
Cost-efficient Datacentre Consolidation
for Cloud Federations

Gabor Kecskemeti1, Andras Markus2 and Attila Kertesz2
1 Department of Computer Science, Liverpool John Moores University, United Kingdom

2 Software Engineering Department, University of Szeged, 6720 Szeged, Dugonics ter 13, Hungary
g.kecskemeti@ljmu.ac.uk, Markus.Andras@stud.u-szeged.hu, keratt@inf.u-szeged.hu

Keywords:
Cloud Computing, Datacentre consolidation, Simulation

Abstract:
Cloud Computing has become mature enough to enable the virtualized management of multiple
datacentres. Datacentre consolidation is an important method for the efficient operation of such
distributed infrastructures. Several approaches have been developed to improve the efficiency e.g.
in terms of power consumption, but only a few attention has been turned to combining pricing
methods with consolidation techniques. In this paper we discuss how we introduced cost models
to the DISSECT-CF simulator to foster the development of cost efficient datacentre consolidation
solutions. We also exemplify the usage of this extended simulator by performing cost-aware data-
centre consolidation. We apply real world traces to simulate cloud load, and propose 7 strategies
to address the problem.

1 Introduction

Cloud computing enabled the virtualized
management and sharing of software and hard-
ware solutions, including computing and storage
resources and application runtimes. The elastic-
ity of Infrastructure as a Service (IaaS) clouds al-
lows commercial providers to better exploit their
datacentres as well as increase their incomes.
Datacentre consolidation is a technique that helps
achieving these goals. Related works in datacen-
tre load balancing and consolidation have already
shown that multi-objective proposals can hinder
performance and increase the problem complex-
ity, therefore innovative solutions are needed to
deal with multiple and complex aims.

In this paper, we investigate novel, cost-aware
Virtual Machine (VM) consolidation methods for
cloud datacentres using the DISSECT-CF simula-
tor [Kecskemeti, 2015], which is a generic tool for
investigating infrastructure clouds. We discuss
how to introduce cost models to the DISSECT-
CF simulator to investigate cost efficient datacen-
tre consolidation techniques. We also propose 7
different strategies to perform VM consolidation,
and present how to use the extended simulator

by performing cost-aware datacentre consolida-
tion by evaluating these algorithms. We apply
real world traces to simulate cloud load during
the experiments.

The structure of the paper is the following.
First, in Section 2, we discuss state of the art ap-
proaches in the field. In Section 3, we introduce
the cost models applied in the DISSECT-CF sim-
ulator. Section 5 discusses our experiments and
measurement results achieved with the extended
simulator. Finally, Section 6 concludes our work.

2 Related Work

Ahmad et al. presented a survey
on datacenter consolidation solutions in
[Ahmad et al., 2015]. They argued that vir-
tual machine (VM) migration and dynamic
voltage frequency scaling (DVFS) methods are
generally used to achieve server consolidation,
which help to achieve resource management goals
like load balancing and power management,
though it also affects application performance.
They concluded the survey that the unpre-
dictable nature of workloads and the inability

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/151169216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: The architecture of the DISSECT-CF sim-
ulator

to accurately predict application demands call
for dynamic, lightweight and adaptive VM
migration designs to improve application perfor-
mance. Filho et al. [Filho et al., 2018] published
another survey in this field. They state that
VM placement and migration are the major
challenging issues in management of virtualized
datacenters, and many proposals apply different
approaches ranging from linear programming,
to genetic algorithms. They also showed that
multi-objective proposals can reduce perfor-
mance and increase the problem complexity,
therefore innovative solutions are needed to deal
with multiple and complex aims. Our proposed
simulation environment aims at providing a way
for investigating certain policies to achieve these
goals.

Concerning simulations, the CloudSim toolkit
has been widely used to propose and eval-
uate certain heuristics for datacenter consoli-
dation, such as in [Abdullah et al., 2017] and
[Kertesz et al., 2016]. Though these solutions
provide load balance improvements, they do not
take into account and do not apply provider pric-
ing.

3 Our Proposed Cost Model for
Cloud Datacentre Management

DISSECT-CF is a compact open source
[DISSECT-CF, 2017] simulator focusing on the
internals of IaaS systems. Figure 1 presents its ar-
chitecture including our extensions (denoted with
grey colour). There are six subsystems (encircled
with dashed lines) implemented, each responsible
for a particular functionality: (i) event system –
the primary time reference; (ii) unified resource

sharing – models low-level resource bottlenecks;
(iii) energy modelling – for the analysis of energy-
usage patterns of resources (e.g., NICs, CPUs) or
their aggregations; (iv) infrastructure simulation
– for physical/virtual machines, sensors and net-
working; (v) cost modelling – for managing IoT
and cloud provider pricing schemes, and (vi) in-
frastructure management – provides a cloud like
API, cloud level scheduling, and IoT system mon-
itoring and management.

In a recent work [Markus et al., 2017], we in-
troduced the following new components to model
IoT Cloud systems: Sensor, IoT Metering and
IoT Controller. Sensors are essential parts of
IoT systems, and usually they are passive en-
tities (actuators could change their surrounding
environment though). Their performance is lim-
ited by their network gateway’s (i.e., the de-
vice which polls for the measurements and sends
them away) connectivity and maximum update
frequency. Our network gateway model builds on
DISSECT-CF’s already existing Network Node
model, which allows changes in connection qual-
ity as well. In our model, the Sensor component
is used to define the sensor type, properties and
connections to a cloud system. IoT Metering is
used to define and characterize messages coming
from sensors, and the IoT Controller is used for
sensor creation and management.

To incorporate cost management, we enabled
defining and applying provider pricing schemes
both for IoT and cloud part of the simulated en-
vironments. These schemes are managed by the
IoT and Cloud Pricing components of the Cost
modeling subsystem of DISSECT-CF, as shown
in Figure 1.

3.1 Configurable Cost Models
based on Real Provider
Schemes

In order to enable realistic datacentre consolida-
tion simulations, we considered four of the most
popular, commercial cloud providers, namely:
Amazon, MS Azure, IBM Bluemix and Oracle.
Most providers have a simple pricing method for
VM management (beside thaditional virtual ma-
chines, some provide containers, compute ser-
vices or application instances for similar pur-
poses). The pricing scheme of these providers
can be found on their websites. We considered
the Azure’s application service [Azure, 2017], the
Bluemix’s runtime pricing sheet under the Run-
times section [IBM, 2017], the Amazon EC2 On-

Demand prices [Amazon, 2017], and the Or-
acle’s compute service [Oracle, 2017] together
with the Metered Services pricing calculator
[Oracle Calculator, 2017]. The cloud-related cost
is based on either instance prices (Azure and Ora-
cle), hourly prices (Amazon) or the mix of the two
(Bluemix) provider uses both type of price calcu-
lating. For example, Oracle charges depending on
the daily uptime of our application as well as the
number of CPU cores used by our VMs.

<cloudproviders>
<amazon>
<medium>

<ram>8589934592</ram>
<cpucores>2</cpucores>
<instance-price>18.15</instance-price>
<hour-per-price>0.094</hour-per-price>

</medium>
</amazon>
<oracle>
<medium>

<ram>16106127360</ram>
<cpucores>2</cpucores>
<instance-price>139</instance-price>
<hour-per-price>0</hour-per-price>

</medium>
<large>

<ram>16106127360</ram>
<cpucores>4</cpucores>
<instance-price>268</instance-price>
<hour-per-price>0</hour-per-price>

</large>
</oracle>
<bluemix>
<large>

<ram>4294967296</ram>
<cpucores>8</cpucores>
<instance-price>0</instance-price>
<hour-per-price>0.296</hour-per-price>

</large>
</bluemix>
</cloudproviders>

Figure 2: Cost model of Cloud providers

Figure 2 shows the XML structure and the
cost values for the applied categories we designed
to be used in the simulator. This configuration
file contains some providers (for example the ama-
zon element starting in the second line), and the
defined values are based on the gathered informa-
tion from the providers’ public websites discussed
before. We specified 3 different sizes for applica-
ble VMs (named small, medium and large).

This XML file has to contain at least that size
category to be used for the experiments. As we
can see from the fourth line to the seventh line, a

category defines a virtual machine with the given
ram and cpucores attributes, and we state the vir-
tual machine prices with the instance-price and
hour-per-price attributes. If we select the ama-
zon provider with small category, then in the sce-
narios a virtual machine will have 1 CPU core
and 2 GB of RAM, and the usage of this virtual
machine will cost 0.296 Euro per hour.

4 Consolidator algorithms

Data-centre consolidation techniques are
heavily used in commercial clouds. Consoli-
dation is built on the migration capabilities of
virtual machines, where virtualised workload is
moved around in the data-centre according to the
cloud operator’s goals. In the past years, there
were several approaches proposed for consolidat-
ing the virtualised workloads of clouds. Most
of them were evaluated with simulations. When
analysing cost models, the effects of consolida-
tion could not be avoided. Although, the foun-
dations for these consolidator algorithms were
laid down in our DISSECT-CF simulator from
the beginning [Kecskemeti, 2015]. Even with
the addition of more precise live-migration mod-
elling [Maio et al., 2016], the consolidation algo-
rithms were not present in the simulator.

There are two distinct approaches possi-
ble to implement a consolidation algorithm in
DISSECT-CF: (i) create an alternative physical
machine (PM) controller which utilizes consolida-
tor related techniques as well or (ii) create an in-
dependent consolidator which builds on top of the
other infrastructure management components of
the simulator. While both approaches could ap-
ply the same policies and enact the same goals
of a cloud provider, they should be implemented
differently. In the first case, the PM controller
should extend its possible actions from switch-
ing on/off PMs to migrating VMs as well. In
the second case, the consolidator is dedicated to
only decide on migration related actions. This is
beneficial as the consolidator algorithm could col-
laborate with multiple PM controller strategies
without the need for a complete rewrite of the
consolidation approach. As this second approach
is more generic, thus we present it in this paper
in more detail. Note, the source of the presented
approach is publicly available in the source repos-
itory of DISSECT-CF [DISSECT-CF, 2017].

Figure 3 shows how the extension was imple-
mented. The main addition of the simulator is

IaaSService Consolidator

SimpleConsolidator

1 0..1toConsolidate

PhysicalMachine

VirtualMachine

managed

hosted

observed

#doConsolidate()

Abstract, expects
implementors to

provide consolidation
policy and goals

Figure 3: Consolidation related extension of
DISSECT-CF

the Consolidator class, which is to be extended
by any new consolidation policies in the future.
This abstract class handles the basic connection
of the future consolidators to the IaaSService
by monitoring the VM related activities on the
cloud. It is also responsible for managing the
frequency with which the consolidation policy is
run (to be implemented by third parties in the
doConsolidation() function). In general, it en-
sures that the custom consolidator policy is only
invoked if there are any VMs in the cloud at any
particular time. To do so, the consolidator moni-
tors the PMs and observes how they are managed
by PM controllers and utilised by the VM sched-
ulers.

The simulator also offers a consolidation pol-
icy called SimpleConsolidator. This policy
packs the VMs to the smallest amount of PMs
as follows.

1. Creates an ordered list (P := {p1, p2, ...pn})
of the PMs (e.g., p1) currently running in the
IaaS (where the number of running PMs in the
IaaS is n). This list has the least used PMs
in the front and the heaviest used ones at the
tail: u(p1) ≤ u(p2) ≤ ... ≤ u(pn). Where we
denote the utilisation of a PM with the func-
tion : u : P → R. Note: the utilisation is
determined solely on the resource allocations
for the VMs hosted on each PM and it is not
dependent on the instantaneous resource us-
age of any of the VMs in the cloud.

2. Picks the least used not yet evaluated PM (pi).
If there are no more PMs to evaluate, we ter-
minate the algorithm.

3. Picks a VM (vx) hosted by pi. Where vx ∈
h(pi) and the function h : P → 2V defines the
set of VMs which are hosted by a particular
PM. This set is a subset of all VMs (V) in the
IaaS service.

4. Picks the heaviest used (but not completely
utilised) and not yet tested PM (pk). Where

we have the following limits for k: i+1 ≤ k ≤
n.

5. Checks if the new PM has enough free re-
sources to host the VM: rf (pk, t) ≥ r(vx, t),
where rf : P × R → R3 and r : V × R → R3.
The rf function tells the amount of free re-
sources available at the specified host at the
specified time instance t. Also, the r function
tells the amount of resources needed by the
virtual machine at the specified time instance.
The resource set is modelled by a triplet of real
numbers: (i) number of CPU cores, (ii) per
core processing power and finally (iii) mem-
ory.

• If the check was successful, then the VM is
requested to be migrated from the host pi
to pk. Then continue on with a new VM
pick.

• If the check fails, we repeat with all
untested PMs. If no more PMs are around
to test, we pick another VM from the list of
h(pi). If there are no more VMs to pick, we
return to step 2.

Thus we can summarize the algorithm as pack-
ing the VMs to the heaviest loaded PMs
with a first fit approach. This approach
is efficient with the PM controller called
SchedulingDependentMachines which switches
off all unused machines once they become freed
up (in this case once all their VMs migrate away).

5 Evaluation

During our implementation and evaluation,
where applicable, we used publicly available in-
formation to populate our experiments. In the
next subsection we introduce the applied work-
loads, then discuss the proposed algorithms and
scenarios, and the achieved results.

5.1 Workloads

Though virtual machine management log-based
traces would be the best candidates for analysing
cloud characteristics, traces collected from other
large-scale infrastructures like grids could also be
appropriate. Generally two main sources are used
for this purpose: the Grid Workloads Archive
(GWA [GWA, 2017]) and the Parallel Workloads
Archive [PWA, 2017]. For this study we used
traces downloadable from GWA (namely: Au-

verGrid, DAS2, Grid5000, LCG, NorduGrid and
SharcNet).

We used the JobDispatchingDemo from the
DISSECT-CF examples project1, to transform
the jobs listed in the trace to VM requests and
VM activities. This dispatcher asks the simula-
tor to fire an event every time when the loaded
trace prescribes. Also, the dispatcher maintains
a list of VMs available to serve job related ac-
tivities (e.g., input & output data transfers, cpu
and memory resource use). Initially the VM list
is empty. Thus the job arrival event is handled
with two approaches: (i) if there is no unused VM
in the VM list that has sufficient resources for
the prescribed job, then the dispatcher creates a
VM according to the resource requirements of the
job; alternatively, (ii) if there is an unused VM
with sufficient resources for the job, then the job
is just assigned to the VM. In the first approach,
the job’s execution is delayed until its correspond-
ing VM is spawned. In both cases, when the job
finishes, it marks the VM as unused. This step
allows other jobs to reuse VMs pooled in the VM
list. Finally, the VMs are not kept for indefinite
periods of time, instead they are kept in accor-
dance with the billing period applied by the cloud
provider. This ensures, that the VMs are held for
as long as we paid for them but not any longer. So
if there is no suitable job coming for a VM within
its billing period, then the VM is terminated and
it is also removed from the VM list.

5.2 Scenarios

In the following we list the pricing strategies avail-
able at the moment. They are applicable alone or
in combination as required.

S1 - Fixed pricing. It uses a constant price for
every VM request. This pricing strategy does
not consider any factors in its price:

Mfix = mc, (1)

where Mfix is the price (i.e money) returned,
and mc is the constant base price which is
configurable for every simulation.

S2 - Resource constraints aware pricing.
It implements a linear relationship between
the price of a VM and the amount of resources
the VM needs. The higher the resource needs
are, the more the user should pay.

1https://github.com/kecskemeti/
dissect-cf-examples

Mrcaw(rcores, rmem, rproc) =

mc
rcpu ∗ rproc ∗ rmem

rMAX
cpu ∗ rMAX

proc ∗ rMAX
mem

,
(2)

where the triple < rcores, rmem, rproc > rep-
resents the resources requested by the cus-
tomer for its VM. The triple < rMAX

cpu ∗
rMAX
proc ∗ rMAX

mem > represents the properties
of the largest resource amount any PM has
in the cloud provider. Note that all the re-
source values are represented as the provider
sees them fit, for the purpose of the paper
we assumed they are all positive real numbers
(e.g., rcores ∈ R+). Thus, this pricing model,
charges mc if the user requests the largest still
serviceable resource set.

S3 - Quantized pricing. It applies a pricing
strategy similar to Mrcaw. But instead of
scaling the price by a continuous function,
we apply a transformation which transforms
(T : R3 → R3) the original request from the
user to some preset values. When defining a
quantized pricing, one must define this trans-
formation only, then we can apply the Mrcaw

model to find out the actual price.

Mquant(rcores, rmem, rproc) =

Mrcaw(T(rcores, rmem, rproc))
(3)

This is the technique that is used by most of
cloud providers nowadays. In those cases, the
providers are often restricting the amount of
resources one can request as well. An example
transformation function could be:

Tex =

if rmem <= 2 ∧ rcores <= 1

r′mem = 2, r′cores = 1, rproc = 1

if 2 < rmem <= 8 ∧ 1 < rcores <= 2

r′mem = 8, r′cores = 2, rproc = 1

otherwise

r′mem = 32, r′cores = 8, rproc = 1

(4)

The simulator implements a pricing model
which can be configured to load a particular
transformation function for a particular cloud
provider. The limits for the transformation
functions are stored in an XML file represent-
ing certain commercial provider cost models.
Later in the measurements we apply the cost
model presented in Section 3.

S4 - PM Utilization aware pricing. This
strategy also offers a linear pricing approach.

In contrast to the resource constraints aware
pricing model, this time, we adjust the price
based on the number of PMs in use at cloud
provider:

Mutaw = mc
|PU |
|P |

, (5)

where the PU is the set of PMs that host any
VMs: PU = {∀px ∈ P : u(px) 6= 0}. Thus
the more exploited the cloud provider is, the
more the user should pay.

S5 - Load dependent pricing. This works
similarly to the PM utilization aware pricing.
At the cost of additional monitoring require-
ments, it implements the same policy with a
more fine grained utilization calculation:

Mld = mc

∑
∀p∈P R(p)∑

∀p∈P RMAX(p)
, (6)

where R(p) represents the average amount of
resources utilised in the last hour from partic-
ular physical machine, while RMAX(p) defines
the total amount of resources the PM could of-
fer in the same hour. Thus, this pricing model
considers how well the VMs actually use the
resources and if the VMs are not highly used
(even though they are hosted at the cloud at
the moment), then the prices will be lowered
(this will attract further users and enable the
provider to use under provisioning for those
VMs that are just paid for but not used at
the moment).

S6 - Reliability aware pricing. It alters the
price based on the ratio of successfully and
unsuccessfully hosted VMs at the cloud. A
VM is classified unsuccessfully hosted if it is
terminated because of a physical machine fail-
ure, and not because of a user’s request.

Mrel = mc
|Vf |
|V |

, (7)

where Vf is the set of VMs which failed due
to a hardware issue at the provider side.

S7 - Profit margin focused pricing. It tries
to price resources so the profit margin index
(i) of the cloud provider stays in a predefined
range (i.e. Imin < i < Imax).

Mmargin(t0) = mc (8)

Figure 4: Energy consumption of experiments with
the Grid5000 trace

Mmargin(tx) =

Mmargin(tx−1) ·

0.9, if i(tx) < Imin

1.1, if i(tx) > Imax

1, otherwise

,
(9)

where the function i(t) determines the cur-
rent (or at a given time, represented by t)
profit margin index of a provider. This tech-
nique tries to adopt the prices to make sure
the provider is profitable even in competitive
environments.

5.3 Results

As mentioned before, we investigated how policies
considering pricing information can affect consol-
idation processes. We used 6 different trace files
from real world distributed systems to simulate
load on the cloud datacentres we aim to consol-
idate. We also designed 7 different strategies to
perform cost-aware consolidation. In overall, the
consolidation algorithms succeeded to balance the
load over the system, and in most cases energy
and money can be saved by applying them. In
the following we highlight the most interesting
results.

We have performed numerous experiments by
executing the above listed strategies for all pre-
viously mentioned trace files. Concerning exper-
iments run on the Grid5000 load, Figure 4 and
Figure 5 depict the tradeoff of energy gains and
runtime expansions for the given strategies (”S2
+ S6” means we applied both strategies, ”S5 +
selling” means we applied the S5 strategy and
sold the shut down PMs to gain money). By mi-
grating certain VMs to other physical machines
to balance the load, we managed to reduce the

Figure 5: Runtime of experiments with the Grid5000
trace

Figure 6: Energy consumption of experiments with
Grid5000 for different cloud provider pricing with the
S3 strategy

Figure 7: Runtime of experiments with Grid5000 for
different cloud provider pricing with the S3 strategy

power consumption, however the migration pro-
cesses took some time which appears in the overall
runtime. From the results we can see that the S6
strategy is the most efficient for reducing power
consumption, and still it is the fastest solution.

Figure 6 and Figure 7 depicts the results of our
S3 strategy that enables to load and apply differ-
ent provider pricing schemes. From these results
we can see that the highest energy gains could be
achieved with the Amazon pricing scheme for this
load condition, while the worst result came from

Figure 8: Load and energy balance for different load
conditions with the S2 + S6 strategy

applying the Oracle pricing.
We also experienced that the load types rep-

resented by the traces highly affect the results.
Figure 8 presents measurements performed under
different load conditions with the combined S2 +
S6 strategy. The depicted balance represents the
possible gains of using consolidation in terms of
cost (i.e. money) and energy.

6 Conclusions

In this paper we addressed the problem of
datacentre consolidation. Though several ap-
proaches have been developed to improve the uti-
lization efficiency of datacentres, only a few atten-
tion has been turned to combining pricing meth-
ods with consolidation techniques.

We presented an extension of the DISSECT-
CF simulator to foster the development of cost
efficient datacentre consolidation solutions. We
also showed how to apply real world traces to sim-
ulate cloud load, and proposed 7 different cost-
based strategies to address the problem. Our re-
sults have approved that cost-aware datacentre
consolidation is a valid approach and can result
in significant cost and energy gains.

Acknowledgements

The research leading to these results was sup-
ported by the UNKP-17-4 New National Excel-
lence Program of the Ministry of Human Capac-
ities of Hungary, and by the Hungarian Govern-
ment and the European Regional Development
Fund under the grant number GINOP-2.3.2-15-
2016-00037 (”Internet of Living Things”).

REFERENCES

[Amazon, 2017] Amazon pricing website. Online:
https://aws.amazon.com/ec2/pricing/
on-demand/.

[DISSECT-CF, 2017] DISSECT-CF website.
Online: https://github.com/kecskemeti/
dissect-cf. Accessed at January, 2017.

[GWA, 2017] Grid Workloads Archive website.
Online: http://gwa.ewi.tudelft.nl/. Ac-
cessed at September, 2017.

[IBM, 2017] IBM Bluemix pricing sheet. Online:
https://www.ibm.com/cloud-computing/
bluemix. Accessed at January, 2017.

[Azure, 2017] MS Azure price calculator. On-
line: https://azure.microsoft.com/en-gb/
pricing/calculator/. Accessed at January,
2017.

[Oracle, 2017] Oracle pricing website. Online:
https://cloud.oracle.com/en_US/opc/
compute/compute/pricing. Accessed at
January, 2017.

[Oracle Calculator, 2017] Orcale Metered
Services pricing calculator. Online:
https://shop.oracle.com/cloudstore/
index.html?product=compute. Accessed at
January, 2017.

[PWA, 2017] Parallel Workloads Archive web-
site. Online: http://www.cs.huji.ac.
il/labs/parallel/workload/. Accessed at
September, 2017.

[Abdullah et al., 2017] Abdullah, M., Lu, K.,
Wieder, P., and Yahyapour, R. (2017). A
heuristic-based approach for dynamic vms con-
solidation in cloud data centers. Arabian Jour-
nal for Science and Engineering, 42(8):3535–
3549.

[Ahmad et al., 2015] Ahmad, R. W., Gani, A.,
Hamid, S. H. A., Shiraz, M., Yousafzai, A., and
Xia, F. (2015). A survey on virtual machine
migration and server consolidation frameworks
for cloud data centers. Journal of Network and
Computer Applications, 52(Supplement C):11
– 25.

[Filho et al., 2018] Filho, M. C. S., Monteiro,
C. C., Inacio, P. R., and Freire, M. M.
(2018). Approaches for optimizing virtual ma-
chine placement and migration in cloud en-
vironments: A survey. Journal of Parallel
and Distributed Computing, 111(Supplement
C):222 – 250.

[Kecskemeti, 2015] Kecskemeti, G. (2015).
DISSECT-CF: a simulator to foster energy-
aware scheduling in infrastructure clouds.
Simulation Modelling Practice and Theory,
58P2:188–218.

[Kertesz et al., 2016] Kertesz, A., Dombi, J. D.,
and Benyi, A. (2016). A pliant-based virtual
machine scheduling solution to improve the en-
ergy efficiency of iaas clouds. Journal of Grid
Computing, 14(1):41–53.

[Maio et al., 2016] Maio, V. D., Kecskemeti, G.,
and Prodan, R. (2016). An improved model
for live migration in data centre simulators. In
2016 IEEE/ACM 9th International Conference
on Utility and Cloud Computing (UCC), pages
108–117.

[Markus et al., 2017] Markus, A., Kertesz, A.,
and Kecskemeti, G. (2017). Cost-aware iot ex-
tension of dissect-cf. Future Internet, 9(3).

