. Similar to AA-derived EETs, these EDPs were reported to activate large

conductance calcium activated potassium channels (BKCa) resulting in hyperpolarization and

relaxation of vascular smooth muscle cells (VSMCs). COX metabolites of EPA are also

reported to be involved in n-3 PUFA mediated vasodilation [24]. These studies indicate that n-

3 PUFAs evoke relaxation through an endothelium-dependent mechanism, but there is also

evidence that they may act directly on VSMCs via uncharacterized mechanisms [27].

Few studies have looked in depth into the individual vasodilation mechanisms of DHA and

EPA and different mechanisms are reported to be involved, depending upon the type of artery

and n-3 PUFA studied. Therefore, this study focused on the detailed characterisation of com-

mon vasodilation pathways including NO, COX, CYP450 and EDH-like responses in the indi-

vidual vasodilator effects of DHA and EPA. We conducted these studies in a conduit artery

(aorta) and a resistance artery (mesenteric artery) of rats as the vasodilator mechanisms in

these artery types show considerable heterogeneity; the NO pathway dominating in conduit

arteries and a greater contribution of EDH in resistance arteries [6, 31]. We confirm the role of

BKCa and provide evidence of a novel role for intermediate KCa (IKCa) channels in relaxation

mediated by DHA in rat aorta and mesenteric artery along with EPA-induced relaxation in rat

mesenteric artery.

Methods

Male Wistar Kyoto (WKY, 8–12 weeks, 200–300 g) rats were killed according to schedule one

of the Animals (Scientific Procedures) Act 1986 and thus was given an ethical approval waiver

by the University of Reading Animal Welfare and Ethical Review Board (AWERB). To ensure

death, an inhaled overdose of isoflurane was immediately followed by cervical dislocation. The

aortic and mesenteric vascular beds were dissected from WKY rats and immediately placed in

ice-cold isotonic Krebs solution containing (mM): CaCl2, 2.5; glucose, 11; KCl, 3.6; KH2PO4,

1.2; MgSO4.7H2O, 1.2; NaCl, 118 and NaHCO3, 24. Segments of aorta and third order mesen-

teric arteries (~2 mm of length) were mounted in Mulvany-Halpern wire myograph (Danish

MyoTechnology, 620M). The tissues were immersed in Krebs solution bubbled with 95% O2/

5% CO2 and subjected to zero tension followed by equilibration at 37˚C for 20 minutes. The

tissues were then stretched to a standardized tension of 7–13 mN (aorta) and ~3 mN (mesen-

teric artery) according to the DMT normalization module in Labchart 7. Tension was mea-

sured using isometric force transducer connected to PowerLab (ML846; AD Instruments, UK)

and a computer running Labchart 7 software (AD Instruments, UK). All arteries were tested

for functional endothelium by preconstricting them with the thromboxane A2 receptor (TP)

agonist, U46619 (5–100 nM) followed by the addition of acetylcholine (ACh, 1 μM) to induce

vascular relaxation. Arteries that exhibited >90% relaxation were considered to have viable

endothelium. A stable sub-maximal tone (~ 50–80% of maximum) was elicited with U46619

(5–100 nM) and n-3 PUFA mediated relaxations were investigated through cumulative addi-

tion with increasing concentrations (10 nM—30 μM). In some experiments the endothelium

was removed to assess its role in n-3 PUFA mediated relaxation by gently rubbing the inner

layer of the arteries with either a stainless steel wire (Diameter: 250 μm) (aorta) or gold plated

tungsten wire (Diameter: 25 μm) (mesenteric artery). Arteries with<10% relaxation to ACh

(1 μM) were considered to have functional removal of endothelium. Following the control
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concentration response curve, in the same arterial rings, inhibitors were incubated for at least

20 mins before preconstricting to a similar level of tone as was achieved in the control experi-

ment by adjusting the concentration of U46619 (5–100 nM), if necessary. The role of eNOS,

COX, CYP450 and EDH-like responses were assessed on DHA- and EPA-mediated relaxation.

NO, COX and CYP450 pathways were blocked by: the selective nitric oxide synthase inhibitor

L-NAME (300 μM), the selective cycloxygenase inhibitor indomethacin (10 μM) and the non-

selective CYP450 inhibitor clotrimazole (1 μM) respectively. In order to investigate the EDH

response, experiments were conducted in the presence of L-NAME to prevent the effect of

basal NO release or NO mediated responses. The KCa channels involved in EDH responses

were inhibited with the specific blockers, apamin (SKCa blocker, 50 nM), TRAM-34 (IKCa

blocker, 1 μM) and paxilline (BKCa blocker, 1 μM). Often EDH-like responses require block-

ade of all 3 subtypes of KCa generally the combination of SKCa and IKCa is sufficient to block

this pathway [6]. We initially added apamin which failed to affect responses; therefore, we then

assessed the combination apamin and TRAM-34 which would elucidate the role of IKCa. As

residual relaxation was observed following this combination, the further contribution of BKCa

(and thus the total EDH/EDHF component of relaxation) was assessed by adding paxilline to

this blocking cocktail.

Data analysis and statistical procedures

Results are expressed as mean±SEM of n experiments, where n refers to the number of biologi-

cal replicates each obtained from a separate animal. Data analysis was carried out using Graph-

Pad Prism 5 (v5.0, GraphPad Software, San Diego, CA, USA). Relaxation response was

measured as percentage reduction of the stable tone induced by U46619 (5–100 nM). One-way

analysis of variance (ANOVA) and Bonferroni’s post-hoc test or two-tailed Student’s t-test (as

appropriate) were used for statistical comparison of the concentration response curves in

GraphPad Prism 5 (GraphPad, USA). P-value of< 0.05 was considered as being statistically

significant.

Drugs, chemicals, reagents and other materials

All inhibitors were obtained from Sigma (Poole, UK). Salts for Krebs solution were obtained

from Fisher Scientific (Loughborough, UK) with the exception of CaCl2 and MgSO4.7H2O

which were acquired from Sigma. Apamin, L-NAME (L-NG-Nitroarginine methyl ester) and

acetylcholine were dissolved in distilled water. Clotrimazole (1-[(2-Chlorophenyl)(diphenyl)

methyl]-1H-imidazole), indomethacin (2-{1-[(4-Chlorophenyl)carbonyl]-5-methoxy-

2-methyl-1H-indol-3-yl}acetic acid), paxilline ((2R, 4bS, 6aS, 12bS, 12cR, 14aS)-4b-hydroxy-2-

(1-hydroxy-1-methylethyl)-12b, 12c-dimethyl-5, 6, 6a, 7, 12, 12b, 12c, 13, 14, 14a-decahydro-

2H-chromeno [5’,6’: 6,7] indeno [1,2-b] indol-3(4bH)-one), TRAM-34 (1-[(2-chlorophenyl)

diphenylmethyl]-1H-pyrazole) and U46619 (9,11-dideoxy-9α,11α-methanoepoxy PGF2α)

were dissolved in 100% dimethyl sulphoxide (DMSO). DHA and EPA were dissolved in 100%

ethanol and subsequent dilutions were carried out in distilled deionized water. All stock drugs

were prepared at 10 mM with the exception of L-NAME (100 mM), indomethacin (100 mM)

and apamin (100 μM).

Results

For all experimental groups EC50 and maximum relaxation (Emax %) to each n-3 PUFA were

calculated and can be found in supplemental materials (Table A in S1 File). A pooled analysis

of control curves for DHA and EPA mediated relaxation (Table B in S1 File) demonstrated

that there was no difference in the Emax but that DHA was significantly more potent at evoking
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relaxation in both mesenteric artery (n = 19–20, P<0.05) and aorta (n = 17–18, P<0.05;

Table B in S1 File).

Role of endothelium in n-3 PUFA-dependent relaxation of rat mesenteric

artery and aorta

Endothelium has a critical role in maintaining vascular homeostasis therefore we assessed the

contribution of endothelium to DHA and EPA mediated vasodilation. Both n-3 PUFAs

evoked concentration dependent relaxation of mesenteric artery and aorta. Relaxations to

both DHA and EPA were partially inhibited following endothelium removal in rat mesenteric

arteries (Fig 1A and 1B) (n = 5–6, P<0.05). Similarly, in aorta EPA-induced relaxation was

partially suppressed following endothelium removal (Fig 1D, n = 6, P<0.05). However, DHA-

induced relaxation was unaffected by the removal of endothelium in aorta (Fig 1C, n = 7).

Role of eNOS and COX in n-3 PUFA-dependent relaxation of rat

mesenteric artery and aorta

In rat mesenteric artery, DHA and EPA-induced relaxation are unaffected by the inhibition of

eNOS (L-NAME, 300 μM) and the additional inhibition of COX (indomethacin, 10 μM)

Fig 1. The effect of endothelium removal in n-3 PUFA-induced relaxation of rat arteries preconstricted with U46619. (A) DHA (n = 5) and (B)

EPA-induced relaxation of rat mesenteric artery following endothelium removal (n = 6). (C) DHA (n = 7) and (D) EPA-induced relaxation of rat aorta

following endothelium removal (n = 6). Data are expressed as mean±SEM. � Indicates P<0.05, significant difference from control curve was assessed by

one-way ANOVA followed by Bonferroni post-test.

https://doi.org/10.1371/journal.pone.0192484.g001
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(Fig 2A and 2B) (n = 5). Similarly, in rat aorta both DHA- and EPA-induced relaxations were

not altered in the presence of L-NAME alone, or in combination with indomethacin (Fig 2C

and 2D) (n = 5).

Role of CYP450 in n-3 PUFA-dependent relaxation of rat mesenteric artery

and aorta

The effect of CYP450 epoxygenase inhibition on n-3 PUFA-mediated relaxation was investi-

gated in rat mesenteric artery and aorta. Fig 3A and 3C demonstrate that non-selective inhibi-

tion of CYP450 (clotrimazole, 1 μM) did not modify the relaxant effects of DHA in rat

mesenteric artery and aorta (n = 5 and 6, respectively). In contrast, EPA-induced relaxation in

rat mesenteric artery and aorta were both partially inhibited with clotrimazole (1 μM) as

shown in Fig 3B and 3D (n = 5, P<0.05). These findings indicate that CYP450 epoxygenase

metabolites of EPA are involved in vasodilation.

Role of KCa channels in n-3 PUFA-dependent relaxation of rat mesenteric

artery

The EDH pathway is an integral component of endothelium-dependent relaxation in resis-

tance arteries [32]. This pathway was investigated through the blockade of KCa channels

Fig 2. The effects of L-NAME and indomethacin in n-3 PUFA-induced relaxation of rat arteries preconstricted with U46619. (A) DHA- and (B)

EPA-induced relaxation of rat mesenteric artery in the presence of L-NAME (300 μM) and subsequent addition of indomethacin (10 μM) (n = 5). (C)

DHA- and (D) EPA-induced relaxation of rat aorta in the presence of L-NAME and subsequent addition of indomethacin (n = 5). Data are expressed as

mean±SEM. � Indicates P<0.05, significant difference from control curve was assessed by one-way ANOVA followed by Bonferroni post-test.

https://doi.org/10.1371/journal.pone.0192484.g002
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responsible for subsequent hyperpolarization and relaxation of VSMCs. Pre-treatment of rat

mesenteric artery with the combination of L-NAME and the SKCa channel inhibitor, apamin

(50 nM), did not modify DHA-induced relaxation. However, additional inhibition of IKCa

with TRAM-34 (1 μM) partially inhibited this relaxation (n = 5, P<0.05) (Fig 4A). Subsequent

addition of the BKCa inhibitor, paxilline (1 μM) further inhibited DHA-induced relaxation

(Fig 4A) (P<0.05). Consistent with these findings using identical experimental conditions,

inhibition of IKCa and BKCa channels also inhibited EPA-induced relaxations in rat mesenteric

artery (Fig 4B n = 5, P<0.05).

Role of KCa channels in n-3 PUFA-dependent relaxation of rat aorta

While EDH is not the predominant vasodilation mechanism in the aorta, KCa channels are

present and can affect dilator responses [33–36]. Combined inhibition of eNOS with L-NAME

(300 μM) and SKCa with apamin (50 nM) did not modify DHA-induced relaxation (Fig 5A).

However, subsequent inhibition of IKCa with TRAM-34 (1 μM) led to partial attenuation of

DHA-induced relaxation which was enhanced upon additional inhibition of BKCa with paxil-

line (1 μM) (n = 5, P<0.05). In contrast, combined inhibition of eNOS, SKCa, IKCa and BKCa

did not affect the EPA-induced relaxation of rat aorta (Fig 5B) (n = 5).

Fig 3. The effect of clotrimazole in n-3 PUFA-induced relaxation of rat arteries preconstricted with U46619. (A) DHA- and (B) EPA-induced relaxation of

rat mesenteric artery in the presence of clotrimazole (1 μM) (n = 5–6). (C) DHA- and (D) EPA-induced relaxation of rat aorta in the presence of clotrimazole

(n = 5). Data are expressed as mean±SEM. � Indicates P<0.05, significant difference from control curve was assessed by one-way ANOVA followed by

Bonferroni post-test.

https://doi.org/10.1371/journal.pone.0192484.g003
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Discussion

CVDs are associated with the impairment of vasodilation mechanisms in arteries [14, 37]. The

n-3 PUFAs, EPA and DHA, found in fish and supplements are reported to improve vasodila-

tion through different mechanisms that promote endothelial function and vascular reactivity

[27]. Our study characterised n-3 PUFA-induced relaxation at concentrations of free fatty acid

(100 nM-30 μM) that are achievable in human plasma following a n-PUFA rich meal

(~70 μM) [38]. We did this in both resistance and conduit arteries of rats since studies suggest

that the vasodilation mechanisms can differ depending upon the type of artery [31]. Conduit

Fig 4. The effects of inhibiting KCa channels in n-3 PUFA-induced relaxation of rat mesenteric artery preconstricted with U46619. (A) DHA- and

(B) EPA-induced relaxation of rat mesenteric artery in the presence of L-NAME (300 μM) followed by the subsequent addition of KCa inhibitors;

apamin (50 μM), TRAM-34 (1 μM) and paxilline (Pax, 1 μM) (n = 5). Data are expressed as mean±SEM. �Indicates P<0.05, significant difference from

control curve assessed by one-way ANOVA followed by Bonferroni post-test.

https://doi.org/10.1371/journal.pone.0192484.g004

Fig 5. The effects of inhibiting KCa channels in n-3 PUFA-induced relaxation of rat aorta preconstricted with U46619. (A) DHA- and (B) EPA-

induced relaxation of rat aorta in the presence of L-NAME (300 μM) followed by the subsequent addition of KCa inhibitors; apamin (50 μM), TRAM-34

(1 μM) and paxilline (Pax, 1 μM) (n = 5). Data are expressed as mean ± SEM. � Indicates P<0.05, significant difference from control curve was assessed

by one-way ANOVA followed by Bonferroni post-test.

https://doi.org/10.1371/journal.pone.0192484.g005
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arteries are the larger elastic blood vessels that are mainly involved in the distribution of blood

[39] whereas arteries with the lumen diameter of<300 μm are classed as resistance arteries

and are critical in the regulation of blood pressure [40, 41]; vasodilation is predominantly

mediated by NO in conduit arteries while in resistance arteries EDH mechanisms also contrib-

ute to relaxation [31, 36]. Therefore, we investigated both types of blood vessel to fully under-

stand the mechanisms involved with n-3 PUFA mediated relaxation.

Endothelium has an important role in the regulation of vascular tone since it is involved in

the production of various vasodilators including NO, PGI2 and EETs, along with the transmis-

sion of endothelial hyperpolarization to VSMCs via myoendothelial gap junctions [2–5]. We

investigated the effect of endothelial removal in n-3 PUFA mediated relaxation of rat aorta

and mesenteric arteries. Our findings indicate that endothelial removal causes partial attenua-

tion in both DHA- and EPA-induced relaxation of rat mesenteric artery (Fig 1A and 1B). Simi-

larly, this inhibitory effect was also observed with EPA-induced relaxation of rat aorta (Fig

1D). This is consistent with numerous reports suggesting that n-3 PUFAs can improve endo-

thelial function and augment endothelium dependent relaxation [15, 27–29, 42]. However,

relaxation was only partially inhibited following removal of endothelium and a large residual

relaxation remained indicating that the vasodilator effect of n-3 PUFAs is primarily endothe-

lium-independent. Furthermore, as DHA-induced relaxation remained unaltered following

endothelium removal in the aorta (Fig 1C), there is heterogeneity in the vasodilator mecha-

nisms of DHA between conduit and resistance arteries.

A large body of evidence exists demonstrating that n-3 PUFAs can evoke endothelium-

dependent NO-mediated relaxation. For example, EPA was reported to induce calcium-inde-

pendent increases in NO resulting in relaxation of bovine coronary arteries [43]. Similarly,

DHA was also reported to enhance IL-1β-mediated NO production in VSMCs derived from

rat aorta [44]. Elevation of eNOS mRNA and protein levels in isolated aortic tissues have been

suggested as a mechanism of n-3 PUFA-induced NO production [45]. Clinical studies have

validated these findings, indicating that long-term EPA treatment in patients with coronary

artery disease improved both NO-dependent and -independent vasodilation [29]. However,

our results demonstrate that inhibition of eNOS did not affect DHA- and EPA-induced relaxa-

tion in rat mesenteric artery and aorta (Fig 2A–2D). Other groups have reported a lack of effect

of n-3 PUFAs on NO mediated relaxation. For example a study investigating the effect of

DHA supplementation in orchidectomized animals [46] found that vasodilator responses and

NO levels were significantly lower in orchidectomized rats compared to the control rats and

that DHA normalized these levels [46]. However DHA-supplemented control rats did not

have altered levels of NO in aortic segments. Additionally, in placental tissue derived from

pregnancy-induced hypertensive rats with impaired vasodilator responses, n-3 PUFA supple-

mentation led to an increase in eNOS levels [47]. Therefore, it is possible that the beneficial

effects of n-3 PUFAs on NO production can only be observed in conditions where NO bio-

availability is compromised. a recent meta-analysis indicated that the hypotensive effects of n-

3 PUFAs are only observed in hypertensive individuals but not in healthy volunteers [48]. We

believe our study indicates that n-3 PUFAs do not affect eNOS-mediated relaxations when

acutely applied to arterial tissue from healthy animals and highlights that care must be taken

when comparing n-3 PUFA effects between species and disease models.

Both DHA and EPA compete with AA as substrates for COX enzymes resulting in the pro-

duction of vasoactive metabolites and clinical evidence demonstrates there is altered prosta-

noid production as a result of fish oil supplementation in humans [49]. Furthermore, n-3

PUFAs inhibit noradrenaline- and angiotensin II-induced vasoconstriction of human forearm

resistance vessels, an effect that is sensitive to COX blockade [49]. However, we found no evi-

dence of COX-derived metabolites contributing to n-3 PUFA-mediated relaxation in either
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mesenteric artery or aorta (Fig 2). This is in contrast to previous studies by Engler et al where

COX-derived metabolites of DHA and EPA were reported to be involved in relaxation of rat

aorta [24, 50]. In these studies, relaxations were sensitive to the blockade of COX and adeno-

sine triphosphate-sensitive potassium channels (KATP); consistent with studies indicating that

AA-derived prostanoids activate vascular KATP [51]. This discrepancy might have occurred

due to significant methodological differences between our laboratory and that of Engler et al
[24, 50], which include the use of a different vasoconstrictor (noradrenaline) and the use of

considerably larger and older WKY rats by the Engler group [16–17 weeks, 355±11 g). There is

evidence indicating that ageing is associated with endothelial dysfunction and therefore is a

risk factor for CVDs [52]. Various studies have indicated that ageing can evoke biochemical

changes in the blood vessels resulting in impairment of NO production and PGI2-induced

relaxation [53–57]. Therefore, it is possible that ageing could also affect the mechanisms

involved with n-3 PUFA-induced vasodilation [58]; for example, the COX metabolites of n-3

PUFAs may have a more profound effect in improving the impaired endothelial function in

older rats and this may partly explain the discrepancy. However, our findings are consistent

with another study where combined inhibition of COX and eNOS did not modify DHA-

induced relaxation of U46619-constricted rat aorta [59]. This study was conducted with rats of

the same age and weight as used in our study. Further investigation is required to examine if

different vasoconstrictor agonists and age groups of WKY rats alter the mechanisms underly-

ing n-3 PUFA mediated vasodilation.

In addition to the reported effects on NOS and COX mediated relaxations, n-3 PUFA com-

pete with AA as substrates for CYP450, resulting in the production of different vasoactive

metabolites in arteries [22, 25, 60]. In porcine coronary arteries, DHA-derived CYP450 metab-

olites, EDPs, were reported to activate BKCa channels found in VSMCs resulting in hyperpo-

larization and vasodilation [25]. Furthermore, CYP450 metabolites of EPA, 17(18)- EpETEs,

relax pulmonary artery through activation of BKCa [60]. Therefore, we investigated the role of

CYP450 epoxygenase in rat mesenteric artery and aorta with n-3 PUFAs. Our findings demon-

strate that inhibition of CYP450 epoxygenase did not affect DHA-induced relaxation in either

artery (Fig 3A and 3C). In contrast, EPA-induced relaxation was partially attenuated by inhibi-

tion of CYP450 in both arteries (Fig 3B and 3D). These findings again indicate heterogeneity

in the vasodilation mechanisms of n-3 PUFAs. The lack of effect on DHA mediated relaxation

and the large proportion of relaxation remaining following the blockade of CYP450 in EPA

mediated relaxation, suggests other mechanisms are also involved. Therefore, our findings

suggest that that n-3 PUFAs do not necessarily require CYP450 metabolism to induce full vas-

cular relaxation. However, we cannot eliminate the possibility that metabolism by other

enzymes, such as lipoxygenase, could contribute to these relaxation responses [61].

In this study, we also investigated if mechanisms of EDH-mediated relaxation could be

involved with the vasodilation effect of n-3 PUFAs. EDH is an important vasodilation path-

way, especially in smaller resistance arteries, that involves endothelial SKCa and IKCa and

VSMC BKCa activation resulting in the hyperpolarization and relaxation of VSMCs [4, 5].

DHA and DHA-derived EDPs activate BKCa channels present in VSMCs from porcine coro-

nary [25] and rat coronary arteries [62, 63]; with EDPs reported to be 1000 times more potent

in activating BKCa compared to AA-derived EETs. Similarly, CYP450 metabolites of EPA,

17R, 18S-EpETEs, activate BKCa channels in rat cerebral and mesenteric arteries [26] as well as

human pulmonary artery [60]. Consistent with these studies, our results demonstrate that

DHA-mediated relaxations in both mesenteric artery and aorta have a component sensitive to

the blockade of BKCa (Figs 4A and 5A). Our data is consistent with the ability of DHA to

directly activate these channels as the relaxations are independent of the metabolic action of

CYP450 (Fig 3A and 3C). In the mesenteric artery (but not the aorta), BKCa blockade also led
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to inhibition of EPA-induced relaxation (Fig 4B). It is conceivable that EpETEs derived by

metabolism of EPA by CYP450 could contribute to this effect as inhibition of CYP450 also

reduced EPA-mediated relaxation (Fig 3B). The lack of any effect on EPA-induced relaxation

following BKCa inhibition in the aorta indicates that direct or indirect modulation of this chan-

nel by EpETEs does not occur in this artery; again demonstrating the heterogeneity in the

vasodilator mechanisms of n-3 PUFA mediated responses, depending upon both the type of

artery and the n-3 PUFAs used to evoke relaxation.

To date there are no reports of n-3 PUFAs activating the SKCa and IKCa channels involved

in EDH mediated relaxations. Blockade of the SKCa channel did not modify the relaxation

responses to DHA or EPA in either artery. It is worth noting that we preconstricted arteries

with U46619 and that activation of TP receptors inhibits SKCa channel activity in rat cerebral

[64] and mesenteric arteries [65]. Therefore, it is possible that any potential SKCa component

of n-3 PUFA-mediated relaxation was masked. However, an entirely novel finding of this

study is that IKCa blockade inhibits DHA-induced relaxation of rat mesenteric artery and

aorta (Figs 4A and 5A respectively). Furthermore, IKCa also contributed to EPA-induced relax-

ation of rat mesenteric artery (Fig 4B). This was surprising as it has been previously reported

that DHA inhibits IKCa currents [66] in human embryonic kidney (HEK) cells. We cannot

fully explain this discrepancy, but arterial IKCa channels are restricted to signalling microdo-

mains in the endothelium where activation of associated proteins regulates IKCa-mediated

hyperpolarization [67, 68]. It is possible that HEK cells lack these microdomains, and thus

what we observe may reflect an indirect activation of IKCa by DHA observed only in native

tissue.

The endothelium-independent vasodilation mechanisms of n-3 PUFAs in arteries have not

been extensively studied and remain unclear. BKCa are predominantly expressed in VSMCs

and as discussed earlier, DHA and n-3 PUFA metabolites have been found to activate BKCa

[25, 62, 63]. These metabolites are generally reported to be produced by endothelium derived

enzymes such as CYP450 epoxygenase, but DHA also directly activates BKCa channels in the

VSMCs [62]. Our data supports the direct action on VSMCs through BKCa, as there was a min-

imal role of endothelium-dependent mechanisms in n-3 PUFA-induced relaxations. However,

other endothelium-independent mechanisms for n-3 PUFA induced relaxation have been

reported, for example, via inhibition of calcium influx in sheep pulmonary artery [69]. Fur-

thermore, n-3 PUFAs are known to activate protein kinases such as protein kinase G, as dem-

onstrated in cardiac fibroblasts [70]. If n-3 PUFAs are involved in activation of protein kinase

G in arteries, they would also indirectly activate BKCa [71–74] which would be consistent with

our findings. n-3 PUFAs also activate protein kinase A in rat cardiac cells, epithelial cells and

human adipocytes [75, 76]. Protein kinase A can also evoke vasodilation, through direct activa-

tion of vascular KATP [77], therefore it can be speculated that n-3 PUFAs could also have an

indirect interaction with potassium channels through the modulation of protein kinases, pre-

senting an avenue for future investigation.

Conclusion

The aim of this study was to characterise the mechanisms of DHA- and EPA-dependent vaso-

dilation in rat conduit and resistance arteries. We demonstrate that endothelium has a minor

role in these relaxations as confirmed by NO and COX not being involved in n-3 PUFA-

induced relaxation and CYP450 metabolism only having a small effect. These findings are

summarised in Fig 6 and they clearly demonstrate heterogeneity in the vasodilation mecha-

nisms of n-3 PUFAs depending upon both the type of n-3 PUFA and the vascular bed. Similar

to previous studies, BKCa was found to be involved in DHA- and EPA-induced relaxation [25,
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26, 62, 63]. However, we also observed a novel role for IKCa in DHA- and EPA-induced relaxa-

tion of rat mesenteric arteries. Despite inhibition of a number of major vasodilator pathways, a

large proportion of relaxation remained residual to these interventions indicating the presence

of uncharacterised, endothelium-independent vasodilation mechanisms, which may involve

other K+ channels and protein kinases [24, 50, 77, 78]. In conclusion, our study provides evi-

dence of significant heterogeneity in the mechanisms of n-3 PUFA mediated relaxation in rat

aorta and mesenteric artery along with a novel role for IKCa. We believe these findings will be

invaluable for the design of future vascular studies that involve the use of n-3 PUFAs.
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