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Abstract: In ultrasonic array imaging, 3D ultrasonic wavefields are normally recorded by an 12 

ultrasonic piezo array transducer. Its performance is limited by the configuration and size of the 13 

array transducer. In this paper, a method based on digital holographic interferometry is proposed 14 

to record the 3D ultrasonic wavefields instead of the array transducer, and the measurement 15 

system consisting of a pulsed laser, ultrasonic excitation, and synchronization and control circuit 16 

is designed. A consecutive sequence of holograms of ultrasonic wavefields are recorded by the 17 

system. The interferograms are calculated from the recorded holograms at different time sequence. 18 

The amplitudes and phases of the transient ultrasonic wavefields are recovered from the 19 

interferograms by phase unwrapping. The consecutive sequence of transient ultrasonic wavefields 20 

are stacked together to generate 3D ultrasonic wavefields. Simulation and experiments are carried 21 

out to verify the proposed technique, and preliminary results are presented. 22 

Key words: digital holographic microscopy; CCD sensor; array transducer; ultrasonic wavefield; 23 

ultrasonic imaging 24 

 25 

1. Introduction 26 

In many industries such as automotive, aerospace, shipping and railway, ultrasonic imaging is 27 

widely used for the engineers to intuitive find the defects inside workpieces[1]. An ultrasonic piezo 28 

array transducer is normally used in ultrasonic array imaging, for example phase array C-scan[2,3]. 29 

An array transducer is composed of multiple independent piezoelectric elements that are excited 30 

according to certain rules and timing in order to adjust the focal position and steer the ultrasonic 31 

beam direction [4]. The performance of phased array technology is affected by the size and 32 

configuration of piezoelectric elements [5]. In this paper, a CCD sensor acting as the ultrasonic 33 

receiving array overcomes many challenging issues faced by the current ultrasonic transducer 34 

arrays, such as element density and element spacing and aperture, increasing the imaging 35 

performance. As it is a non-contact sensing technique in the receiving phase then this could 36 

circumvent problems when the surface is rough or has a complex geometry. 37 

The optical detection techniques for ultrasound are classified into non-interferometric 38 

techniques and interferometric techniques. The former are well developed or of limited application, 39 

while the latter are more general and are presently the object of active developments[6]. The 40 

noninterferometric techniques, such as knife-edge technique, is very insensitive to vibrations but 41 

requires a good surface finish and is hardly applicable to image the 3D ultrasonic wavefield[7]. 42 
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In interferometric techniques, a Michelson interferometer and other configurations based on 43 

the other two wave interferometers (Mach-Zehnder, Fiseau) are normally used to receive the 44 

ultrasound[8]. Ref. [9] report on the remote three-dimensional photoacoustic imaging by utilizing a 45 

two-wave mixing interferometer (TWMI) and the Fourier domain synthetic aperture focusing 46 

technique (FSAFT). The TWMI setup can detect rough and flat surfaces, but the imaging of the 47 

sample was done by raster scanning in x and y-direction. Therefore, the technique cannot strictly 48 

detect the ultrasonic wavefield with full-field and there is no advantage in the measurement of 49 

high-frequency ultrasonic wavefields. 50 

In recent years, the electronic speckle interference techniques have been proposed for use in 51 

non-contact detection of ultrasonic signals[10].In Ref. [11], the two dimensional ultrasonic surface 52 

wave data are obtained by optical electronic speckle pattern interferometry (ESPI) techniques. The 53 

speckle interference with digital phase-stepping is used to capture traveling ultrasonic Lamb 54 

waves[12]. This means either that the phase to be measured should be constant over the time 55 

required for acquisition of phase shifted interferograms or that compensation needs to be 56 

introduced to allow a phase value to be calculated at the time of each recorded frame rather than 57 

once every four frames[13]. In Ref.[14] , the paper investigated the use of parallel phase-shifting 58 

interferometry (PPSI) with a high-speed polarization camera for imaging a sound field in air. 59 

Although the phase-shifted images are captured by a single-shot using PPSI, the sound field in the 60 

opaque solid specimen was not obtained. These limitations can be a disadvantage when 61 

high-frequency ultrasound need to be investigated in non-destructive testing applications.  62 

However digital holography can measure phase and amplitude information directly with one 63 

hologram. Holography is a technique for recording and reconstructing static or dynamic 64 

wavefronts. Holographic interferometry allows the comparison of wavefronts recorded at different 65 

time instants[15] and has been used for vibration measurement since 1965[16]. Other applications of 66 

this technique include displacement analysis of solid objects, shape measurement, and investigation 67 

of the refractive-index change in transparent media[17]. Ref.[18] described a method for measuring 68 

dynamic events in which digital holograms of an object are recorded on a high-speed CCD, and the 69 

phases of the wavefront recorded at different times are calculated, only one image hologram is 70 

needed for the phase to be determined at a given time instant[19]. Ref.[20] propose an optical voice 71 

recorder based on digital holography for recording and reproducing propagating sound waves in 72 

air. 73 

In this paper, a method to record 3D ultrasonic wavefields on the basis of digital holographic 74 

interferometry is proposed for ultrasonic non-destructive evaluation.  75 

 76 

2. Measurement of 3D ultrasonic wavefields using digital holographic interferometry   77 

2.1 Theory of digital holographic interferometry  78 

The amplitudes of the ultransonic wavefield are a few nanometers to a few microns. When the 79 

ultrasonic wavefield are measured, the speckle field will cover the amplitudes. The amplitudes and 80 

phases of the ultrasonic wavefield are difficult to be obtained with digital hologram technique due to 81 

the tiny amplitudes. But digital holographic interferometry can be used to measure phase change 82 

from speckle field[21]. According to holographic interferometry theory [22], the first hologram is 83 

collected when the surface of test piece is stationary, and the second hologram is collected when the 84 

test piece is slightly displaced or excited. Based on the phase information provided by the two 85 

holograms, the interferogram of the surface of test piece can be calculated. Then, the ultrasonic 86 

wavefield can be obtained from the interferogram[23]. 87 

Setting the wave intensity distribution to a constant value, the phase distribution only changes 88 

when the surface of test piece deforms. In the first exposure (t=t1), the corresponding light intensity 89 

(object light and reference light) distribution on the CCD is 90 
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where 
1( , )O x y  represents the object light and 0( , )O x y  represents intensity of object light 91 

and 01( , )x y  represents the phase distribution of object light . ( , )R x y  represents  the reference 92 

light and 0R  represents intensity of object light, ( , )R x y  represents the phase distribution of object 93 

light. Setting the exposure time of the hologram (t1) as 1T , the photometric exposure is  94 

2

1 1 1 1 1( , ) ( , )H I T O x y R x y T    (4) 

In the second exposure (t = t2), the intensity distribution of the object light 0( , )O x y  remains 95 

unchanged, and the phase distribution 01( , )x y  change to 02( , )x y  in the second exposure.  96 

 2 0 02( , )= ( , )exp j ( , )O x y O x y x y  (5) 

If the reference light ( , )R x y remains unchanged, the light intensity distribution on the CCD is  97 

2

2 2( , ) ( , ) ( , )I x y O x y R x y   (6) 

where 2 ( , )O x y  is the object light in the hologram (t2). Setting the exposure time of the 98 

hologram (t2) to 2T , the corresponding photometric exposure is  99 

2

2 2 2 2 2( , ) ( , )H I T O x y R x y T    (7) 

The total exposure volume is 100 

2 2

1 2 1 1 2 2( , ) ( , ) ( , ) ( , )E H H O x y R x y T O x y R x y T       (8) 

When reconstructing E with reference light ( , )R x y in Eqs.(3), the '+1' diffracted light can be 101 

described as 102 
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( , )x y  is the change in phase distribution between 2( , )O x y and 1( , )O x y .   is a real 103 

constant. 104 
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where 3 1V   corresponds to the optimum fringe contrast. To get the optimum fringe 107 

contrast, according to Eq. (9), make the two exposure times equal: 1 2T T  [23].  The interferogram 108 

of ultrasonic wavefield at t2 moment can be described as 109 

2

3 3

( , )
2 cos

2

x y
I W

 
  

 
 (34) 

According to Eqs.(14), the information of ultrasonic wavefield at t2 are embedded in the 110 

interferogram. The ultrasonic wavefield at t2 moments can be recovered from the interferogram 111 

through phase unwrapping (details can be found in section 4). 112 

2.2 Measurement of 3D ultrasonic wavefields  113 

 114 

CCD

Laser

Synchronous Control 

System.
Host Computer

Ultrasonic Transducer

Opaque solid sample
Defect

Medium

 115 

Figure 1. Schematic diagram of the proposed measurement method 116 

In this paper, a method based on digital holographic interferometry is proposed to record 3D 117 

ultrasonic wavefields instead of the array transducer for imaging the internal defects of test piece. As 118 

shown in Figure 1, this technique works as follows: an opaque solid sample is put on top a piezo that 119 

generates a single frequency short pulse ultrasonic wave, and the ultrasonic wave propagates to the 120 

sample surface. These ultrasonic wavefields carry information about the internal structures and the 121 

internal defects. Then the dynamic ultrasonic wavefield on the surface is measured by a lensless 122 

CCD camera. 3D ultrasonic data are captured by recording multiple ultrasonic wavefields at a 123 

consecutive time sequence by synchronizing the CCD capture, pulsed laser irradiation and 124 

ultrasonic transducer excitation. 125 

By shifting the delay time between the ultrasonic excitation and CCD capture, and repeating the 126 

optical measurement, the cross-sectional wavefields at different depths of the test sample can be 127 

recorded. The time sequence of ultrasonic wavefields form two 3D arrays (two spatial dimensions + 128 

depth): a phase array and an amplitude array. The spatial dimensions of 3D ultrasonic wavefields 129 
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are determined by the number of elements on the CCD camera. Each element of the CCD camera 130 

captures an equivalent ultrasonic A-scan signal. The sampling frequency for acquiring these 131 

ultrasonic A-scan signals is determined by the step length of the time delay shifting shown in Figure 132 

2. The minimum step length is the length of the laser pulse. If the step length is less than the laser 133 

pulse length, two measured wavefields will be overlapped, and thus will reduce the accuracy of the 134 

wavefield measurement. Therefore, the laser pulse width determines the upper limit of sampling 135 

frequency for the A-scan signal acquisition using the optical measurement. In addition, the 136 

repetition rate of the pulsed laser and the frame rate (fps) of the high-speed camera determine the 3D 137 

ultrasonic wavefields acquisition speed. 138 

Delay 1

t2
t3

t4
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Delay 2

Delay 3

Delay 4
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Delay n

Step length

Ultrasonic signal

Repeat 1: static state at t1

t
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Repeat 3:  cross-sectiono wavefield at t3

Repeat 4:  cross-sectiono wavefield at t4

Repeat n:  cross-sectiono wavefield at tn

139 

  140 

Figure 2. Acquisition of 3D ultrasonic wavefields consisting of multiple cross-sectional wavefields. 141 

As shown in Figure 2, t1, t2, t3 ... are the different time points in an ultrasonic signal. The Delay 142 

1 in the Figure 2 is the delay time at first measurement (Repeat 1). At t1, the sample has not yet been 143 

excited by the ultrasonic signal, and the corresponding hologram is to measure the topographical 144 

surface of the test piece in the static state. t2 .... tn are the sampling points of the dynamic ultrasonic 145 

wavefields. By shifting the delay time (Delay 2) in second measurement (Repeat 2), the cross-section 146 

wavefield at t2 is obtained. Delay 3…. Delay n are the delay time at t3 .... tn moment and the different 147 

delay times are based on the cross-sectional wavefields at different depths. As shown in Figure 2, 148 

each repeated measurement will set a delay time and the corresponding ultrasonic wavefields will 149 

be obtained.  150 
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Figure 3. Flow chart of measurement of 3D ultrasonic wavefields 152 

Figure 3 shows an analysis of n points. As shown in Figure 3, the digital holograms of the test 153 

sample are obtained at times t1, t2 ... tn. The specimen surface at t1 is stationary. According to theory 154 

of digital holographic interferometry(in section 2.1), the interferograms 2 to n-1 of the ultrasonic 155 

wavefields at t2 to tn relative to t1 can be obtained. Holographic interferogram2 in Figure 3 is linked 156 

to Eqs.(9). As shown in Figure 3, the angular spectrum reconstruction is used to obtain the amplitude 157 

and phase of the light field. The angular spectrum method have several advantages over the more 158 

commonly used Fresnel transformation or Huygens convolution method. Spurious noise and 159 

interference components can be tightly controlled and the reconstruction distance does not have a 160 

lower limit. The off-axis angle between the object and reference can be lower than the Fresnel 161 

requirement and still be able to cleanly separate out the zero-order background[24].These 162 

interferograms are then used to generate the cross-sectional wavefields at time instants of t2 to tn.  163 

3. Design of 3D Ultrasonic Wavefields Measurement System 164 

In order to obtain the interferograms in Figure 3, a pulsed digital holographic microscopy 165 

system is designed as shown in Figure 4.  166 
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Figure 4. The designed pulsed digital holographic microscopy system 168 

First, the pulsed light beam passes through the half-wave plate and Glan prism. They can both 169 

control the energy of the light beam and ensure a pure polarized light beam, improving the 170 

efficiency of the pulsed light beam interference. Then, the light beam passes through the beam 171 

expander and enters beam splitter-1. The coherence distance of the plused laser is limited. In order to 172 

ensure that the light path of the reference light and the object light are the same, the Mirror-3 in Fig. 4 173 

is used to make up the light path difference. The specimen is an opaque solid and the reflected object 174 

light is weak when the reflectivity of the target specimen is low. To facilitate the ratio of intensity 175 

between the reference beam and object beam, we chose a 9:1 non-polarizing beam splitter cube 176 

(NPBS) as beam splitter-1. The NPBS used here is 90% of the transmitted light and 10% of the 177 

reflected light, which enhances the intensity of the object light and weakens the intensity of the 178 

reference light. It is also helpful to tune the ratio of the object light to the reference light, improving 179 

the hologram quality. Because the pulsed light beam is pure polarized light, we chose the rest of the 180 

beam splitters to be NPBS, but with a splitter ratio of 5:5. As shown in Figure 4, the object is placed 181 

near beam splitter-2, and mirror-3 is placed near diagonal beam splitter-3. The four beam splitters in 182 

Figure 4 reflect the unwanted light beam out of the light path, as shown by the red arrow. 183 

The parameters of the pulsed laser, camera and microscopic lens are crucial for acquiring high 184 

quality 3D ultrasonic wavefields. The laser power should provide sufficient light flux to illuminate 185 

the sample surface, satisfying the flux demand of the CCD camera. Coherence length of the laser 186 

pulse is also important. A large coherence length will greatly facilitate the construction of the digital 187 

holographic microscopy subsystem. Important parameters for the high-speed camera include the 188 

shutter speed, CCD camera sensitivity and signal to noise ratio (SNR) and the frame rate. Short 189 

shutter time, high sensitivity and SNR of the CCD camera ensure capturing a high quality optical 190 

hologram even when limited light is provided by a short laser pulse. The performance of the 191 

microscopic lens not only reduces the optical aberration, but also the magnification and numerical 192 

aperture will affect the lateral resolution of the instrument. The larger the magnification, the smaller 193 

the imaging region, but with a higher lateral resolution. In this paper, the pulsed laser chosen here is 194 

Beamtech NIMMA 400 Pulsed Laser with a pulse width of 8 ns and the repetition rate of 1-10 Hz. 195 

The wavelength of 532nm is used in the experiments.If the detected frequency of ultrasonic 196 

wavefield is 1MHz, and the time period of 1000ns.The 8ns pulse width of the laser can illuminate 197 

one cycle of 1/125 for its 1000ns cycle. In other words 8ns << 1000ns, can be regarded as relatively 198 

transient. The CCD (German PCO Company 1600) with the shortest exposure time is chosen, and its 199 
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exposure time can be as short as 500ns. The frame rate of CCD is 30 fps. The microscopic lens used in 200 

this paper is Japan Mitutoyo company, its numerical aperture NA = 0.5, the magnification of 50X. 201 

 202 

Industrial Host 

Computer
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Pulsed laser CCD

Image 
Processing

Ultrasonic 
transducer

 203 

Figure 5. Schematic of the synchronous control system. 204 

Control and synchronization is fundamental for high-quality hologram capture. The control 205 

system must provide a precise delay time between the laser pulse and the camera capture for the 206 

proposed digital holographic microscopy system. Figure 5 shows the synchronous control system, 207 

consisting of a host computer, a synchronous controller, ultrasonic transducer, a CCD camera, and a 208 

pulsed laser. The synchronous controller is implemented through the timing of NI's PXI-6602 and 209 

digital I/O modules. As shown in figure 6, the synchronous controller is designed to ensure that the 210 

CCD camera receives the 8-ns laser pulse within its exposure time window of 500 ns, and it is also 211 

the time when the cross-section wavefield at the depth we want.  212 

Q trigger of pulsed laser

Exposure tigger of 
CCD

Utransonic excitation

8ns

500ns

The time of delay at the depth we want
 213 

Figure 6. Synchronous control timing diagram 214 

 215 

4. Simulation Study 216 

In this section, computer simulation is carried out to verify the feasibility of the proposed 217 

measurement method.   218 

4.1 Simulation of Interferograms of Ultrasonic Wavefield 219 
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The interferograms of dynamic ultrasonic wavefield are simulated by computer-generated 220 

hologram. Here, t1 is static, and a Gaussian distribution is used to simulate the deformation of the 221 

surface at the time point t2. 222 

As shown in Figure 7, the maximum deformation of the surface caused by ultrasonic wavefield 223 

is 115nmz  at t2. The wavelength of the simulated light source is -3=0.532 10 mm  . The 224 

pixel width of the CCD is pix=7.4μm . The angle between the reference light and the object light is 225 

4 . The distance between the object light and the reference light has been considered in the Figure 226 

4. Therefore the factor is not considered in the simulation section.. 227 

 228 

Figure 7. Surface of a longitudinal ultrasonic transducer 229 

  

(a) Holograms(t1) (b) Holograms(t2) 

  

(c) Reconstructed plans(t1) (d) Reconstructed plans(t2) 

Figure 8. The holograms before and after deformation 230 

Using Fresnel diffraction theory, the object light reaching the hologram plane is simulated, and 231 

the reference light is defined. Also, the interference between the object light and reference light is 232 

simulated. The corresponding interference field intensity is calculated, and the digital holograms are 233 

formed. Using Eqs. (1) and (3), the holograms at t1 and t2 are obtained, as shown in Figure 8. Figure 234 

8(a) is the hologram at t1, and Figure 8(b) is the hologram at t2. Based on these holograms, the two 235 

holograms from the angular spectrum diffraction are reconstructed. By using the angular spectrum 236 

transfer function in analytic form, the calculation required only one direct and one inverse FFT. The 237 

angular spectrum formula also rigorously satisfies the scalar wave equation, and its use is 238 

widespread in holography. Figures 8(c) and (d) shows the reconstructed plans, and the zero-order 239 

diffraction light is filtered out. After reconstructing the digital holograms, the reconstructed images 240 

of the model at t1 and t2 are obtained, as shown in Figure 9. 241 

 242 
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 243 

  

(a) Amplitude of reconstruction image(t1) (b) Phase of reconstruction image (t1) 

  

(c) Amplitude of reconstruction image (t2) (d) Phase of reconstruction image (t2) 

Figure 9. Reconstructed images before and after deformation 244 

Figures 9 (a) and 9 (c) show the amplitudes of the reconstructed image at t1 and t2, and these 245 

represent the shape of the speckled object. Figures 9 (a) and (c) show that, 115nm is less than the 246 

wavelength of the illumination light. Therefore, the phase of the optical wave field is represented by 247 

the arc tangent function and varies in the range of  -π,π . In fact, the real phase takes a value of 2π , 248 

which remains a random variable. Therefore, the phase shown in Figure 9(b) and (d) is a random 249 

distribution, and the deformation cannot be directly detected from the phase image. According to 250 

Eqs. (5) and (6), the digital interferogram of the object light field at t2 relative to t1 as shown in Figure 251 

10, can be calculated. 252 

 253 

Figure 10. Digital interferogram of the object light field at t2 moment 254 

The deformation is wrapped in the black and white stripe of the interferogram, and it is 255 

verified that the digital holographic interferometry can effectively measure the ultrasonic wavefield 256 

4.2 Phase unwrapping in measurement of 3D ultrasonic wavefields 257 

The ultrasonic wavefields are obtained by phase unwrapping because the absolute value of the 258 

phase change is wrapped in the interferogram.  259 
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 260 

Figure 11. Phase image after unwrapping 261 

2D-SRNCP unwrapping algorithm [23] is used to process the unwrapping phase. The algorithm 262 

sorts by reliability, following a non-continuous path, and copes excellently with the noise that 263 

corrupts the real wrapped phase images. 264 

Figure 11 shows the true deformation of the phase in figure 10 after using the 2D-SRNCP 265 

algorithm. As shown in Figure 11, some of the points after unwrapping are different from those of 266 

the initial model. Because the reconstruted object wave field is a speckle field, the amplitude and 267 

phase of the interferogram is subject to external constraints and perturbation. This random noise 268 

affects the quality of the image and the results of the unwrapping algorithm. The 2D-SRNCP 269 

algorithm is mainly based on sorting by reliability to solve the phase-wrapping. The error points in 270 

Figure 11 are mostly low reliability, and the noise more seriously affects the unwrapping algorithms 271 

of these points, so annular irregularities appear. The optimized unwrapping algorithm will be 272 

studied for error points in the next study. 273 

  

(a) Profile data (b) Data comparison 

Figure 12. Phases of deformation 274 

To analyze the data more clearly, the one-dimensional profile data (X and Y directions) of the 275 

initial model and the unwrapped phases are obtained separately. As shown in Figure 12 (a), the 276 

profile data (red line) is selected in the image. The profile data are matched to the three-dimensional 277 

data, and the phase data of the profile data are obtained, as shown in figure 11(b). It can be 278 

confirmed again that the phase after unwrapping conforms to the initial model of vibration 279 

deformation. Comparing the two sets of curves shows that the greatest error is near the center of the 280 

circle. The maximum error is 0.28 μm, about 18%.  281 

There is also a case when the phase is not wrapped at all, that is, when the height of the 282 

deformation is close to several or several tens of nanometers, there is no need for unwrapping. 283 

5 Experimental Results 284 
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 288 

Figure 13. The proposed 3D Ultrasonic Wavefields measurement system 289 

Figure 13 shows the proposed 3D Ultrasonic Wavefields measurement system. The subsystem 290 

of digital holography consists of the CCD, the plused laser, and some optical components, which 291 

form the off-axis digital holographic optical path in Figure 4. The ultrasound subsystem consists of 292 

arbitrary waveform generator, power amplifier and ultrasonic transducer. 293 

A preliminary experiment was carried out to verify the designed system. Dynamic ultrasonic 294 

wavefield generated by a piezoelectric ceramic sheet was measured using the designed system. A 295 

fixed piezoelectric ceramic sheet with a diameter of 25 mm, thickness of 0.2 mm, and frequency of 296 

2700 Hz is used. The CCD pixel size is 7.4μm 7.4μmx y    , and it has a pixel resolution of 297 

1200 1200 . Because we used large specimens, we used a lens with an 80f mm focal length 298 

instead of a high-power microscope to reduce the large spot size to fit the CCD. The distance from 299 

the sample to the CCD is 400 mm, the distance from the microscope to the image is 100 mm, and the 300 

imaging reduction ratio is 4. The frequency of the detected vibration is 2700 Hz, the period of the 301 

vibration is 370000 ns, and the 8-ns pulse width of the pulsed laser is much less than 370000 ns, 302 

therefore it is transient.  303 

. 304 

 305 



Sensors 2017, 17, x FOR PEER REVIEW  13 of 16 

 

Q trigger of pulsed laser

Exposure tigger of CCD

Utransonic excitation

8ns

500
ns

t1 t2

t3
t4

Q trigger of pulsed laser

Exposure tigger of CCD

8ns

500
ns

Utransonic excitation

Q trigger of pulsed laser

Exposure tigger of CCD

Utransonic excitation

8ns

500
ns

Q trigger of pulsed laser

Exposure tigger of CCD

8ns

500
ns

Utransonic excitation

306 
Figure 14. Synchronous control timing diagram in the experiment 307 

 308 

As shown in Figure 14, the dynamic ultrasonic wavefields at four different time instants are 309 

measured in this preliminary study. Four different time delays (t1,t2,t3,t4) are set up to obtain 310 

different ultrasonic wavefields .. 311 

  

(a) Maximum surface topography at t1 moment (b) The surface topography at t2 moment  

Figure 15. The surface topography at t1 and t2 moment 312 

Figure 16. Data comparison at t2 and t3 moment 313 

Figure 15 shows the wavefield at the transducer surface when the transducer is vibrating to the 314 

t1 moment and t2 moment , and t1 moment have the positive maximum amplitude. Due to the 315 

serious interference caused by stray light in the experiment, we used an initial median filter to 316 

  

(a) Maximum surface topography at t1 

moment  

(b) The surface topography at t2 moment 
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mitigate interference from noise. As shown in Figure 12 (a), the cross-section (X direction and Y 317 

direction) is selected from the phase shown in Figure 16, and the results are shown in Figure 15. As 318 

shown in Figure 16 (a), the maximum amplitude is 0.89 μm. As shown in Figure 16 (b), the 319 

amplitude at t2 moment is 0.48 μm. 320 

Figure 17 and 18 shows the surface topography when the amplitude in the reverse direction. 321 

The process of data processing is the same as t1 and t2 moment. Figure 17 (a) is the surface 322 

topography at t3 moment, and figure 17 (b) is the surface topography at t4 moment. The 323 

cross-section (X direction and Y direction) data are shown in Figure 18. The amplitude is 0.59 μm at 324 

t3 moment, and the maximum amplitude is 0.91 μm at t4 moment. 325 

 326 

 
 

(a) The surface topography at t3 moment (b) Maximum surface topography at t4 

moment  

Figure 17. The surface topography at t3 and t4 moment 327 
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moment 

Figure 18. Data comparison at t3 and t4 moment 328 

In order to verify the measurement data, the traditional time-averaged method is used to 329 

measure the same piezoelectric ceramic sheet. Because the frequency of the ultrasonic wavefilds in 330 

the preliminary experiment is low, the vibration of the piezoelectric ceramic sheet could be 331 

measured by the time-averaged method. The optical subsystem in the designed system is used, and 332 

the pulsed laser is replaced by a continuous laser. Under the same experimental parameters, the 333 

amplitude of the vibration obtained by the time-averaged method is 0.75μm.The time-averaged 334 

method measures the average of the vibration of the ultrasonic wavefields, and the method 335 

proposed in this paper measures the amplitude of the transient ultrasonic wavefields. 336 

6 Conclusion 337 
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In this paper, the optical detection techniques acting as the ultrasonic receiving array for 338 

ultrasonic imaging in order to overcome the challenging issues faced by the current ultrasonic 339 

transducer arrays. The method based on holographic interferometry is proposed to measure the 340 

dynamic ultrasonic wavefields, and the pulsed digital holographic microscopy system is designed. 341 

The consecutive sequence of interferograms of ultrasonic wavefilds are calculated from the 342 

holograms, which are recorded at different time sequence by the system. The phase unwrapping is 343 

used to recover the deformation distribution of transient wavefileds from the interferograms. The 344 

computer simulation verified the feasibility of the proposed measurement method. In the 345 

experiment, the pulsed digital holographic microscopy system has been used to capture and 346 

measure dynamic ultrasonic wavefield generated by a piezoelectric ceramic sheet. The experimental 347 

results also verified the feasibility of the proposed method.  348 
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