

Kendrick, P, Criado, N, Hussain, A and Randles, M

 A Self-Organising Multi-Agent System For Decentralised Forensic

Investigations

http://researchonline.ljmu.ac.uk/8036/

Article

LJMU has developed LJMU Research Online for users to access the research output of the

University more effectively. Copyright © and Moral Rights for the papers on this site are retained by

the individual authors and/or other copyright owners. Users may download and/or print one copy of

any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.

You may not engage in further distribution of the material or use it for any profit-making activities or

any commercial gain.

The version presented here may differ from the published version or from the version of the record.

Please see the repository URL above for details on accessing the published version and note that

access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you

intend to cite from this work)

Kendrick, P, Criado, N, Hussain, A and Randles, M (2018) A Self-Organising

Multi-Agent System For Decentralised Forensic Investigations. Expert

Systems with Applications, 102. pp. 12-26. ISSN 0957-4174

LJMU Research Online

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/151169213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

A Self-Organising Multi-Agent System For

Decentralised Forensic Investigations

Phillip Kendricka, Natalia Criadob, Abir Hussaina, Martin Randlesa

aJohn Moores University, Liverpool, L3 3AF, United Kingdom
bKing’s College, London, WC2R 2LS, United Kingdom

Abstract

As network-based threats continue to evolve more rapidly, detecting and re-
sponding to intrusion attempts in real-time requires an increasingly automated
and intelligent response. This paper provides an agent-based framework for
the analysis of cyber events within networks of varying sizes to detect complex
multi-stage attacks. Agents are used as intelligent systems to explore domain
specific and situational information showing the benefit of adaptive technolo-
gies that proactively analyse security events in real time. We introduce several
algorithms to encapsulate and manage the traditional detection technologies
and provide agent-based performance introspection as a mechanism to identify
poorly performing systems. Our evaluation shows that the algorithms can re-
duce the amount of processing needed to analyse a security event by over 50%
and improve the detection rate by up to 20% by introducing corrective systems
to reduce false alarm rates in error-prone environments.

Keywords: Multi-Agent Systems, Cyber Security, Network Forensics.

1. Introduction

With the increasing size of networks and the requirement for organisations
to share business-critical information, current cyber security solutions, such as
Intrusion Detection Systems (IDS) (Mukherjee et al. (1994); Verwoerd & Hunt
(2002)) and manual network forensics (Clint et al. (2002)), have been unable
to adapt to modern requirements. The increasing use of mobile and wireless
technologies has expanded the boundaries of the traditional network by intro-
ducing a dynamic component wherein users and devices may come and go as
needed. In addition to this, the pervasive adoption of the Software As A Service
paradigm, characteristic of cloud-based software that can be updated or changed
with ease, can alter the network’s shape by enabling or disabling services and

Email addresses: P.G.Kendrick@2012.ljmu.ac.uk (Phillip Kendrick),
Natalia.Criado_Pacheco@kcl.ac.uk (Natalia Criado), A.Hussain@ljmu.ac.uk (Abir
Hussain), M.J.Randles@ljmu.ac.uk (Martin Randles)

Preprint submitted to Expert Systems with Applications February 14, 2018

protocols. Furthermore, specific structures such as supply chain networks can
increase the digital attack surface if not well protected by scalable security mod-
els (Zolfpour-Arokhlo et al. (2013)). Within this context, traditional security
technologies have been unable to scale to the necessary levels due to their cen-
tralised nature and expensive hardware limiting their application to a single
fixed network model (Liao et al. (2012)).

IDSs are most commonly deployed as either network-based IDSs (NIDS) or
host-based IDSs (HIDS). The network-based variation has access to raw packet
data (Mahoney & Chan (2001)) collected directly off the wire which provides
insight into how the endpoints1 within the network communicate with each
other, while NetFlow data (Galtsev & Sukhov (2011)) consists of aggregated
statistics about the packet data. The host-based variant is installed on indi-
vidual machines and has access to user-specific data such as the contents of
decrypted packets and biometric data (e.g., keyboard typing speed and system
calls) (Rudrapal et al. (2013)). IDSs can further be categorised into signature-
based, misuse-based and anomaly-based detection (Carvalho et al. (2016)) de-
pending upon the model used for analysis. Signature-based detection uses a
database of predefined examples of malicious activity to identify attacks. Sig-
natures are defined by domain experts after a new attack has been detected
to match all future instances of that attack. The manual process of defining
signatures prevents the detection of previously unseen zero-day attacks making
them a reactive technology. Misuse and anomaly-based detection provide an
alternative by attempting to detect deviations from normal behaviour, as in
the case of anomaly detection, or by learning the characteristics of abnormal
behaviours and pattern matching future instances as in the case of misuse de-
tection (Tsai et al. (2009)). Misuse and anomaly-based detection are seen as
more flexible and scalable than signature-based approaches but may result in
a higher number of incorrectly classified instances due to the lack of grounded
knowledge (i.e., known signatures) (Zuech et al. (2015)).

In this paper, we propose a Decentralised Multi-Agent Security System
(DMASS) as a scalable solution for the collection and analysis of cyber security
and network forensic data (Kendrick et al. (2016)) . The proposed DMASS
model adapts to changing network architectures through the introduction of
new agents and is far more scalable than current IDS solutions, which will typ-
ically require expensive high-end hardware to avoid performance bottlenecks
(Verwoerd & Hunt (2002)).

The proposed multi-agent approach uses a collection of agents, which are
distinguished from traditional software by their autonomous implementation,
to perform a variety of roles in the network security environment. In addition
to performing network monitoring and attack detection, currently carried out
by IDSs, this research focuses on bestowing agents with the tools to replicate

1An endpoint is defined as any networked device within the internal network that has an
IP address and is capable of communication; examples include computers, mobile devices and
networked services.

2

the manual forensic process, currently conducted by trained practitioners, to
examining the security environment pragmatically. Bestowing agents with the
ability to react to environmental changes, consider the performance of other
agents and to work proactively to follow one line of investigation over another,
when there is evidence to support it, is the fundamental principle included in
the proposed model. This approach to digital evidence collection and cyber se-
curity is different from the traditional IDS approaches that typically use either
signature, anomaly or misuse detection (Zuech et al. (2015)). The DMASS ap-
proach of using automated forensic processes increases the agent’s adaptability
by enabling it to respond to unforeseen circumstances where the attacker can
evade traditional signature or anomaly detection.

The remainder of this paper is organised as follows. Section 2 contains an
analysis of the current research in the area. Section 3 contains an outline of our
DMASS model. Section 4 contains a case study to illustrate the benefits of using
our approach. Section 5 formalises the concept of domains by describing how
information is obtained by the agents. Section 6 describes the agent simulator
developed for testing the proposed systems. Section 7 describes algorithms to
aggregate agent decisions and information collected by agents to improve the
efficiency and detection performance. Finally, Section 8 contains conclusions
and a discussion on future work.

2. Related Research

In this section, we review existing agent-based architectures used for assess-
ing network security. Ideally, agents should take advantage of the scalability
and deployability improvements offered by multi-agent architectures and avoid
common problems experienced with centralised processing, expensive hardware
and rigid operating structures.

Shakarian et al. (2015) use an agent-based cyber attribution system with
agent reasoning to consider multiple sources of information. Agents use infor-
mation derived from various military sources to reason about factors such as
the geographical location, political landscape and possible motives of an attack.
This system has the advantage of using high-quality information sources which
are used to make conclusions about cyber attacks. The system classifies data
as either a fact or presumption, treating presumptions as unverified facts. The
DMASS architecture presented in this paper is designed for use in non-military
fields and recognises that data may be incorrect or missing requiring strategies
to seek out information proactively. Furthermore, agents perform live data col-
lection to gather the most up-to-date information available to avoid problems
of data degradation often experienced with central information repositories.

Haack et al. (2010) use a hierarchical Multi-Agent System (MAS) for moni-
toring and reporting policy violations within the security environment. The sys-
tem is composed of various agent types each with a particular task to perform
(e.g., event monitor, alert generator, report builder). The network administra-
tor defines a network policy for the agents to implement in a hierarchical model
with instructions passed down from higher to lower-tier agents. This model

3

is inherently centralised and suffers from many highlighted disadvantages ex-
perienced by IDSs. The top-layer agents classify security events2 from their
fixed position using data collected by the mobile lower-tier agents. The layered
structure of having one class of agents to collect and another class of agents
to analyse produces a static information flow which can suffer from availability
downtime and performance bottlenecks. A more scalable approach, advocated
in this paper, is to allow each agent to make decisions about the security events
from their local viewpoints which are then brought together to classify the event
as a whole.

Jahanbin et al. (2013) introduce an agent framework for forensic information
gathering using three types of agents for data collection, analysis and alert
generation. The authors remark that the MAS paradigm is well suited to the
task of forensic data collection since agents can be dispatched to areas of the
network to perform evidence gathering, a feature lacking in many IDSs that
just monitor the visible network connections. Structural similarities exist with
the system proposed by Haack et al. (2010), i.e., with three layers of agents
forming an information pipeline from the lower layers to a higher layer agent.
The decision-making process used in this model is similar to an IDS because the
security decisions are made based upon the available data without consideration
of possible missing data. Our proposed DMASS evaluates security events based
on what data is found as well as what is missing; accounting for the possibility
that the attacker may have obfuscated evidence during the attack.

Shanmugasundaram et al. (2003) develop a distributed forensics system us-
ing a hierarchical approach with multiple configurable sensors placed on the
network. The system uses a variety of sensors and servers to collect and ag-
gregate the information to derive the nature of the security event from the
observable data. The system identifies the attack type based on which pieces
of evidence are missing during the search. In the complex and changing cyber
security environment, this approach is desirable since the lack of information
does not necessarily conclude no attack has taken place.

Baig (2012) survey the current applications of MASs in critical infrastructure
fields including intrusion detection. System resilience is highlighted as an im-
portant factor for multi-agent architectures where attackers could force agents
offline through denial of service attacks. Agents should be able to adapt to
changes in the network structure by taking into account agents which may not
be able to communicate or devices that cannot be reached. Hierarchical models
cannot function unless their communications pipeline is unimpaired which is
unrealistic in modern expanded networks. Our proposed system uses hetero-
geneous agents that operate without a central control structure to withstand
attacks on the availability of the system. To further improve the resilience of
agents, communication paths and the performance of agents are determined at
run-time based on the attack characteristics, for example, to avoid communi-
cating over areas of the network currently under attack.

2A security event is defined as one or more series of suspected attacks.

4

Mees (2012) uses a MAS to detect Advanced Persistent Threats (APTs)
(Chen et al. (2014)) by using external data sources to look up the origins of
suspicious connections. Within the framework three agents were described: a
consultation agent to evaluate the location of IP addresses, an analysis agent
to compare suspect connections with previously seen traffic patterns, and a
third agent to attempt to distinguish between human and robot connections by
performing a task-specific analysis of the data. By using agents in this way,
the agents were able to gather extra information that might not have been
available to traditional IDSs which, for security, do not usually make external
connections. This system utilises agents capable of performing multiple tasks
which do not take advantage of having a greater number of specialised agents
for improving scalability. Our model uses a larger number of specialised agents
to encourage competition among agents to improve the overall performance.

3. Decentralised Multi-Agent Security System

In this section, an overview of the proposed decentralised agent model is
provided. The system is composed of several agents G = {g1, ..., gi}, each
capable of performing one data collection and analysis task for a particular
software service3. A set of features F formalises information collected from
services, representing information about an activity, e.g., the IP address of a
connection, VPN usage, etc. To encourage agent specialisation, agents perform
only one data collection task with additional agents created to interact with
other services. Agents are placed close to the source they monitor (i.e., on
the same network, subnet or device) to give them access to the required data
streams (e.g., decrypted network data on the monitored device). In addition
to increasing the observable network, this approach offloads the computational
workload from a single device.

Each feature (f ∈ F) describes the type of information while the value-set V
describes the range of possible values the feature may take. The heterogeneity
of technologies found on the modern network is vast, and so agents are created
as self-contained entities capable of processing one particular service to improve
deployability. New agents introduced to the system do not require knowledge
of other agents minimising exploitable dependencies. Furthermore, sensitive
information is kept locally within each agent with only the data analysis of the
security event shared to reduce the network footprint and possibility of leaked
information. Network-layer detection often uses sources of threat intelligence to
check the reputation of users, for example, by checking email senders against
a list of known malicious IP addresses. The mobility of agents makes it easier
for dedicated agents to perform threat intelligence monitoring without exposing
the whole security solution to the external world.

3A service describes any system that an agent interacts with, this ranges from low-level
network protocols to application services.

5

Each agent has a set of constraints placed upon it which must be satisfied be-
fore the agent can perform its collection and analysis task. Constraints, hereby
termed conditions, are defined as feature-value pairs (f, v) representing informa-
tion about the environment. For example, an agent performing fingerprinting of
a Virtual Private Network (VPN) device could hold the two conditions that the
user is located remotely (locationRemote) and that the connection is flowing
over a VPN (isVPN). The results of the agent’s data collection task is termed
the effect and may be used to satisfy another agent’s condition.

Definition 1. A data collection action is defined as a tuple 〈C, e〉:

• C is the action conditions; i.e., a set of pairs (f, v) where feature f ∈ F

and value v ∈ fv;

• e ∈ F is the action effect; i.e., a feature whose value will be determined by
the action.

Definition 2. Given a set of pairs (f, v) representing the available informa-
tion about a suspicious activity, we define a data analysis action as a function
returning a value between [0, 1] representing the probability of the suspicious ac-
tivity being malicious.

Definition 3. Given a set I formed by pairs (f, v) representing the available
information about a suspicious activity, and a data collection action 〈C, e〉 we
define that action conditions are satisfied if for all (f, v) ∈ C, (f, v) ∈ I; and
not satisfied otherwise.

An extended data collection task describes the process of several agents per-
forming independent data collection and analysis tasks in conjunction with each
other to analyse more of the security event. The mapping between an agent’s
effect (output) and another agent’s condition (input) enables agents to discover
each other during the extended data collection task. With each additional agent
included in the extended data collection task, more information is gathered and
analysed emulating the manual forensic process of gathering information based
on what is already known. Typically, at the start of this process little is known
about the attack, but as agents collect more data which will satisfy more condi-
tions, a greater number of agents will be able to participate since their conditions
will become satisfied.

A communication module allows for the transfer of information between
agents, the main use of which is to send the report, which is a grouping of the
agent’s ID, effect and the local decision about the maliciousness of the data,
between agents. The report is generated and then sent to the next agent whose
conditions have been satisfied by the effects already known. Each agent may

6

add to the collective information (i.e., the report) by aggregating data with
the current knowledge before passing it to the next agent. The transfer of the
aggregated set of reports facilitates the build-up and propagation of informa-
tion within the agent network. Figure 1 illustrates the information flow with
data collected from information sources during stages (1) and (3) by two sep-
arate agents. The newly collected data is broadcast to other agents at stage
(2). Agents whose conditions are satisfied by the effect (Agent-2) respond by
requesting the full report of all previous data, following this, the current agent
must select one of the responding agents to receive the report. If multiple agents
request the report, only one agent will receive it, but the previous requests will
be carried over to the next agent. In the case of multiple requests for the report,
the agent with the highest reputation (based on previous conformity in voting
with the group decision) is used to decide which agent should receive it. Where
previous requests are carried over, they are pushed into a last-in-first-out stack
structure. This promotes a depth-first search of the network where new requests
are handled first with the reasoning that a series of successful agent investiga-
tions into a particular domain is more likely to discover the source of a network
breach whereas a breadth-first search is a less specific search for information.
Figure 2 shows a similar extended data collection process occurring within our
multi-agent simulator; this process can be viewed as connections made between
the agent nodes. To improve privacy and reduce the communications overhead,
the feature type (f) of the currently known effects can be broadcast during the
report propagation stage rather than effect values (f, v) ∈ e. Agents whose con-
dition types are fulfilled by the currently known effect types would then be able
to request the report containing both the feature type and the values. Using
this strategy, agents whose condition types do not match the current effect types
are not exposed to the information which increases the privacy of the system.

Decisions are made by individual agents based on their local view of the
network and role to monitor a specific feature or technology. The security com-
munity has developed a variety of detection mechanisms for specific attacks,
ranging from signatures of malicious behaviour to anomaly and misuse detec-
tion systems to distinguish between normal and abnormal activity. However,
the scope of these individual detection systems is often small and provides the
attacker with an opportunity to evade detection and gain access through an
alternate route. The local decision modules within each agent make use of these
traditional security mechanisms but together define a broader view of the net-
work by combing the local views into a more comprehensive global view.

Definition 4. Given a security event and agent identity, a local report RLocal

is defined as a tuple consisting of 〈eid, ts, g, (f, v), p〉 where:

• eid is a unique event identifier;

• ts is the events timestamp;

• g ∈ G is the agent’s identity;

7

Figure 1
Flow diagram for the extended data collection task using agents (A1-A4) and data sources.

• (f, v) is a feature-value pair corresponding to the output of the data col-
lection action performed by agent g;

• p ∈ [0, 1] is the agent’s analysis of the suspicious activity; i.e., the proba-
bility of the suspicious activity being malicious.

During the extended data collection process, once no more agents can partic-
ipate because of unsatisfied conditions, the aggregated set of reports is analysed
by the last agent to receive them using one of the voting algorithms discussed in
Section 7. The result of this analysis, termed the final global decision, is where
the final classification for the security event as a whole is made. Following the
classification, the final global decision is sent to all participating agents so that
they may compare their performance to that of the group’s decision.

Definition 5. A global report RGlobal is defined as a set of local reports {RLocal1 ,

..., RLocaln} containing the information collected by different agents participat-
ing in the same extended data collection process as well as a unique event ID
and timestamp.

Definition 6. Given a global report RGlobal representing the local decisions
made by the agents participating in an extend data collection process, the global
decision is a function returning a value between [0, 1] representing the collective
judgement about the maliciousness of the investigated activity.

The local network can be viewed as a time-varying network DeLellis et al.
(2017); de Lellis et al. (2017); da Gama Batista et al. (2015) that experiences
changes in its topology as devices are added and removed. With the growth of
mobile technologies and Bring Your Own Device ToWork (BYODTW) networks

8

Figure 2
A smulated data collection task showing the propagation of information between agents.
Agents are selected based on the currently known information about the attack and condition
information.

can change shape and size on a regular basis. While the size variability of the
core network may not change as often as the auxiliary mobile subnet, our agent-
based approach adapts to the changing shape of a network by penalising the
use of agents that perform poorly over time. Note that it is possible for an
agent to recover from non-selection over time as their specialisation is required
regardless of performance. Algorithm 4, Section 5.1 details the algorithm for
weighing agent decisions by moving the participation requests to the end of the
queue. This mechanism is used so that if a network changes and has the effect
of making a particular agent perform poorly (because the source of information
has changed), the agent’s participation in future extended data collection tasks
will be diminished over time.

4. Case Study

To illustrate the advantages of using our model, several agents were deployed
in a live networking environment to detect and respond to cyber reconnaissance
activities (refer to Table 1). Typically there are several stages to a network
breach, of which the first is information gathering and reconnaissance (Herzog
(2010)). Port scanning is a commonly undertaken activity during a cyber attack
with specifically crafted packets sent to hosts to discover information about the
underlying technologies (Kikuchi et al. (2009)). While port scanning is asso-
ciated with the early stages of a penetration attempt, it can also be utilised
legitimately by the network’s administrator for housekeeping activities. The
current solution for detecting port scanning activities is to use a firewall or cen-
tralised IDS to monitor the network traffic, specifically looking for the specially
crafted packets that match various IDS signatures (Roesch & Green (2016)).
The methodology of monitoring a network and making judgements about the

9

Table 1
Agents used within the case study.

Agent Condition Effect Location

Agent-1 Multiple connec-
tions on different
ports

IP address of of-
fending host

Host-A (192.168.56.101)

Agent-2 IP address be-
longs to Host-B

Process owner
identity

Host-B (192.168.56.102)

Agent-3 External IP ad-
dress

Information
about external IP

Host-C (192.168.56.103)

Agent-4 Any IP address Information
about IP location

Host-C (192.168.56.103)

event as a whole is used commonly throughout all areas of cyber security but
ignores additional pieces of evidence that could be collected and used to consider
the attack more intelligently. Furthermore, it does not take into consideration
the situational data about the attacker or attack which could be used to anal-
yse the event more accurately. To illustrate the benefits of using an agent-based
approach, a port scanning scenario is detailed.

Four agents {g1, ...g4} ∈ G are implemented and installed on three hosts
joined by ethernet connection (shown in Figure 6). The functions of the deployed
agents are (1) monitoring port scan attempts; (2) monitoring system privileges
and process owners; (3) checking IP addresses against a known blacklist; and
(4) monitoring the origin of connections (refer to Table 1). Using the system of
conditions and effects outlined in Section 3, the agents collectively perform an
extended data collection task to gather more information about the event.

Event 1 (Port Scan Initiated). A port scan attack, initiated from Host-B against
Host-A, is detected by Agent-1 whose condition is satisfied by the presence of
multiple connections made on different ports from the same host. Whereas a
signature-based approach may immediately detect and block the connections
made, the DMASS agent-based approach begins an extended data collection
task to learn more about the event. The monitored information about this
event (stored on a per agent basis as RLocal) is captured and stored within the
global report (RGlobal) and the effect (the IP address of the initiating host) is
broadcast to find additional agents that can work with the data. Figure 3 shows
the communications stack after Agent-1 has broadcast its effect to the network4.

Event 2 (second broadcast). Of the agents whose condition is satisfied and that
responded to the broadcast (i.e., Agents 2 and 4), Agent-4 is selected by Agent-
1 to receive the global report next. In this example, the selection of Agent-4

4In Kendrick et al. (2016) we proposed an agent-based interaction model for the sending
of messages between agents that would be utilised in this example.

10

Figure 3
The communications stack after event 1 showing Agent-1 (A1) is the only agent to have
communicated.

over Agent-2 was made based on the reputation of both agents (See Figure
4). Agent-4’s functions are more broad than Agent-2 and so is more likely to
be involved in a greater number of extended data collection tasks and thus
have an increased reputation. In this way, agents whose functions are based
around general information gathering are typically prioritised over rarely used
agents. This prioritisation is preferred as it gives alternate agents an opportunity
to search for conflicting evidence rather than making classifications based on
minimal evidence. The function of Agent-4 is to determine the location (i.e.,
local or remote) of a host given an IP address. Upon finding the location of the
IP address is local, Agent-4 broadcasts this information as its effect. Note that
the request made by Agent-2 is carried forward as part of the report structure
passed between selected agents.

Figure 4
The communications stack after event 2 showing Agents 2 and 4 have responded to Agent-1’s
broadcast.

Event 3 (event classification). In this example with few agents, there are no
more responses the the broadcast made by Agent-4 in the previous step (note
that Agent-2 does not respond as its request has been carried forward). Agent-3,
whose function is to externally gather information about remote IP addresses,
does not respond to the broadcast in this event as its condition (an external IP
address) is not fulfilled. Instead, the request carried forward by Agent-2, which
is used to analyse the owner of suspicious processes where the IP address of the
suspected host matches the IP address of Host-B (the same host it is located

11

on), is selected as the next agent to receive the report. Upon analysis, Agent-
2 finds that the port scan did originate from Host-B, however, the process is
owned by an administrative account and so classified as routine maintenance
rather than a malicious event.

Figure 5
The communications stack after event 3 showing Agents 2 being selected to participate in the
extended data collection task from its previous request made in event 2.

In this example, the IP address effect information is required by two agents
(Agent-2 and Agent-3) for the fulfilment of their conditions. The function of
Agent-3 is to check remote IP addresses against known blacklists requiring the
IP address to be remote. The function of Agent-2 is to monitor the process priv-
ileges on Host-B specifically, and as such, requires that the IP address is local
and belong to Host-B (stored as a local report RLocal). Following the IP address
being identified as belonging to the local network and referencing Host-B, the
information was passed to Agent-2 rather than Agent-3 whose conditions were
satisfied by the available information. The information collected by each agent,
in the form of their individual local reports, is joined to form the global report
(RGlobal) for communication between agents. Upon analysing the process infor-
mation for Host-B, Agent-2 found that the popular port scanning tool, Nmap,
had been recently used by an administrator account, this contextual information
led to the event being classified as non-malicious and no further action against
hosts involved was taken. While this limited scale example includes few agents
per host, the architecture supports many agents per device capable of perform-
ing a variety of functions to allow more complex data collection and analysis
tasks to take place. Furthermore, the application example highlights the need
for more in-depth analysis of security events rather than the surface detection
and prevention of network connections when they appear to match illegal signa-
tures. Traditional approaches that would associate the port scan activity with
being malicious would have blocked the activity immediately rather than per-
forming extended data collection to discover more about the service owner as
in the case of our DMASS. The strength and novelty of the proposed system
are the agents that can gather contextual information surrounding a security
event, prioritise search, and evaluate the performance of other agents. These
mechanisms aid the agents in analysing the security event in a more informed
manner.

12

Figure 6
Example using agents (A-1,2,3,4) distributed across three devices (Hosts-A,B,C) to detct and
investigate the cause of a port scan attempt.

5. Environment Modelling using Domains

The concept of domains is introduced to describe the complexities found
within the cyber security environment more accurately. Domains modelling
enables agents to weigh the progress of the extended data collection task against
expected attack patterns.

By using specialised agents, with each one capable of performing one data
collection task, it is possible to explore the underlying network structure by
examining the agent’s relationships with each other. Consider that each agent
has a set of conditions and one effect, with the effects fulfilling the conditions for
other agents; when modelled, this produces a graph of connections showing the
relationship between the agents and by extension the relationship between the
underlying services (Obes et al. (2010)). Figure 7 shows this graph with nodes
representing agents, the colouring representing groups of agents belonging to
the same service, and edges representing which effect satisfies which condition.

The choice to use specialised agents that perform only a single data collec-
tion action results in a system where there may be multiple agents that work
with a single technology. Complex technologies will justify the use of many
agents performing different types of tasks, for example, an email server may
have several agents for performing incoming, outgoing, and spam monitoring.
At the beginning of an extended data collection task when little is known about
an event, the search will begin with general data collection. As more informa-
tion is gathered, the agents will collect more attack-specific information as the
agents find evidence about the attack.

Hence, the purpose of domains is to use the underlying network structure
information to more accurately and efficiently evaluate the collected information
by considering whether the detected attack is plausible. Plausibility is a measure
of whether the agent’s analysis of an event makes sense given common attack
patterns. Typically an attacker will attempt to gain access to a system through
the path of least resistance (Fernandez et al. (2007)), if agents from multiple
domains monitoring several technologies detect the presence of an attack, the

13

event is recognised as having an unusually wide scope. Furthermore, we expect
the attack to spread through connected neighbouring technologies since network
links exist between them, this is grounded in empirical evidence and is often used
in attack graph generation (Durkota & Kiekintveld (2015)). Agents use these
predictable and well-defined movement patterns to determine the plausibility of
monitored events.

Figure 7
The simulated network environment containing several technological domains (represented by
colours). Conditions (C) and Effects (E) are numerically represented to abstract the data
they represent.

Given the example of a supply chain network, used for facilitating communi-
cation between multiple businesses (Smith et al. (2007)), the typical IDS solution
would offer limited protection against more complex multi-stage cyber attacks
(Tobergte & Curtis (2013)). By participating in the supply chain network, the
larger corporation, which may have a more robust cyber security solution, puts
itself at risk since the attacker is more likely to penetrate through a less pro-
tected supply networks and pivot to the real target of the attack. The concept
of domains can accurately model this threat with the proposed DMASS to mon-
itor the attacker attempts to penetrate specific technologies as they pivot to the
real target. The scalability of the DMASS supports the placement of multiple
agents on the expanded network allowing the extended data collection task to
take place on the network as a whole.

The example of the supply chain network is descriptive of an Advanced

14

Persistent Threat (APT) which is more likely to see the use of novel zero day
exploits that currently have no matching signature for detection. The proposed
system of using domains to analyse the context of agent alerts is used as a
mechanism to detect zero day attacks by analysing the movements of an attacker
by the footprints that are left behind. An attacker employing APT techniques
and zero day exploits may still leave detectable footprints that can only be
properly analysed in the global context where the evidence is brought together.
To this end, the goal of the domains approach is to facilitate the context-aware
processing of information to detect stealthy and novel attacks.

5.1. Proposed Algorithms

Using the concept of domains, we provide several algorithms for the analysis
of the network environment. The algorithms make significant improvements
to the agent’s efficiency in analysing the network by introducing concepts such
as agent memory, agent performance analysis and evaluating the plausibility
of attacks. Additionally, improvements to the detection accuracy are made
by avoiding the inclusion of poorly performing agents in the extended data
collection task. An evaluation of the proposed algorithms is provided in Section
7.

Baseline (Refer to Algorithm 1). The baseline algorithm iteratively processes
the available information without making use of optimisation techniques and
is presented for comparison. To decide the global decision for the group, the
algorithm tallies the local decisions from each agent and takes the highest num-
ber of votes for either malicious or innocuous as the final event classification.
As a result, the algorithm performance is contingent on the individual agent’s
performance in evaluating the collected information. In cases where the agents
cannot accurately collect and analyse the digital evidence, the algorithm will
incorrectly classify the event as no corrective mechanisms are used to counter
poor performance. This model is similar to the current generation of security
technologies that use a variety of detection mechanisms but do not consider the
detection alerts as a whole to evaluate whether the monitored attacks form a
plausible attack pattern.

Series Weighting (Refer to Algorithm 2). The first proposed algorithm is in-
troduced to give weighted bonuses to malicious votes that appear within an
unbroken series of agent decisions. Given that the product of an extended
data collection task can be viewed as a tuple of local decisions (RGlobal =
〈eid, ts, {gn, (fn, vn), pn}〉), the decisions must be aggregated to produce the
final event classification. The proposed algorithm uses the corrective measure
of giving extra weighting to series of malicious decisions that appear in sequence
when modelled using the domains graph. Group cohesion is measured by the
number of similar decisions made by agents from the same or neighbouring do-
mains. High group cohesion during the decision-making process indicates an
abundance of evidence which can be relied on more. This algorithm uses these
concepts to favour groups of agents that vote in the same way. By default, each

15

Algorithm 1 Baseline Algorithm

Require:

RGlobal the global report containing a set of local reports RLocal correspond-
ing to a security event.
α ∈ [0, 1] the minimum threshold required for a classification of malicious.

Define:

Tmalicious ← 0 a tally of malicious votes.
Tinnocuous ← 0 a tally of innocuous votes.

1: for 〈eid, ts, g, (f, v), p〉 ∈ RGlobal do ⊲ Iterate and tally local decisions
2: if p ≥ α then

3: Tmalicious ← (Tmalicious + 1)
4: else

5: Tinnocuous ← (Tinnocuous + 1)

6: if Tmalicious ≥ Tinnocuous then ⊲ Return global decision
7: return 〈eid, decision : malicious〉
8: else

9: return 〈eid, decision : innocuous〉

decision has a value of 1, but for each additional vote of malicious after the
first, an additional weighting is given. Additional weighting for malicious but
not innocuous votes is given because it is expected that the majority of agents
will vote innocuous as attacks typically target only a subset of network domains.
Within compromised networks, the volume of legitimate non-malicious traffic
will typically outweigh the volume of attack traffic resulting in a high false nega-
tive rate when most agents correctly identify no attack. This algorithm corrects
the problem of agents being outweighed by providing additional weights to the
decisions of cohesive groups.

Series Weighting with Cut-off (Refer to Algorithm 3). To increase the efficiency
of the Series Weighting voting algorithm the algorithm was further extended to
improve the efficiency by allowing agents to autonomously decide the point at
which enough information to make the global decision had been collected. If
during the extended data collection task, a sufficient amount of evidence is found
supporting one decision over the other, agents can decide to make the global de-
cision earlier without consulting all agents that can participate5. Making quicker
global decisions improves real-time detection by reducing the number of agents
involved. To search the entire domains model for indicators of compromise,
involving all agents in the analysis, would ensure that the event classification
is made using all of the available information, however, would be operationally

5Currently a value δ is used as a static value for the amount of local reports to be processed.
In future work we aim to implement an adaptive threshold for this value based on the network
size.

16

Algorithm 2 Series Weighting Algorithm

Require:

RGlobal the global report containing a set of local reports RLocal belonging
to g ∈ G.
α ∈ [0, 1] the minimum threshold required for a classification of malicious.

Define:

β ← null the last processed decision.
γ ← 1 a counter ranging from 1 to 5.
Tmalicious ← 0 a tally of malicious. votes
Tinnocuous ← 0 a tally of innocuous votes.

1: for 〈eid, ts, {g, (f, v), p}〉 ∈ RGlobal do ⊲ Iterate and tally local decisions
2: if p ≥ α then

3: Tmalicious ← γ

4: if β = decision : malicious then

5: if γ < 5 then

6: γ ← (γ + 1) ⊲ Increase series weighting bonus when
additional votes are cast

7: β ← decision : malicious ⊲ Store the last counted decision in β

8: else

9: γ ← 1 ⊲ Reset the counter when the series is broken
10: Tinnocuous ← (Tinnocuous + γ)
11: β ← decision : innocuous

12: if Tmalicious ≥ Tinnocuous then ⊲ Return global decision
13: return 〈eid, decision : malicious〉
14: else

15: return 〈eid, decision : innocuous〉

17

inefficient. Alternatively, if the decision to end the search for information is
made too early, the classification will be made on an unrepresentative subset of
the available information leading to inaccurate results. The domains model is
used to allow agents to find the most favourable point to end the search for evi-
dence by taking into consideration the plausibility of the data already collected.
By considering the origin of evidence in relation to the domain graph, agents
can decide whether a branch of the network has been sufficiently explored or
whether further evidence collection is required.

Algorithm 3 Series Weighting with Cut-off Algorithm

Require:

RGlobal the global report containing a set of local reports RLocal.
α ∈ [0, 1] the minimum threshold required for a classification of malicious.
δ ∈ [0, 1] the amount of local reports that will be processed.

Define:

β ← null the last processed decision.
γ ← 1 a counter ranging from 1 to 5.
Tmalicious ← 0 a tally of malicious votes.
Tinnocuous ← 0 a tally of innocuous votes.

1: while increment(RGlobal) ≤ (δ ∗ |RGlobal|) do ⊲ Iterate over the global
reports

2: for 〈eid, ts, {g, (f, v), p}〉 ∈ RGlobal do⊲ Iterate and tally local decisions
3: if p ≥ α then

4: Tmalicious ← γ

5: if β = decision : malicious then

6: if γ < 5 then

7: γ ← (γ + 1) ⊲ Increase series weighting bonus when
additional votes are cast

8: β ← decision : malicious

9: else

10: γ ← 1 ⊲ Reset the counter when the series is broken
11: Tinnocuous ← (Tinnocuous + γ)
12: β ← decision : innocuous

13: if Tmalicious ≥ Tinnocuous then ⊲ Return global decision
14: return 〈eid, decision : malicious〉
15: else

16: return 〈eid, decision : innocuous〉

Series Weighting with Self-Selected Groups (Refer to Algorithm 4). To increase
the adaptability of the system, agent preference is introduced in the form of
self-selected groups to allow agents to autonomously measure the effectiveness
of cooperating agents to prioritise their participation in future extended data
collection tasks. Following the collection and analysis of some information,

18

the agent must decide the general direction of the extended data collection
task by choosing which agent can participate next. Over time, agents will
find groups of high-performance agents that it prefers to work with, defining
the self-selected group. This postpones the invocation of poorly performing
agents effectively preventing their participation in the data collection task thus
improving the overall performance. Agent performance measures the individual
agent’s accuracy compared to the groups. The corrective measures proposed
in these algorithms attempt to improve the decision accuracy by minimising
the effect poorly performing agents have on the overall classification by forcing
poorly performing agents to participate later in the extended data collection task
and thus increasing the chance that they will be cut-off and not be given a chance
to participate (refer to Table 3 for detection rate improvements). Self-selected
groups require inter-agent communication to inform participating agents of the
event classification following the final global decision. Information about how
other agents voted is also compared and the performance measure for each is
locally updated for use in future events. Furthermore, this system makes the
agents adaptable to changing network circumstances. If a particular technology
becomes unavailable, the agent will quickly be removed from the self-selected
group of preferred agents until the technology is restored and the agent can once
again contribute to the extended data collection task.

6. Simulator

In this section, a discussion about the implementation of the DMASS sim-
ulator, including how domains are simulated, as well as an explanation of the
underlying variables is provided. The simulator’s configurable parameters fall
into three categories (refer to Table 2): (1) those that control the agents (Gv),
for example, decision accuracy and choice of voting algorithm; (2) those that
control the environment (Ev), for example, the ratio of security events that are
malicious and the size of the network; and (3) those that control the attack
(Av), for example, the size of the affected region and detectability of the attack.
We briefly describe the main variables in these three categories below.

Several variables are introduced to control aspects of the simulated network.
The number of domains (Evamount ∈ N) is set according to the size of the
simulated network. Smaller networks with few services are simulated as having
a limited number of domains, while larger expanded networks are simulated with
more. Services with more complex operations require more agents to perform
data collection. Agent membership to the individual domains is controlled by
the Domain Size Variability variable (Evsize ∈ [0, 1]). If set to zero, agents
are distributed uniformly between the domains. If increased, domains will be
created with a varied number of agents, with agents distributed at random
if set to 1. The Domain Association Factor (Evassociation ∈ [0, 1]) variable
controls the logical connections between neighbouring domains. If set to zero,
all domains will be disjoint. If increased, links between domains, in the form
of shared conditions and effects, are made which represents similar technologies
that are closely related (refer to Figure 7). Over time these variables may

19

Algorithm 4 Self-Selected Groups Algorithm

Require:

RGlobal the global report containing a set of local reports RLocal.
RDecision the final event classification from RGlobal.

Define:

greq ⊆ G a subset of agents whose conditions c are satisfied and request the
global report RGlobal

glog is a set formed by pairs (g, gscore), where g ∈ G is an agent that previ-
ously has participated in an extended data collection task and gscore ∈ N is
a tally of correct number of decisions.

1: procedure Agent Selection(greq, glog) ⊲ Find the highest performing
agent from greq using the previous performances of agents in glog

2: for g ∈ greq do

3: return Highest((g, gscore) ∈ greq) ⊲ Return highest performing
agent listed in both greq and glog using the gscore.

4: procedure Log Update ⊲ Update the log with details of previous
extended data collection tasks after each extended data collection task

5: for 〈eid, ts, {g, (f, v), p}〉 ∈ RGlobal do

6: if ∃gscore : (g, gscore) ∈ glog then

7: if p == RDecision then ⊲ Adjust the tally of correct decisions
agent has made compared to the final group decision.

8: gscore ← (gscore + 1)
9: else

10: gscore ← (gscore − 1)

20

Table 2
Agent and environment variables.

Variable Value

Runs 100
Iterations 1000
Repetitions1 11
No. Agents [30,100]
Preferred Agent Threshold1 [0,1]
No. conditions 1: 80%, 2: 15%, 3: 5%
Analysis (p)2 [0,1]
No. Domains (Evamount) [5,25]
False Alarm Rate [0,1]
Attack Penetration (Avpenetration) [0,1]
Attack Detectability (Avdetectability) [0,1]
Domain Size Variability (Evsize) [0,1]
Domain Association Factor (Evassociation) [0,1]

1 The preferred agent threshold is increased by 0.1 for each repetition. The
repetition is cycled for the specified amount every iteration.
2 Refer to Definition 4.

change as the network evolves with new devices added and others removed.
However, for the purpose of the simulations, the network remains constant once
initialised, we believe this is reflective of the typical local network that may
experience infrequent changes over time but not necessarily during the operation
of a particular extended data collection task.

Attacks are also simulated using the concept of domains. The variable
Attack Penetration (Avpenetration ∈ [0, 1]) controls how far the attack will
spread through the simulated network. Attacks primarily spread through con-
nected nodes (defined by the Domain Association Factor). Attack Detectability
(Avdetectability ∈ [0, 1]) controls the stealthiness of the attack. A low value would
simulate an APT that is harder to detect. These variables are used to model
the broad nature of cyber security attacks, for example, a Distributed Denial of
Service (DDoS) attack would rank low on the attack penetration but high on
attack detectability.

Table 2 lists the agent and environment variables used during the perfor-
mance tests. Many of the variables including the false alarm rate, domain size
and spread of the attack were randomised to verify the system under a wide
variety of network conditions. The experimental setup to obtain these results
modelled the network environment as closely as possible. Agent detection per-
formance (Analysis) was controlled using a random distribution rather than a
normal distribution to reflect the diversity of detection technologies that may
perform differently depending on the accuracy of the individual sensor.

21

Table 3
Results and comparison with the system baseline using Detection Rate (DR) and False Alarm
Rate (FAR) for the agents local analysis.

Evaluation DR FAR

Highest Votes (System baseline) 0.595 0.102
Series Weighting Basic 0.727 0.225
Series Weighting with Preferred Agents 0.792 0.231
Series Weighting with Cut-off and Preferred Agents 0.804 0.228

7. Evaluation

To evaluate the algorithms, 100,000 simulations consisting of 1000 runs with
100 security events per run are performed. For each run, a new domain network
(See Figure 7) is generated, and 100 simulated security events consisting of both
attacks and false alarms are initiated to assess the agent’s performance.

Table 3 shows a comparison of the detection rate (DR) and false alarm
rate (FAR) of the four algorithms during the individual evidence evaluation
stage with a 20% DR improvement made over baseline. During the evidence
evaluation stage, the agents individually collect and analyse evidence and decide
whether it indicates normal or malicious activity. These individual analyses are
then combined using one of the voting algorithms to classify the security event
as a whole, as such the overall performance of the classifier must be judged
based on both the individual performance (Table 3) and the final classification
made by the group (Figure 9).

DR =
TP

TP + FN

FAR =
FP

FP + TN

This DR improvement can be attributed to the corrective measures intro-
duced by the proposed algorithms that avoid the inclusion of poorly performing
agents as well as the increased intelligence used to analyse and weigh the relia-
bility of decisions. Furthermore, this improvement is made without introducing
any extra detection mechanisms but instead is made by intelligently considering
the plausibility of the information gathered through the concept of domains and
preventing unreliable agents from damaging the integrity of the event classifi-
cation. As a result of the algorithms, the FAR is also increased, however, we
consider this to be by an acceptable amount given the current industry stan-
dards Alsubhi et al. (2011) and improvement made to the DR, furthermore this
result is later improved during the application of the voting algorithm to decide
the final classification. In many business environments, the detection rate is
given priority over the false alarm rate to protect networked assets at the cost
of possible availability disruption. Significant efficiency improvements were also
made with a reduction in the number of local decisions needed to analyse an

22

event. Figure 8 shows the total number of local decisions reduced by over 50%
while maintaining the same ratio of correct global decisions. The result shows
that less processing was needed to come to the same conclusion about the secu-
rity event. This performance improvement is significant as it shows the agent’s
ability to select the most relevant agents needed for analysing the security event
while avoiding the use of irrelevant agents outside of the attacked domain. This
result shows the opposite of the brute-force approach often adopted by IDSs
and instead avoids irrelevant computation during the detection process. Fig-
ure 9 shows a comparison of the algorithms in both low and high false alarm
environments with the improved algorithms performing better in environments
with a high false alarm rate. This improvement from the system baseline is
again attributed to the agent’s ability to identify the poorly performing agents
using the domains model. Whereas the system baseline performance is directly
linked to the agent’s ability to analyse an individual piece of information, high
false alarm environments provide the improved algorithms with an increased
opportunity to identify the poorly performing agents and optimise the extended
data collection task around them.

Figure 8
The total number of local decisions (i.e., cost associated actions) using each of the four algo-
rithms described in Table 3 plotted against the percentage of correct global decisions.

This system is entirely decentralised with each agent maintaining a local
copy of how well an agent performed in the past. Different types of attacks
elicit data collection tasks that explore different parts of the network, and since
each agent maintains a local database of preferred agents, they are sensitive
to the directionality of various attacks. In addition to the preferred agent, any
agents that continually perform poorly will be avoided during the data collection

23

Figure 9
A comparison of the 4 algorithms featured in Table 3 in both a low and high false alarm
environment (95% confidence intervals).

process. This is more desirable than centrally managing the reputation of agents
which does not reflect the performance diversity under different situations, but
instead, assigns generic labels which may be unrepresentative. Whereas an agent
may perform badly within one domain, it may perform well in another. Under
the current system, this is recognised and selected for during the preferred agent
process. Coupled with the cut-off system, this has the effect of invoking the most
reliable agents earlier on in the collection process and not providing the poorly
performing agents with an opportunity to participate.

Figures 10 and 11 show the change in amount of correct local decisions (Total
LD correct) and correct global decisions (Total GD correct) when changing the
simulator parameters for the number of agents and attack detectability. The
number of agents has the effect where fewer agents (in the 15-100 range) causes
the system as a whole to perform poorly due to ineffective corrective measures
that would otherwise penalise poorly performing agents. The performance of the
agent preference corrective strategy, which penalises poorly performing agents
in future extended data collection tasks, is limited by the lack of agent choice
in the 15-100 range resulting in poorly performing agents used out of necessity
to continue the analysis (where no preferable agents are available, less preferred
agents are chosen to fulfil the extended data collection task). Where more
choice (in terms of number of agents) is available, the more reliable and highly
performing agents are selected for participation. The performance gain of adding

24

Figure 10
Comparison of Number of Agents (No. Agents) Threshold.

agents to the network stabilises after a point owing to the cut-off algorithm that
prioritises the high performing agents and ends the search for evidence before
every agent has had an opportunity to participate. While there is no clear
disadvantage to adding more agents to the network, the amount of messages
sent between agents for participation increases with each additional agent. The
attack detectability measure which represents the stealthiness of the attack has
the predictable effect of reducing the amount of correct global and local decisions
when it is harder to detect, i.e., when this value is low, and the attacker is harder
to detect, agents are more likely to analyse the event incorrectly. The corrective
measures of penalising poorly performing agents go some way to improving the
agent performance, however, stealthy attacks are still a challenge to the agent-
based system as well as to the IDS.

7.1. Snort IDS Evaluation

To further show the need for the proposed system, an evaluation using the
Snort IDS Roesch & Green (2016) was performed on the UNB ISCX Intrusion
Detection Evaluation Dataset Shiravi et al. (2012) to show increased efficiency
in detecting malicious traffic. The dataset contains a series of labelled network
flows from within a local network. The dataset was first analysed with Snort
IDS’s signatures and then processed by the agents to find the remaining connec-
tion flows that were not detected. Figure 12 shows an example of the network
graph built from the UNB ISCX dataset where nodes are IP addressable hosts
and edges represent network connections made between them. The graph is
used to model connections between nodes so that agents may follow the spread

25

Figure 11
Comparison of Attack Detectability (Avdetectability threshold).

Figure 12
An example of the USB ISCX dataset network.

26

Figure 13
An example of probe activity not detected by snort IDS.

of connection through the domains to search for undetected nodes.
Using the Snort IDS analysis as a starting point, the agents search subsec-

tions of the network to discover additional edges that are malicious but were
not detected by the IDS. Snort takes on the role as the data gathering/analysis
module by using its signatures to classify activity as malicious or innocuous.
Typically an IDS has many signatures that can be enabled or disabled depend-
ing on the threat model with fewer signatures being used to improve the FAR
and more signatures used to increase the DR but at the cost of increasing the
FAR.

The dataset model contains a total of 236 edges with 148 malicious. Snort
IDS detected a total of 25 edges. The majority of the edges not detected by
Snort were attempts to scan the network where the attacker scanned an IP
address not in use. Typically, this behaviour is considered non-malicious by
most IDS’s as its cause often occurs normally within local networks as a result
of typical probing and non-malicious networking problems. Figure 13 shows
the connection model for probe activity with many connections made to IP
addressable nodes that do not exist on the network and so get no response.

The following agent based search of the data is measured by the detection
rate increase as well as the computational cost of performing additional search.
The detection rate is measured by the number of additional edges investigated
that were malicious while the computational cost is measured by the total num-

27

ber of edges investigated. While the detection accuracy is dependent on the
quality of the signatures a search based on the series weighting algorithm (see
Algorithm 2) can be used to search sub-domains of the graph network based
on the results of Snort’s initial analysis of the data. By prioritising search in
the areas that Snort previously identified as containing malicious traffic, the
search can more efficiently find the remaining malicious edges without having
to search unaffected areas of the network. While Snort parsed all 236 edges to
find 25 malicious events, the following search of the data parsed only 64 edges
to find an additional 9 edges that were undetected by Snort. The agent search
was both more efficient than Snort (based on the amount of searched nodes that
contained malicious traces) and detected additional instances of malicious activ-
ity that it could not. The benefit of our proposed system is that it can use the
concept of domains to find undetected locations of compromise. Following the
agent’s identification of an undetected location, the area can be analysed with
additional IDS signatures under increased suspicious while avoiding unnecessary
analysis of unaffected areas.

7.2. System Scalability

During an IDS’s operation it will process all available data and make compar-
isons against known signatures of known malicious activity. This action provides
a O(n) processing time where n is the number of signatures for be processed.
This is functionally similar to the system benchmark shown in Figure 8 that
has a large number of local decisions must be processed to analyse the global
decision. Our proposed algorithms improve on this by requiring less local deci-
sions (i.e., pieces of information) to be analysed for a similar overall result. In
particular, algorithm 4 titled Series Weighting with Cut-Off Threshold reduces
the amount of processing required by over 50% which significantly improves the
scalability of the system as less work must be undertaken to achieve the same
result.

Furthermore, the communication module to allow agents to exchange infor-
mation and communicate is kept as lightweight as possible by separating the
system functions. The function to find agents whose conditions are satisfied by
the current information is a small message with a minimal network footprint,
while the larger global report is only sent specifically to the chosen agent and
not broadcast to the network. The algorithm results in Figure 8 that show the
amount of local decisions required is substantially reduced is in proportion with
the amount of network messages that are sent as every unique local decision
requires the global report to be sent.

7.3. Existing Approaches

Given that the proposed system uses existing detection technologies within
each agent to process the collected information, average agent performance mod-
elled the current state of the art for IDSs (detection rate of 70-100% depending
on the type of attack). Agents were tested under a number of simulated environ-
ment types (controlled by the Ev variables) to make the results as generalisable

28

as possible. A wide range of attacks were performed to simulate the diversity
of footprints that may be left behind by the attacker (controlled by the Av

variables). Using this model, improvements were made to the performance of
traditional technologies through the inclusion of agent-based mechanisms, in
particular, the proposed algorithms are shown to be effective in high false alarm
environments where traditional technologies relying on only detection signatures
without corrective measures perform poorly. With the control variables (Ev and
Av) randomly initialised between simulated runs, simulations were performed
under a diverse range of conditions representative of modern networks. From
the results in Table 3, we show that an improvement to the detection rate of
up to 20% can be made over traditional approaches by introducing corrective
measures to detect poorly performing agents in high false alarm situations. We
show that traditional systems that attempt to match as many signatures as pos-
sible results in worse performance than the extended data collection approach
because irrelevant classifications can dilute the final event analysis.

Throughout this paper, we study intrusion detection using a graph-theoretic
approach due to the lack of context that can be extracted from the current
generation of datasets. The proposed model requires knowledge about technol-
ogy domains to evaluate series of decisions, however, such information is rarely
included in current signature-based systems. Currently, when network datasets
are created, contextual information about the network and endpoint service are
typically not collected increasing the difficulty of automatically defining condi-
tions and effects. The authors agree with Grobler et al. (2010) that live forensic
investigations are hampered by a lack of automatic forensic standards and pro-
cedures and hope the proposed system will go some way to providing an effective
agent-based architecture for performing decentralised forensic investigations.

7.4. Model Vulnerabilities

Our model provides a robust solution to encompassing many detection tech-
nologies for use by an automated agent-based forensic framework. However, the
use of agent-based technologies brings with it a set of considerations highlight-
ing the limitations of the model. Agents rely on the transfer of information
to share local views of the network to make the final global decision, as a re-
sult, under conditions of prolonged network congestion or purposeful denial of
service, the extended data collection task could be disrupted. While the avail-
ability of agents is an important consideration, forensic investigations can occur
after-the-fact, as such the process may continue once normal network conditions
are restored.

In MAS, the communications overhead is often computationally expensive
due to the decentralised nature of the system. Figure 8 shows the trade-off be-
tween the global decisions and the number of local decisions (which represents
the number of communications made). While the figure shows a reduction in
the overall number of communications between the four algorithms, this is still
exponentially higher than a central approach that does not require any commu-
nication between its components. The trade-off is shown in Figure 9 where the
baseline approach performs poorly in high false alarm environments because of

29

the vast amount of endpoints to scan and an inability to distinguish between
malicious and innocuous. However, the Series Weighting with Cut-off algorithm
performs much better because it uses an agent performance measure to penalise
poorly performing agents. Overall, while the communications overhead creates
an increased burden on the network, the detection accuracy is increased.

8. Conclusion & Future Work

Performing automatic security and forensics within networked environments
is a challenging problem due to the variety of data and unpredictable events.
The Decentralised Multi-Agent Security System presented in this paper per-
forms automatic data collection and analysis by using forensic-inspired pro-
cesses to search for information useful during the analysis of a security event.
The modelling concept of domains was introduced to capture both the under-
lying structure of the network security environment as well as expected attack
patterns by allowing agents to weigh the importance of information based on
the location and likelihood that the data is, in fact, a true positive. Several
agent-based algorithms were developed to improve agent performance during
the evaluation process by devaluing the importance of poorly performing agents
and actively seeking the participation of high performing agents. By using the
proposed algorithms, the efficiency of the system was increased by over 50%
promoting shorter and more targeted automatic forensic investigations, and the
accuracy of the system was improved by 20%. Future work will focus on the
development of anomaly-based detection algorithms that make use of the pro-
posed framework to consider attacks from both the local and the global views
available to agents. We aim to bring the concepts of situational information and
the plausibility of evidence discussed throughout this paper to improve anomaly
detection through resulting targeted investigations to find supporting evidence.

References

Alsubhi, K., Bouabdallah, N., & Boutaba, R. (2011). Performance analysis in
Intrusion Detection and Prevention Systems. 12th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2011) and Workshops ,
(pp. 369–376). doi:10.1109/INM.2011.5990713.

Baig, Z. a. (2012). Multi-agent systems for protecting critical infras-
tructures: A survey. Journal of Network and Computer Applications ,
35 , 1151–1161. URL: http://dx.doi.org/10.1016/j.jnca.2012.01.006.
doi:10.1016/j.jnca.2012.01.006.

Carvalho, L. F., Barbon, S., Mendes, L. D. S., & Proen??a, M. L. (2016).
Unsupervised learning clustering and self-organized agents applied to help
network management. Expert Systems with Applications, 54 , 29–47.
doi:10.1016/j.eswa.2016.01.032.

30

Chen, P., Desmet, L., & Huygens, C. (2014). A study on advanced persistent
threats. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 63–
72). volume 8735 LNCS. doi:10.1007/978-3-662-44885-4-5.

Clint, M. R., Reith, M., Carr, C., & Gunsch, G. (2002). An Examination of Digi-
tal Forensic Models. International Journal of Digital Evidence, 1 , 1–12. URL:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.9683.
doi:10.1109/SADFE.2009.8.

da Gama Batista, J., Bouchaud, J. P., & Challet, D. (2015). Sudden trust
collapse in networked societies. European Physical Journal B , 88 , 1–11.
doi:10.1140/epjb/e2015-50645-1. arXiv:1409.8321.

DeLellis, P., DiMeglio, A., Garofalo, F., LoIudice, F., Franco,

G., & Francesco, L. I. (2017). The evolving cobweb of relations

among partially rational investors. PLoS ONE, 12, 1--21.

doi:10.1371/journal.pone.0171891.

Durkota, K., & Kiekintveld, C. (2015). Optimal Network Security

Hardening Using Attack Graph Games. In IJCAI International Joint
Conference on Artificial Intelligence.

Fernandez, E., Pelaez, J., & Larrondo-petrie, M. (2007). Attack

Patterns : a New Forensic and Design Tool. In IFIP International
Conference on Digital Forensics (pp. 345--357). volume 242.

Galtsev, A., & Sukhov, A. (2011). Network attack detection

at flow level. Smart Spaces and Next Generation Wired/ . . .,
6869 LNCS, 326--334. URL: http://arxiv.org/abs/1104.1010

http://link.springer.com/chapter/10.1007/978-3-642-22875-9 30.

arXiv:1104.1010.

Grobler, C. P., Louwrens, C. P., & Von Solms, S. H. (2010). A

multi-component view of digital forensics. ARES 2010 - 5th In-
ternational Conference on Availability, Reliability, and Security, (pp.

647--652). doi:10.1109/ARES.2010.61.

Haack, J. N., Fink, G. a., Maiden, W. M., McKinnon, a. D.,

Templeton, S. J., & Fulp, E. W. (2010). Ant-based cyber

security. Proceedings - 2011 8th International Conference on Infor-
mation Technology: New Generations, ITNG 2011, (pp. 918--926).

doi:10.1109/ITNG.2011.159.

Herzog, P. (2010). OSSTMM 3.0 - The Open Source Security Testing
Methodology Manual. Technical Report 3.0 ISECOM.

Jahanbin, A., Ghafarian, A., Seno, S. A. H., & Nikookar,

S. (2013). A Computer Forensics Approach Based on

31

Autonomous Intelligent Multi-Agent System. Interna-
tional Journal of Database Theory and Application, 6, 1--12.

URL: http://www.sersc.org/journals/IJDTA/vol6 no5/1.pdf.

doi:10.14257/ijdta.2013.6.5.01.

Kendrick, P., Hussain, A., & Natalia, C. (2016). Multi-Agent

Systems for Dynamic Forensic Investigation. In International Con-
ference on Intelligent Computation (ICIC) (pp. 796----807). Lanzhou:

Springer.

Kikuchi, H., Kobori, T., & Terada, M. (2009). Orthogonal

expansion of port-scanning packets. In NBiS 2009 - 12th In-
ternational Conference on Network-Based Information Systems (pp.

321--326). Ieee. doi:10.1109/NBiS.2009.82.

de Lellis, P., Di Meglio, A., & Lo Iudice, F. (2017).

Overconfident agents and evolving financial networks. Nonlin-
ear Dynamics, (pp. 1--8). doi:10.1007/s11071-017-3780-y.

Liao, H.-J., Richard Lin, C.-H., Lin, Y.-C., & Tung, K.-Y.

(2012). Intrusion detection system: A comprehensive

review. Journal of Network and Computer Applications, 36,
16--24. URL: http://dx.doi.org/10.1016/j.jnca.2012.09.004.

doi:10.1016/j.jnca.2012.09.004.

Mahoney, M., & Chan, P. (2001). PHAD: Packet header anomaly

detection for identifying hostile network traffic. Florida
Institute of Technology technical report CS-2001-04, (pp. 1--17).

doi:citeulike-article-id:9927948.

Mees, W. (2012). Multi-agent anomaly-based APT detection. Pro-
ceedings of the Information Systems Technology Panel Symposium (IST-
111/RSY-026), (pp. 1--10).

Mukherjee, B., Heberlein, L. T., & Levitt, K. N. (1994).

Network intrusion detection. IEEE Network, 8, 26--41.

doi:10.1109/65.283931.

Obes, J. L., Sarraute, C., & Richarte, G. (2010). Attack Planning

in the Real World. In AAAI Conference on Artificial Intelligence (pp.

10--17). Atlanta. arXiv:1306.4044v1.

Roesch, M., & Green, C. (2016). Snort User Man-
ual. Technical Report Sourcefire Inc. URL:

https://www.snort.org/documents/snort-users-manual.

Rudrapal, D., Das, S., Debbarma, N., & Debbarma, S. (2013).

Internal attacker detection by analyzing user keystroke

credential. Lecture Notes on Software Engineering, 1, 49.

doi:10.7763/LNSE.2013.V1.11.

32

Shakarian, P., Simari, G. I., Moores, G., & Parsons, S. (2015).

Cyber Attribution : An Argumentation-Based Approach. Cyber
Warefare, Springer International Publishing, (pp. 151--171).

Shanmugasundaram, K., Memon, N., Savant, A., & Bronnimann, H.

(2003). ForNet : A Distributed Forensics Network. Computer
Network Security. Springer, (pp. 1--16).

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani,

A. A. (2012). Toward developing a systematic

approach to generate benchmark datasets for intrusion

detection. Computers and Security, 31, 357--374.

URL: http://dx.doi.org/10.1016/j.cose.2011.12.012.

doi:10.1016/j.cose.2011.12.012.

Smith, G. E., Watson, K. J., Baker, W. H., & Pokorski II, J. a.

(2007). A critical balance: collaboration and security in the

IT-enabled supply chain. International Journal of Production Research,
45, 2595--2613. doi:10.1080/00207540601020544.

Tobergte, D. R., & Curtis, S. (2013). Modeling Multistep Cyber

Attacks for Scenario Recognition. Journal of Chemical Information
and Modeling, 53, 1689--1699. doi:10.1017/CBO9781107415324.004.

arXiv:arXiv:1011.1669v3.

Tsai, C. F., Hsu, Y. F., Lin, C. Y., & Lin, W. Y. (2009).

Intrusion detection by machine learning: A review.

Expert Systems with Applications, 36, 11994--12000.

URL: http://dx.doi.org/10.1016/j.eswa.2009.05.029.

doi:10.1016/j.eswa.2009.05.029.

Verwoerd, T., & Hunt, R. (2002). Intrusion detection techniques

and approaches. Computer Communications, 25, 1356--1365.

doi:10.1016/S0140-3664(02)00037-3.

Zolfpour-Arokhlo, M., Selamat, A., & Hashim, S. Z. M. (2013).

Route planning model of multi-Agent system for a supply

chain management. Expert Systems with Applications, 40,
1505--1518. URL: http://dx.doi.org/10.1016/j.eswa.2012.08.040.

doi:10.1016/j.eswa.2012.08.040.

Zuech, R., Khoshgoftaar, T. M., & Wald, R. (2015).

Intrusion detection and Big Heterogeneous Data: a

Survey. Journal of Big Data, 2, 1--41. URL:

http://www.journalofbigdata.com/content/2/1/3.

doi:10.1186/s40537-015-0013-4.

33

