

Kifayat, K, Shi, Q, Askwith, RJ and McWhirter, PR

 SQL Injection Attack Classification through the Feature Extraction of SQL

Query strings using a Gap-Weighted String Subsequence Kernel

http://researchonline.ljmu.ac.uk/8112/

Article

LJMU has developed LJMU Research Online for users to access the research output of the

University more effectively. Copyright © and Moral Rights for the papers on this site are retained by

the individual authors and/or other copyright owners. Users may download and/or print one copy of

any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.

You may not engage in further distribution of the material or use it for any profit-making activities or

any commercial gain.

The version presented here may differ from the published version or from the version of the record.

Please see the repository URL above for details on accessing the published version and note that

access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you

intend to cite from this work)

Kifayat, K, Shi, Q, Askwith, RJ and McWhirter, PR (2018) SQL Injection

Attack Classification through the Feature Extraction of SQL Query strings

using a Gap-Weighted String Subsequence Kernel. Journal of Information

Security and Applications, 40. pp. 199-216. ISSN 2214-2126

LJMU Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/151169269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

 1

Abstract— SQL Injection Attacks are one of the most common

methods behind data security breaches. Previous research has
attempted to produce viable detection solutions in order to filter
SQL Injection Attacks from regular queries. Unfortunately it has
proven to be a challenging problem with many solutions suffering
from disadvantages such as being unable to process in real time
as a preventative solution, a lack of adaptability to differing types
of attack and the requirement for access to difficult-to-obtain
information about the source application. This paper presents a
novel solution of classifying SQL queries purely on the features
of the initial query string. A Gap-Weighted String Subsequence
Kernel algorithm is implemented to identify subsequences of
shared characters between query strings for the output of a
similarity metric. Finally a Support Vector Machine is trained on
the similarity metrics between known query strings which are
then used to classify unknown test queries. By gathering all
feature data from the query strings, additional information from
the source application is not required. The probabilistic nature of
the learned models allows the solution to adapt to new threats
whilst in operation. The proposed solution is evaluated using a
number of test datasets derived from the Amnesia testbed
datasets. The demonstration software achieved 97.07% accuracy
for Select type queries and 92.48% accuracy for Insert type
queries. This limited success rate is due to unsanitised quotation
marks within legitimate inputs confusing the feature extraction.
Using a test dataset that denies legitimate queries the use of
unsanitised quotation marks, the Select and Insert query
accuracy rose.

Index Terms—Intrusion Detection, SQL injection attacks, data
mining, String Subsequence Kernel, Support Vector Machine,
Supervised Learning

I. INTRODUCTION

QL Injection Attacks (SQLIAs) involve the crafting of
user inputs in order to perform actions beyond the

intended function of a web application (Su and Wassermann,
2006). By the identification of the input fields associated with
the dynamic generation of queries (Lee et al., 2012; Tajpour et
al., 2012), the adversary can probe the database data values,
the layout of the database (known as the database Schema),
perform remote procedures and escalate their privilege on the
Database Management System (Halfond et al., 2006;
Balzarotti et al., 2008). Databases often contain significant
quantities of confidential information. As a result it can prove
to be lucrative for malicious users of web applications to

create queries to resolve data they are not authorized to view
or alter. SQL Injections are one of the most serious threats to
web applications. It is ranked number one in the Open Web
Application Security Project (OWASP) Top Ten Application
Security Risks in 2013 (Williams and Wichers, 2013). This is
due to as many as 98% of web applications having at least one
security vulnerability resulting in an increase in SQL injection
attacks by ten percent (Trustwave, 2015).
 Our solution to the SQLIA problem is the implementation
of Machine Learning methods capable of detecting malicious
queries based on information from the structure of the query
strings learned from a training set of queries produced during
runtime. This structural information is extracted using a Gap
Weighted String Subsequence Kernel (GWSSK) function
(Lodhi et al., 2002). This function computes the similarity of
unknown query strings to preselected training query strings. A
Support Vector Machine (SVM) classifier uses these similarity
measurements to determine if the unknown query is normal or
malicious by determining a decision boundary which
maximizes the distance between the two classes (Cortes and
Vapnik, 1995). Our method is a form of black box method
(Halfond et al., 2006).

This method does not require the re-engineering of SQL-
dependent web applications or the full disclosure of their
source code. This is a flaw of many previous methods
(Halfond et al., 2006). There are also some solutions that are
easily circumvented by attackers constructing novel attacks
(Shahriar et al., 2013). As our method uses a probabilistic
classifier in the form of the SVM classifier, unknown queries
with query structures which deviate from the training dataset
are still likely to be determined as malicious due to the
extracted similarity information. Our solution does have two
clear limitations. Our method must be placed between the web
application and the database. This introduces hardware
overhead required to operate the detection and prevention
solution (Moosa et al., 2010; Zhang et al., 2011; Pinzón et al.,
2013). Additionally, the detection algorithms are never going
to have perfect detection accuracy and therefore issues related
to false negatives which can inflict database damage and false
positives that can prevent normal operation of a database must
be mitigated (Makiov et al., 2014).

Our key contribution is the demonstration of the viability of
the GWSSK and SVM algorithms in the high-performance
classification of SQL query strings during real-time operation

SQL Injection Attack Classification through the
Feature Extraction of SQL Query strings using a

Gap-Weighted String Subsequence Kernel
Paul R. McWhirter, Kashif Kifayat, Qi Shi, Bob Askwith

S

 2

of a database application. This is shown through classification
accuracy and time complexity experiments on a dataset of
SQL queries exhibiting a wide-range of normal and malicious
features. The novel GWSSK method in the automatic
extraction of informative features of SQL queries allows for
the elimination of biases produced by manually created
features potentially improving the accuracy of the SQLIA
classification task.

The rest of this paper is structured as follows. In Section 2,
the descriptions of related works are presented. In Section 3,
the framework of the proposed solution is discussed and the
contribution of this paper is clarified. In Section 4, the feature
extraction at the core of this solution is defined as the main
contribution of this research. In Section 5, the experimental
results of the demonstration software for the proposed method
are evaluated. These results are then discussed in chapter 6.
The final conclusions and proposals of future work are
provided within chapter 7.

II. RELATED WORKS

Research into securing web applications from SQL
Injection Attacks has proposed two differing approaches
(Halfond et al., 2006). The first approach involves the
rewriting of application source code within the web
application and possibly, stored procedures within the
database to conduct sufficient input validation. The correct
application of these techniques can render a web application
secure to injection commands but it comes with a major
disadvantage. Completed web applications require
redevelopment to incorporate the defensive procedures.
However, this is the best way to protect a system from attacks
if the system is currently in development and not yet complete.
The costs associated with the changing of software vastly
increase later into the development cycle.

NoTamper is a black-box testing method designed to
determine vulnerabilities in the server-side code. This allows
vulnerabilities to be patched although with a severe cost if
vulnerabilities are not detected (Bisht et al., 2010a).
AMNESIA is another vulnerability exploration method that
combines a static analysis of the web application code with
runtime monitoring (Halfond and Orso, 2005). SQLGuard was
proposed as method of analyzing query parse trees both before
and after user-input inclusion. This allows the execution of the
user-input to be explored (Buehrer at al., 2005). CANDID is
another source code analysis method that retrofits the source
code with additional candidate queries. The runtime queries
can then be compared to these to determine any illegal
executions (Bisht et al., 2010b).

The second approach involves the deployment of additional
software designed to screen the queries generated by a web
application before their execution on the database. These
software solutions utilize a wide range of techniques and are
often significantly less expensive to deploy into an active
system. Unfortunately, they often suffer from the disadvantage
of not being a complete solution to the problem. Many
solutions are unable to detect every type of SQL Injection
Attack leaving an avenue for attackers to exploit. They can

also be prone to false positive and false negative events where
the detection algorithms identify legitimate queries as
malicious and block them or allowing malicious queries
through resulting in a security breach.

SQLProb is a proxy-based architecture to prevent SQL
Injection Attacks (Liu et al., 2009). The solution defines a list
of queries produced by a web application. It processes all
possible queries produced by the typical operation of the web
application. These queries are then collected by the proxy
software to produce a sample set of SQL queries from the web
application. The proxy filter then detects inbound queries and
intercepts them. An enhanced Needleman-Wunsch algorithm
(Needleman and Wunsch, 1970) originally designed for the
alignment of string-based genetic data is used to determine the
user input within the full query string. The algorithm
determines what substring(s) within the query string to remove
to gain the closest comparison to the sample queries. This
removed data is the input string(s) within the query string.
Upon the determination of the user input, the query string is
then used to generate a parse tree. A depth-first-search is then
conducted to identify the leaf nodes. If a non-leaf node is
discovered that has descendent leaf nodes that are only
sourced from the user input then the query string that
generated the parse tree is malicious. The malicious queries
are then rejected by the proxy software leaving only normal
queries to be relayed to the database.

A novel method using the Data-Mining of database logs
was proposed to detect SQLIAs (Kim and Lee, 2014). The
database log files were used to identify queries executing on
the database. This file contains information on the query string
and the operations performed by the query execution. The
solution first generates a query tree (Buehrer et al., 2005).
These query trees were used to generate feature vectors using
feature extraction. A set of rules defined by the solution
developers transform the string and numerical data from the
query tree into a multidimensional numerical vector array. A
training dataset of these feature vectors containing samples of
normal and malicious queries was used to train a SVM to
generate a decision rule for the testing of future queries.
Kernel functions were then used to allow the solution to
determine a non-linear decision rule. Newly logged queries are
transformed into query trees from their associated log,
composed into feature vectors and compared by the SVM to
the decision rule obtained during the training phase. This
solution produced very high accuracy of 99.9% for select and
insert queries and 99.6% for stored procedures. The primary
disadvantage is that this solution can only be used for attack
detection and not prevention. This is due to the simple fact
that the query logs that the testing criteria are determined from
are only produced when a query is executed.

The combination of static and dynamic analysis techniques
were used as the basis of a preventative solution (Lee et al.,
2011). In this approach, the source code of a web application
is inspected to identify the possible SQL queries. The queries
are collected prior to the insertion of user input creating a
control query. The solution then dynamically monitors for
queries being generated at runtime. These queries are then

 3

processed by an attribute removal algorithm that removes all
data from the query that is contained within quotes as these
attributes will have no basis on the syntactic form of the
query. This reduced query is then compared using an XOR
logic operation to the control query gathered during the static
analysis. If this operation returns a result indicating that the
two queries are different, the user input must have some form
of injection input and it is discarded. This approach is accurate
and has very low time complexity as the XOR operation is
extremely light on processing. Unfortunately it requires a
static analysis which must be accomplished by either the
analysis of the web application source code or through the use
of a proxy server between the user and the web server.

A framework, using a machine learning approach,
implements an Intrusion Detection System that learns the
patterns of query strings (Valeur et al., 2005). It uses a
supervised learning training dataset to produce training
models. First the strings are parsed into syntactic trees for
feature extraction. Feature vectors are used to produce a model
of the parse trees of typical legitimate queries. Then the
training set queries are compared to these models and an
anomaly score is determined based on how much the training
set queries differ from the models. The solution is then able to
operate in a detection phase by intercepting new query strings,
extracting their features and comparing them to the models to
determine the queries anomaly score. If this score is greater
than the maximum anomaly score from the training phase, the
query is classified as an attack query and logged. The
approach proved to be capable of detecting queries that
deviated from the normal template due to the injection of
commands with a high rate of confidence. This approach is,
however, dependent on being supplied with a complete set of
legitimate queries during the training phase. Failure to do so
will result in false positives as legitimate queries not used for
training will have an increased anomaly score. It does mean
that the training set need only describe legitimate queries as all
those that differ from these queries are rejected as having high
anomaly scores. DoubleGuard is an intrusion detection system
that implements multitier detection. It models the network
behavior between the front-end web application and the back-
end database as well as any intermediate servers. This allows
the determination of attacks in the event an attacker bypasses
segments of the pipeline (Le et al., 2011).

Machine learning solutions have become a popular method
for SQL injection attack detection as they allow a probabilistic
representation of the problem to be deployed. This strengthens
the methods against novel attacks. A neural network solution
trained on normal and malicious HTTP requests can be used to
classify these requests although the solution required separate
instances for each website on shared hosts (Moosa et al.,
2010). SQLiGoT represents SQL queries as a collection of
token graphs and uses SVMs to detect attacks at the database
firewall layer (Kar et al., 2016). This solution does not require
multiple instances and is capable of protecting multiple web
applications simultaneously. Multiagent systems have been
used to produce an intrusion detection system to detect SQL
Injection attacks. idMAS-SQL is an architecture that employs

a number of algorithms to classify suspicious queries through
the use of Machine Learning classifiers including SVM and
artificial neural networks (Pinzón et al., 2013).

Our framework also employs machine learning for
classifying query requests but through the use of string kernels
(Lodhi et al., 2002), we replace the manual engineering of
attack features present in other works and instead allow our
machine learning system to determine its own solution based
on a training set of known queries.

III. SQLIA DETECTION FRAMEWORK

Whilst Machine Learning solutions have previously been
developed for the classification of SQLIAs, they are all
dependent on features carefully designed for the task. This
design task, named Feature Engineering, is a powerful method
for crafting highly informative mathematical representations
of the query data and is almost ubiquitous in Machine
Learning tasks. Despite its wide usage, this method can
introduce biases into the solution due to the manual
intervention such a task requires. Our method replaces this
manual design with a novel string kernel approach which
automatically converts the input string data into a high-
dimensional mathematical form. This form would be
impossible to utilize directly and therefore the dimensionality
is reduced through the computation of similarity with
landmark training strings. The classifier may then use this
automated representation to maximize the performance for the
given classification task, in this case the detection of SQLIAs.
This eliminates any potential bias introduced by human-
engineered measurements.

3.1. Design Concepts

The first phase of the operation of the SQLIA detection
framework is the collection of SQL statements from the web
application. This can be accomplished by routing outbound
messages containing the query statements to software utilizing
the proposed solution positioned on either the same web
server, or an additional proxy server.

These queries are then subjected to a binary classification
approach where the class label of the intercepted queries is
predicted and actions performed dependent on this prediction,
either by rejecting a malicious query or relaying a legitimate
query to the back-end database. The prediction is performed
by using learning models produced by the identification of
discovered patterns within a set of pre-classified training data.
In this framework, a Gap-Weighted String Subsequence
Kernel function is used to compute the similarity between
data. Feature Vectors generated from this similarity
computation between each string from the set of training
queries are then used to solve the binary classification problem
by the identification of patterns in the feature vectors produced
by the different classes of query statement. In order to place
query statements into a form ready for the string kernel, a data
pre-processing phase is performed were the strings are
manipulated into forms that emphasize the important SQL
features within the strings.

The SVM uses a Kernel Matrix to perform a training

 4

phase utilizing the training dataset feature vectors to generate
a classification model by determining a decision rule that
separates the two classes of feature vectors within a
multidimensional feature space. Upon the production of this
classification model, the SVM is ready to operate in a testing
(or detecting) phase. The testing phase is able to use the
classification model produced within the training phase to
predict a class for an unknown feature vector produced from a
new query statement intercepted by the solution.

3.2. Design Architecture

Like many Black Box solutions, this solution requires the
introduction of specially crafted input to build up a set of
query strings based on the input (Halfond et al., 2006). These
query strings are then used as the basis of the production of
decision rules to identify legitimate and attack queries. To
accomplish this, a set of input features is produced. This set is
composed of input strings of both normal and malicious intent.
These inputs are then introduced to the web application by
identification of the input fields. A string comparison
algorithm will identify the total number of queries generated
by the web application and link the associated input fields to
each query template. The rest of this solution then operates on
each individual query and new threads must be activated in
order to process the additional queries.

For each individual query, a set of query strings is
constructed to determine the morphology of the query within
the application code. Each field that was identified to be
associated with the query in the previous section is supplied
with either normal or malicious input. If any field is supplied
with malicious input, the query produced from this input is
classified as malicious. Approximately equal numbers of
normal and malicious queries must be constructed. The input
generator algorithm produces a set of queries based on the
inputs from an input features set containing examples of the
different forms of injection commands. Each query in this set
has been classified based on the input used to generate them as
either normal or malicious. This set of queries is the training
set as it will be responsible for the creation of the decision
rules for the classification of future queries during runtime
operation. This process is equivalent to the static analysis from
the related solutions but without the requirement of source
code access.

The next algorithm is designed to reduce the size of the
complete set of possible SQL queries for a web application by
manipulating the features of the query strings. This allows
multiple similar strings to produce the same ‘feature string’
which is used for classification. The main difficulty of Black
Box methods is describing the completeness of a query system
with a sufficient set of allowed queries. This algorithm is
capable of reducing the size of the complete set of possible
queries. Therefore, the training set can be of smaller size and
yet still be an acceptable sample set of the complete query set.
It is important that the training set be an accepTable sample
set to assist the machine learning algorithms in producing a
satisfactory model. During normal operation of a web
application the queries generated will contain differing

attribute data values in order for users to access the data they
require. As a result, this solution uses a modified version of
the attribute removal algorithm introduced by a related
solution (Lee et al., 2011). This algorithm removes substrings
from the input data that have no effect on the syntactic
structure of the query string. These must be removed or it is
possible that different data values may influence the
classification of the string which is unwanted. This algorithm
reduces the query string into a form that emphasizes the
syntactic features of the query. This algorithm is called the
Feature Manipulation Algorithm within the proposed solution.

The reduced query strings from the training set must then
undergo a process called feature extraction. This process will
convert the queries into mathematical feature vectors that can
be used to produce mathematical decision boundaries for the
production of training rules. Feature extraction was used in
previous research using string to numerical conversion rules
(Kim and Lee, 2014). In this solution a much more powerful
algorithm is deployed. The Gap-Weighted String Subsequence
Kernel Function is a multidimensional algorithm that can
compute the similarity between two strings by identifying the
occurrence of short sequences of characters of varying scales.
It has been shown to be effective for text classification (Lodhi
et al., 2002; Homoliak, 2012). This allows the computation of
similarity within a feature space of dimensionality ∑ Σ=

where � is the alphabet of the query strings and is the
maximum length of subsequence used for the evaluation. It is
referred to as a String Kernel as it is a kernel function that
operates on argument strings instead of vectors already in
mathematical form. Each reduced query string within the
training set has its similarity value calculated with every query
‘feature manipulated string’ within the training set including
its own string to produce the feature vector for the query. This
feature vector is a numerical vector of dimensionality and
each value is the string compared with strings { , … , } from
the training set. This represents the large feature space within
a dimension operational space. When this calculation is
performed for every query, a total of feature vectors are
generated. These feature vectors can be lined up into rows to
produce a × matrix. This is named a kernel matrix and is
the input accepted by the SVM during the training phase.

Fig. 1. A two dimensional feature space containing four vectors (two

classed negatively, and two positively) and their associated margins.

The solution then makes use of supervised machine learning

to utilize the pre-classified training set of feature vectors to
generate a decision boundary. The SVM was chosen for this

 5

function as it is a powerful but efficient binary classifier
(Cortes and Vapnik, 1995). Consider Figure 1 representing a
simple two dimensional feature space containing four feature
vectors, two positively classified and two negatively
classified.

Within Figure 1 there are a number of important vectors.
The vectors − and + indicate the locations of two support
vectors, one classified negatively and one positively. The
vector � is an unclassified test vector. Finally, the vector is
a vector normal to the separating hyperplane that describes
this hyperplane. The two side lines represent the best fitting
margins separating the negative support vectors and the single
positive support vector. As the top right hand corner positive
vector does not lie on or within the margin of the separating
hyperplane, it is not a support vector whereas the other three
vectors are.

If the vector � lies upon the positive side of the separating
hyperplane, the inner product between and � is greater than
an undefined constant , ∙ � . This can be converted to
Equation 1 by defining a new constant where = − . This

equation becomes the first decision rule defined by the
hyperplane.

If ∙ � + then � is a positive classified vector. (1)

This can be expanded for the vectors placed on the margins
and outside producing equations 2 and 3.

 ∙ + + where + is a positive sample. (2)
 ∙ − + − where − is a negative sample. (3)

An additional variable can be introduced to simplify the
Equations 2 and 3 into a single decision rule. Name this new
variable such that = + for positive samples and = − for negative samples. This produces the new
decision rule shown in Equation 4.
 � � ∙ + for both + and −. � � ∙ + − (4)

For � in the ‘gutter’, the limit of the margin, Equation 4 is
equal to zero. The width of the margins can be defined as
shown in Equation 5.

 + − − ∙ || ||. || || is the unit vector of . (5)

The margin can be defined independently of the individual
vectors resulting in Equation six.

WIDTH = + − − ∙ || || = || || (6)

The best decision boundary will maximize the size of these

margins so therefore we must maximize /|| || which is
equivalent to maximizing /|| || which can then be
determined as minimizing || ||. For mathematical

convenience this is formed into Equation 7.
 � [|| ||] (7)

This operation can be accomplished through the use of
Lagrange Multipliers.
 = || || − ∑ � [� � ∙ + −] (8)

The derivatives of L must be calculated and set to zero.
 �� = − ∑� =

 ∴ = ∑� where � gives weighting to the training
vector . (9)
 �� = − ∑� = ∴ ∑� = (10)

Using Equation 8 and substituting in Equations 9 and 10
results in the production of Equation 11.

 = ∑ � (∑ �) − ∑ � ∙ (∑ �) − ∑� + ∑� = ∑� − ∑ ∑ � � ∙

Maximize � (11)

This leads to the new decision rule ∑� ∙ � +

then u is positive.
This Hard Margin Support Vector Machine is very

inflexible. It can only create decision rules where the vectors
are never allowed to violate the margin boundaries. This can
lead to hyperplane overfitting and therefore an overfitting
decision rule if any of the support vectors are outliers. A better
approach is to use a Soft Margin Support Vector Machine.
This approach allows vectors to violate the margins at an
associated penalty cost. This can result in a superior decision
rule due to better generalization of the models despite the
possible incorrect classification of feature vectors in extreme
cases. As any vector that manipulates the decision boundary is
a support vector, any vectors that violate the margins are also
support vectors.

A new cost parameter is introduced. This parameter
identifies the cost associated with the violation of the margin
by a support vector by � . This modifies Equation 7 from
the Hard Margin Support Vector Machine into Equation 12.

 �, ,�� + ∑ �=
Subject to �� + − � where � . (12)

This solution makes use of this Soft Margin Support Vector
Machine as it allows the use of the cost parameter to produce
better fitting models without overfitting during the training
phase. The SVM optimization function is convex meaning that
it will not always optimize to the global minima for the model.
The SVM implementation used in this proposed solution also

 6

deploys a grid optimization algorithm in order to determine
the optimum value of the cost parameter. The model produced
by the training set will then be used as the basis of classifying
new queries based on the decision rule produced during the
testing phase. This is accomplished by assigning either a +1 or
-1 to the test queries value. Support Vector Machines are
natively linear classifier but as the query feature vectors are
likely not linearly separable. Kernel Functions allow feature
vectors that are not linearly separable to be separated within
higher dimensional space by mapping the feature vectors
using a kernel function shown in Equation 13.

Let ϕ be a transformation of space where ∈ ℝ , ϕ ∈ ℝ and > where and are integers.
We want to maximize ϕ ∙ ϕ() and ϕ ∙ ϕ �

where and are the feature vectors of training set points
and , where is the total number of training set
points. Finally, � is the feature vector of a test query.

Propose a Kernel Function: (,) = ϕ ∙ ϕ() (13)

The algorithm is capable of using the decision rules
determined from this operation to classify unclassified query
string feature vectors based on their position relative to the
decision boundary within the feature space. The SVM
determines a decision boundary between the normal and
malicious query feature vectors such that the margin between
both is maximized. This decision boundary is used to create a
model that contains the decision rules for future classification.
The production of this model signifies the end of the training
phase and the solution now operates during web application
runtime.

During runtime, real world user input is used to generate
queries. These queries are intercepted by the solution and are
processed by the Feature Manipulation Algorithm that extracts
attribute data that is not of importance to the string syntactic
form. It is then processed by the Gap-Weighted Subsequence
Kernel Function that generates a feature vector for the new
test query string by computing the similarity value of the test
query with every query string in the training set. This feature
vector is put into a kernel matrix form producing a ×
matrix (a row vector created by a transpose of the feature
vector). This matrix is then introduced to the SVM running in
testing mode. The SVM uses the model generated during the
training phase to classify the test query. The query is then
logged to file and if the SVM classifies the query as malicious
it is rejected. If the query is classified as normal it is then
relayed as normal to the back-end database. Figure 26 on the
last page of the paper demonstrates the operation of the
SQLIA detection framework as well as path of data flow
throughout the solution.

IV. FEATURE EXTRACTION

SQL queries intercepted by the solution can have a large
range of accepTable user input. This user input is of great
importance in defining the semantics of a query string but has
no effect on the syntactic form of the query. Different types of
SQL Injection attacks exhibit the same primary characteristic;

the injected input alters the syntactic form of the query. The
string kernel function is unable to differentiate between user
input used to define attribute values and actual SQL
commands isolated from the attributes that alter the function
of the query. As a result, the attribute values must be removed
from the strings before similarity evaluation. In a previous
solution, the attribute values were removed in order to
compare the syntactic form of testing query strings to the
query template extracted by static analysis of the web
application source code (Lee et al., 2011). The Feature
Manipulation Algorithm present in this solution is an
extension of this original design.

Another reason to remove unneeded substrings from the
query string before testing is due to the operation of the Gap-
Weighted String Subsequence Kernel function. The total set of
characters used between two strings is defined as the alphabet �. The time complexity of this function is dependent on this
alphabet � for the two strings undergoing the comparison. The
Feature Manipulation Algorithm can remove the attribute
values that are unneeded for the learning process and
potentially reduce this alphabet to the reduced alphabet �
where � ⊆ Σ. This reduced alphabet allows the faster
computation of the similarity between the two attribute-
removed strings. The string is read in by the function. All
double quotation marks are converted to single quotation
marks as these SQL operators are interchangeable. This
simplifies the next operation, reduces the size of the alphabet
and reduces the number of training inputs required to produce
a full set of training queries of satisfactory sample size to the
complete query set. The algorithm then iterates through the
characters. Attribute values are removed by identifying
quotations and removing characters after the quotation marks
until the next quotation mark is discovered. This prevents
substrings that do not affect the syntactic form of the query
from being included in the string kernel function.
Additionally, numerical data not located within the removed
quoted text is identified and converted into the numerical
placeholder ‘1’. This prevents differing numerical data from
altering the feature set of the strings. It also simplifies the size
of the alphabet and the number of training inputs required.
Finally, all characters after the comment operator are
removed. This compensates for the ability of comment
operators to result in ‘uneven sets’ of quotation marks
disrupting the attribute removal.

These operations performed in string space have a powerful
effect on the feature vectors of the query strings. By removing
string elements that do not contain syntactic information, the
feature vectors of queries demonstrating similar construction
are clustered within the feature space allowing for improved
operation of the SVM classifier. A similar operation could be
accomplished by making use of an unsupervised clustering
algorithm on the feature vectors of the query strings and then
moving the vectors towards the cluster centroid but at an
increased processing requirement. The correct clustering of
similar syntactic query strings cannot be guaranteed using
unsupervised learning as prior to feature manipulation the
feature vectors of similar query strings can be spread over a

 7

large area within the feature space. Figure 2 demonstrates the
feature vector clustering effect within the feature space.

Fig. 2. A demonstration of the clustering of the feature vectors of similar
query strings in the feature space after the processing of the Feature
Manipulation Algorithm performing all operations in string space.

The Feature Manipulation Algorithm returns strings with

their attribute values removed and with important features
enhanced. Feature extraction must be performed on the strings
to transform them into numerical feature vectors. Feature
extraction uses rules to convert properties of the strings into
multidimensional vectors where each dimension relates to a
specific property of a string. The SVM requires every output
string from the Feature Manipulation Algorithm to be
transformed into feature vectors in order to generate models.
Given an input query string, new features must be computed
depending on the Euclidean distance proximity to ‘landmarks
- �’ within the input space. Equation 14 demonstrates how the
features are constructed.

 = , � where is the input string. (14)

Appropriate ‘landmarks’ must be chosen to produce a set of
features that can appropriately separate the legitimate and
malicious manipulated query strings within the feature space,
a space of dimensionality equal to the number of features
produced by the ‘landmark’ comparisons. An acceptable
method of assigning ‘landmark’ strings is by selecting each
query string within the training set. This is the method utilized
in this proposed solution and is the reason why the feature
vectors have the same dimensionality as the number of query
strings within the training set. Kernel Functions allow
classified input vectors that are not linearly separable to be
differentiated within higher dimensional space by mapping the
inner products between the input vectors using a kernel

function. String Kernel Functions are an alternative to explicit
feature extraction as they allow the direct computation of the
similarity between two strings. String Kernel Functions are
defined as the inner products between the features of two
argument strings. There are a number of String Kernel
Functions that extract specific string features and use them to
calculate the similarity value.

The String Subsequence Kernel was published in the
Journal of Machine Learning in 2002 (Lodhi et al., 2002;
Rouso and Shawe-Taylor, 2005). It was used as part of a novel
approach to classifying text documents. These kernel
functions use sequence alignment techniques developed for
string-based genetic sequence research as an alternative to
feature extraction. They consider strings as a collection of
symbol sequences. The Subsequence Kernel is based on the
identification of a set of sub-sequences within input strings.
This allows the calculation of the similarity between two
strings by defining a length of substring to identify and
producing a multidimensional feature extraction identifying
the presence of each possible combination of the alphabet � of
the string over the maximum subsequence length and the
total dimensionality of the string vectors is given by Equation
15.

 � � = ∑ Σ= (15)

The String Subsequence Kernel can be defined through its
mapping of k-length substrings between two input strings. The
value of this operation will be non-zero if any given string
subsequence occurs in both input strings even if it is not
contiguous in either of them. All possible characters forming
these k-length substrings are collected into an alphabet which
is a subset of the complete possible set of characters. Define Σ
as a finite alphabet of characters that can be used to construct
any string. A string is a sequence of characters from Σ
including the empty sequence. For two strings , , | | is the
length of string = , … , | | and | | is the length of string = , … , | |. The string is defined as the concatenation of
the two strings and . Further, string [:] is a substring … of .

 We therefore can define as a subsequence of if there
exists indices: = (,… , | |) with < < | | | | such that = for = ,… , | |, = []

The length of in is | | − + Σ is the set of all finite strings of length and Σ∗ is the set
of all possible strings. This leads to Equation 16.

 Σ∗ = ⋃ Σ∞= (16)

 Every possible subsequence of a string can be defined

within a feature space of the dimensionality of the alphabet set
to the power of the maximum size of subsequence. The
dimensions of this feature space is given by = ℝΣ� .

 Feature mapping � for a string is given by defining the
coordinate � for each ∈ Σ . The value of this

 8

coordinate is given by � = ∑ �: = [] for some � .
The variable � is called the gap decay factor and determines
the cost penalty due to non-contiguous substrings. These
coordinates measure the number of sub-sequences in the string
 weighting them according to their lengths.
 The Inner Product of the feature vectors for the string

and give a sum over all common sub-sequences weighted
according to their frequency of occurrence and lengths. This
inner product is given by Equation 17.

 , = ∑ � ∙ �∈Σ� = ∑ ∑ �: = []∈Σ� ∑ �: = []

= ∑ ∑ ∑ � + : = []: = []∈Σ�

 (17)

The direct computation involves |Σ| time and space
complexity. This Equation can be used to define a recursive
calculation for the kernel shown in Equation 18.
 ′ , = ∑ ∑ ∑ �| |+| |− − +: = []: = []∈Σ
where = ,… , − (18)

Equation 18 is then calculated from 1 to − as shown in
Equation 19 to 22. Equation 23 then uses this recursive
calculation to compute the full subsequence kernel.

 ′ , = , , , (19) ′ , = , min | |, | | < , (20) , = , min | |, | | < , (21) ′ , = � ′ , + ∑ ′ − , [: −] �| |− + ,: = = ,… , − , (22)
 , = , + ∑ ′ − , [: −] � .: =

 (23)

This method penalizes the length of the strings as they grow
through the use of the gap decay factor. It is important once
this calculation has been performed to normalize the final
similarity value. This is important as the length of two strings
should be independent of the similarity value. Equation 24
shows how this is performed through the introduction of a new
embedding factor.

 ̂ , = �̂ ∙ �̂ = �||� || ∙ �||� || = ‖� ‖‖� ‖ � ∙ � = ,√ , , (24)

Each string kernel will form different string vectors with
different dimensions and for this string kernel we consider a
vector with an associated space named ‘gap-weighted string
subsequence space. Each dimension in this string space is
formed by one of the different string combinations determined
by Equation 15. Consider a complete alphabet � = 2000, the
maximum subsequence length is = �. This produces a
string vector of approximate dimensionality 66 . However,
almost every string will contain a small subset of these
substrings resulting in sparse string vectors with most
dimensions evaluating to zero. The reduced alphabet,
determined by the identification of the alphabet used by the
query strings, string vectors will be of significantly reduced
dimensionality of approximately 6. These string vectors
will still retain significant sparsity. It is within this space that
the Gap-Weighted String Subsequence Kernel will compute
the Euclidean distance between the input strings with identical
string vectors returning one, dropping to zero as the distance
between the string vectors increases towards infinity. This
action allows the description of the impossible-to-produce
multidimensional vector of string as a lower dimensional
feature vector � shown in Equation 25.

 � = , � where ∈ { , … , }, � ∈ ℝ (25)

Co-occurrences of combinations of the substrings between
the two strings result in a higher similarity evaluation. This
entire calculation is accomplished without requiring the
explicit definition of the two multidimensional string vectors.
The Gap-Weighted Subsequence Kernel is similar to the
Subsequence Kernel but it also takes gaps between each
multidimensional feature into consideration. A gap penalty
named the gap decay factor � ∈ { , … , } is used to define the
reduction in similarity evaluation due to non-contiguity
between the co-occurrences of multidimensional features
within the two input query strings.

Consider the two strings ‘the car parked’ and ‘at the tree’.
The alphabet of these two strings is a set of all the characters
within them including the space character. This alphabet is
displayed in Equation 26.

 Σ = { , , , ℎ, , , , , _}
Where _ represents the space character. (26)

It is possible to determine the full set of = { , … , }
substrings possible from this alphabet. For = the set is
the same as the alphabet. For = the set of possible
substrings is shown in Figure 3.

 9

There are Σ possible combinations:

{

 , , , , ℎ , , , , , _, , , , ℎ , , , , , _, , , , ℎ , , , , , _ℎ, ℎ, ℎ, ℎ, ℎ ℎ, ℎ, ℎ, ℎ, ℎ, _, , , , ℎ , , , , , _, , , , ℎ , , , , , _, , , , ℎ , , , , , _, , , , ℎ , , , , , __, _, _, _, ℎ _, _, _, _, _, _ }

Fig. 3. The different possible features of strings utilizing the alphabet of
Equation 25.

For a given value of , the Gap-Weighted Subsequence

Kernel can compute the similarity between two strings based
on the co-occurrence of -length substrings by using a
dynamic programming approach. This approach also has the
advantage of calculating all the similarities for scales between
 and without any additional processing overhead. This

results in the production of a set of real valued numbers { , … , } where is the computed similarity
between two input strings over -length substrings and is
the maximum length of substrings to be computed. This set of
numbers must be used to determine a single similarity value
that will be used in the kernel matrix . These requirements
mean that the Gap-Weighted Subsequence Kernel must use a
total of + input variables where is the maximum length
of substrings to be used in the similarity evaluation. These
variables are the maximum substring length , the gap decay
factor � which is used to determine how heavily substrings are
penalized for not being contiguous within the two input strings
and a set of coefficients that determine the weighting of the
specific scale similarity evaluations { , … , } when
they are used as part of a summation to generate the similarity
value used for (,) within . This normalised
summation is shown in Equation 27. This calculation is
performed for every and string within the training set to
create the kernel matrix and for a test query with each
training set string to create a ‘relative similarity’ feature
vector for the purpose of the classification of .

 (,) = ∑ ��[]=1 ∑ [] []= (27)

Where is the maximum subsequence size and [] is the
weighting coefficient of [].

The Kernel Matrix is written into a data file in a format that
the SVM library can read demonstrated in Figure 4.

 : : , : , : (,) : : , : , : (,) : : , : , : (,)
Fig. 4. The data file of the training phase Kernel Matrix in the LibSVM
format.

It is therefore possible to enter any numerical value to act as

the coefficient for the similarity value of a particular
subsequence length. This allows solutions to be created that
can scale the contribution of subsequence lengths based on
their ability to produce a superior classification model. The
strength of using a Gap-Weighted String Subsequence Kernel
is the ability to compute similarity based on multidimensional
features of query strings without the explicit generation of
these multidimensional feature vectors. The program simply
iterates through the set of possible combinations for an
alphabet of all the characters within the two strings up to a
given maximum scale length cumulatively summing the
contributions as it continues. These multidimensional feature
vectors could never be explicitly evaluated for larger scale
lengths due to the spatial complexity of such an operation. The
memory requirements to store such a large quantity of data
would overwhelm any system seeking to make use of this
solution. Therefore this string kernel allows the processing of
these feature vectors without ever storing them in memory.

V. EXPERIMENTS

Using the proposed method, a proof-of-concept, fully self-
contained C#.NET software capable of generating Select and
Insert queries was produced. The software would attempt to
classify the generated queries based on models it had created
by training on queries generated by passing specially crafted
user input through the Select and Insert query generators. At
no point was the detection component allowed access to the
component containing the unsanitised query template code as
this would pollute the objectives of the demonstration
software. A SVM capable of utilizing pre-computed kernel
inputs was sourced. LibSVM is a library for SVMs and is
widely used. This library is equipped with an ‘SVC’ Support
Vector Classification module (Chang and Len, 2007). The
LibSVM library is written in Java and therefore a translated
library for the .NET languages was required for the C#.NET
platform. A library named SVM was utilized. Developed by
Matthew Johnson, it is a clean .NET conversion of the
LibSVM Java version 2.89. Figure 5 displays a screenshot of
the Graphical User Interface of this demonstration software.

Fig. 5. The Graphical User Interface of the demonstration software.

The evaluation of the proposed solution was conducted on a

 10

machine operating an Intel i7-4770k processor clocked at 4.4
Ghz with 8 Gb of RAM running Windows 7 Professional 64-
Bit with Service Pack One installed. As the demonstration
software is completely self-contained, no messages are sent
over the network and therefore there are no network related
time delays. The input feature set data was produced manually
and contained values that identified a set of user inputs
containing regular input and injection commands combined
with a class indicator showing if the input is malicious or
legitimate.

5.1. Evaluation conditions

The Amnesia testbed dataset was obtained from the
Amnesia authors (Halfond and Orso, 2005). This dataset
contains a number of attack queries for seven different web
applications. These queries were used to construct two testing
datasets, one containing Select queries in the syntactic form of
the demonstration software select query and one containing
insert queries, again in the syntactic form of the demonstration
software insert example query. The Select query dataset
contains 232 queries, 116 normal and 116 malicious. These
queries feature multiple potential types of SQL Injection
Attack and normal queries that attempt to confuse the
algorithm by appearing similar to the injection attacks as well
as more regular examples. The Insert query dataset follows the
same approach but only has 170 queries, 85 normal and 85
malicious, due to a number of types of SQL Injection Attack
not being possible without piggy-back type attacks on this
form of query string.

Each dataset was tested by computing the peak accuracy,
training time and testing time for the = subsequence
length which is equivalent to the linear string kernel approach.
This gives the ground state accuracy and processing overhead
of the Feature Manipulation Algorithm combined with the
SVM. The two length subsequence size was then used to
generate a full set of detection accuracy and processing time
data based on the combinations of possible coefficients
weighting the kernel function scale lengths. This was repeated
for the three length subsequence size with the length one
coefficient locked to one. This set of data was used to
determine the effect on the detection accuracy, the rate of false
positive and false negative events and the processing time by
the different relative weightings of the feature scales. The
maximum subsequence size was then increased incrementally
by one with the coefficients locked at one to determine the
changes to accuracy and processing time by using larger
feature scales. These two tests show the relative change in
detection accuracy, the rate of false positive and false negative
events, the model training time and the query string processing
time by using the Gap-Weighted String Subsequence Kernel
instead of a simple linear string kernel.

The Evaluation focused on three major indicators of
performance. The detection accuracy, given by the occurrence
of true positive, true negative, false positive and false negative
events used to compute the precision and recall for each
testing dataset and finally the F-Measure harmonic mean. The
time complexity indicating the amount of processing time

required for the evaluation of each query and the spatial
complexity identifying the amount of memory required for
processing these datasets.

The Precision is the ratio of detected SQL Injection Attacks
to the total number of queries classified as SQL Injection
Attacks. It is an indication of a bias of the SVM model
towards producing false positive results. The more false
positive events the model generates the lower the value of the
Precision. No false positive events result in a Precision value
of one. Equation 28 shows the Precision.

 = ����+�� (28)

The Recall is the ratio of detected SQL Injection Attacks to

the total number of actual SQL Injection Attack queries within
the testing dataset. It is an indication of a bias of the SVM
model towards producing false negative results. The more
false negative events the model generates the lower the value
of the Recall. No false negative events result in a Recall value
of one. Equation 29 shows the Recall.

 = ����+� (29)

The Precision and Recall together can be then used to

generate the F-measure of the testing dataset. This value is a
harmonic mean of the Precision and the Recall and is an
excellent mechanism for describing the actual detection
accuracy of the SVM classification. The F-Measure is given
by Equation 30.

 = ×� ×�� +� (30)

The time complexity is an important consideration in the

operation of this solution. Using the Stopwatch function,
specific regions of code have their operation time recorded.
The first stopwatch records the complete processing time per
test query and records it into the log file alongside any
relevant query information. Further stopwatches were
implemented to display processing time information into the
program user interface. The complete processing time for the
test dataset is displayed alongside the average processing time
per query determined by the previous result divided by the
number of queries within the testing dataset. A final stopwatch
was added to determine the training time for the SVM.

5.2. Detection accuracy

The first test set required the input generator to use the
feature dataset to generate a full training dataset using the
Select query. The 23 entries within the feature dataset created
86 Select queries of which 46 were legitimate queries and 40
were malicious SQL Injection Attacks. These queries were
then used for training a model for the ground-state = case.
This reflects the operation of the Feature Manipulation
Algorithm and the SVM operating with a linear string kernel.
This linear string kernel counts the co-occurrence of
characters within the two strings undergoing comparison. This

 11

trained model took 2037 milliseconds to train. The Amnesia
dataset derived Select query dataset was then classified using
this model. There were 232 total queries of which 116 were
normal queries and 116 were malicious queries. 114 of the
malicious queries were successfully identified leaving 2 false
negatives. The classification of the normal queries was less
successful with only 57 correctly classified leaving 59 false
positives. This gave the ground state a precision of 65.9% and
a recall of 98.3%. The F-measure detection accuracy was
78.9%.

The same test was then performed for the Insert query. As
the Insert query within the demonstration software featured
four user input locations, the 23 feature dataset entries created
132 training set queries of which 80 were normal queries and
52 were SQL Injection Attacks. A new model was trained
using this dataset and took 6563 milliseconds to train. The
Amnesia testbed derived Insert query dataset was then
classified using this model. There were 170 total queries of
which 85 were normal queries and 85 were malicious queries.
All 85 malicious queries were successfully classified leaving
zero false negatives. However, only 45 normal queries were
correctly classified leaving 40 false positives. This gave the
ground state a precision of 68% and a recall of 100%. The F1
detection accuracy was 81%.

The difficulties detecting the normal queries were due to
unsanitised quotation marks within the normal queries. These
queries contained SQL code but not in a position where they
would produce injection commands when concatenated into
the query strings. However, the presence of quotation marks in
the string still caused overly detailed feature manipulated
strings to be introduced to the string kernel algorithm resulting
in confusion. As most regular user input into query strings
does not use quotation characters, a second set of Select and
Insert test queries were produced that mirror the first testing
set but the normal queries lack quotation mark input. The = test used above was then applied to these two new
datasets named Select-Fix and Insert-Fix. The Select-Fix
dataset when tested on the previously trained model resulted in
a ground state detection accuracy of 99.1%. Using the
previous model on the Insert-Fix dataset resulted in a ground
state accuracy of 100%.

Next all four test datasets (Select, Insert, Select-Fix, Insert-
Fix) were used to generate surfaces for the = state. In this
state there are three additional variables, the gap decay factor
and the coefficients for length one and length two features.
The gap decay factor can take values between zero and one. It
was found that this variable made very little difference to
detection accuracy so long as it was kept under 0.5. The
detection accuracy begins to drop to the linear string kernel
state if the gap decay factor is set higher than this value.
Therefore the value of the gap decay factor was set to 0.0001
and remains so for the rest of the evaluation.

The coefficients for the scaled features can be of any value
but as it is the proportionality between the coefficients that
determines the relative weighting of features, values between
plus one and minus one with a gap of 0.2 were used to
generate 121 possible combinations. The SVM was retrained

generating 121 different models for these possible
combinations and the four datasets were applied to these
models to determine their detection accuracy for the =
state.

The Select dataset resulted in a peak accuracy of 98.3%
with the coefficient of scale one features at 0.4 and scale two
features at 1.0. The surface plot of this evaluation showing the
change in detection accuracy against the range of possible
coefficient values is shown in Figure 6. The plot clearly shows
that the strongest peaks of accuracy occur as the coefficients
are similar in value and the largest troughs occur when they
are opposite in value. This is due to the constructive
interaction of both scale sizes when summing to produce the
similarity evaluation. The model is able to train on features of
both sizes as they both contribute strongly to the similarity
evaluation. When both coefficients are opposite in value the
features neutralize leaving the SVM with very little useful
information to train on resulting in a heavy loss of accuracy.
The accuracy seems to vary diagonally across the plot from
peaks to troughs and to peaks again. This is because it is not
the value of the coefficients that are important but only their
relative proportionality. For the Select dataset, adding two-
length sub-sequences to the similarity evaluation results in a
substantial jump in detection accuracy.

Fig. 6. The p = state detection accuracy surface plots of the Select test
dataset.

 12

Fig. 7. The = state detection accuracy surface plots of the Select test
dataset.

The analysis was then extended to the = state. As

positive values for the coefficient of one length sub-sequences
proved to provide a boost in detection accuracy for the =
evaluation, this coefficient was locked to one and the
coefficients for the two and three length sub-sequences were
varied next. This did not contribute to the peak accuracy of the
Select dataset compared with the previous result of 98.3%.
However, this set of coefficients was limited by the locked
coefficient for the one length sub-sequences and a high
accuracy was still maintained. Figure 7 demonstrates this = experiment and the same shape of surface can be seen
as the positive values of the two and three length feature
coefficients result in a peak over the ground state accuracy and
the negative values result in decay to the ground state
accuracy as the higher dimensional features similarity
evaluations cancel each other out. These experiments prove
that there exist solutions to the gap-weighted subsequence
kernel that enhance the accuracy of the Select queries over the
linear string kernel.

This analysis was then performed on the Select-Fix dataset.
As the linear string kernel accuracy was much higher on this
dataset, the multidimensional feature extraction did not
produce quite so obvious a set of peaks. However, there
existed multiple solutions to the gap-weighted subsequence
kernel in the = state that resulted in an accuracy of 100%
compared to the ground states 99.1%. The = state was a
similar shape also showing the presence of 100% detection
accuracy solutions. The surface plots of these two analyses
can be seen in Figures 8 and 9.

Fig. 8. The p = state detection accuracy of the Select-Fix test dataset.

Fig. 9. The p = state detection accuracy of the Select-Fix test dataset.

Next, the Insert dataset was subjected to the = test. The

Insert dataset resulted in a peak accuracy of 88.4% with the
coefficient of scale one features at minus 0.2 and scale two
features at minus 0.8. The surface plot of this evaluation
showing the change in detection accuracy against the range of
possible coefficient values is shown in Figure 10. The Insert
queries did not benefit from the multidimensional feature
extraction to the same degree as the Select queries did.
However, solutions existed that improved over the linear
string kernel detection accuracy.

Fig. 10. The p = state detection accuracy of the Insert test dataset.

 13

Fig. 11. The p = state detection accuracy of the Insert-Fix test dataset.

As the Insert-Fix dataset had already achieved an accuracy

of 100% in the ground state linear state model, using higher
dimensional feature extraction was not going to improve the
model. In fact, as can be seen in Figure 11, the = state
resulted in multiple solutions that have a loss of accuracy from
the linear ground state. This demonstrates that the proposed
solution in its current form is best for simple Insert-Fix queries
when using a linear string kernel. As for the original Insert
dataset without quotation marks restricted, the higher
dimensional feature extraction does produce solutions with
higher detection accuracy. However, as discussed above,
superior accuracy may not be the best solution if the rate of
false negatives increases. Unfortunately for the solutions with
88.4% accuracy and others with 86.4% accuracy have resulted
in false negative events compared with the ground state with
zero events. The result data does however show solutions with
a mild boost in accuracy over the ground state from 81% to
84.1% whilst still maintaining zero false negative events.
Therefore, despite the confusion caused by the poorer
multidimensional feature extraction, higher dimensional
solutions do exist that improve upon the ground state albeit at
a much less impressive level as the solutions for the Select
type queries. The strength of the multidimensional feature
extraction is dependent on the accuracy of the linear string
kernel. Poorer models using this kernel allow for more
improvement when using higher dimensional features.

The previous experiment shows that there are solutions for
the = and = states that improve on the ground state
detection accuracy without introducing new false negative
events. The Select type query classification is greatly
strengthened by the higher dimensional feature extraction. The
Insert type queries do not gain as much of an accuracy
increase but still reduced the number of false positives by a
small amount. Meanwhile the datasets that removed quotation
marks in the legitimate input showed that the Select-Fix
dataset obtained a small increase reducing the false negative
rate to zero. Unfortunately the already perfect classification of
the Insert-Fix set was thrown off by the higher dimensional
features resulting in the generation of false negatives.
Therefore, the multidimensional feature extraction boosted

three of the four sets but resulted in a loss of accuracy for the
fourth.

The largest increases in detection accuracy occurred when
the coefficients shared signs. In these solutions the higher
dimensional features constructively interact to generate
similarity values that reflect these features and as a result
assist in the classification of the query strings. It would be
computationally extremely difficult to probe the full set of
coefficient combinations for higher subsequence sizes.
Therefore, to test these higher subsequence lengths, the
coefficients will be set to one so they are constructively
interacting. This is not necessarily the best case and in the
previous experiment it was seen that whilst all the coefficients
shared the same sign, they didn’t necessarily share the same
value for maximum detection accuracy. However, this solution
should be sufficient to determine the enhancement to detection
accuracy produced by using larger scale features.

For this experiment, each dataset was tested with the
following conditions. The gap decay factor was set to 0.0001
as it was in the previous experiment. The maximum
subsequence length was tested for every integer value from
one to ten. All the coefficients of the scale one to ten features
was set to one. The first dataset tested was the full Select
dataset. The detection accuracy of the dataset quickly rises
when higher dimensional features are used in the similarity
evaluations. However, the accuracy quickly peaks at =
and = with a massive decrease in false positives without
an increase in false negatives. Unfortunately, extending to
higher dimensional features then causes the rate of false
negatives to increase decreasing the detection accuracy. This
experiment cannot guarantee that there are not solutions at
these higher subsequence lengths that will further increase
accuracy but it appears that superior results are being derived
from features of length two or three characters in size. This is
likely due to the SQL commands and injection statements
being short substrings of this length. Figure 12 shows a plot of
detection accuracy against maximum subsequence length
showing the rapid peak at = and = before detection
accuracy decreases at higher subsequence lengths.

Fig. 12. A plot of detection accuracy against maximum subsequence length
for the Select dataset.

This analysis was then applied to the Select-Fix dataset. The

 14

results show that the detection accuracy decreases as higher
subsequence lengths are used for classification. This is largely
because the rate of false negatives increases similar to the
regular Select dataset at higher subsequence lengths but as the
normal queries lack confusing quotation mark input there are
no false positives present for any subsequence scale. However,
as was seen from experiment one applied to this dataset, there
are solutions at the = scale that increase the detection
accuracy from the ground state, only the feature scales do not
have the same proportionality. Figure 13 shows the detection
accuracy verses maximum subsequence length for this Select-
Fix dataset.

Fig. 13. A plot of detection accuracy against maximum subsequence length
for the Select-Fix dataset.

Next the experiment was applied to the Insert Dataset. In

the first experiment, this dataset had proven to be a lot less
accurate when extended into higher dimensional features than
the Select dataset. Therefore this experiment was not expected
to achieve as strong an increase in detection accuracy as the
Select type queries. However, the first major result is that the
detection accuracy rises like the Select-type queries but
instead peak at a higher value of subsequence length,
specifically = 5 to = 7. Again, this is likely due to the
primary features of the Insert-type queries being of larger
length as instead of individual commands forming conditional
statements, the Insert query contains a large bracket region
containing the values to be entered into the database separated
by commas. Despite this increase in accuracy, it comes with
the cost of an increase in false negative events counteracting
the large decrease of false positive events. As previously
stated, false positive events are preferable to false negatives as
the disruption to a service can be much greater if attack
queries get through. This is especially of note since most
normal legitimate queries will not be as hard to differentiate
from malicious queries as this admittedly unusually difficult
test dataset. The first experiment did indicate that there were
higher dimensional solutions that could minimize this false
negative rate by changing the proportionality of the
coefficients. Therefore there are likely solutions that can
maintain this accuracy but with a substantially reduced false
negative rate. Figure 14 demonstrates the detection accuracy
against maximum subsequence length clearly showing the

peak at = 5.

Fig. 14. A plot of detection accuracy against maximum subsequence length
for the Insert dataset.

Finally, the experiment was carried out on the Insert-Fix

dataset. The linear string kernel model of this dataset was of
perfect detection accuracy. Combined with the first
experiment showing that = and = caused a loss of
detection accuracy similar to the Select-Fix dataset by an
increase in false negative events with maintenance of the zero
false positive events of this dataset, the Insert-Fix dataset was
likely to suffer from the same issues. This was found to be true
as the detection accuracy does drop from the ground state
accuracy as higher subsequence length features are used in the
feature extraction process.

The Gap-Weighted Subsequence Kernel is successful in
reducing false positive events in confusing legitimate query
strings by incorporating higher dimensional features into the
similarity evaluation. Unfortunately this can be at a cost of an
increase in the rate of false negative events unless an ideal
combination of coefficients can be determined. Therefore it is
recommended that higher subsequence lengths be used on
complicated query strings that are difficult to differentiate
from malicious strings but for simpler queries it is superior to
limit multidimensional feature extraction to features of scales
no longer than the individual SQL commands. This is due to
the Feature Manipulation Algorithm alone being successful in
the successful identification of all legitimate query strings
allowing all unusual strings to be immediately rejected. These
results indicate that the best combination of coefficients is
likely to be found for values of maximum subsequence length
that relate to the length of substrings within the query strings.
It is worth attempting to train a model using these
subsequence lengths unless the ground state detection
accuracy is already perfect in which case the detection
accuracy is already at the desire level and higher
dimensionality will likely result in an increase in false
negatives. Figure 15 demonstrates how the detection accuracy
of the Insert-Fix dataset varies with maximum subsequence
length.

 15

Fig. 15. A plot of detection accuracy against maximum subsequence length
for the Insert-Fix dataset.

5.3. Time complexity

The two experiments discussed above were also used to
generate data on the training time for the models used, the
processing time for the whole Select and Insert datasets and
the average processing time for each individual query in these
sets. This is important for the successful operation of the
proposed solution as it must be able to operate in real time in
order to classify queries with little delay to the users of the
defended service.

The Select and Insert training set produced a linear string
kernel model with an associated training time. Then for the
Select linear string kernel model, the Select and Select-Fix
testing datasets were evaluated and for the Insert linear string
kernel model, the Insert and Insert-Fix testing datasets were
evaluated. The Select model had a training time of 2037.18
milliseconds. The Select test dataset of 232 query strings
required 2443.973 milliseconds to process which produces an
average processing time of 10.534 milliseconds per query. The
Select-Fix test dataset of 232 query strings similar to the
original dataset with the quotation marks changed to question
mark placeholders took 2423.539 milliseconds to process with
an average processing time of 10.446 milliseconds per query.
The Insert model had a training time of 6563.565
milliseconds. The Insert test dataset of 170 query strings
required 3891.915 milliseconds to process which produces an
average processing time of 22.894 milliseconds per query. The
Insert-Fix test dataset of 170 query strings similar to the
original dataset with the quotation marks changed to question
mark placeholders took 3767.71 milliseconds to process with
an average processing time of 22.163 milliseconds per query.

The datasets with the quotation marks removed from the
legitimate queries tended to process slightly faster due to the
shorter query strings produced by the Feature Manipulation
Algorithm. The Insert query model took just under three times
longer to generate due to the larger set of training queries
produced by the increased number of inputs into the Insert
example query string. As a result, the operation time will be
impacted heavily by query strings with a larger number of
inputs although it is possible that the training set generator can
be further refined to reduce the number of training queries

required for a reliable sample size training dataset. The
dimensionality of the feature vectors is always equal to the
number of training queries. Despite these limitations, this
experiment shows that for the linear string kernel models, the
training and processing time are acceptable for runtime as the
training is only required on the initialization of the
demonstration software.

Fig. 16. A surface plot showing the training time of multiple p = Select
query models in milliseconds varying with the coefficient values associated
with the model feature extractions.

The processing time required for higher dimension features

was then measured by using the same experiments used for the
detection accuracy. The different models trained for the =
and = states were used to determine how the training and
query processing time were influenced by the maximum
subsequence length and the coefficients used for each trained
model. Figure 16 shows the training time of the Select query
models against the different coefficient combinations for the = state. The surface is flat with a large diagonal ridge.
The training time is constant being independent of the
coefficients of the different feature scales (except for the
destructively interacting case which will be discussed shortly).
This makes sense as these coefficients merely scale the results
of the Gap-Weighted Subsequence Kernel algorithm and do
not influence the number of calculations required. The
increase in the maximum subsequence length does increase
the training time required as it increases the number of
multidimensional features the string kernel algorithm must
iterate through. The next experiment will attempt to determine
this relationship between maximum subsequence length, the
training time and the query processing time.

The ridge appears to occur for values of the coefficients that
destructively interact. This rapid increase in training time
coincides with locations of poorest accuracy due to this
interaction. Therefore it is likely that the SVM is being starved
of important feature data by this interaction resulting in a
poorer model. Specifically, it is likely the grid algorithm
designed to determine the cost parameter that results in this
increase as the feature vectors are likely heavily
indistinguishable within the feature space. For the = state
the same pattern is seen where the model training time is

 16

independent of the coefficient values apart from the
destructively interacting combinations where it substantially
increases. The = state training time has risen again by
about the same amount as the difference between the ground
state and the = state possibly indicating that the training
time varies linearly with the maximum subsequence length.
The second experiment discussed shortly identifies this
relationship. Figure 17 shows the surface plot produced by
these = state model training times.

Fig. 17. A surface plot showing the training time of multiple p = Select
query models in milliseconds varying with the coefficient values.

The Insert query also exhibited the same features as the

Select query with a ridge where the coefficients destructively
interact with a flat constant training time for the other
combinations. The training time again rises with the maximum
subsequence length at a faster rate due to the increased size of
the Insert training set. Figure 18 displays the surface produced
by the training of the Insert-type query set. The amount of
extra time required to generate the destructively interacting
models seems to be roughly 1500 milliseconds independent of
the training time of the other models indicating that they are
independent of the maximum subsequence length and
reinforcing the conclusion that the cost parameter grid
algorithm component of the SVM is likely responsible.

Fig. 18. A surface plot showing the training time of multiple p = Insert

query models in milliseconds varying with the coefficient values associated
with the model feature extractions.

This experiment also recorded the processing time per

query for the Select and Insert datasets based on the models
produced using the different combinations of the similarity
evaluation coefficients. Figure 19 demonstrates the surface
plot produced by the Select dataset trained in the = state.
When operating in the testing phase the processing time seems
to mirror the training phase operation times. The processing
time is again independent of the string kernel coefficients with
some limited variation due to background operations of the
operating system. However, in this situation the destructively
interacting models process the Select dataset substantially
faster than the normal models. This shorter processing time is
a result of faster classification by the SVM as the feature
manipulation and string kernel algorithms have the same
workload with these coefficients as with any other
combination. The reason behind this is not entirely understood
and likely due to the SVM rejecting the model and simply
applying a global malicious classification to every query
within the Select dataset.

Fig. 19. A surface plot showing the per-query testing time in milliseconds of
the Select dataset classified by multiple p = Select query models varying
with the coefficient values associated with the feature extractions.

Fig. 20. A surface plot showing the per-query testing time in milliseconds of

 17

the Select dataset classified by multiple p = Select query models varying
with the coefficient values.

Similar results are seen for the Select dataset operating

within the = state where again the processing time is
independent of the coefficients except for the coefficients that
result in poor models where the processing time is more rapid.
Additionally, as with the training times, the processing time
per query appears to increase linearly with the maximum
subsequence length. Figure 20 demonstrates the surface plot
produced by the per query processing times of the = state.

Perhaps unsurprisingly, when the per query processing time
of the Insert dataset is compared with the coefficients used to
train the models, the same features are again seen reinforcing
that the processing time is not only just independent of the
coefficients but also independent of the type of query string
and merely only to the length of the string. Figure 21
demonstrates the surface produced by this comparison for the
Insert dataset.

Fig. 21. A surface plot showing the per-query testing time in milliseconds of
the Insert dataset classified by multiple p = Insert query models varying
with the coefficient values associated with the feature extractions.

The first experiment showed that the training and testing

processing times were independent of the coefficients of the
string kernel algorithm. Therefore the training time and
processing time results from the second experiment, where the
coefficients were locked to one and the maximum
subsequence length was increased incrementally from one to
ten, are perfect for the determination of this relationship.

Ten models were generated for the Select training set and
another ten models were generated for the Insert training set.
Each model had a maximum subsequence length of one to ten.
The coefficients of the different scales of the similarity
evaluations were set to one. The training time of these ten
models was compared to the maximum subsequence length of
each model to generate a plot of the relationship. An equation
is then generated to determine the best fit of the points. This
equation describes the relationship between the subsequence
length and the training time and also describes the overhead
required by other components of the program as well as the
amount of time the additional iterations of higher dimensional

features requires.

Fig. 22. A plot of model training time against the maximum subsequence
length for the Select training dataset.

Applying this experiment to the Select training dataset
produced the graph shown in Figure 22. As indicated by
results from experiment one, the plot produced an almost
perfect linear trend indicating that the relationship between
maximum subsequence length and training time is linear. The
linear relationship also produced an associated equation with
important implications to the Select query training. The
gradient of the equation indicates that for every additional
extension to the maximum subsequence length, the model
training time increases by 839.93 milliseconds. The intercept
of the equation also shows that 1183.9 milliseconds of the
training time is independent of the subsequence length and is
likely due to the size of the training dataset and the operational
requirements of the SVM.

Applying the same experiment to the Insert training dataset
produced the graph shown in Figure 23. The Insert queries
also follow this linear relationship except due to the increased
size of the training dataset, both the gradient and the intercept
of the linear trend are greater supporting the conclusion that it
is related to the size of the training dataset and the length of
the individual query strings within the training set queries as
well as the operation of the SVM. The gradient of the equation
indicates that for every additional extension to the maximum
subsequence length, the model training time increases by
2931.9 milliseconds. The intercept of the equation also shows
that 3359.6 milliseconds of the training time must be
independent of the subsequence length.

 18

Fig. 23. A plot of model training time against the maximum subsequence
length for the Insert training dataset.

Each model set was also used to test the four Amnesia-

derived datasets. The Select and the Select-Fix datasets were
classified using the Select models. Meanwhile, the Insert and
Insert-Fix datasets were classified using the Insert models.
Each classification had the associated per query processing
time evaluated. By plotting these results in the same form as
the training time results, it was possible to generate plots for
each dataset showing how the processing time was affected by
the increased maximum subsequence length.

Fig. 24. A plot of the Select dataset and Select-Fix dataset processing times
against the maximum subsequence length for the Select models. The top line
is the Select dataset and the bottom is the Select-Fix dataset.

Figure 24 demonstrates the processing time for the queries

in the Select and Select-Fix datasets using the Select models
over the varying maximum subsequence lengths. The query
processing times also share a linear relationship with
maximum subsequence length. This is due to string kernel
algorithm generating the feature vectors of the test queries.
Therefore the processing time also depends on the size of the
training dataset and the dimensionality of the
multidimensional feature extraction. The Select dataset queries
on average required an extra 13.087 milliseconds of
processing time for the computation of each additional
subsequence length. The Select-Fix dataset requires slightly
less extra time, 12.666 milliseconds, for higher subsequence
lengths. This is likely due to the output strings from the

feature manipulation algorithm being shorter due to the lack of
quotation marks within the legitimate queries of this testing
dataset. In the plots of training time against subsequence
length, the intercept was clearly not zero and was due to the
operation of other algorithms during the training phase of the
SVM. However, in this testing case the intercepts of the two
equations are likely a result of measurement errors and should
be zero intercepts as the testing phase lacks the time
requirements due to the production of decision rules.

Fig. 25. A plot of the Insert dataset and Insert-Fix dataset processing times
against the maximum subsequence length for the Insert models. The top line is
the Insert dataset and the bottom is the Insert-Fix dataset.

This experiment was also evaluated on the Insert and Insert-

Fix datasets. The results of this evaluation are displayed
within Figure 25. The linear relationship also exists for the
Insert queries again showing that these relationships are
independent of the query type and only the length of the query
strings and the scale of the multidimensional feature
extraction. The increased size of the training dataset results in
increased processing time due to the increased dimensionality
of the feature vectors of the test query strings. The Insert
dataset queries on average required an extra 33.418
milliseconds of processing time for the computation of each
additional subsequence length. The Select-Fix dataset requires
slightly less extra time, 31.58 milliseconds, for higher
subsequence lengths. This is likely due to the same feature
manipulation algorithm string length situation as the Select-
Fix dataset query strings.

The detection accuracy analysis concluded that the superior
subsequence length for the Select queries was = or =
whereas for the Insert queries this peak in accuracy occurred
at subsequence lengths of = 5 to = 7. The above
equations combined with this information can be used to
estimate the model training time and the individual query
processing time for the Select and the Insert datasets. The
Select query dataset training time ranges from 2863.76
milliseconds to 3703.69 milliseconds and each test query takes
approximately 22.6555 milliseconds to 35.9548 milliseconds
on average to process. The Insert query dataset training time
ranges from 18019.1 milliseconds to 23882.9 milliseconds and
each test query takes approximately 144.873 milliseconds to
217.956 milliseconds on average to process. Even the worst

 19

case of these calculations places the program firmly within
real time operation with acceptable query delay times due to
this solution as the training time only applies once during
software initialization. The Select queries process significantly
faster than the Insert queries, most likely due to the increased
input trajectories of the Insert query and the larger associated
training set. Queries with significantly more input fields may
cause this solution difficulty in maintaining the real time
operational requirement unless the input generator algorithm
can be enhanced in the future. Longer query strings will also
negatively affect the processing time however, generally the
most complicated strings are due to injected input therefore
the user that suffers the most from query response delay is an
attacker. At the very least this might discourage the attacker
from making the attempt if they must craft many attack
queries.

5.4. Spatial complexity

The memory consumption of the software during use is also
of importance as it must be capable of operating on the web
server hosting a web application with minimal system impact.
On start up the program required 16 Mb of memory. The Input
Generator algorithm placed another 2.5 Mb of demand on the
system memory resources. Training a model required 6.5 Mb
of memory. This memory requirement was independent of the
maximum subsequence used for the training phase. The testing
of the 232 queries within the Amnesia-derived Select dataset
required an additional 10 Mb of memory. The demonstration
software had a peak memory draw of only 35 Mb when using
the Select example query. The memory requirements of this
solution border on negligible and therefore many instances can
be run simultaneously to defend multiple web application
queries on a single machine.

Despite the scale of calculations being performed to
determine the multidimensional feature set and compute the
similarity values of these features, the software stores very
little of the results of these calculations within memory.
Therefore the requirements are kept minimal as the only
values that are kept through the iteration through the full set of
multidimensional features are the cumulative inner product
similarity evaluations. More memory is required by larger
training datasets as the feature vectors, stored in memory for
each test query, are of larger dimensionality. Despite these
requirements, the demonstration software still maintained the
peak memory draw of 35 Mb when using the Insert example
query training a model of high dimensionality to classify the
Amnesia-derived Insert dataset. This is one of the strongest
advantages of this proposed solution. Hundreds of thousands
of potential features can be evaluated by the similarity
algorithm and used to train models and test query strings but
the string kernel algorithm does not require any of these
features to be stored in memory. The algorithm simply iterates
through the multidimensional feature space of hundreds of
thousands of features yet generates a feature vector only two
to three digits in dimensionality greatly limiting the pressure
placed on the system resources of the server running software
utilizing this method.

VI. DISCUSSION

The proposed solution runs on a web server as the web
application sends generated queries to a source IP and port
hosted by the solution. The solution is then able to test queries
and then relay them to the back-end database server as well as
pass the reply messages directly to the web application with
minimal latency. In essence, the detection solution is
transparent to the communications between the web
application and the back-end database except for the outbound
communications where they are delayed by a number of
milliseconds for the classification process.

The software was required to have high detection accuracy
with a low rate of false positives and false negatives combined
with a processing time rapid enough for real time operation.
By using the Gap-Weighted String Subsequence Kernel
algorithm to compute the inner product of multidimensional
features, solutions were found that improved detection
accuracy over a linear approach of simple features in the query
strings. As the operation of this algorithm depended on the
maximum subsequence length, the gap decay factor and a set
of coefficients for features of length one character to the
maximum subsequence length, these inputs were evaluated to
determine the superior solution for detection accuracy. The
models generated by the program were heavily influenced by
the maximum subsequence length and its associated
coefficients. However, the gap decay factor was not a major
component in the accuracy of the generated models.

In the process of classifying SQL Injection attacks, the
solution with the highest detection accuracy may not be the
best as, whilst the detection accuracy places no bias between
false positives and false negatives, in reality false negatives
are significantly less desirable than false positives. False
positives result in service disruption whereas false negatives
can result in service destruction. The solution is capable of
identifying all the different types of SQL Injection Attack
except for Stored Procedures as the query string cannot be
intercepted at the web server. Despite this weakness, it might
be substantially easier to update the code of a stored procedure
to sanitize the inputs compared with the updating of third
party software in the form of the web applications and
therefore it might be acceptable to struggle to identify stored
procedure attacks.

Much of this difficulty in classifying the datasets was a
result of unsanitised quotation marks within the testing
datasets. These were introduced to test the maximum
tolerances of the solution. Copies were produced of the Select
and Insert datasets that extracted quotation marks from the
legitimate queries as quotation marks are unlikely to be seen
during normal operation of these queries. This allowed the
proposed solution to achieve an accuracy of 100% on both test
sets. Whilst this appears to be advantageous, the
multidimensional feature extraction that this proposed method
utilizes was only required for the Select queries as the Insert
queries actually achieved 100% with the ground state
accuracy. Additionally, for these testing datasets with high
ground state accuracy, the multidimensional analysis on
higher dimensional features could result in an inferior model

 20

from the simple feature extraction. Therefore this solution,
whilst competent on simple query strings, shows its true
capability with complicated query strings which are hard to
differentiate due to sharing similarities to attack strings during
legitimate operation.

The proposed solution’s processing time was also evaluated
to determine if the real time operation condition was fulfilled.
The time complexity of the solution obeys the equation = � × × where � is a constant determined by the
processing power of the available CPU, is the maximum
subsequence length and = | | × | | × where | | is the
average character length of the training set input strings and
is the total number of query strings within the training set.
This relationship was predicted by the order of the Gap-
Weighted String Subsequence Kernel dynamic processing
algorithm that exhibited a time complexity of the order | || | where is the maximum subsequence length, | | is
the length of the first argument string and | | is the length of
the second argument string. The processing time of the other
algorithms is of negligible time compared to the string kernel
algorithm and therefore do not contribute to the relationship.

As the time complexity is heavily dependent on the number
of training set queries, the size of this set must be limited to
produce enough information about the query generation of the
web application without being overly descriptive. The Feature
Manipulation Algorithm shrinks the length of the testing
strings reducing the processing time of the string kernel
algorithm. Unfortunately, the Input Generator algorithm
produces significantly larger training datasets with queries
containing many input fields. These larger sets then result in
substantially increased processing times. The Input Generator
is therefore a target for further improvements by minimizing
the training set it generates whilst still maintaining an
acceptable sample dataset for the complete set of possible
queries.

VII. CONCLUSION AND FUTURE WORK

Our proposed method has more success with complicated

query strings compared to the simple strings. Fortunately,
despite the weaknesses associated with simple attacks, most of
these simple strings have already been identified and
documented. A major danger is more sophisticated novel
attacks that have yet to be encountered. However, these more
sophisticated attacks tend to result in longer and more feature-
rich query strings and, as a result, are very quickly detected by
the proposed solution. None of the complicated attack strings
caused by more sophisticated attacks such as Inference attacks
failed to be correctly classified and blocked by the
demonstration software. The training set did not directly
describe features within these sophisticated attacks, but the
deviation from the legitimate strings was enough to warrant a
malicious classification. This property of the solution allows it
to be adaptable to attacks not explicitly described in the
training set, both discovered and undiscovered. The difficulty
is focused on the successful description of simple attacks

within the training dataset.
The successful identification of the ideal coefficients for

weighting the features of the string kernel algorithm is
extremely important. The number of possible coefficients for
higher dimensional solutions rises exponentially making the
discovery of the optimum set of coefficients non-trivial. As
the superior solutions are limited to smaller maximum
subsequence length, the coefficient combinations are not
overly large in size during normal operation. The difficulty of
this process can be managed through the realization that the
values of the coefficients are not the important factor but
instead the proportionality between the different coefficients is
the mechanism that alters the accuracy of the trained models.

As the demonstration software only showed a proof of
concept of the design algorithms, the next milestone would be
to deploy the solution as an actual defensive module for a web
application and database server. This would require the
implementation of the full Input Generator algorithm. This
algorithm would be required to identify the possible input
trajectories for a web application and determine how many
different output queries are produced and how they are related
to these inputs. The algorithm would then be able to open a
number of new threaded operational modes for each query
type to generate a series of models.

Most of the time complexity of this proposed solution lies
in the computation of the Gap-Weighted String Subsequence
Kernel function. Additionally, there is evidence indicating that
the models being produced by the SVM have a high variance
which results in models that suffer from overfitting the
training dataset. Both these weaknesses can be compensated
by decoupling the number of ‘landmark’ strings from the
number of the training set strings. Currently, this coupling
results in an exponential increase in the number of kernel
function operations and therefore training and per-query
processing time, upon the increase of the training dataset size.
If a fixed-length set of ‘landmark’ strings can be identified
that result in accurate models, these strings could replace the
training set strings in the computation of the feature vectors of
the query strings.

Additionally, this decoupling would allow for the increase
in the training set size with impact only to the model training
phase processing time and not the per-query processing time
which is the more critical time-dependent component.
Increasing the size of the training set is a well-documented
method of reducing the variance of machine learning models.
As a result, the solution could be made truly intelligent by the
allowing it to incorporate new query strings previous models
misclassified into a new training set to be trained into an
improved model when processing power is available during
downtime.

Currently the proposed solution depends on + variables.
However, if the decoupling operation described above is
successful, it may be possible to output the individual
subsequence length kernel function evaluations (,) as
features instead of relying on a weighted sum of these values
up to the maximum subsequence length. Limited testing of
this method indicates that a set of parameters (related to the

 21

old coefficients) might still be needed. This would reduce the
number of inputs to just two variables, the maximum
subsequence length and the gap decay factor. It would be ideal
if the software could employ a form of optimization algorithm
to identify the values of these two variables that minimize the
error of the classification. A second optimization algorithm
that can determine the parameter set that minimizes the
classification error. If these two algorithms could be optimized
simultaneously, the superior classification model could be
generated automatically. It is of note that this optimization
process would likely heavily influence the time required to
train models but fortunately, would have no effect on the
testing phase processing time.

ACKNOWLEDGMENT

This work was conducted through Liverpool John Moores
University in partial fulfilment of the requirements for the
degree of Masters in Computing and Information Systems.
The Microsoft Visual Studio 2013 integrated development
environment software was supplied through Microsoft
DreamSpark. The LibSVM java library was supplied freely
online by Chih-Chung Chang and Chih-Jen Lin. Version 2.89
of this java library was translated into a clean .NET library by
Matthew Johnson.

REFERENCES

Z. Su and G. Wassermann, “The Essence of Command
Injection Attacks in Web Applications,” In the 33rd Annual
Symposium on Principles of Programming Languages
(POPL2006), 2006.
W. G. J. Halfond, J. Viegas and A. Orso, “A Classification of
SQL Injection Attacks and Countermeasures,” In proceedings
of the International Symposium on Secure Software
Engineering 2006.
J. Williams and D. Wichers, “Top Ten Most Critical Web
Application Vulnerabilities,” 2013. [Online]. Available:
https://www.owasp.org/index.php/Top_10_2013-Top_10.
[Accessed 1 August 2015].
Trustwave. Trustwave 2015 global security report.
https://www2.trustwave.com/rs/815-RFM-
693/images/2015_TrustwaveGlobalSecurityReport.pdf; 2015
[accessed 18.05.15]
H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini and C.
Watkins, “Text Classification using String Kernels,” Journal
of Machine Learning Research, no. 2, pp. 419-444, 2002.
C. Cortes and V. Vapnik, “Support-vector Networks,” in
Machine Learning, 3 ed., vol. 20, Springer, 1995, pp. 273-297.
A. Liu, Y. Yuan, D. Wijesekera and A. Stavrou, “SQLProb: a
proxy-based architecture towards preventing SQL injection
attacks,” SAC 2009, 2009.
M.-Y. Kim and D. H. Lee, “Data-Mining based SQL injection
attack detection using internal query trees,” Expert Systems
with Applications, vol. 41, no. 11, pp. 5416-5430, 1
September 2014.
G. T. Buehrer, B. W. Weide and P. A. G. Sivilotti, “Using
parse tree validation to prevent SQL injection attacks,” In
proceedings of the International Workshop on Software

Engineering and Middleware (SEM) at Joint FSE and ESEC,
pp. 106-113, 2005.
I. Lee, S. Jeong, S. Yeo and J. Moon, “A novel method for
SQL injection attack detection based on removing SQL query
attribute values,” Mathematical and Computer Modelling, vol.
55, pp. 58-68, 29 January 2011.
F. Valeur, D. Mutz and G. Vigna, “A Learning-Based
Approach to the Detection of SQL Attacks,” In Proceedings of
the Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), 2005.
I. Homoliak, “Increasing Classification Accuracy in LIBSVM
using String Kernel Functions,” Student EEICT, Volume: 2,
2012.
J. Rouso and J. Shawe-Taylor, “Efficient Computation of
Gapped Substring Kernels on Large Alphabets,” Journal of
Machine Learning Research, vol. 6, pp. 1323-1344, 2005.
C.-C. Chang and C.-J. Len, “LIBSVM: A Library for Support
Vector Machines,” ACM Transactions on Intelligent Systems
and Technology, vol. 2, no. 3, p. article 27, 2007.
W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks,” In
Proceedings of the IEEE and ACM International Conference
on Automated Software Engineering (ASE 2005), 2005.
P. Bisht, P. Madhusudan and V. N. Venkatakrishnan,
“CANDID: Dynamic candidate evaluations for automatic
prevention of SQL Injection Attacks,” ACM Transactions on
Intelligent Systems and Technology, vol. 13, no. 2, p. 14,
2010a.
P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz and V. N.
Venkatakrishnan, “NoTamper: Automatic Blackbox Detection
of Parameter Tampering Opportunities in Web Applications,”
In Proceedings of the 17th ACM Conference on Computer and
Communications Security, p. 272-288, 2010b.
B. Kar, S. Panigrahi and S. Sundararajan, “SQLiGoT:
Detecting SQL Injection attacks using graph of tokens and
SVM,” Computers and Security, vol. 60, pp. 206-225, 2016.
H. Shahriar, S. North and W. Chen, “Client-Side Detection of
SQL Injection Attack,” In: Advanced Information Systems
engineering workshops, Springer, p. 512-517, 2013.
A. Moosa, “Artificial Neural Network based Web Application
Firewall for SQL Injection,” World Academy of Science,
Engineering and Technology, International Journal of
Computer, Electrical, Automation, Control and Information
Engineering, vol. 4, no. 4, 2010.
A. Makiov, Y. Begriche and A. Serhrouchni, “Improving web
application firewalls to detect advanced SQL Injection
attacks,” In: Information assurance and security (IAS) 2014
10th International conference on, IEEE, p. 35-40, 2014.
K. Zhang, C. Lin, S. Chen, Y. Hwang, H. Huang and F. Hsu,
“TransSQL: A translation and validation-based solution for
SQL-Injection attacks,” In: Robot, Vision and Signal
processing (RVSP), 2011 first international conference on,
IEEE, p. 248-251, 2011.
M. Le, A. Stavrou and B. B. Kang, “DoubleGuard: Detecting
Intrusions in Multitier Web Applications,” IEEE Transactions
on Dependable and Secure Computing, vol. 9, issue 4, p. 512-
525, 2012.
C. I. Pinzón, J. F. De Paz, Á. Herrero, E. Corcado, J. Bajo and
J. M. Corchado, “idMAS-SQL: Intrusion Detection Based on

 22

MAS to Detect and Block SQL Injection through data
mining,” Information Sciences, vol. 231, pp. 15-31, 2013.
S. B. Needleman and C. D. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of Molecular Biology, vol.
48, issue 3, pp. 443-453, 1970.

Fig. 26. The SQLIA detection framework.

