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Abstract— SQL Injection Attacks are one of the most common 

methods behind data security breaches. Previous research has 
attempted to produce viable detection solutions in order to filter 
SQL Injection Attacks from regular queries. Unfortunately it has 
proven to be a challenging problem with many solutions suffering 
from disadvantages such as being unable to process in real time 
as a preventative solution, a lack of adaptability to differing types 
of attack and the requirement for access to difficult-to-obtain 
information about the source application. This paper presents a 
novel solution of classifying SQL queries purely on the features 
of the initial query string. A Gap-Weighted String Subsequence 
Kernel algorithm is implemented to identify subsequences of 
shared characters between query strings for the output of a 
similarity metric. Finally a Support Vector Machine is trained on 
the similarity metrics between known query strings which are 
then used to classify unknown test queries. By gathering all 
feature data from the query strings, additional information from 
the source application is not required. The probabilistic nature of 
the learned models allows the solution to adapt to new threats 
whilst in operation. The proposed solution is evaluated using a 
number of test datasets derived from the Amnesia testbed 
datasets. The demonstration software achieved 97.07% accuracy 
for Select type queries and 92.48% accuracy for Insert type 
queries. This limited success rate is due to unsanitised quotation 
marks within legitimate inputs confusing the feature extraction. 
Using a test dataset that denies legitimate queries the use of 
unsanitised quotation marks, the Select and Insert query 
accuracy rose.  
 

Index Terms—Intrusion Detection, SQL injection attacks, data 
mining, String Subsequence Kernel, Support Vector Machine, 
Supervised Learning 

I. INTRODUCTION 

QL Injection Attacks (SQLIAs) involve the crafting of 
user inputs in order to perform actions beyond the 

intended function of a web application (Su and Wassermann, 
2006). By the identification of the input fields associated with 
the dynamic generation of queries (Lee et al., 2012; Tajpour et 
al., 2012), the adversary can probe the database data values, 
the layout of the database (known as the database Schema), 
perform remote procedures and escalate their privilege on the 
Database Management System (Halfond et al., 2006; 
Balzarotti et al., 2008). Databases often contain significant 
quantities of confidential information. As a result it can prove 
to be lucrative for malicious users of web applications to 
 

 

create queries to resolve data they are not authorized to view 
or alter. SQL Injections are one of the most serious threats to 
web applications. It is ranked number one in the Open Web 
Application Security Project (OWASP) Top Ten Application 
Security Risks in 2013 (Williams and Wichers, 2013). This is 
due to as many as 98% of web applications having at least one 
security vulnerability resulting in an increase in SQL injection 
attacks by ten percent (Trustwave, 2015). 
 Our solution to the SQLIA problem is the implementation 
of Machine Learning methods capable of detecting malicious 
queries based on information from the structure of the query 
strings learned from a training set of queries produced during 
runtime. This structural information is extracted using a Gap 
Weighted String Subsequence Kernel (GWSSK) function 
(Lodhi et al., 2002). This function computes the similarity of 
unknown query strings to preselected training query strings. A 
Support Vector Machine (SVM) classifier uses these similarity 
measurements to determine if the unknown query is normal or 
malicious by determining a decision boundary which 
maximizes the distance between the two classes (Cortes and 
Vapnik, 1995). Our method is a form of black box method 
(Halfond et al., 2006). 

This method does not require the re-engineering of SQL-
dependent web applications or the full disclosure of their 
source code. This is a flaw of many previous methods 
(Halfond et al., 2006). There are also some solutions that are 
easily circumvented by attackers constructing novel attacks 
(Shahriar et al., 2013). As our method uses a probabilistic 
classifier in the form of the SVM classifier, unknown queries 
with query structures which deviate from the training dataset 
are still likely to be determined as malicious due to the 
extracted similarity information. Our solution does have two 
clear limitations. Our method must be placed between the web 
application and the database. This introduces hardware 
overhead required to operate the detection and prevention 
solution (Moosa et al., 2010; Zhang et al., 2011; Pinzón et al., 
2013). Additionally, the detection algorithms are never going 
to have perfect detection accuracy and therefore issues related 
to false negatives which can inflict database damage and false 
positives that can prevent normal operation of a database must 
be mitigated (Makiov et al., 2014). 

Our key contribution is the demonstration of the viability of 
the GWSSK and SVM algorithms in the high-performance 
classification of SQL query strings during real-time operation 
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of a database application. This is shown through classification 
accuracy and time complexity experiments on a dataset of 
SQL queries exhibiting a wide-range of normal and malicious 
features. The novel GWSSK method in the automatic 
extraction of informative features of SQL queries allows for 
the elimination of biases produced by manually created 
features potentially improving the accuracy of the SQLIA 
classification task. 

The rest of this paper is structured as follows. In Section 2, 
the descriptions of related works are presented. In Section 3, 
the framework of the proposed solution is discussed and the 
contribution of this paper is clarified. In Section 4, the feature 
extraction at the core of this solution is defined as the main 
contribution of this research. In Section 5, the experimental 
results of the demonstration software for the proposed method 
are evaluated. These results are then discussed in chapter 6. 
The final conclusions and proposals of future work are 
provided within chapter 7.  

II. RELATED WORKS 

Research into securing web applications from SQL 
Injection Attacks has proposed two differing approaches 
(Halfond et al., 2006). The first approach involves the 
rewriting of application source code within the web 
application and possibly, stored procedures within the 
database to conduct sufficient input validation. The correct 
application of these techniques can render a web application 
secure to injection commands but it comes with a major 
disadvantage. Completed web applications require 
redevelopment to incorporate the defensive procedures. 
However, this is the best way to protect a system from attacks 
if the system is currently in development and not yet complete. 
The costs associated with the changing of software vastly 
increase later into the development cycle. 

NoTamper is a black-box testing method designed to 
determine vulnerabilities in the server-side code. This allows 
vulnerabilities to be patched although with a severe cost if 
vulnerabilities are not detected (Bisht et al., 2010a). 
AMNESIA is another vulnerability exploration method that 
combines a static analysis of the web application code with 
runtime monitoring (Halfond and Orso, 2005). SQLGuard was 
proposed as method of analyzing query parse trees both before 
and after user-input inclusion. This allows the execution of the 
user-input to be explored (Buehrer at al., 2005). CANDID is 
another source code analysis method that retrofits the source 
code with additional candidate queries. The runtime queries 
can then be compared to these to determine any illegal 
executions (Bisht et al., 2010b). 

The second approach involves the deployment of additional 
software designed to screen the queries generated by a web 
application before their execution on the database. These 
software solutions utilize a wide range of techniques and are 
often significantly less expensive to deploy into an active 
system. Unfortunately, they often suffer from the disadvantage 
of not being a complete solution to the problem. Many 
solutions are unable to detect every type of SQL Injection 
Attack leaving an avenue for attackers to exploit. They can 

also be prone to false positive and false negative events where 
the detection algorithms identify legitimate queries as 
malicious and block them or allowing malicious queries 
through resulting in a security breach. 

SQLProb is a proxy-based architecture to prevent SQL 
Injection Attacks (Liu et al., 2009). The solution defines a list 
of queries produced by a web application. It processes all 
possible queries produced by the typical operation of the web 
application. These queries are then collected by the proxy 
software to produce a sample set of SQL queries from the web 
application. The proxy filter then detects inbound queries and 
intercepts them. An enhanced Needleman-Wunsch algorithm 
(Needleman and Wunsch, 1970) originally designed for the 
alignment of string-based genetic data is used to determine the 
user input within the full query string. The algorithm 
determines what substring(s) within the query string to remove 
to gain the closest comparison to the sample queries. This 
removed data is the input string(s) within the query string. 
Upon the determination of the user input, the query string is 
then used to generate a parse tree. A depth-first-search is then 
conducted to identify the leaf nodes. If a non-leaf node is 
discovered that has descendent leaf nodes that are only 
sourced from the user input then the query string that 
generated the parse tree is malicious. The malicious queries 
are then rejected by the proxy software leaving only normal 
queries to be relayed to the database. 

A novel method using the Data-Mining of database logs 
was proposed to detect SQLIAs (Kim and Lee, 2014). The 
database log files were used to identify queries executing on 
the database. This file contains information on the query string 
and the operations performed by the query execution. The 
solution first generates a query tree (Buehrer et al., 2005). 
These query trees were used to generate feature vectors using 
feature extraction. A set of rules defined by the solution 
developers transform the string and numerical data from the 
query tree into a multidimensional numerical vector array. A 
training dataset of these feature vectors containing samples of 
normal and malicious queries was used to train a SVM to 
generate a decision rule for the testing of future queries. 
Kernel functions were then used to allow the solution to 
determine a non-linear decision rule. Newly logged queries are 
transformed into query trees from their associated log, 
composed into feature vectors and compared by the SVM to 
the decision rule obtained during the training phase. This 
solution produced very high accuracy of 99.9% for select and 
insert queries and 99.6% for stored procedures. The primary 
disadvantage is that this solution can only be used for attack 
detection and not prevention. This is due to the simple fact 
that the query logs that the testing criteria are determined from 
are only produced when a query is executed. 

The combination of static and dynamic analysis techniques 
were used as the basis of a preventative solution (Lee et al., 
2011). In this approach, the source code of a web application 
is inspected to identify the possible SQL queries. The queries 
are collected prior to the insertion of user input creating a 
control query. The solution then dynamically monitors for 
queries being generated at runtime. These queries are then 
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processed by an attribute removal algorithm that removes all 
data from the query that is contained within quotes as these 
attributes will have no basis on the syntactic form of the 
query. This reduced query is then compared using an XOR 
logic operation to the control query gathered during the static 
analysis. If this operation returns a result indicating that the 
two queries are different, the user input must have some form 
of injection input and it is discarded. This approach is accurate 
and has very low time complexity as the XOR operation is 
extremely light on processing. Unfortunately it requires a 
static analysis which must be accomplished by either the 
analysis of the web application source code or through the use 
of a proxy server between the user and the web server. 

A framework, using a machine learning approach, 
implements an Intrusion Detection System that learns the 
patterns of query strings (Valeur et al., 2005). It uses a 
supervised learning training dataset to produce training 
models. First the strings are parsed into syntactic trees for 
feature extraction. Feature vectors are used to produce a model 
of the parse trees of typical legitimate queries. Then the 
training set queries are compared to these models and an 
anomaly score is determined based on how much the training 
set queries differ from the models. The solution is then able to 
operate in a detection phase by intercepting new query strings, 
extracting their features and comparing them to the models to 
determine the queries anomaly score. If this score is greater 
than the maximum anomaly score from the training phase, the 
query is classified as an attack query and logged. The 
approach proved to be capable of detecting queries that 
deviated from the normal template due to the injection of 
commands with a high rate of confidence. This approach is, 
however, dependent on being supplied with a complete set of 
legitimate queries during the training phase. Failure to do so 
will result in false positives as legitimate queries not used for 
training will have an increased anomaly score. It does mean 
that the training set need only describe legitimate queries as all 
those that differ from these queries are rejected as having high 
anomaly scores. DoubleGuard is an intrusion detection system 
that implements multitier detection. It models the network 
behavior between the front-end web application and the back-
end database as well as any intermediate servers. This allows 
the determination of attacks in the event an attacker bypasses 
segments of the pipeline (Le et al., 2011). 

Machine learning solutions have become a popular method 
for SQL injection attack detection as they allow a probabilistic 
representation of the problem to be deployed. This strengthens 
the methods against novel attacks. A neural network solution 
trained on normal and malicious HTTP requests can be used to 
classify these requests although the solution required separate 
instances for each website on shared hosts (Moosa et al., 
2010). SQLiGoT represents SQL queries as a collection of 
token graphs and uses SVMs to detect attacks at the database 
firewall layer (Kar et al., 2016). This solution does not require 
multiple instances and is capable of protecting multiple web 
applications simultaneously. Multiagent systems have been 
used to produce an intrusion detection system to detect SQL 
Injection attacks. idMAS-SQL is an architecture that employs 

a number of algorithms to classify suspicious queries through 
the use of Machine Learning classifiers including SVM and 
artificial neural networks (Pinzón et al., 2013). 

Our framework also employs machine learning for 
classifying query requests but through the use of string kernels 
(Lodhi et al., 2002), we replace the manual engineering of 
attack features present in other works and instead allow our 
machine learning system to determine its own solution based 
on a training set of known queries. 

III.  SQLIA DETECTION FRAMEWORK 

Whilst Machine Learning solutions have previously been 
developed for the classification of SQLIAs, they are all 
dependent on features carefully designed for the task. This 
design task, named Feature Engineering, is a powerful method 
for crafting highly informative mathematical representations 
of the query data and is almost ubiquitous in Machine 
Learning tasks. Despite its wide usage, this method can 
introduce biases into the solution due to the manual 
intervention such a task requires. Our method replaces this 
manual design with a novel string kernel approach which 
automatically converts the input string data into a high-
dimensional mathematical form. This form would be 
impossible to utilize directly and therefore the dimensionality 
is reduced through the computation of similarity with 
landmark training strings. The classifier may then use this 
automated representation to maximize the performance for the 
given classification task, in this case the detection of SQLIAs. 
This eliminates any potential bias introduced by human-
engineered measurements. 

3.1. Design Concepts 

The first phase of the operation of the SQLIA detection 
framework is the collection of SQL statements from the web 
application. This can be accomplished by routing outbound 
messages containing the query statements to software utilizing 
the proposed solution positioned on either the same web 
server, or an additional proxy server. 

These queries are then subjected to a binary classification 
approach where the class label of the intercepted queries is 
predicted and actions performed dependent on this prediction, 
either by rejecting a malicious query or relaying a legitimate 
query to the back-end database. The prediction is performed 
by using learning models produced by the identification of 
discovered patterns within a set of pre-classified training data. 
In this framework, a Gap-Weighted String Subsequence 
Kernel function is used to compute the similarity between 
data. Feature Vectors generated from this similarity 
computation between each string from the set of training 
queries are then used to solve the binary classification problem 
by the identification of patterns in the feature vectors produced 
by the different classes of query statement. In order to place 
query statements into a form ready for the string kernel, a data 
pre-processing phase is performed were the strings are 
manipulated into forms that emphasize the important SQL 
features within the strings. 

The SVM uses a Kernel Matrix  to perform a training 
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phase utilizing the training dataset feature vectors to generate 
a classification model by determining a decision rule that 
separates the two classes of feature vectors within a 
multidimensional feature space. Upon the production of this 
classification model, the SVM is ready to operate in a testing 
(or detecting) phase. The testing phase is able to use the 
classification model produced within the training phase to 
predict a class for an unknown feature vector produced from a 
new query statement intercepted by the solution. 

3.2. Design Architecture 

Like many Black Box solutions, this solution requires the 
introduction of specially crafted input to build up a set of 
query strings based on the input (Halfond et al., 2006). These 
query strings are then used as the basis of the production of 
decision rules to identify legitimate and attack queries. To 
accomplish this, a set of input features is produced. This set is 
composed of input strings of both normal and malicious intent. 
These inputs are then introduced to the web application by 
identification of the input fields. A string comparison 
algorithm will identify the total number of queries generated 
by the web application and link the associated input fields to 
each query template. The rest of this solution then operates on 
each individual query and new threads must be activated in 
order to process the additional queries. 

For each individual query, a set of query strings is 
constructed to determine the morphology of the query within 
the application code. Each field that was identified to be 
associated with the query in the previous section is supplied 
with either normal or malicious input. If any field is supplied 
with malicious input, the query produced from this input is 
classified as malicious. Approximately equal numbers of 
normal and malicious queries must be constructed. The input 
generator algorithm produces a set of queries based on the 
inputs from an input features set containing examples of the 
different forms of injection commands. Each query in this set 
has been classified based on the input used to generate them as 
either normal or malicious. This set of queries is the training 
set as it will be responsible for the creation of the decision 
rules for the classification of future queries during runtime 
operation. This process is equivalent to the static analysis from 
the related solutions but without the requirement of source 
code access. 

The next algorithm is designed to reduce the size of the 
complete set of possible SQL queries for a web application by 
manipulating the features of the query strings. This allows 
multiple similar strings to produce the same ‘feature string’ 
which is used for classification. The main difficulty of Black 
Box methods is describing the completeness of a query system 
with a sufficient set of allowed queries. This algorithm is 
capable of reducing the size of the complete set of possible 
queries. Therefore, the training set can be of smaller size and 
yet still be an acceptable sample set of the complete query set. 
It is important that the training set be an accepTable sample 
set to assist the machine learning algorithms in producing a 
satisfactory model. During normal operation of a web 
application the queries generated will contain differing 

attribute data values in order for users to access the data they 
require. As a result, this solution uses a modified version of 
the attribute removal algorithm introduced by a related 
solution (Lee et al., 2011). This algorithm removes substrings 
from the input data that have no effect on the syntactic 
structure of the query string. These must be removed or it is 
possible that different data values may influence the 
classification of the string which is unwanted. This algorithm 
reduces the query string into a form that emphasizes the 
syntactic features of the query. This algorithm is called the 
Feature Manipulation Algorithm within the proposed solution. 

The reduced query strings from the training set must then 
undergo a process called feature extraction. This process will 
convert the queries into mathematical feature vectors that can 
be used to produce mathematical decision boundaries for the 
production of training rules. Feature extraction was used in 
previous research using string to numerical conversion rules 
(Kim and Lee, 2014). In this solution a much more powerful 
algorithm is deployed. The Gap-Weighted String Subsequence 
Kernel Function is a multidimensional algorithm that can 
compute the similarity between two strings by identifying the 
occurrence of short sequences of characters of varying scales. 
It has been shown to be effective for text classification (Lodhi 
et al., 2002; Homoliak, 2012). This allows the computation of 
similarity within a feature space of dimensionality ∑ Σ=  

where � is the alphabet of the query strings and  is the 
maximum length of subsequence used for the evaluation. It is 
referred to as a String Kernel as it is a kernel function that 
operates on argument strings instead of vectors already in 
mathematical form. Each reduced query string within the 
training set has its similarity value calculated with every query 
‘feature manipulated string’ within the training set including 
its own string to produce the feature vector for the query. This 
feature vector is a numerical vector of  dimensionality and 
each value is the string compared with strings { , … , } from 
the training set. This represents the large feature space within 
a  dimension operational space. When this calculation is 
performed for every query, a total of  feature vectors are 
generated. These feature vectors can be lined up into rows to 
produce a ×  matrix. This is named a kernel matrix and is 
the input accepted by the SVM during the training phase. 

 
Fig. 1. A two dimensional feature space containing four vectors (two 

classed negatively, and two positively) and their associated margins. 
 
The solution then makes use of supervised machine learning 

to utilize the pre-classified training set of feature vectors to 
generate a decision boundary. The SVM was chosen for this 
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function as it is a powerful but efficient binary classifier 
(Cortes and Vapnik, 1995). Consider Figure 1 representing a 
simple two dimensional feature space containing four feature 
vectors, two positively classified and two negatively 
classified. 

Within Figure 1 there are a number of important vectors. 
The vectors − and + indicate the locations of two support 
vectors, one classified negatively and one positively. The 
vector � is an unclassified test vector. Finally, the  vector is 
a vector normal to the separating hyperplane that describes 
this hyperplane. The two side lines represent the best fitting 
margins separating the negative support vectors and the single 
positive support vector. As the top right hand corner positive 
vector does not lie on or within the margin of the separating 
hyperplane, it is not a support vector whereas the other three 
vectors are. 

If the vector � lies upon the positive side of the separating 
hyperplane, the inner product between  and � is greater than 
an undefined constant , ∙ � . This can be converted to 
Equation 1 by defining a new constant  where = − . This 

equation becomes the first decision rule defined by the 
hyperplane.  

 
If ∙ � +   then � is a positive classified vector.     (1) 

 
This can be expanded for the vectors placed on the margins 
and outside producing equations 2 and 3.  

 ∙ + +    where + is a positive sample.                (2) 
 ∙ − +  −   where − is a negative sample.              (3) 
 

An additional variable can be introduced to simplify the 
Equations 2 and 3 into a single decision rule. Name this new 
variable  such that = +  for positive samples and =  −  for negative samples. This produces the new 
decision rule shown in Equation 4. 
 � � ∙ +       for both + and −. � � ∙ + −                   (4) 
 

For � in the ‘gutter’, the limit of the margin, Equation 4 is 
equal to zero. The width of the margins can be defined as 
shown in Equation 5. 

 + − − ∙ || ||. || || is the unit vector of .                   (5) 

 
The margin can be defined independently of the individual 
vectors resulting in Equation six. 

 

WIDTH = + − − ∙ || || = || ||                                   (6) 

 
The best decision boundary will maximize the size of these 

margins so therefore we must maximize /|| || which is 
equivalent to maximizing /|| || which can then be 
determined as minimizing || ||. For mathematical 

convenience this is formed into Equation 7. 
 � [ || || ]                                              (7) 

 
This operation can be accomplished through the use of 
Lagrange Multipliers. 
 = || || − ∑ � [ � � ∙ + − ]             (8) 

 
The derivatives of L must be calculated and set to zero. 
 �� = − ∑� =   

 ∴ =  ∑�  where �  gives weighting to the training 
vector .                       (9) 
 �� = − ∑� =           ∴ ∑� =         (10) 

 
Using Equation 8 and substituting in Equations 9 and 10 
results in the production of Equation 11. 

 = ∑ � (∑ � ) − ∑ � ∙ (∑ � ) − ∑� + ∑�   = ∑� − ∑ ∑ � � ∙   

Maximize �                                 (11) 
 
This leads to the new decision rule ∑� ∙ � +   

then u is positive. 
This Hard Margin Support Vector Machine is very 

inflexible. It can only create decision rules where the vectors 
are never allowed to violate the margin boundaries. This can 
lead to hyperplane overfitting and therefore an overfitting 
decision rule if any of the support vectors are outliers. A better 
approach is to use a Soft Margin Support Vector Machine. 
This approach allows vectors to violate the margins at an 
associated penalty cost. This can result in a superior decision 
rule due to better generalization of the models despite the 
possible incorrect classification of feature vectors in extreme 
cases. As any vector that manipulates the decision boundary is 
a support vector, any vectors that violate the margins are also 
support vectors. 

A new cost parameter  is introduced. This parameter 
identifies the cost associated with the violation of the margin 
by a support vector  by � . This modifies Equation 7 from 
the Hard Margin Support Vector Machine into Equation 12. 

  �, ,�� + ∑ �=                    
Subject to �� +  − �  where �  .    (12) 
 

This solution makes use of this Soft Margin Support Vector 
Machine as it allows the use of the cost parameter to produce 
better fitting models without overfitting during the training 
phase. The SVM optimization function is convex meaning that 
it will not always optimize to the global minima for the model. 
The SVM implementation used in this proposed solution also 
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deploys a grid optimization algorithm in order to determine 
the optimum value of the cost parameter. The model produced 
by the training set will then be used as the basis of classifying 
new queries based on the decision rule produced during the 
testing phase. This is accomplished by assigning either a +1 or 
-1 to the test queries  value. Support Vector Machines are 
natively linear classifier but as the query feature vectors are 
likely not linearly separable. Kernel Functions allow feature 
vectors that are not linearly separable to be separated within 
higher dimensional space by mapping the feature vectors 
using a kernel function shown in Equation 13. 

Let ϕ  be a transformation of space where  ∈  ℝ , ϕ ∈  ℝ  and >  where  and  are integers. 
We want to maximize ϕ ∙ ϕ( ) and ϕ ∙ ϕ �  

where  and  are the feature vectors of training set points  
and  ,  where  is the total number of training set 
points. Finally, � is the feature vector of a test query. 

 
Propose a Kernel Function: ( , ) =  ϕ ∙ ϕ( )                            (13) 
 

The algorithm is capable of using the decision rules 
determined from this operation to classify unclassified query 
string feature vectors based on their position relative to the 
decision boundary within the feature space. The SVM 
determines a decision boundary between the normal and 
malicious query feature vectors such that the margin between 
both is maximized. This decision boundary is used to create a 
model that contains the decision rules for future classification. 
The production of this model signifies the end of the training 
phase and the solution now operates during web application 
runtime. 

During runtime, real world user input is used to generate 
queries. These queries are intercepted by the solution and are 
processed by the Feature Manipulation Algorithm that extracts 
attribute data that is not of importance to the string syntactic 
form. It is then processed by the Gap-Weighted Subsequence 
Kernel Function that generates a feature vector for the new 
test query string by computing the similarity value of the test 
query with every query string in the training set. This feature 
vector is put into a kernel matrix form producing a  ×  
matrix (a row vector created by a transpose of the feature 
vector). This matrix is then introduced to the SVM running in 
testing mode. The SVM uses the model generated during the 
training phase to classify the test query. The query is then 
logged to file and if the SVM classifies the query as malicious 
it is rejected. If the query is classified as normal it is then 
relayed as normal to the back-end database. Figure 26 on the 
last page of the paper demonstrates the operation of the 
SQLIA detection framework as well as path of data flow 
throughout the solution. 

IV.  FEATURE EXTRACTION 

SQL queries intercepted by the solution can have a large 
range of accepTable user input. This user input is of great 
importance in defining the semantics of a query string but has 
no effect on the syntactic form of the query. Different types of 
SQL Injection attacks exhibit the same primary characteristic; 

the injected input alters the syntactic form of the query. The 
string kernel function is unable to differentiate between user 
input used to define attribute values and actual SQL 
commands isolated from the attributes that alter the function 
of the query. As a result, the attribute values must be removed 
from the strings before similarity evaluation. In a previous 
solution, the attribute values were removed in order to 
compare the syntactic form of testing query strings to the 
query template extracted by static analysis of the web 
application source code (Lee et al., 2011). The Feature 
Manipulation Algorithm present in this solution is an 
extension of this original design. 

Another reason to remove unneeded substrings from the 
query string before testing is due to the operation of the Gap-
Weighted String Subsequence Kernel function. The total set of 
characters used between two strings is defined as the alphabet �. The time complexity of this function is dependent on this 
alphabet � for the two strings undergoing the comparison. The 
Feature Manipulation Algorithm can remove the attribute 
values that are unneeded for the learning process and 
potentially reduce this alphabet to the reduced alphabet � 
where � ⊆  Σ. This reduced alphabet allows the faster 
computation of the similarity between the two attribute-
removed strings. The string is read in by the function. All 
double quotation marks are converted to single quotation 
marks as these SQL operators are interchangeable. This 
simplifies the next operation, reduces the size of the alphabet 
and reduces the number of training inputs required to produce 
a full set of training queries of satisfactory sample size to the 
complete query set. The algorithm then iterates through the 
characters. Attribute values are removed by identifying 
quotations and removing characters after the quotation marks 
until the next quotation mark is discovered. This prevents 
substrings that do not affect the syntactic form of the query 
from being included in the string kernel function. 
Additionally, numerical data not located within the removed 
quoted text is identified and converted into the numerical 
placeholder ‘1’. This prevents differing numerical data from 
altering the feature set of the strings. It also simplifies the size 
of the alphabet and the number of training inputs required. 
Finally, all characters after the comment operator are 
removed. This compensates for the ability of comment 
operators to result in ‘uneven sets’ of quotation marks 
disrupting the attribute removal. 

These operations performed in string space have a powerful 
effect on the feature vectors of the query strings. By removing 
string elements that do not contain syntactic information, the 
feature vectors of queries demonstrating similar construction 
are clustered within the feature space allowing for improved 
operation of the SVM classifier. A similar operation could be 
accomplished by making use of an unsupervised clustering 
algorithm on the feature vectors of the query strings and then 
moving the vectors towards the cluster centroid but at an 
increased processing requirement. The correct clustering of 
similar syntactic query strings cannot be guaranteed using 
unsupervised learning as prior to feature manipulation the 
feature vectors of similar query strings can be spread over a 



 7 

large area within the feature space. Figure 2 demonstrates the 
feature vector clustering effect within the feature space.  

 
Fig. 2. A demonstration of the clustering of the feature vectors of similar 
query strings in the feature space after the processing of the Feature 
Manipulation Algorithm performing all operations in string space. 

 
The Feature Manipulation Algorithm returns strings with 

their attribute values removed and with important features 
enhanced. Feature extraction must be performed on the strings 
to transform them into numerical feature vectors. Feature 
extraction uses rules to convert properties of the strings into 
multidimensional vectors where each dimension relates to a 
specific property of a string. The SVM requires every output 
string from the Feature Manipulation Algorithm to be 
transformed into feature vectors in order to generate models. 
Given an input query string, new features must be computed 
depending on the Euclidean distance proximity to ‘landmarks 
- �’ within the input space. Equation 14 demonstrates how the 
features are constructed. 

 = , �  where  is the input string.      (14) 
 

Appropriate ‘landmarks’ must be chosen to produce a set of 
features that can appropriately separate the legitimate and 
malicious manipulated query strings within the feature space, 
a space of dimensionality equal to the number of features 
produced by the ‘landmark’ comparisons. An acceptable 
method of assigning ‘landmark’ strings is by selecting each 
query string within the training set. This is the method utilized 
in this proposed solution and is the reason why the feature 
vectors have the same dimensionality as the number of query 
strings within the training set. Kernel Functions allow 
classified input vectors that are not linearly separable to be 
differentiated within higher dimensional space by mapping the 
inner products between the input vectors using a kernel 

function. String Kernel Functions are an alternative to explicit 
feature extraction as they allow the direct computation of the 
similarity between two strings. String Kernel Functions are 
defined as the inner products between the features of two 
argument strings. There are a number of String Kernel 
Functions that extract specific string features and use them to 
calculate the similarity value.  

The String Subsequence Kernel was published in the 
Journal of Machine Learning in 2002 (Lodhi et al., 2002; 
Rouso and Shawe-Taylor, 2005). It was used as part of a novel 
approach to classifying text documents. These kernel 
functions use sequence alignment techniques developed for 
string-based genetic sequence research as an alternative to 
feature extraction. They consider strings as a collection of 
symbol sequences. The Subsequence Kernel is based on the 
identification of a set of sub-sequences within input strings. 
This allows the calculation of the similarity between two 
strings by defining a length of substring to identify and 
producing a multidimensional feature extraction identifying 
the presence of each possible combination of the alphabet � of 
the string over the maximum subsequence length  and the 
total dimensionality of the string vectors is given by Equation 
15. 

 � � =  ∑ Σ=                           (15) 
 

The String Subsequence Kernel can be defined through its 
mapping of k-length substrings between two input strings. The 
value of this operation will be non-zero if any given string 
subsequence occurs in both input strings even if it is not 
contiguous in either of them. All possible characters forming 
these k-length substrings are collected into an alphabet which 
is a subset of the complete possible set of characters. Define Σ 
as a finite alphabet of characters that can be used to construct 
any string. A string is a sequence of characters from Σ 
including the empty sequence. For two strings , , | | is the 
length of string  = , … , | | and | | is the length of string  = , … , | |. The string  is defined as the concatenation of 
the two strings  and . Further, string [ : ] is a substring …  of . 

  We therefore can define  as a subsequence of  if there 
exists indices: = ( ,… , | |) with    <  <  | |  | | such that =  for = ,… , | |, = [ ] 

The length of  in  is | | − +  Σ  is the set of all finite strings of length  and Σ∗ is the set 
of all possible strings. This leads to Equation 16. 

 Σ∗ = ⋃ Σ∞=                   (16) 
 
  Every possible subsequence of a string can be defined 

within a feature space of the dimensionality of the alphabet set 
to the power of the maximum size of subsequence. The 
dimensions of this feature space is given by = ℝΣ� . 

  Feature mapping � for a string  is given by defining the  
coordinate �  for each  ∈  Σ . The value of this 
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coordinate is given by � = ∑ �: = [ ]  for some � . 
The variable � is called the gap decay factor and determines 
the cost penalty due to non-contiguous substrings. These 
coordinates measure the number of sub-sequences in the string 
 weighting them according to their lengths. 
  The Inner Product of the feature vectors for the string  

and  give a sum over all common sub-sequences weighted 
according to their frequency of occurrence and lengths. This 
inner product is given by Equation 17. 

 , =  ∑ � ∙ �∈Σ� = ∑ ∑ �: = [ ]∈Σ� ∑ �: = [ ]  

= ∑ ∑ ∑ � + : = [ ]: = [ ]∈Σ�  

                       (17) 
 
The direct computation involves |Σ|  time and space 
complexity. This Equation can be used to define a recursive 
calculation for the kernel shown in Equation 18. 
 ′ , =  ∑ ∑ ∑ �| |+| |− − +: = [ ]: = [ ]∈Σ   
where = ,… , −                 (18) 
 

Equation 18 is then calculated from 1 to −  as shown in 
Equation 19 to 22. Equation 23 then uses this recursive 
calculation to compute the full subsequence kernel. 

    ′ , =  ,   , ,             (19)    ′ , =  , min | |, | | < ,          (20)    , =  , min | |, | | < ,              (21) ′ , = � ′ , + ∑ ′ − , [ : − ] �| |− + ,: =  = ,… , − ,        (22)
     , = , + ∑ ′ − , [ : − ] � .: =  

                       (23)
  

This method penalizes the length of the strings as they grow 
through the use of the gap decay factor. It is important once 
this calculation has been performed to normalize the final 
similarity value. This is important as the length of two strings 
should be independent of the similarity value. Equation 24 
shows how this is performed through the introduction of a new 
embedding factor. 

 ̂ , =  �̂ ∙ �̂ = �||� || ∙ �||� ||  = ‖� ‖‖� ‖ � ∙ �  = ,√ , ,        (24) 

 

Each string kernel will form different string vectors with 
different dimensions and for this string kernel we consider a 
vector with an associated space named ‘gap-weighted string 
subsequence space. Each dimension in this string space is 
formed by one of the different string combinations determined 
by Equation 15. Consider a complete alphabet � = 2000, the 
maximum subsequence length is  =  �. This produces a 
string vector of approximate dimensionality 66 . However, 
almost every string will contain a small subset of these 
substrings resulting in sparse string vectors with most 
dimensions evaluating to zero. The reduced alphabet, 
determined by the identification of the alphabet used by the 
query strings, string vectors will be of significantly reduced 
dimensionality of approximately 6. These string vectors 
will still retain significant sparsity. It is within this space that 
the Gap-Weighted String Subsequence Kernel will compute 
the Euclidean distance between the input strings with identical 
string vectors returning one, dropping to zero as the distance 
between the string vectors increases towards infinity. This 
action allows the description of the impossible-to-produce 
multidimensional vector of string  as a lower dimensional 
feature vector � shown in Equation 25. 

 � =  , �    where ∈ { , … , }, � ∈ ℝ        (25) 
 

Co-occurrences of combinations of the substrings between 
the two strings result in a higher similarity evaluation. This 
entire calculation is accomplished without requiring the 
explicit definition of the two multidimensional string vectors. 
The Gap-Weighted Subsequence Kernel is similar to the 
Subsequence Kernel but it also takes gaps between each 
multidimensional feature into consideration. A gap penalty 
named the gap decay factor � ∈ { , … , } is used to define the 
reduction in similarity evaluation due to non-contiguity 
between the co-occurrences of multidimensional features 
within the two input query strings. 

Consider the two strings ‘the car parked’ and ‘at the tree’. 
The alphabet of these two strings is a set of all the characters 
within them including the space character. This alphabet is 
displayed in Equation 26. 

 Σ =  { , , , ℎ, , , , , _} 
Where _ represents the space character.             (26) 
 

It is possible to determine the full set of =  { , … , } 
substrings possible from this alphabet. For  =   the set is 
the same as the alphabet. For  =   the set of possible 
substrings is shown in Figure 3. 
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There are Σ  possible combinations: 

{  
  
   
 ,  , , , ℎ , , , ,  , _,  , , , ℎ , , , ,  , _,  , , , ℎ , , , ,  , _ℎ,  ℎ, ℎ, ℎ, ℎ ℎ, ℎ, ℎ, ℎ,  ℎ, _,  , , , ℎ , , , ,  , _,  , , , ℎ , , , ,  , _,  , , , ℎ , , , ,  , _,  , , , ℎ , , , ,  , __,  _, _, _, ℎ _, _, _, _,  _, _ }  

  
   
 

 

Fig. 3. The different possible features of strings utilizing the alphabet of 
Equation 25. 

 
For a given value of , the Gap-Weighted Subsequence 

Kernel can compute the similarity between two strings based 
on the co-occurrence of -length substrings by using a 
dynamic programming approach. This approach also has the 
advantage of calculating all the similarities for scales between 
 and  without any additional processing overhead. This 

results in the production of a set of real valued numbers { , … , } where  is the computed similarity 
between two input strings over -length substrings and  is 
the maximum length of substrings to be computed. This set of 
numbers must be used to determine a single similarity value 
that will be used in the kernel matrix . These requirements 
mean that the Gap-Weighted Subsequence Kernel must use a 
total of +  input variables where  is the maximum length 
of substrings to be used in the similarity evaluation. These 
variables are the maximum substring length , the gap decay 
factor � which is used to determine how heavily substrings are 
penalized for not being contiguous within the two input strings 
and a set of coefficients that determine the weighting of the 
specific scale similarity evaluations { , … , } when 
they are used as part of a summation to generate the similarity 
value used for ( , ) within . This normalised 
summation is shown in Equation 27. This calculation is 
performed for every  and  string within the training set to 
create the  kernel matrix and for a test query  with each 
training set string  to create a ‘relative similarity’ feature 
vector for the purpose of the classification of . 

 ( , ) =  ∑ ��[ ]=1 ∑ [ ] [ ]=           (27) 

Where  is the maximum subsequence size and [ ]  is the 
weighting coefficient of [ ]. 

 
The Kernel Matrix is written into a data file in a format that 
the SVM library can read demonstrated in Figure 4. 

        :          : ,          : ,           : ( , )        :          : ,          : ,           : ( , )            :            : ,          : ,            : ( , )                                                                                                         
Fig. 4. The data file of the training phase Kernel Matrix in the LibSVM 
format. 

 
It is therefore possible to enter any numerical value to act as 

the coefficient for the similarity value of a particular 
subsequence length. This allows solutions to be created that 
can scale the contribution of subsequence lengths based on 
their ability to produce a superior classification model. The 
strength of using a Gap-Weighted String Subsequence Kernel 
is the ability to compute similarity based on multidimensional 
features of query strings without the explicit generation of 
these multidimensional feature vectors. The program simply 
iterates through the set of possible combinations for an 
alphabet of all the characters within the two strings up to a 
given maximum scale length cumulatively summing the 
contributions as it continues. These multidimensional feature 
vectors could never be explicitly evaluated for larger scale 
lengths due to the spatial complexity of such an operation. The 
memory requirements to store such a large quantity of data 
would overwhelm any system seeking to make use of this 
solution. Therefore this string kernel allows the processing of 
these feature vectors without ever storing them in memory. 

V. EXPERIMENTS 

Using the proposed method, a proof-of-concept, fully self-
contained C#.NET software capable of generating Select and 
Insert queries was produced. The software would attempt to 
classify the generated queries based on models it had created 
by training on queries generated by passing specially crafted 
user input through the Select and Insert query generators. At 
no point was the detection component allowed access to the 
component containing the unsanitised query template code as 
this would pollute the objectives of the demonstration 
software. A SVM capable of utilizing pre-computed kernel 
inputs was sourced. LibSVM is a library for SVMs and is 
widely used. This library is equipped with an ‘SVC’ Support 
Vector Classification module (Chang and Len, 2007). The 
LibSVM library is written in Java and therefore a translated 
library for the .NET languages was required for the C#.NET 
platform. A library named SVM was utilized. Developed by 
Matthew Johnson, it is a clean .NET conversion of the 
LibSVM Java version 2.89. Figure 5 displays a screenshot of 
the Graphical User Interface of this demonstration software. 

 

Fig. 5. The Graphical User Interface of the demonstration software. 
 
The evaluation of the proposed solution was conducted on a 
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machine operating an Intel i7-4770k processor clocked at 4.4 
Ghz with 8 Gb of RAM running Windows 7 Professional 64-
Bit with Service Pack One installed. As the demonstration 
software is completely self-contained, no messages are sent 
over the network and therefore there are no network related 
time delays. The input feature set data was produced manually 
and contained values that identified a set of user inputs 
containing regular input and injection commands combined 
with a class indicator showing if the input is malicious or 
legitimate. 

5.1. Evaluation conditions 

The Amnesia testbed dataset was obtained from the 
Amnesia authors (Halfond and Orso, 2005). This dataset 
contains a number of attack queries for seven different web 
applications. These queries were used to construct two testing 
datasets, one containing Select queries in the syntactic form of 
the demonstration software select query and one containing 
insert queries, again in the syntactic form of the demonstration 
software insert example query. The Select query dataset 
contains 232 queries, 116 normal and 116 malicious. These 
queries feature multiple potential types of SQL Injection 
Attack and normal queries that attempt to confuse the 
algorithm by appearing similar to the injection attacks as well 
as more regular examples. The Insert query dataset follows the 
same approach but only has 170 queries, 85 normal and 85 
malicious, due to a number of types of SQL Injection Attack 
not being possible without piggy-back type attacks on this 
form of query string. 

Each dataset was tested by computing the peak accuracy, 
training time and testing time for the =  subsequence 
length which is equivalent to the linear string kernel approach. 
This gives the ground state accuracy and processing overhead 
of the Feature Manipulation Algorithm combined with the 
SVM. The two length subsequence size was then used to 
generate a full set of detection accuracy and processing time 
data based on the combinations of possible coefficients 
weighting the kernel function scale lengths. This was repeated 
for the three length subsequence size with the length one 
coefficient locked to one. This set of data was used to 
determine the effect on the detection accuracy, the rate of false 
positive and false negative events and the processing time by 
the different relative weightings of the feature scales. The 
maximum subsequence size was then increased incrementally 
by one with the coefficients locked at one to determine the 
changes to accuracy and processing time by using larger 
feature scales. These two tests show the relative change in 
detection accuracy, the rate of false positive and false negative 
events, the model training time and the query string processing 
time by using the Gap-Weighted String Subsequence Kernel 
instead of a simple linear string kernel. 

The Evaluation focused on three major indicators of 
performance. The detection accuracy, given by the occurrence 
of true positive, true negative, false positive and false negative 
events used to compute the precision and recall for each 
testing dataset and finally the F-Measure harmonic mean. The 
time complexity indicating the amount of processing time 

required for the evaluation of each query and the spatial 
complexity identifying the amount of memory required for 
processing these datasets. 

The Precision is the ratio of detected SQL Injection Attacks 
to the total number of queries classified as SQL Injection 
Attacks. It is an indication of a bias of the SVM model 
towards producing false positive results. The more false 
positive events the model generates the lower the value of the 
Precision. No false positive events result in a Precision value 
of one. Equation 28 shows the Precision. 

 

                     = ����+��               (28) 

 
The Recall is the ratio of detected SQL Injection Attacks to 

the total number of actual SQL Injection Attack queries within 
the testing dataset. It is an indication of a bias of the SVM 
model towards producing false negative results. The more 
false negative events the model generates the lower the value 
of the Recall. No false negative events result in a Recall value 
of one. Equation 29 shows the Recall. 

 

                    = ����+�                (29) 

 
The Precision and Recall together can be then used to 

generate the F-measure of the testing dataset. This value is a 
harmonic mean of the Precision and the Recall and is an 
excellent mechanism for describing the actual detection 
accuracy of the SVM classification. The F-Measure is given 
by Equation 30. 

 

                    =  ×�  ×�� +�              (30) 

 
The time complexity is an important consideration in the 

operation of this solution. Using the Stopwatch function, 
specific regions of code have their operation time recorded. 
The first stopwatch records the complete processing time per 
test query and records it into the log file alongside any 
relevant query information. Further stopwatches were 
implemented to display processing time information into the 
program user interface. The complete processing time for the 
test dataset is displayed alongside the average processing time 
per query determined by the previous result divided by the 
number of queries within the testing dataset. A final stopwatch 
was added to determine the training time for the SVM. 

5.2. Detection accuracy 

The first test set required the input generator to use the 
feature dataset to generate a full training dataset using the 
Select query. The 23 entries within the feature dataset created 
86 Select queries of which 46 were legitimate queries and 40 
were malicious SQL Injection Attacks. These queries were 
then used for training a model for the ground-state =  case. 
This reflects the operation of the Feature Manipulation 
Algorithm and the SVM operating with a linear string kernel. 
This linear string kernel counts the co-occurrence of 
characters within the two strings undergoing comparison. This 
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trained model took 2037 milliseconds to train. The Amnesia 
dataset derived Select query dataset was then classified using 
this model. There were 232 total queries of which 116 were 
normal queries and 116 were malicious queries. 114 of the 
malicious queries were successfully identified leaving 2 false 
negatives. The classification of the normal queries was less 
successful with only 57 correctly classified leaving 59 false 
positives. This gave the ground state a precision of 65.9% and 
a recall of 98.3%. The F-measure detection accuracy was 
78.9%.  

The same test was then performed for the Insert query. As 
the Insert query within the demonstration software featured 
four user input locations, the 23 feature dataset entries created 
132 training set queries of which 80 were normal queries and 
52 were SQL Injection Attacks. A new model was trained 
using this dataset and took 6563 milliseconds to train. The 
Amnesia testbed derived Insert query dataset was then 
classified using this model. There were 170 total queries of 
which 85 were normal queries and 85 were malicious queries. 
All 85 malicious queries were successfully classified leaving 
zero false negatives. However, only 45 normal queries were 
correctly classified leaving 40 false positives. This gave the 
ground state a precision of 68% and a recall of 100%. The F1 
detection accuracy was 81%. 

The difficulties detecting the normal queries were due to 
unsanitised quotation marks within the normal queries. These 
queries contained SQL code but not in a position where they 
would produce injection commands when concatenated into 
the query strings. However, the presence of quotation marks in 
the string still caused overly detailed feature manipulated 
strings to be introduced to the string kernel algorithm resulting 
in confusion. As most regular user input into query strings 
does not use quotation characters, a second set of Select and 
Insert test queries were produced that mirror the first testing 
set but the normal queries lack quotation mark input. The =  test used above was then applied to these two new 
datasets named Select-Fix and Insert-Fix. The Select-Fix 
dataset when tested on the previously trained model resulted in 
a ground state detection accuracy of 99.1%. Using the 
previous model on the Insert-Fix dataset resulted in a ground 
state accuracy of 100%. 

Next all four test datasets (Select, Insert, Select-Fix, Insert-
Fix) were used to generate surfaces for the =  state. In this 
state there are three additional variables, the gap decay factor 
and the coefficients for length one and length two features. 
The gap decay factor can take values between zero and one. It 
was found that this variable made very little difference to 
detection accuracy so long as it was kept under 0.5. The 
detection accuracy begins to drop to the linear string kernel 
state if the gap decay factor is set higher than this value. 
Therefore the value of the gap decay factor was set to 0.0001 
and remains so for the rest of the evaluation. 

The coefficients for the scaled features can be of any value 
but as it is the proportionality between the coefficients that 
determines the relative weighting of features, values between 
plus one and minus one with a gap of 0.2 were used to 
generate 121 possible combinations. The SVM was retrained 

generating 121 different models for these possible 
combinations and the four datasets were applied to these 
models to determine their detection accuracy for the =  
state. 

The Select dataset resulted in a peak accuracy of 98.3% 
with the coefficient of scale one features at 0.4 and scale two 
features at 1.0. The surface plot of this evaluation showing the 
change in detection accuracy against the range of possible 
coefficient values is shown in Figure 6. The plot clearly shows 
that the strongest peaks of accuracy occur as the coefficients 
are similar in value and the largest troughs occur when they 
are opposite in value. This is due to the constructive 
interaction of both scale sizes when summing to produce the 
similarity evaluation. The model is able to train on features of 
both sizes as they both contribute strongly to the similarity 
evaluation. When both coefficients are opposite in value the 
features neutralize leaving the SVM with very little useful 
information to train on resulting in a heavy loss of accuracy. 
The accuracy seems to vary diagonally across the plot from 
peaks to troughs and to peaks again. This is because it is not 
the value of the coefficients that are important but only their 
relative proportionality. For the Select dataset, adding two-
length sub-sequences to the similarity evaluation results in a 
substantial jump in detection accuracy. 

 

Fig. 6. The p =  state detection accuracy surface plots of the Select test 
dataset. 
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Fig. 7. The  =   state detection accuracy surface plots of the Select test 
dataset. 

 
The analysis was then extended to the =  state. As 

positive values for the coefficient of one length sub-sequences 
proved to provide a boost in detection accuracy for the =  
evaluation, this coefficient was locked to one and the 
coefficients for the two and three length sub-sequences were 
varied next. This did not contribute to the peak accuracy of the 
Select dataset compared with the previous result of 98.3%. 
However, this set of coefficients was limited by the locked 
coefficient for the one length sub-sequences and a high 
accuracy was still maintained. Figure 7 demonstrates this =  experiment and the same shape of surface can be seen 
as the positive values of the two and three length feature 
coefficients result in a peak over the ground state accuracy and 
the negative values result in decay to the ground state 
accuracy as the higher dimensional features similarity 
evaluations cancel each other out. These experiments prove 
that there exist solutions to the gap-weighted subsequence 
kernel that enhance the accuracy of the Select queries over the 
linear string kernel. 

This analysis was then performed on the Select-Fix dataset. 
As the linear string kernel accuracy was much higher on this 
dataset, the multidimensional feature extraction did not 
produce quite so obvious a set of peaks. However, there 
existed multiple solutions to the gap-weighted subsequence 
kernel in the =  state that resulted in an accuracy of 100% 
compared to the ground states 99.1%. The =  state was a 
similar shape also showing the presence of 100% detection 
accuracy solutions. The surface plots of these two analyses 
can be seen in Figures 8 and 9. 

 

Fig. 8. The p =  state detection accuracy of the Select-Fix test dataset. 
 

Fig. 9. The p =  state detection accuracy of the Select-Fix test dataset. 

 
Next, the Insert dataset was subjected to the =  test. The 

Insert dataset resulted in a peak accuracy of 88.4% with the 
coefficient of scale one features at minus 0.2 and scale two 
features at minus 0.8. The surface plot of this evaluation 
showing the change in detection accuracy against the range of 
possible coefficient values is shown in Figure 10. The Insert 
queries did not benefit from the multidimensional feature 
extraction to the same degree as the Select queries did. 
However, solutions existed that improved over the linear 
string kernel detection accuracy. 

 

Fig. 10. The p =  state detection accuracy of the Insert test dataset. 
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Fig. 11. The p =  state detection accuracy of the Insert-Fix test dataset. 
 
As the Insert-Fix dataset had already achieved an accuracy 

of 100% in the ground state linear state model, using higher 
dimensional feature extraction was not going to improve the 
model. In fact, as can be seen in Figure 11, the =  state 
resulted in multiple solutions that have a loss of accuracy from 
the linear ground state. This demonstrates that the proposed 
solution in its current form is best for simple Insert-Fix queries 
when using a linear string kernel. As for the original Insert 
dataset without quotation marks restricted, the higher 
dimensional feature extraction does produce solutions with 
higher detection accuracy. However, as discussed above, 
superior accuracy may not be the best solution if the rate of 
false negatives increases. Unfortunately for the solutions with 
88.4% accuracy and others with 86.4% accuracy have resulted 
in false negative events compared with the ground state with 
zero events. The result data does however show solutions with 
a mild boost in accuracy over the ground state from 81% to 
84.1% whilst still maintaining zero false negative events. 
Therefore, despite the confusion caused by the poorer 
multidimensional feature extraction, higher dimensional 
solutions do exist that improve upon the ground state albeit at 
a much less impressive level as the solutions for the Select 
type queries. The strength of the multidimensional feature 
extraction is dependent on the accuracy of the linear string 
kernel. Poorer models using this kernel allow for more 
improvement when using higher dimensional features. 

The previous experiment shows that there are solutions for 
the =  and =  states that improve on the ground state 
detection accuracy without introducing new false negative 
events. The Select type query classification is greatly 
strengthened by the higher dimensional feature extraction. The 
Insert type queries do not gain as much of an accuracy 
increase but still reduced the number of false positives by a 
small amount. Meanwhile the datasets that removed quotation 
marks in the legitimate input showed that the Select-Fix 
dataset obtained a small increase reducing the false negative 
rate to zero. Unfortunately the already perfect classification of 
the Insert-Fix set was thrown off by the higher dimensional 
features resulting in the generation of false negatives. 
Therefore, the multidimensional feature extraction boosted 

three of the four sets but resulted in a loss of accuracy for the 
fourth. 

The largest increases in detection accuracy occurred when 
the coefficients shared signs. In these solutions the higher 
dimensional features constructively interact to generate 
similarity values that reflect these features and as a result 
assist in the classification of the query strings. It would be 
computationally extremely difficult to probe the full set of 
coefficient combinations for higher subsequence sizes. 
Therefore, to test these higher subsequence lengths, the 
coefficients will be set to one so they are constructively 
interacting. This is not necessarily the best case and in the 
previous experiment it was seen that whilst all the coefficients 
shared the same sign, they didn’t necessarily share the same 
value for maximum detection accuracy. However, this solution 
should be sufficient to determine the enhancement to detection 
accuracy produced by using larger scale features. 

For this experiment, each dataset was tested with the 
following conditions. The gap decay factor was set to 0.0001 
as it was in the previous experiment. The maximum 
subsequence length was tested for every integer value from 
one to ten. All the coefficients of the scale one to ten features 
was set to one. The first dataset tested was the full Select 
dataset. The detection accuracy of the dataset quickly rises 
when higher dimensional features are used in the similarity 
evaluations. However, the accuracy quickly peaks at =  
and =  with a massive decrease in false positives without 
an increase in false negatives. Unfortunately, extending to 
higher dimensional features then causes the rate of false 
negatives to increase decreasing the detection accuracy. This 
experiment cannot guarantee that there are not solutions at 
these higher subsequence lengths that will further increase 
accuracy but it appears that superior results are being derived 
from features of length two or three characters in size. This is 
likely due to the SQL commands and injection statements 
being short substrings of this length. Figure 12 shows a plot of 
detection accuracy against maximum subsequence length 
showing the rapid peak at =  and =  before detection 
accuracy decreases at higher subsequence lengths. 

 

Fig. 12. A plot of detection accuracy against maximum subsequence length 
for the Select dataset. 

 
This analysis was then applied to the Select-Fix dataset. The 
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results show that the detection accuracy decreases as higher 
subsequence lengths are used for classification. This is largely 
because the rate of false negatives increases similar to the 
regular Select dataset at higher subsequence lengths but as the 
normal queries lack confusing quotation mark input there are 
no false positives present for any subsequence scale. However, 
as was seen from experiment one applied to this dataset, there 
are solutions at the =  scale that increase the detection 
accuracy from the ground state, only the feature scales do not 
have the same proportionality. Figure 13 shows the detection 
accuracy verses maximum subsequence length for this Select-
Fix dataset.  

 

Fig. 13. A plot of detection accuracy against maximum subsequence length 
for the Select-Fix dataset. 

 
Next the experiment was applied to the Insert Dataset. In 

the first experiment, this dataset had proven to be a lot less 
accurate when extended into higher dimensional features than 
the Select dataset. Therefore this experiment was not expected 
to achieve as strong an increase in detection accuracy as the 
Select type queries. However, the first major result is that the 
detection accuracy rises like the Select-type queries but 
instead peak at a higher value of subsequence length, 
specifically = 5 to = 7. Again, this is likely due to the 
primary features of the Insert-type queries being of larger 
length as instead of individual commands forming conditional 
statements, the Insert query contains a large bracket region 
containing the values to be entered into the database separated 
by commas. Despite this increase in accuracy, it comes with 
the cost of an increase in false negative events counteracting 
the large decrease of false positive events. As previously 
stated, false positive events are preferable to false negatives as 
the disruption to a service can be much greater if attack 
queries get through. This is especially of note since most 
normal legitimate queries will not be as hard to differentiate 
from malicious queries as this admittedly unusually difficult 
test dataset. The first experiment did indicate that there were 
higher dimensional solutions that could minimize this false 
negative rate by changing the proportionality of the 
coefficients. Therefore there are likely solutions that can 
maintain this accuracy but with a substantially reduced false 
negative rate. Figure 14 demonstrates the detection accuracy 
against maximum subsequence length clearly showing the 

peak at = 5. 
 

Fig. 14. A plot of detection accuracy against maximum subsequence length 
for the Insert dataset. 

 
Finally, the experiment was carried out on the Insert-Fix 

dataset. The linear string kernel model of this dataset was of 
perfect detection accuracy. Combined with the first 
experiment showing that =  and =  caused a loss of 
detection accuracy similar to the Select-Fix dataset by an 
increase in false negative events with maintenance of the zero 
false positive events of this dataset, the Insert-Fix dataset was 
likely to suffer from the same issues. This was found to be true 
as the detection accuracy does drop from the ground state 
accuracy as higher subsequence length features are used in the 
feature extraction process. 

The Gap-Weighted Subsequence Kernel is successful in 
reducing false positive events in confusing legitimate query 
strings by incorporating higher dimensional features into the 
similarity evaluation. Unfortunately this can be at a cost of an 
increase in the rate of false negative events unless an ideal 
combination of coefficients can be determined. Therefore it is 
recommended that higher subsequence lengths be used on 
complicated query strings that are difficult to differentiate 
from malicious strings but for simpler queries it is superior to 
limit multidimensional feature extraction to features of scales 
no longer than the individual SQL commands. This is due to 
the Feature Manipulation Algorithm alone being successful in 
the successful identification of all legitimate query strings 
allowing all unusual strings to be immediately rejected. These 
results indicate that the best combination of coefficients is 
likely to be found for values of maximum subsequence length 
that relate to the length of substrings within the query strings. 
It is worth attempting to train a model using these 
subsequence lengths unless the ground state detection 
accuracy is already perfect in which case the detection 
accuracy is already at the desire level and higher 
dimensionality will likely result in an increase in false 
negatives. Figure 15 demonstrates how the detection accuracy 
of the Insert-Fix dataset varies with maximum subsequence 
length. 
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Fig. 15. A plot of detection accuracy against maximum subsequence length 
for the Insert-Fix dataset. 
 

5.3. Time complexity 

The two experiments discussed above were also used to 
generate data on the training time for the models used, the 
processing time for the whole Select and Insert datasets and 
the average processing time for each individual query in these 
sets. This is important for the successful operation of the 
proposed solution as it must be able to operate in real time in 
order to classify queries with little delay to the users of the 
defended service. 

The Select and Insert training set produced a linear string 
kernel model with an associated training time. Then for the 
Select linear string kernel model, the Select and Select-Fix 
testing datasets were evaluated and for the Insert linear string 
kernel model, the Insert and Insert-Fix testing datasets were 
evaluated. The Select model had a training time of 2037.18 
milliseconds. The Select test dataset of 232 query strings 
required 2443.973 milliseconds to process which produces an 
average processing time of 10.534 milliseconds per query. The 
Select-Fix test dataset of 232 query strings similar to the 
original dataset with the quotation marks changed to question 
mark placeholders took 2423.539 milliseconds to process with 
an average processing time of 10.446 milliseconds per query. 
The Insert model had a training time of 6563.565 
milliseconds. The Insert test dataset of 170 query strings 
required 3891.915 milliseconds to process which produces an 
average processing time of 22.894 milliseconds per query. The 
Insert-Fix test dataset of 170 query strings similar to the 
original dataset with the quotation marks changed to question 
mark placeholders took 3767.71 milliseconds to process with 
an average processing time of 22.163 milliseconds per query. 

The datasets with the quotation marks removed from the 
legitimate queries tended to process slightly faster due to the 
shorter query strings produced by the Feature Manipulation 
Algorithm. The Insert query model took just under three times 
longer to generate due to the larger set of training queries 
produced by the increased number of inputs into the Insert 
example query string. As a result, the operation time will be 
impacted heavily by query strings with a larger number of 
inputs although it is possible that the training set generator can 
be further refined to reduce the number of training queries 

required for a reliable sample size training dataset. The 
dimensionality of the feature vectors is always equal to the 
number of training queries. Despite these limitations, this 
experiment shows that for the linear string kernel models, the 
training and processing time are acceptable for runtime as the 
training is only required on the initialization of the 
demonstration software. 

 

Fig. 16. A surface plot showing the training time of multiple p =  Select 
query models in milliseconds varying with the coefficient values associated 
with the model feature extractions. 

 
The processing time required for higher dimension features 

was then measured by using the same experiments used for the 
detection accuracy. The different models trained for the =  
and =  states were used to determine how the training and 
query processing time were influenced by the maximum 
subsequence length and the coefficients used for each trained 
model. Figure 16 shows the training time of the Select query 
models against the different coefficient combinations for the =  state. The surface is flat with a large diagonal ridge. 
The training time is constant being independent of the 
coefficients of the different feature scales (except for the 
destructively interacting case which will be discussed shortly). 
This makes sense as these coefficients merely scale the results 
of the Gap-Weighted Subsequence Kernel algorithm and do 
not influence the number of calculations required. The 
increase in the maximum subsequence length does increase 
the training time required as it increases the number of 
multidimensional features the string kernel algorithm must 
iterate through. The next experiment will attempt to determine 
this relationship between maximum subsequence length, the 
training time and the query processing time. 

The ridge appears to occur for values of the coefficients that 
destructively interact. This rapid increase in training time 
coincides with locations of poorest accuracy due to this 
interaction. Therefore it is likely that the SVM is being starved 
of important feature data by this interaction resulting in a 
poorer model. Specifically, it is likely the grid algorithm 
designed to determine the cost parameter that results in this 
increase as the feature vectors are likely heavily 
indistinguishable within the feature space. For the =  state 
the same pattern is seen where the model training time is 
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independent of the coefficient values apart from the 
destructively interacting combinations where it substantially 
increases. The =  state training time has risen again by 
about the same amount as the difference between the ground 
state and the =  state possibly indicating that the training 
time varies linearly with the maximum subsequence length. 
The second experiment discussed shortly identifies this 
relationship. Figure 17 shows the surface plot produced by 
these =  state model training times. 

 

Fig. 17. A surface plot showing the training time of multiple p =  Select 
query models in milliseconds varying with the coefficient values. 

 
The Insert query also exhibited the same features as the 

Select query with a ridge where the coefficients destructively 
interact with a flat constant training time for the other 
combinations. The training time again rises with the maximum 
subsequence length at a faster rate due to the increased size of 
the Insert training set. Figure 18 displays the surface produced 
by the training of the Insert-type query set. The amount of 
extra time required to generate the destructively interacting 
models seems to be roughly 1500 milliseconds independent of 
the training time of the other models indicating that they are 
independent of the maximum subsequence length and 
reinforcing the conclusion that the cost parameter grid 
algorithm component of the SVM is likely responsible. 

 

Fig. 18. A surface plot showing the training time of multiple p =  Insert 

query models in milliseconds varying with the coefficient values associated 
with the model feature extractions. 

 
This experiment also recorded the processing time per 

query for the Select and Insert datasets based on the models 
produced using the different combinations of the similarity 
evaluation coefficients. Figure 19 demonstrates the surface 
plot produced by the Select dataset trained in the =  state. 
When operating in the testing phase the processing time seems 
to mirror the training phase operation times. The processing 
time is again independent of the string kernel coefficients with 
some limited variation due to background operations of the 
operating system. However, in this situation the destructively 
interacting models process the Select dataset substantially 
faster than the normal models. This shorter processing time is 
a result of faster classification by the SVM as the feature 
manipulation and string kernel algorithms have the same 
workload with these coefficients as with any other 
combination. The reason behind this is not entirely understood 
and likely due to the SVM rejecting the model and simply 
applying a global malicious classification to every query 
within the Select dataset. 

 

Fig. 19. A surface plot showing the per-query testing time in milliseconds of 
the Select dataset classified by multiple p =  Select query models varying 
with the coefficient values associated with the feature extractions. 
 

Fig. 20. A surface plot showing the per-query testing time in milliseconds of 
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the Select dataset classified by multiple p =  Select query models varying 
with the coefficient values. 

 
Similar results are seen for the Select dataset operating 

within the  =  state where again the processing time is 
independent of the coefficients except for the coefficients that 
result in poor models where the processing time is more rapid. 
Additionally, as with the training times, the processing time 
per query appears to increase linearly with the maximum 
subsequence length. Figure 20 demonstrates the surface plot 
produced by the per query processing times of the =  state.  

Perhaps unsurprisingly, when the per query processing time 
of the Insert dataset is compared with the coefficients used to 
train the models, the same features are again seen reinforcing 
that the processing time is not only just independent of the 
coefficients but also independent of the type of query string 
and merely only to the length of the string. Figure 21 
demonstrates the surface produced by this comparison for the 
Insert dataset. 

 

Fig. 21. A surface plot showing the per-query testing time in milliseconds of 
the Insert dataset classified by multiple p =  Insert query models varying 
with the coefficient values associated with the feature extractions. 

 
The first experiment showed that the training and testing 

processing times were independent of the coefficients of the 
string kernel algorithm. Therefore the training time and 
processing time results from the second experiment, where the 
coefficients were locked to one and the maximum 
subsequence length was increased incrementally from one to 
ten, are perfect for the determination of this relationship. 

Ten models were generated for the Select training set and 
another ten models were generated for the Insert training set. 
Each model had a maximum subsequence length of one to ten. 
The coefficients of the different scales of the similarity 
evaluations were set to one. The training time of these ten 
models was compared to the maximum subsequence length of 
each model to generate a plot of the relationship. An equation 
is then generated to determine the best fit of the points. This 
equation describes the relationship between the subsequence 
length and the training time and also describes the overhead 
required by other components of the program as well as the 
amount of time the additional iterations of higher dimensional 

features requires. 
 

Fig. 22. A plot of model training time against the maximum subsequence 
length for the Select training dataset. 

Applying this experiment to the Select training dataset 
produced the graph shown in Figure 22. As indicated by 
results from experiment one, the plot produced an almost 
perfect linear trend indicating that the relationship between 
maximum subsequence length and training time is linear. The 
linear relationship also produced an associated equation with 
important implications to the Select query training. The 
gradient of the equation indicates that for every additional 
extension to the maximum subsequence length, the model 
training time increases by 839.93 milliseconds. The intercept 
of the equation also shows that 1183.9 milliseconds of the 
training time is independent of the subsequence length and is 
likely due to the size of the training dataset and the operational 
requirements of the SVM. 

Applying the same experiment to the Insert training dataset 
produced the graph shown in Figure 23. The Insert queries 
also follow this linear relationship except due to the increased 
size of the training dataset, both the gradient and the intercept 
of the linear trend are greater supporting the conclusion that it 
is related to the size of the training dataset and the length of 
the individual query strings within the training set queries as 
well as the operation of the SVM. The gradient of the equation 
indicates that for every additional extension to the maximum 
subsequence length, the model training time increases by 
2931.9 milliseconds. The intercept of the equation also shows 
that 3359.6 milliseconds of the training time must be 
independent of the subsequence length. 
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Fig. 23. A plot of model training time against the maximum subsequence 
length for the Insert training dataset. 

 
Each model set was also used to test the four Amnesia-

derived datasets. The Select and the Select-Fix datasets were 
classified using the Select models. Meanwhile, the Insert and 
Insert-Fix datasets were classified using the Insert models. 
Each classification had the associated per query processing 
time evaluated. By plotting these results in the same form as 
the training time results, it was possible to generate plots for 
each dataset showing how the processing time was affected by 
the increased maximum subsequence length. 
 

Fig. 24. A plot of the Select dataset and Select-Fix dataset processing times 
against the maximum subsequence length for the Select models. The top line 
is the Select dataset and the bottom is the Select-Fix dataset. 

 
Figure 24 demonstrates the processing time for the queries 

in the Select and Select-Fix datasets using the Select models 
over the varying maximum subsequence lengths. The query 
processing times also share a linear relationship with 
maximum subsequence length. This is due to string kernel 
algorithm generating the feature vectors of the test queries. 
Therefore the processing time also depends on the size of the 
training dataset and the dimensionality of the 
multidimensional feature extraction. The Select dataset queries 
on average required an extra 13.087 milliseconds of 
processing time for the computation of each additional 
subsequence length. The Select-Fix dataset requires slightly 
less extra time, 12.666 milliseconds, for higher subsequence 
lengths. This is likely due to the output strings from the 

feature manipulation algorithm being shorter due to the lack of 
quotation marks within the legitimate queries of this testing 
dataset. In the plots of training time against subsequence 
length, the intercept was clearly not zero and was due to the 
operation of other algorithms during the training phase of the 
SVM. However, in this testing case the intercepts of the two 
equations are likely a result of measurement errors and should 
be zero intercepts as the testing phase lacks the time 
requirements due to the production of decision rules. 

 

Fig. 25. A plot of the Insert dataset and Insert-Fix dataset processing times 
against the maximum subsequence length for the Insert models. The top line is 
the Insert dataset and the bottom is the Insert-Fix dataset. 

 
This experiment was also evaluated on the Insert and Insert-

Fix datasets. The results of this evaluation are displayed 
within Figure 25. The linear relationship also exists for the 
Insert queries again showing that these relationships are 
independent of the query type and only the length of the query 
strings and the scale of the multidimensional feature 
extraction. The increased size of the training dataset results in 
increased processing time due to the increased dimensionality 
of the feature vectors of the test query strings. The Insert 
dataset queries on average required an extra 33.418 
milliseconds of processing time for the computation of each 
additional subsequence length. The Select-Fix dataset requires 
slightly less extra time, 31.58 milliseconds, for higher 
subsequence lengths. This is likely due to the same feature 
manipulation algorithm string length situation as the Select-
Fix dataset query strings. 

The detection accuracy analysis concluded that the superior 
subsequence length for the Select queries was =  or =  
whereas for the Insert queries this peak in accuracy occurred 
at subsequence lengths of = 5 to = 7. The above 
equations combined with this information can be used to 
estimate the model training time and the individual query 
processing time for the Select and the Insert datasets. The 
Select query dataset training time ranges from 2863.76 
milliseconds to 3703.69 milliseconds and each test query takes 
approximately 22.6555 milliseconds to 35.9548 milliseconds 
on average to process. The Insert query dataset training time 
ranges from 18019.1 milliseconds to 23882.9 milliseconds and 
each test query takes approximately 144.873 milliseconds to 
217.956 milliseconds on average to process. Even the worst 
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case of these calculations places the program firmly within 
real time operation with acceptable query delay times due to 
this solution as the training time only applies once during 
software initialization. The Select queries process significantly 
faster than the Insert queries, most likely due to the increased 
input trajectories of the Insert query and the larger associated 
training set. Queries with significantly more input fields may 
cause this solution difficulty in maintaining the real time 
operational requirement unless the input generator algorithm 
can be enhanced in the future. Longer query strings will also 
negatively affect the processing time however, generally the 
most complicated strings are due to injected input therefore 
the user that suffers the most from query response delay is an 
attacker. At the very least this might discourage the attacker 
from making the attempt if they must craft many attack 
queries. 

5.4. Spatial complexity 

The memory consumption of the software during use is also 
of importance as it must be capable of operating on the web 
server hosting a web application with minimal system impact. 
On start up the program required 16 Mb of memory. The Input 
Generator algorithm placed another 2.5 Mb of demand on the 
system memory resources. Training a model required 6.5 Mb 
of memory. This memory requirement was independent of the 
maximum subsequence used for the training phase. The testing 
of the 232 queries within the Amnesia-derived Select dataset 
required an additional 10 Mb of memory. The demonstration 
software had a peak memory draw of only 35 Mb when using 
the Select example query. The memory requirements of this 
solution border on negligible and therefore many instances can 
be run simultaneously to defend multiple web application 
queries on a single machine. 

Despite the scale of calculations being performed to 
determine the multidimensional feature set and compute the 
similarity values of these features, the software stores very 
little of the results of these calculations within memory. 
Therefore the requirements are kept minimal as the only 
values that are kept through the iteration through the full set of 
multidimensional features are the cumulative inner product 
similarity evaluations. More memory is required by larger 
training datasets as the feature vectors, stored in memory for 
each test query, are of larger dimensionality. Despite these 
requirements, the demonstration software still maintained the 
peak memory draw of 35 Mb when using the Insert example 
query training a model of high dimensionality to classify the 
Amnesia-derived Insert dataset. This is one of the strongest 
advantages of this proposed solution. Hundreds of thousands 
of potential features can be evaluated by the similarity 
algorithm and used to train models and test query strings but 
the string kernel algorithm does not require any of these 
features to be stored in memory. The algorithm simply iterates 
through the multidimensional feature space of hundreds of 
thousands of features yet generates a feature vector only two 
to three digits in dimensionality greatly limiting the pressure 
placed on the system resources of the server running software 
utilizing this method. 

VI.  DISCUSSION 

The proposed solution runs on a web server as the web 
application sends generated queries to a source IP and port 
hosted by the solution. The solution is then able to test queries 
and then relay them to the back-end database server as well as 
pass the reply messages directly to the web application with 
minimal latency. In essence, the detection solution is 
transparent to the communications between the web 
application and the back-end database except for the outbound 
communications where they are delayed by a number of 
milliseconds for the classification process. 

The software was required to have high detection accuracy 
with a low rate of false positives and false negatives combined 
with a processing time rapid enough for real time operation. 
By using the Gap-Weighted String Subsequence Kernel 
algorithm to compute the inner product of multidimensional 
features, solutions were found that improved detection 
accuracy over a linear approach of simple features in the query 
strings. As the operation of this algorithm depended on the 
maximum subsequence length, the gap decay factor and a set 
of coefficients for features of length one character to the 
maximum subsequence length, these inputs were evaluated to 
determine the superior solution for detection accuracy. The 
models generated by the program were heavily influenced by 
the maximum subsequence length and its associated 
coefficients. However, the gap decay factor was not a major 
component in the accuracy of the generated models. 

In the process of classifying SQL Injection attacks, the 
solution with the highest detection accuracy may not be the 
best as, whilst the detection accuracy places no bias between 
false positives and false negatives, in reality false negatives 
are significantly less desirable than false positives. False 
positives result in service disruption whereas false negatives 
can result in service destruction. The solution is capable of 
identifying all the different types of SQL Injection Attack 
except for Stored Procedures as the query string cannot be 
intercepted at the web server. Despite this weakness, it might 
be substantially easier to update the code of a stored procedure 
to sanitize the inputs compared with the updating of third 
party software in the form of the web applications and 
therefore it might be acceptable to struggle to identify stored 
procedure attacks. 

Much of this difficulty in classifying the datasets was a 
result of unsanitised quotation marks within the testing 
datasets. These were introduced to test the maximum 
tolerances of the solution. Copies were produced of the Select 
and Insert datasets that extracted quotation marks from the 
legitimate queries as quotation marks are unlikely to be seen 
during normal operation of these queries. This allowed the 
proposed solution to achieve an accuracy of 100% on both test 
sets. Whilst this appears to be advantageous, the 
multidimensional feature extraction that this proposed method 
utilizes was only required for the Select queries as the Insert 
queries actually achieved 100% with the ground state 
accuracy. Additionally, for these testing datasets with high 
ground state accuracy, the multidimensional analysis on 
higher dimensional features could result in an inferior model 
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from the simple feature extraction. Therefore this solution, 
whilst competent on simple query strings, shows its true 
capability with complicated query strings which are hard to 
differentiate due to sharing similarities to attack strings during 
legitimate operation. 

The proposed solution’s processing time was also evaluated 
to determine if the real time operation condition was fulfilled. 
The time complexity of the solution obeys the equation = � ×  ×  where � is a constant determined by the 
processing power of the available CPU,  is the maximum 
subsequence length and = | | × | | ×  where | | is the 
average character length of the training set input strings and  
is the total number of query strings within the training set. 
This relationship was predicted by the order of the Gap-
Weighted String Subsequence Kernel dynamic processing 
algorithm that exhibited a time complexity of the order | || |  where  is the maximum subsequence length, | | is 
the length of the first argument string and | | is the length of 
the second argument string. The processing time of the other 
algorithms is of negligible time compared to the string kernel 
algorithm and therefore do not contribute to the relationship. 

As the time complexity is heavily dependent on the number 
of training set queries, the size of this set must be limited to 
produce enough information about the query generation of the 
web application without being overly descriptive. The Feature 
Manipulation Algorithm shrinks the length of the testing 
strings reducing the processing time of the string kernel 
algorithm. Unfortunately, the Input Generator algorithm 
produces significantly larger training datasets with queries 
containing many input fields. These larger sets then result in 
substantially increased processing times. The Input Generator 
is therefore a target for further improvements by minimizing 
the training set it generates whilst still maintaining an 
acceptable sample dataset for the complete set of possible 
queries. 

VII.  CONCLUSION AND FUTURE WORK 

 
Our proposed method has more success with complicated 

query strings compared to the simple strings. Fortunately, 
despite the weaknesses associated with simple attacks, most of 
these simple strings have already been identified and 
documented. A major danger is more sophisticated novel 
attacks that have yet to be encountered. However, these more 
sophisticated attacks tend to result in longer and more feature-
rich query strings and, as a result, are very quickly detected by 
the proposed solution. None of the complicated attack strings 
caused by more sophisticated attacks such as Inference attacks 
failed to be correctly classified and blocked by the 
demonstration software. The training set did not directly 
describe features within these sophisticated attacks, but the 
deviation from the legitimate strings was enough to warrant a 
malicious classification. This property of the solution allows it 
to be adaptable to attacks not explicitly described in the 
training set, both discovered and undiscovered. The difficulty 
is focused on the successful description of simple attacks 

within the training dataset. 
The successful identification of the ideal coefficients for 

weighting the features of the string kernel algorithm is 
extremely important. The number of possible coefficients for 
higher dimensional solutions rises exponentially making the 
discovery of the optimum set of coefficients non-trivial. As 
the superior solutions are limited to smaller maximum 
subsequence length, the coefficient combinations are not 
overly large in size during normal operation. The difficulty of 
this process can be managed through the realization that the 
values of the coefficients are not the important factor but 
instead the proportionality between the different coefficients is 
the mechanism that alters the accuracy of the trained models. 

As the demonstration software only showed a proof of 
concept of the design algorithms, the next milestone would be 
to deploy the solution as an actual defensive module for a web 
application and database server. This would require the 
implementation of the full Input Generator algorithm. This 
algorithm would be required to identify the possible input 
trajectories for a web application and determine how many 
different output queries are produced and how they are related 
to these inputs. The algorithm would then be able to open a 
number of new threaded operational modes for each query 
type to generate a series of models. 

Most of the time complexity of this proposed solution lies 
in the computation of the Gap-Weighted String Subsequence 
Kernel function. Additionally, there is evidence indicating that 
the models being produced by the SVM have a high variance 
which results in models that suffer from overfitting the 
training dataset. Both these weaknesses can be compensated 
by decoupling the number of ‘landmark’ strings from the 
number of the training set strings. Currently, this coupling 
results in an exponential increase in the number of kernel 
function operations and therefore training and per-query 
processing time, upon the increase of the training dataset size. 
If a fixed-length set of ‘landmark’ strings can be identified 
that result in accurate models, these strings could replace the 
training set strings in the computation of the feature vectors of 
the query strings.  

Additionally, this decoupling would allow for the increase 
in the training set size with impact only to the model training 
phase processing time and not the per-query processing time 
which is the more critical time-dependent component. 
Increasing the size of the training set is a well-documented 
method of reducing the variance of machine learning models. 
As a result, the solution could be made truly intelligent by the 
allowing it to incorporate new query strings previous models 
misclassified into a new training set to be trained into an 
improved model when processing power is available during 
downtime. 

Currently the proposed solution depends on +  variables. 
However, if the decoupling operation described above is 
successful, it may be possible to output the individual 
subsequence length kernel function evaluations ( , ) as 
features instead of relying on a weighted sum of these values 
up to the maximum subsequence length. Limited testing of 
this method indicates that a set of parameters (related to the 
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old coefficients) might still be needed. This would reduce the 
number of inputs to just two variables, the maximum 
subsequence length and the gap decay factor. It would be ideal 
if the software could employ a form of optimization algorithm 
to identify the values of these two variables that minimize the 
error of the classification. A second optimization algorithm 
that can determine the parameter set that minimizes the 
classification error. If these two algorithms could be optimized 
simultaneously, the superior classification model could be 
generated automatically. It is of note that this optimization 
process would likely heavily influence the time required to 
train models but fortunately, would have no effect on the 
testing phase processing time. 
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Fig. 26. The SQLIA detection framework. 
 


