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ABSTRACT 

 

The brains of awake, resting human subjects display spontaneously occurring neural activity 

patterns whose magnitude is typically many times greater than those triggered by cognitive or 

perceptual performance. Such resting state (RS) activity is thought to reflect the functional 

organization of the brain. In addition, both evoked and RS activation affect local cerebral 

hemodynamic properties through processes collectively referred to as neurovascular 

coupling. This is a major topic of interest due to its relationship with pathological conditions that 

include hypertension, stroke, subarachnoid hemorrhage, and traumatic brain injury. Its 

investigation calls for an ability to track both the neural and vascular aspects of brain 

function. We used scalp electroencephalography (EEG), which provided a measure of the 

electrical potentials generated by cortical postsynaptic currents. Simultaneously we 

utilized functional near-infrared spectroscopy (NIRS) to continuously monitor hemoglobin 

concentration changes in superficial cortical layers. The multi-modal signal from 18 healthy adult 

subjects allowed us to investigate the association of neural activity in a range of frequencies 

over the whole-head to local changes in hemoglobin concentrations. Our results verified the 

delayed alpha (8-16 Hz) modulation of hemodynamics in posterior areas known from the 
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literature. They also indicated strong beta (16-32 Hz) modulation of hemodynamics. Analysis 

revealed, however, that beta modulation was likely generated by the alpha-beta coupling in 

EEG. Signals from the inferior electrode sites were dominated by scalp muscle related activity. 

Our study aimed to characterize the phenomena related to neurovascular coupling observable 

by practical, cost-effective, and non-invasive multi-modal techniques. 

 

 

 

INTRODUCTION 

 

Resting state (RS) electroencephalography (EEG) contains spontaneously occurring patterns 

with characteristic frequencies and regions on the scalp. These patterns are presumably 

associated with transient neuronal assemblies that perform various functions linked to 

information processing (Buzsáki and Draguhn, 2004; Llinas et al., 1998). Among the most 

studied frequency bands is the alpha rhythm in the range 8-16 Hz. Easily identifiable in the 

occipital and parietal areas of awake, eyes-closed subjects, it was the first EEG pattern to be 

observed (Berger, 1929). In addition combinations of delta, theta, alpha, beta, and gamma 

bands have been reported sometimes coexisting and competing in the same area (Mantini et 

al., 2007; Steriade, 2001, 2006; Varela et al., 2001) and correlated with RS networks (Laufs et 

al., 2003; Tyvaert et al., 2008). In fact the distribution of the citations of research on EEG 

frequency bands replicates the power spectrum of the EEG (Dalal et al., 2011).  

 

EEG is thought to result primarily from the synchronization of post-synaptic potentials and 

therefore represent the input to a neuronal population rather than its output in the form of action 

potentials (Buzsáki et al., 2012). Although the underlying process has a time scale on the order 

of milliseconds, the parts of scalp EEG that are informative about cortical activity generally 
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remain below the gamma frequency range. This is mainly due to interference from muscle 

electrical activity (Goncharova et al., 2003; Muthukumaraswamy, 2013; Whitham et al., 2007). 

 

Scalp EEG rhythms have long been used by clinical neurophysiologists in the differential 

diagnosis of neurological patients (Greenfield et al., 2012; Schomer and Da Silva, 2012). 

However it is well known that EEG interpretation contains a substantial intuitive component and 

the accuracy of EEG interpretation is demonstrably low (Grant et al., 2014). These may well be 

due to our incomplete knowledge of its underlying mechanisms. An important limitation of EEG 

lies in the difficulty of resolving and spatially localizing its sources (Srinivasan et al., 2007). In 

order to help overcome such limitations and clarify the relationship of EEG to normal and 

pathological brain function, researchers are increasingly using multi-modal measurements 

which combine EEG with other methods. 

 

EEG combined with functional magnetic resonance imaging (fMRI) is able to correlate neural 

activity with a sequence of highly space-resolved images ultimately based on hemodynamics 

(Britz et al., 2010; Goldman et al., 2002; Goncalves et al., 2006; Huster et al., 2012; Pouliot, 

2012; Sadaghiani et al., 2010). Technical progress has also made it possible to combine EEG 

with functional NIRS (fNIRS), another non-invasive method. This method, we refer to as 

EEG+fNIRS, yields similar measurements with lower space but higher time resolution, in a far 

more practical and cost-effective arrangement (Buccino et al., 2016; Giacometti and Diamond, 

2013; Keles et al., 2014; Koch et al., 2006, 2008, 2009; Roche-Labarbe et al., 2008; Safaie et 

al., 2013). The utility of fNIRS as an independent modality for investigating the adult brain 

hemodynamics (Gentili et al., 2013; Mesquita et al., 2010; White et al., 2009) as well as infant 

development (Lloyd-Fox et al., 2010) is already well established. In most fNIRS studies the use 

of two distinct wavelengths allows the extraction of the concentration changes of oxy- and 

deoxy-hemoglobin (HbO and HbR) in the outer layers of the cortex (Durduran, 2010; 
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Scholkmann et al., 2014; Uglialoro, 2014). Following neural activation local blood flow and 

volume typically increase on a time scale of seconds, causing a rise in HbO and a decrease in 

HbR of smaller magnitude. These concentration changes measured by fNIRS closely agree with 

the blood oxygen level dependent (BOLD) response from fMRI (Huppert et al., 2006; 

Kleinschmidt, 1996; Steinbrink et al., 2006; Strangman et al., 2002).  

 

To date, researchers have not explored the use of simultaneous scalp EEG and fNIRS in 

determining the modulation of hemodynamics by spontaneous neural activity over a wide range 

frequencies and topographic regions of the human whole-head. The goal of this study was to fill 

this gap by examining the relationship between resting state EEG and the local hemodynamic 

response and, in particular, determining how EEG cross frequency coupling affects this 

relationship. We use the term whole-head to refer to the fact that we placed sensors at all 

standard 10-20 sites bilaterally covering the frontopolar, frontal, central, temporal, parietal, and 

occipital areas. The signals from EEG+fNIRS depend on neurovascular coupling, the processes 

through which neural activity affects local hemodynamic properties. Neurovascular coupling has 

been a topic of major interest due to its relationship with pathological brain physiology. There is 

evidence that neurovascular coupling is affected by aging, anesthesia, and diseases including 

depression, stroke, hypertension, Alzheimer's, epilepsy, subarachnoid hemorrhage, and 

traumatic brain injury (Attwell and Iadecola, 2002; Bari et al., 2012; D’Esposito et al., 2003; 

Girouard and Iadecola, 2006; Len and Neary, 2011; Lindgren et al., 1999; Malonek, 1997; 

Masamoto and Kanno, 2012). This study was intended to investigate the utility of human whole-

head EEG+fNIRS in tracking neurovascular coupling in cortex.  

 

METHODS 

 

Subjects and Study Design 
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Eighteen healthy adult volunteers took part in this study (16 male; age mean 26 years (range 

24-28 years)). None had a history of psychological illness or substance dependence. Subjects 

completed informed consent before the experiment and were compensated for their 

participation. The research was approved by Institutional Review Board at University of 

Houston. Each subject was seated in a comfortable chair in a silent room with lights dimmed 

and instructed to relax with eyes closed without exerting any mental effort or falling asleep. The 

resting state recording lasted 15 minutes. In order to investigate the gamma power modulation 

of Hb (HbO or HbR) we conducted a side study where 4 subjects were asked to briefly clench 

their jaw (~1 s) twice separated by 30 s. This was repeated 3 times in a recording that lasted 6 

minutes. 

 

Triplet Holder and Whole-Head Arrangement 

Our multi-modal recording system has a basic module that consists of three components: a thin 

plastic holder, optodes, and electrodes (Figure 1). Determining the source-detector distance 

was critical for achieving the greatest possible sensing depth while maintaining sufficient signal 

quality. The instrument setup before a recording included an automated calibration stage where 

the optimum gain, or signal amplification, providing the best signal to noise ratio (based on the 

signal's coefficient of variation) for each source-detector pair was determined. Preliminary 

recordings were performed with source-detector distances in the range 20 mm - 40 mm. We 

observed that the best signal to noise ratios occurred with separations 30 mm or less, while 

greater separations frequently lead to problems in calibration and delays in the setup. In order to 

achieve the highest sensing depth with the quickest setup times, we therefore selected to work 

with a 30 mm source-detector separation. A thin plastic component was designed to hold the 

triplet of probes for the purpose of associating every EEG channel closely with a corresponding 

fNIRS channel. fNIRS optodes and EEG electrodes were in good contact with the scalp in order 

to ensure appropriate optical contact and low impedance. The holder was flexible in order to suit 
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the consistency and curvature of the scalp and provide a comfortable fit to the subject. The 

triplet holder was made rectangular for added geometrical stability and it was manufactured by a 

laser cutter. Nineteen passive Ag/AgCI EEG electrodes (Ladybird by G.Tec, Graz, Austria), 19 

dual-wavelength LED emitters and 19 detectors were used for the whole-head arrangement. For 

added stability the triplet holders were mounted on an extended EEG cap (EasyCap 128, Brain 

Products GmbH, Germany). Activity was recorded over the whole-head with triplet holders 

placed according to the International 10-20 system (Fp1, Fp2, F7, F3, Fz, F4, F8, C3, Cz, C4, 

T7, T8, P7, P3, P4, P8, Pz, O1, O2) (Figure 2). The EEG reference and ground electrodes were 

located, respectively, at FCz and Fpz.  

 

Data Acquisition 

All data were simultaneously acquired with our EEG+fNIRS system. NIRScout extended dual-

wavelength continuous wave system (NIRx Medical Technologies, New York) was used at a 

sample rate of 6.25 Hz for NIRS measurements. The two wavelengths were set at 760 and 850 

nm. NIRStar software (NIRx) was used to check signal quality before starting each experiment 

and to acquire data. EEG signals were collected at 250 Hz sample rate using microEEG, a 

miniature (80 g), battery operated, wireless data acquisition system (Bio-Signal Group Inc., 

Brooklyn, New York). microEEG digitizes signals close to the electrode at 16 bits resolution and 

transmits them via Bluetooth to a nearby standard personal computer running Microsoft 

Windows. Both systems' sample rates were more than sufficient to collect the signal variations 

of interest for our subsequent analysis. The synchronization between EEG and NIRS was 

performed using the event triggers generated by Presentation software (Neurobehavioral 

Systems Inc.) during data acquisition. 
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Figure 1  EEG+fNIRS recording module and the corresponding triple time series. (A) 

NIRS source detector (left-right) pair approximately 3 cm apart, flanking an EEG 

electrode (middle) held by the triplet holder. (B) Example of synchronized signals (EEG, 

HbO, HbR) measured from the sensors in a module.  

 

Preprocessing and Validation 

The signals were band-pass filtered (EEG: 0.5-80 Hz and NIRS: 0.01-0.5 Hz) with a sixth order 

Butterworth filter. The EEG was notch filtered at 60 Hz to eliminate power line noise. The EEG 

sample rate provided more than sufficient time resolution to capture the frequencies we 

expected to find in scalp EEG and the low-pass cut-off frequency for the EEG filter was set at 80 

Hz in order to allow only components well below the Nyquist frequency (Van Drongelen, 2006). 

Experiments and modeling indicate that cortical contribution to the scalp EEG in the gamma 

frequency and beyond is small to negligible (Cosandier-Rimélé et al., 2012; Petroff et al., 2015). 

The low-pass cut-off for the NIRS filter was 0.5 Hz since we aimed to eliminate the heart-rate 

artifacts (~1 Hz) while capturing the underlying hemodynamics that change slowly on a 

timescale of several seconds. This low-pass cut-off frequency was not below the rates of 

breathing (0.2-0.4 Hz) or the Mayer waves (~0.1 Hz) hence these physiological signals were not 

filtered out (Scholkmann et al., 2014). This was due to the fact that they partially overlapped 
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with the time scale of the hemodynamic response which was being investigated. The effects of 

Mayer waves (which are part of the autocorrelation structure of the fNIRS signals and therefore 

influence the cross correlation between EEG power and fNIRS) were readily observable by their 

typical frequency and relatively large amplitude and therefore did not obscure our single subject 

results. In addition since the phases of the Mayer waves were randomly distributed among the 

subjects their effects were mitigated when the results were subject averaged. Furthermore there 

were no externally imposed time markers (such as stimuli or task performance) that could have 

driven EEG power and hemodynamics separately but in a coordinated fashion, and thereby 

created the cross correlations that we studied. Had we used low-pass cut-off frequency ≤0.5 Hz 

we would have removed features with timescales ≥2 s and not been able to detect the cortical 

hemodynamic responses that were of interest for this study. From the NIRS signals the 

concentration of oxy-hemoglobin and deoxy-hemoglobin were computed using the modified 

Beer-Lambert Law (MBL) (Delpy et al., 1988). The MBL describes an exponential attenuation of 

light between a source and a detector along a path whose effective length is a multiple of the 

source-detector separation. The effective path length is obtained by multiplying the source-

detector separation by the Differential Path Length Factor (DPF) that is dependent on the 

wavelength of the light emitted by the source. We assumed that the only absorbers of light were 

HbO and HbR (Scholkmann et al., 2014). For 760 nm and 850 nm, we used the extinction 

coefficients, respectively, 1486.6 and 2526.4 for HbO and 3843.1 and 1798.6 for HbR, in units 

of cm-1M-1 while the corresponding DPF values were 7.25 and 6.38 (Jacques, 2013; Xu et al., 

2014). The extinction coefficients of other chromophores such as water were an order of 

magnitude smaller than those of Hb and were ignored  (Boas et al., 2001). For each channel the 

power spectrogram of the EEG was computed using a ΔW = 1.2 s Hamming window with 50% 

overlap. The frequency resolution of the spectrograms were therefore Δf = 1/ΔW = 0.83 Hz 

which was more than sufficient since we were interested in the coupling of the hemodynamics to 

the EEG power in bands wider than Δf. The EEG spectrograms and optical time series were 
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then resampled at a global rate of 2 Hz. We verified that changing the spectrogram time window 

size and the global resample rate within a wide range had negligible effect on our results. 

Calculations described in this paper used Matlab v.8.2.0.701 (The MathWorks, Inc., Natick, 

Massachusetts, United States), in particular the built-in functions spectrogram, xcorr, conv, and 

kstest2. We used the referential montage for EEG in this study. The processed signals were 

visually inspected for the effects of muscle and motion, eye movements, and other artifacts. 

Suspected sleep patterns in the EEG (also based on self-reporting) were also considered as 

artifacts. The recordings that were contaminated in excess of 10% by artifact were excluded as 

a whole. Thus 12 of the 18 subjects who were recorded were included for further analysis. In the 

included studies any brief segment containing artifact in either time series were manually 

removed from both EEG and fNIRS. 

 

 

 

Figure 2 Triplet holders distributed at 10-20 positions held together by a cap. 19 

locations arranged according to the International 10-20 System were selected over the 

whole head.  

 

 

Analysis 
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Cross correlation. The EEG power at the frequency f  at time t  was denoted ( , )p f t . The 

hemoglobin concentration changes were denoted ( )ih t  with 1i   and 2  corresponding to HbO 

and HbR, respectively. We centered and normalized each subject's ( , )p f t  and ( )ih t  in order 

to eliminate the effects of their amplitudes and focus only on the degree of the coupling of their 

fluctuations. We computed the delayed correlation of EEG power with Hb as  

  ( , ) ( , ) ( )i ic f p f t h t   , (1) 

where   represented time averaging over the duration of an experiment. The EEG frequency 

band powers, ( ) ( )kp t , used in clinical practice were computed by averaging ( , )p f t  over ranges 

of frequency. For ,k   ,  ,  , and   we used the ranges 0 4  Hz, 4 8  Hz, 8 16  Hz, 

16 32  Hz, and 32 80  Hz, respectively. The corresponding delayed correlations,
( ) ( )k

ic  , were 

found by substituting ( ) ( )kp t for ( , )p f t  in Equation (1). 

 

Statistical significance. In order to assess the significance of the estimates of the correlations 

from our experiments we compared them with the baseline variability of the correlation that was 

obtained as follows. In RS data we did not expect fluctuations of neural activity in one recording 

to drive the hemodynamics in a different recording. Such correlations of pairs of distinct 

recordings could therefore be used to provide a noise level indicator for our correlation values. 

We calculated correlations between neural activity and hemodynamics by using pairs of EEG 

and Hb data taken from pairs of distinct recordings. For a set of 12N   recordings, there were 

( 1) 132N N    such distinct pairs, which helped create a large reference set of baseline data. 

For each EEG power frequency, we segmented correlation time delays into 4   s intervals 

and assessed the significance of the values of 
( ) ( )k

ic  at the center of each interval. The size of 

 was selected to be sufficiently small to track the characteristic changes in 
( ) ( )k

ic  while 
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remaining large enough to avoid an excessive number of comparisons and maintain clarity. We 

formulated the null hypothesis that the distribution of the values of 
( ) ( )k

ic  for the N  recordings 

was the same as that of the values in the reference set. The distribution of values in the 

reference set was highly non-Gaussian (kurtosis =3.76 ) and we chose the relatively 

conservative Kolmogorov-Smirnov test to evaluate null hypothesis. The significance level was 

Bonferroni corrected to account for the multiple comparisons to the p-value 0.05 /15 0.0033   

since there were 15  intervals within the maximum time delay range of 60 s. 

 

Extraction of the hemodynamic response function. The delayed correlation was a helpful 

manifestation of the time-frequency dependent neurovascular coupling. However it was an 

unresolved admixture of underlying responses to various frequencies. Multi-modal data allowed 

us to go further by applying system identification techniques. We used EEG power and Hb time 

series in a correlation analysis based on a model of neurovascular coupling  (Biessmann et al., 

2011; Dahne et al., 2013). In the model the neurally modulated part of hemodynamics was the 

convolution of EEG power with ( , )iR f  , the hemodynamic response function (HRF): 

 ( ) ( , ) ( , )i i

f

h t R f p f t


   . (2) 

HRF expressed the delayed response to the EEG rhythm at frequency f . We substituted (2) 

into (1) to obtain: 

 ( , ) ( , , , ) ( , )i i

f

c f A f f R f


   
 

     (3) 

where the EEG power autocorrelation was ( , , , ) ( , ) ( , )A f f p f t p f t         . This 

indicated that the autocorrelation structure of EEG power had to be examined in order to 

extricate HRF from the correlations. Formally, the HRF could be solved for by inverting Equation 

(3). Such a direct approach was not advisable due to potential numerical instability and other 
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problems related to noise amplification (Chatfield, 2004). We sought to develop a relatively 

straightforward nonparametric time-domain approach. We assumed that the autocorrelation was 

separable in the frequency and time variables and, in addition, its time dependence was 

described as a delta function: 

 ( , , , ) ( , )A f f f f     
   . (4) 

Here ( , )f f   was the zero-lag autocorrelation and 1    if     and 0   otherwise. This 

approximation was supported by our Results (Figure 7) and it led to 

( , ) ( , ) ( , )i i

f

c f f f R f  


  . The HRF was then found as 

 1( , ) ( , ) ( , ).i i

f

R f f f c f  



    (5) 

We explored the validity of this method by applying it to part of our data.  

 

Modeling of the hemodynamic response function. We also investigated the extent to which 

the HRF could be parametrically quantified. For this purpose a difference-of-Gammas model 

was utilized. Since coupling in the alpha range was particularly salient we chose to focus on the 

response to the alpha rhythm: 

 
( )

,1 ,2( ) ( ) ( )i i i iR r         (6) 

where each gamma function: 

  

,

2

2

( ) exp

/

/ ( ).

ika

ik
i k

ik ik

ik ik ik

ik ik ik

t

t b

a C t w

b w Ct




   
     

   





  (7) 

The model was based on the FMRIStat algorithms (Proulx et al., 2014; Worsley et al., 2002). 

The constant was 8log 2C  . This model initially rises, peaking at time 1it , then decreases until 

a trough is reached at time 2it , and finally decays to zero. The full widths at half magnitude of 
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corresponding peaks were determined by the parameters 
1iw and 

2iw . The parameter 
ir  set the 

absolute magnitude of the second peak relative to that of the first. The characteristic rise and fall 

time scales of the gamma functions were determined by the variables 
ika and 

ikb . The two 

models for HbO and HbR therefore collectively contained a total of 10  free parameters:
ikt ,

ikw

and 
ir , with 1,2k  and 1i   (HbO) and 2i   (HbR). Each subject's HbO and HbR were 

simulated by convolving the alpha band power with 
( ) ( )iR    given by Equation (6). From the 

resulting time series delayed correlations were computed and compared with the experimentally 

observed HRF. The parameter values were determined by grid search that minimized the mean 

square difference between the simulated and the observed correlations.  

 

RESULTS 

 

An example of the preprocessed data from one resting state experiment is shown in Figure 3. 

The figure shows a 2 minute segment selected based on its ability to illustrate several features 

frequently encountered. Noteworthy are the dominant posterior alpha rhythm at approximately 

10 Hz particularly strong in the occipital and parietal channels but visible almost globally. The 

figure also illustrates the spontaneous fluctuations in the amplitude of the alpha oscillation. 

Close examination of the spectrogram in F7 reveals higher power in narrow ranges at multiples 

of the NIRS sample rate 6.25 Hz. This is an example of an artifact created by a NIRS source 

cable when it is close to an EEG lead and eliminated by rearrangement of the cables. Another 

noteworthy feature in Figure 3 is that the HbO (red curve) appeared to surge in the frontal and 

temporal channels F7, F8, T3, and T4 toward the end of the time segment shown, returning to 

baseline after about 20 s. The HbR (blue) during the same period underwent a dip smaller in 

amplitude and delayed with respect to the HbO. We verified in separate experiments, described 
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further below, that this pattern is activated when the subject clenches her jaw contracting the 

temporalis muscle located directly under those channels. 

 
Figure 3 Example of EEG and fNIRS data recorded simultaneously from the whole 

head. At each of the 10-20 locations are shown an EEG spectrogram and the 

corresponding HbO (red) and HbR (blue) time series.  

 

Figure 4 displays the delayed correlations (for HbO only) for 4 of the total of 12 experiments 

included in the study. Experiment numbers are indicated at the top left of each figure. The 

subset in Figure 4 was selected due to its ability to exemplify most of the features that were 
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observed in all of our experiments. Some of the inter-subject variability observed in this figure 

was as follows. In experiment 1 the delayed negative correlation in the alpha band in posterior 

areas was accompanied by another peak with the opposite sign at the nearby theta band with a 

similar delay. In experiment 2, the strongest negative correlation occurred in the beta band. In 

experiment 3, the negative correlation appeared to be distributed equally in the alpha and beta 

bands. Despite such inter-subject variability, however, the most salient feature shared by most 

subjects was a negative correlation between the EEG power, particularly in the alpha and beta 

frequency ranges, and the HbO concentration changes with a delay at approximately 8 s. This 

appeared most strongly in the parietal and occipital areas but was also approximately replicated 

in the frontopolar regions. The strong positive correlation with gamma power observed in some 

subjects (e.g. experiment 1 and others not included in Figure 4) in channels T3, T4, F7, F8 was 

due to contamination from the scalp muscles. Figure 4 contained an apparently anticipatory 

hemodynamic signal in subjects 2 and 4, while another experiment (not shown) contained a 

small positive correlation between HbO and EEG alpha at about 8 s which was the opposite of 

the group average. In many experiments there was, in addition, a pattern of zero-lag correlation 

distributed across higher frequencies (such as T3 in Experiment 1 in Figure 4). This was 

attributable to a motion artifact introduced by the contraction of temporalis muscle that 

simultaneously affects the EEG and NIRS probes. We verified the muscle origin of these 

features in a further experiment (Figure 13). The correlations for HbR (not shown) for each 

subject were similar to the corresponding HbO correlations but with an opposite sign, and a 

longer time delay. 
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Figure 4 The position and frequency dependent delayed correlations between EEG 

power and HbO for four representative subjects. 

 

We visualized the EEG power-Hb correlations by averaging over subjects and within three 

distinct topographic regions. We used the EEG power lumped over each frequency band used 

in clinical practice. The regions were 1) Frontopolar (FP1, FP2); 2) Inferior electrodes (F7, F8, 

T3, T4); and 3) Parietal and occipital (P3, Pz, P4, O1, O2) channels. Figure 5 shows the results 

for regions 1-3 as rows 1-3 with the columns corresponding to distinct frequency bands. The 

thick curve is the subject and region average while the shaded region represents one standard 
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deviation around the mean for the group of experiments. An asterix indicated that the amplitude 

of the correlation is statistically significant in accordance with a Kolmogorov-Smirnov test 

described in Methods. The vertical dotted lines mark the location of zero-lag. The figure 

indicates that the strongest coupling occurred in the alpha and beta bands in the occipital and 

parietal regions and at the inferior electrode sites. The latter was of muscular origin and was 

frequently accompanied by a sharp feature at zero-lag due to motion artifact. The corresponding 

delayed correlations for HbR shown in Figure 6 had similar features but the peaks were 

negative, wider, and delayed by several seconds. This was consistent with the time course of 

HbR relative to HbO generally observable in their time series, an example of which was 

provided in Figure 3.  

 

Figure 5 EEG power-HbO correlations at the standard EEG frequency bands delta (0-4 

Hz), theta (4-8 Hz), alpha (8-16 Hz), beta (16-32 Hz), and gamma (32-80 Hz) shown in  

columns. The top row is the average of the frontopolar (FP1, FP2) channels; the middle 

row inferior electrode sites (F7, F8, T3, T4); and the bottom row parietal and occipital 

channels (P3, Pz, P4, O1, O2). An asterix indicates p-value< 0.0033  for the 

corresponding 4 s segment of the result. The vertical dashed line shows the position of 

zero time lag. The thick black curve is the mean and the shaded region is the standard 

deviation of the distribution over subjects. 
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Figure 6  Same calculations described in Figure 5 with HbO replaced by HbR. 

 

We further investigated the implications of the foregoing results for the frequency resolved HRF. 

Equation (5) indicated that the HRF could be elicited from the delayed correlations by using the 

autocorrelation of EEG power, ( , , , )A f f   . We therefore began by examining the frequency 

and delay dependence of A . As shown by the middle column in Figure 7 the delay dependence 

of  A  was highly peaked at zero delay and hence supported the assumption made in Equation 

(4).  Figure 7E indicated that the autocorrelation at 10 Hz decayed more slowly with delay than 

at the other frequencies shown. Overall, the autocorrelation quickly decayed with increasing 

delay and vanished after about 2 s. However this deviation from a true delta function was not 

expected to affect our calculation of HRF except for a small temporal broadening of the result.  
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Figure 7 The autocorrelation of EEG power as a function of frequency and delay. In the 

middle and right columns the black curves represent the average and the shaded region 

represents one standard deviation from the average found from all channels and 

subjects. The top row is for 5f   Hz. (A) The autocorrelation as a function of both the 

delay (   ) and the frequency f  ; (B) as a function of the delay (   ) at a fixed 

frequency 5f    Hz; and (C) as a function of f  at a fixed delay (   ). Rows 2-4, 

respectively, show corresponding results for 10f    Hz (D-F); 20f    Hz (G-I); and 

30f    Hz (J-L). 
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Figure 8 EEG power zero-lag autocorrelation averaged over subjects 

 

Figure 7F and G show that EEG power at 10 Hz was coupled with the power at 20 Hz. For 

example Figure 7F contains a bump near 20 Hz. Similarly Figure 7I contains a bump near 10 

Hz. These results indicated that the correlation of EEG power with Hb would be a mixture of the 

effects of the alpha and beta band activities. Figure 7C also showed that power at 5 Hz was 

coupling weakly with power at ~15Hz. By contrast gamma range power at 30 Hz did not show 

evidence of coupling with other frequencies (Figure 7L). The values shown in Figure 7 were 

subject averages. 
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Figure 9 EEG power-Hb correlation for (A) HbO and (B) HbR averaged over subjects 

and over the parietal and occipital channels. The hemodynamic response function for 

(C) HbO and (D) HbR calculated from the correlation using Equation (5). 

 

In order to closely examine the zero-lag autocorrelation of EEG power we plotted subject 

averaged ( ,0, ,0)A f f  as a function of the two frequencies f and  f   in Figure 8. The diagonal 

elements in Figure 8 had the value 1 while most of the other values were nearly zero with some 

specific exceptions. Firstly, the modest broadening of the lightly colored diagonal at ~10 Hz and 

~18 Hz were indicative of stronger coupling of frequencies within the alpha and beta bands. 

More interestingly the power at ~10 Hz was strongly coupled with power at nearly double the 
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frequency (lightly colored bars symmetrically situated away from the diagonal). In addition the 

power at ~5 Hz was inversely correlated with the power in the alpha and beta ranges, as shown 

by the darker patches vertically and horizontally extending along the level of 5 Hz. The obvious 

alpha-beta coupling in Figure 8 further strengthened the expectation, based on Equation (3), 

that the values of
( ) ( )ic    and 

( ) ( )ic    would be closely related. 

 

We investigated this relationship and the ability of Equation (5) to resolve the HRFs at distinct 

frequencies. Since the EEG power-Hb coupling appeared particularly strong in the parietal and 

occipital regions (Figure 4) we focused on the correlations averaged over these regions. Figure 

9 strikingly demonstrated the alpha and beta range coupling of EEG power with hemodynamics. 

Figure 9A indicated that the EEG power-HbO correlations contained strong negative peaks 

centered at approximately 8   s in the alpha and beta frequency ranges. In addition there 

appeared to be a weaker positive correlation at the same delay in the theta range (not 

statistically significant; also refer to Figure 5).  

 

These relationships appeared to replicate the coupling among the EEG bands shown in Figure 

8. There were temporally broader, positive peaks in the alpha and beta ranges of the EEG 

power-HbR correlation (Figure 9B) that occurred at approximately  10   s. The absolute 

magnitudes of the peaks and the subsequent rebounds were slightly greater in the alpha range 

than in the beta. By contrast the HRFs computed by using Equation (5)  and the correlation data 

in Figure 9A and the autocorrelations in Figure 8 suggested that the 8 s peaks in the HRF were 

driven solely by alpha-hemodynamics coupling (Figure 9C and D). Figure 10 compares HRFs 

with the correlations that they were derived from. The figure shows that the apparent coupling in 

the unresolved correlation at frequencies other than ~10 Hz is drastically lower in the HRF. 
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Figure 10 also suggests that in the theta range the HRF peak may be stronger than the 

correlation peak. The HRFs shown were averages over all subjects of the HRFs computed 

individually with subject specific data.  

 
Figure 10 Hemodynamic response function (solid curve) and the correlation (dotted) as 

a function of the EEG power frequency averaged over time lags from -20 s to 20 s for 

(A) HbO and (B) HbR. The curves were smoothed by a sliding 2 Hz window and 

rescaled in order to have absolute value of their maxima equal to unity. 

 

In order to pursue the alpha-hemodynamics coupling further, we calculated a simulated Hb 

signal for each channel and for each subject by convolving the alpha power with a HRF that was 

modeled as a difference-of-Gammas function (Equation (6)). From the simulated hemodynamics 

we calculated the delayed correlations for HbO and HbR and fitted the channel and subject 

averaged correlations to those that were experimentally obtained. We obtained the parameter 

values for the HRF models from a grid search that minimized the mean squared error between 

the simulated and experimental result. The optimum values were, for HbO, 11 7.8t  , 11 5.95w  ,

12 12.16t  , 12 16.35w  , and 1 0.37r  , and for HbR, 21 8.5t  , 21 7.3w  , 22 21.4t  , 

22 20.31w  , and 2 0.331r  . The model based and experimental correlations are shown in 
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Figure 11. The thick red and blue curves represent the correlations based on convolving, for 

each parietal and occipital channel and subject, the alpha power with the model HRFs for HbO 

and HbR, respectively. The thin dark red and dark blue curves are the experimental channel 

and subject averaged correlations. Figure 12 displays an example of the alpha power time 

series (A) and simulated time series for HbO (B) and HbR (C) obtained by convolving alpha 

power with the model HRF. The data were chosen from a representative subject and time 

segment in order to illustrate the fact that simulated Hb time series driven only by EEG alpha 

power agree well with actual Hb time series (Pearson correlations for the HbO and HbR 

segment shown were 0.49 and 0.70, respectively). 

 
Figure 11  Hemodynamic response functions in the alpha range from simulated (thick 

curves) and experimental (thin curves) data. Simulated Hb were obtained by convolving 

alpha power with the modeled response (Equation (6)) then used to compute delayed 

correlation of the HbO (thick red curve) and HbR (thick blue) to alpha power. 

Experimental response functions are shown for HbO (thin dark red) and HbR (thin dark 

blue). Results were averaged over the parietal and occipital channels and all subjects. 
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Figure 12 The EEG alpha power (A) and simulated HbO (B, thick red curve) and HbR 

(C, thick blue) compared with the actual HbO (B, thin dark red curve) and HbR (C, thin 

dark blue) for a representative time segment and subject. Pearson correlations between 

the simulated and actual result for the displayed time segment are shown next to the 

corresponding data. The inset at the top right shows the hemodynamic response curves 

(for HbO (red) and HbR (blue)) used in the simulation. Data were centered and 

normalized to unit standard deviation. 

 

Some subjects (e.g Experiment 1 in Figure 4) showed evidence of EEG power-Hb coupling in 

the gamma range. We investigated the origin of such patterns in a separate set of experiments. 

Relatively large Hb fluctuations following EEG gamma activity had been occasionally found in 

our RS experiments. The results of the side study indicated that the EEG gamma power surge 
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was of muscular origin and almost invariably lead to subsequent hemodynamic excursions. 

Time series data from a representative experiment are shown in Figure 13. The EEG 

spectrograms in the figure at most 10-20 sites showed salient high frequency activity at t = 10 s 

and 40 s. These time points also coincided, only at the inferior electrode sites, with a sharp dip 

in the Hb signals. This was due to the brief change in the coupling of the optodes to the scalp 

caused by the contraction of the temporalis muscles located under T3, T4, F7, and F8. These 

time points also coincided with the onset of a substantial surge in HbO which peaked about 10 s 

later and returned to baseline after 30 s. The HbR time-course, after a small initial rise, followed 

a pattern that was a mirror image of the behavior of HbO, but with smaller amplitude and a 

relative delay of 2 s. 
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Figure 13 Example of EEG and fNIRS data recorded simultaneously from the whole 

head in a jaw-clenching experiment. At each of the 10-20 locations are shown an EEG 

spectrogram and the corresponding HbO (red) and HbR (blue) time series. The vertical 

axes of the spectrograms indicate the frequency and their color code indicates power 

units of dB/Hz. 
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DISCUSSION 

 

To our knowledge this is the first study that (1) uses fNIRS channels co-located with all EEG 

electrodes at the standard 10-20 sites, and (2) closely examines the influence of EEG cross 

frequency correlations on the relationships of hemodynamics with EEG power. We have 

confirmed that significant information about neurovascular coupling is available from scalp 

EEG+fNIRS. Our results have highlighted the feasibility of noninvasive, whole-head EEG+fNIRS 

in studying the neural modulation of hemodynamics over the range of EEG rhythms familiar in 

clinical practice. Our results also showed the importance of disentangling the contribution of 

distinct rhythms to the correlation between EEG and fNIRS signals. For this purpose we 

proposed a nonparametric approach and demonstrated its utility. The results were further 

corroborated by data simulations using a model of the response to alpha power, which showed 

a close fit between the observed and predicted hemodynamic responses. Finally we compared 

the artifacts from jaw clenching in EEG and fNIRS. 

 

The alpha modulation of brain hemodynamics was known from numerous previous studies (De 

Munck et al., 2007; Feige, 2005; Goldman et al., 2002; Goncalves et al., 2006; Laufs et al., 

2003; Moosmann et al., 2003; Wu et al., 2010). In Moosmann et al. (2003) the EEG was 

measured from human subjects in the resting state simultaneously with fNIRS. They convolved 

the EEG alpha power with a canonical HRF model to obtain a reference alpha signal. They 

found that the correlation with the reference signal had a positive correlation with HbR in the 

occipital cortex. The correlation was highest when the HRF was configured to peak at 8 s. They 

concluded that enhanced alpha activity in occipital cortex was associated with metabolic 

deactivation. The peak frequency of the alpha wave has intra-subject consistency while it may 

differ between individuals. (Koch et al., 2008) studied the predictive value of individual alpha 

frequency (IAF) for the neuronal and vascular responses to visual stimulus. They also recorded 
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EEG and fNIRS in the resting state and found that alpha power inversely related to the IAF. In 

addition high IAF predicted low oxygenation response. (De Munck et al., 2007) used 

simultaneous EEG and fMRI to obtain an alpha band hemodynamic response that contained a 

peak latency at ~8 s in the occipital areas during eyes closed resting state.  

 

The modulation of hemodynamics by EEG power investigated in previous studies was not 

limited  to the alpha band. In (Roche-Labarbe et al., 2008) simultaneous EEG and fNIRS were 

recorded from neonates in quiet sleep. They investigated the hemodynamic response to brief 

spontaneous bursts of delta and theta activity. The bursts were found to be coupled to 

stereotyped hemodynamic responses involving an initial (3-4 s) decrease in HbO sometimes 

starting a few seconds before a burst. The decrease was followed by a positive peak at about 

10 s and subsequent return to baseline. They also found that response in neonates in 

neurological distress systematically deviated from this pattern.  Ritter et al., (2009) used 

simultaneous EEG and fMRI during a motor task and found that BOLD signal inversely 

correlated with the Rolandic beta rhythm in the precentral cortex. In another study (Mantini et 

al., 2007) used simultaneous EEG and fMRI in the resting state to investigate the EEG power 

correlates of the default mode networks identified through the functional connectivity of the 

BOLD signal. Their results showed that each network was differentially associated with 

variations of the delta, theta, alpha, beta, and gamma oscillations. 

 

The characteristic hemodynamic time delays reported in these studies are consistent with our 

findings. The duration associated with hemodynamic response to stimulation, on the other hand, 

was reported (e.g. Logothetis and Wandell, 2004; Ou et al., 2009) to be briefer than that to 

changes in the alpha rhythm. De Munck et al. (2007) and Goncalves et al. (2006) found that a 

minority of their subjects had delayed alpha hemodynamic responses whose sign was reversed 

relative to the group average. Similarly, one of our 12 subjects showed a small positive 



31 

correlation between HbO and EEG alpha at about 8 s which had the opposite sign as that of the 

group average. One possible explanation for such variability is intersubject differences in 

hemodynamics. Another possibility is that hemodynamic response is non-stationary and the 

data we have collected were confounded by unknown state changes in RS. For example briefly 

falling into light sleep during RS is not uncommon and may have escaped the artifact removal 

stage.  

 

Our results indicate that RS transient increases in neuronal synchronization in the alpha or beta 

frequencies (as indicated by a rise in EEG power in these bands) are typically followed by a 

decline in the oxygenated hemoglobin concentration. HbO is closely related to local cerebral 

blood flow (CBF), naturally leading to the conclusion that higher power in these bands correlates 

with lower metabolic demand. For this reason they have been referred to as "idle rhythms" 

although the function of these oscillations is not clear (Pfurtscheller et al., 1996). A possible 

mechanism  for this has to do the fact that the transition to synchronization by a neuronal 

population may come about through diverse paths including changes in input, synaptic gain, 

and axonal delay (Sirovich et al., 2006). One such transition involves a decrease in the input to 

a population. Assuming that the synchronization in question follows this path (supported by the 

fact that alpha appears when the eyes are closed) then it would naturally be accompanied by a 

decrease in metabolic demand. Synaptic activity is believed to dominate metabolic demand 

(Buzsáki et al., 2012). Hence although the generation of the rhythm requires energy the net 

effect of increase in its power may well be a metabolic decrease followed by lower local CBF. 

 

Possible anticipatory hemodynamic signal in a small subset of our subjects (Subjects 2 and 4 in 

Figure 4) was generally consistent with the presence of such patterns in animal study results 

(Sirotin and Das, 2009) and neonates (Roche-Labarbe et al., 2008). The appearance of 

seemingly anticipatory hemodynamics may be due to prior neural activity that is not picked up 
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by EEG. If this proves to be the case then it may be utilized in detecting patterns missed by 

scalp EEG.  

 

Simultaneous intracranial electrocorticography and fMRI have indicated that a tight relationship 

exists between BOLD signal and broadband gamma in humans (Mukamel et al., 2005; Nir et al., 

2007) and animals (Logothetis et al., 2001; Niessing et al., 2005). In our study the delayed 

negative correlation of EEG alpha and beta power with HbO was topographically widely 

distributed but absent at the inferior electrode sites where it was replaced the gamma 

modulation of Hb due to scalp muscle. In order to investigate if the muscle oxygenation was 

masking an underlying pattern we repeated the calculations in Figure 5 and Figure 6 using only 

the 3 subjects who by inspection had not shown gamma correlations. The results (not shown) 

contained no significant modulation of hemodynamics by gamma in any region.  

 

We believe one of the main limitations of our study was that the spatial resolution of EEG was 

low and that the local neuronal input to the hemodynamics was not well resolved. This may 

account for the observed lack of significant associations with hemodynamics in delta and 

gamma bands. Another reason for this may be that such associations with scalp EEG were 

weak and the amount of data we collected did not enable them to achieve statistical 

significance. The sparseness of the 10-20 coverage did not lend itself to an adequate estimate 

of the current density through the Laplace montage however inclusion of additional EEG 

electrodes could provide a local Laplacian estimate to improve space resolution (Nunez and 

Pilgreen, 1991). The results in Figure 13 dramatically illustrated the fundamentally higher space 

resolution of fNIRS: the high frequency EEG activity associated with jaw clenching was 

observed distributed over a wide area whereas the corresponding fNIRS signal was confined to 

the location of the muscles. Future studies that include EEG source reconstruction and 

quantitative modeling of the hemodynamic response constrained by data (Boas et al., 2008) will 
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be helpful in overcoming these limitations. These could be combined with optical image 

reconstruction, or diffuse optical tomography (Arridge and Schotland, 2009), in order to provide 

a more robust approach to the investigation of neurovascular coupling.  

 

Another limitation of our study related to the fact that we have not systematically investigated 

the differences in HRF between subjects. We have also not investigated potential 

nonstationarities in the HRFs. Preliminary inspection of our data showed evidence of 

nonstationarity. We did not attempt to separate the contributions to the fNIRS signal of 

superficial (scalp) and deeper (cortical) components. We used bandpass filtering  to remove 

some physiological artifacts although other more effective (although less practical) methods are 

available (e.g. Kirilina et al., 2012). The estimated sensitivity to brain tissue of the observed 

fNIRS signals is ~10% of their total sensitivity (averaged over the 10-20 locations) with a 

source-detector separation of 30-35 mm (Strangman et al., 2013). Furthermore, our HRF model 

was linear. In fact it contained only the first set of terms from a more general Volterra expansion 

(Pouliot, 2012). These shortcomings offer opportunities for further investigation. Our study was 

part of a broader effort to develop techniques tailored specifically for multi-modal data. 

Alternatives have been provided in other studies (e.g. Biessmann et al., 2011; Dahne et al., 

2013; de Munck et al., 2009). 

 

CONCLUSION 

 

Based on existing literature we expected to find a significant modulation of hemodynamics by 

alpha rhythms in the posterior cortex but we wished to extend the investigation to the whole-

head and the full spectrum of EEG power. In this paper we verified the well-known delayed 

alpha modulation of hemodynamics in posterior areas. We found an almost equally strong beta 

power correlation with hemodynamics. Our analysis suggested, however, that the latter was an 
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artifact of the autocorrelation among EEG rhythms. Signals from the inferior electrode sites were 

dominated by muscle electrical and oxygenation activity. Our results indicated that whole-head 

EEG+fNIRS recordings were able to detect patterns of neurovascular coupling over a range of 

topographic sites and frequencies of neural activity. Our incomplete understanding of 

neurovascular coupling further highlights the need for widely applicable, light-weight 

technologies suitable for tracking both the neural and vascular aspects of brain activity under 

natural conditions. New approaches for accumulating and analyzing hybrid EEG+fNIRS data will 

be critical for establishing the translational utility of this and other types of multi-modal functional 

imaging.  
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