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Autonomous Boolean networks are commonly used to model the dynamics of gene regulatory

networks and allow for the prediction of stable dynamical attractors. However, most models do not

account for time delays along the network links and noise, which are crucial features of real

biological systems. Concentrating on two paradigmatic motifs, the toggle switch and the

repressilator, we develop an experimental testbed that explicitly includes both inter-node time delays

and noise using digital logic elements on field-programmable gate arrays. We observe transients that

last millions to billions of characteristic time scales and scale exponentially with the amount of time

delays between nodes, a phenomenon known as super-transient scaling. We develop a hybrid model

that includes time delays along network links and allows for stochastic variation in the delays. Using

this model, we explain the observed super-transient scaling of both motifs and recreate the experi-

mentally measured transient distributions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4954274]

Gene regulatory networks control many essential biologi-

cal functions, including cell differentiation and metabo-

lism, and autonomous Boolean networks (ABNs) are a

common model to describe their dynamical behavior.

Most existing work, however, does not account for inter-

action delays and stochastic noise that is present in the

underlying biological systems. To address these short-

comings, we use high-speed digital electronics to con-

struct physical ABNs with inter-node time delays. Our

experimental system allows us to create networks with

arbitrary topologies and controllable delays between

nodes and includes a host of non-ideal effects that may

also play a role in a biological context. We study two

small network motifs and find that, although the pre-

dicted stable states of these systems are eventually

reached, the time to reach these attractors scales expo-

nentially with the time delay. This phenomenon is known

as super-transient scaling, and the durations of these

experimentally observed super-transients raise the ques-

tion of whether transients might have relevance in a bio-

logical context.

I. INTRODUCTION

The dynamical behavior of gene regulatory networks is

commonly described by a set of piecewise linear differential

equations known as autonomous Boolean networks (ABNs)

or the Glass model.1–6 The process of gene regulation

involves individual genes, coding for a protein, called the

gene product. This gene product, also called a transcription

factor, regulates in turn the transcription rate of other genes.

In the Glass model, the genetic activity is represented by a

Boolean variable, obtained by thresholding the concentration

of its transcription factor: a gene is either expressed (“on”),

meaning that it is transcribed and its gene product is being

produced, or not expressed (“off”). The associated gene

product concentration evolves continuously depending on its

response time and the (Boolean) transcription rate.

The attractor structure of ABNs has been used to explain

different patterns of genetic activity and could thus describe

phenomena such as stem cell differentiation, cell evolution,

and determine the immune response of a cell.7–9 For small-

scale ABNs, the complete attractor structure can be deter-

mined analytically, and the dynamical evolution of the net-

work’s state can be visualized as a walk along a “Boolean

hypercube,”5,10,11 as shown in Fig. 1. In this visualization,

the 2N possible states of an N-node network are represented

as the 2N corners of a N-dimensional hypercube, and allowed

state transitions are represented as the directed edges of this

hypercube.

The biochemical processes underlying gene regulation

involve many steps,12,13 however, and these intermediate

interactions can give rise to time delays in the response of a

gene to changing environmental conditions.14–16 Moreover,

this delay may vary stochastically, given that small quantities

of genes involved in the reaction can lead to pronounced

effects.17,18 In previous work on ABNs that does not include

time delays, transients are short lived and the stable attractor

is reached quickly. We demonstrate, however, that the explicit

inclusion of interaction delays generates super-transients.

Super-transients in delay systems, which scale exponen-

tially with the time delay, have been theoretically studied in

a context of bistable delayed feedback systems, which appear

in frequently in optics and biology19,20 and have been termed

“metastable patterns”. In a context of two delay-coupled

Hopfield neurons, the phenomenon has been named “delay

induced transient oscillations.”21 Mathematically similar to

gene regulatory circuits, these are all bistable switchlike sys-

tems, and the approximation as a piecewise linear systems

proves useful as well. Our work thus provides experimentala)Electronic mail: otti.dhuys@phy.duke.edu
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evidence for this behavior, and extends the past research to

larger networks and stochastic delays.

Our results are not only relevant in a context of ABNs.

Although dynamical systems are often analyzed in terms of

their stable attractors, supertransients might render the even-

tual attractor irrelevant.22,23 We show that link delays—which

appear, but are not always taken into account in many com-

plex networks, such as neuronal networks and gene regulatory

networks can give rise to transients that might be so long, that,

in order to understand or control the dynamics, analyzing the

structure of the stable attractors is not sufficient.

In this work, we consider two paradigmatic network

motifs—the toggle switch and the repressilator, illustrated in

Fig. 1. The toggle switch is a bistable motif of two mutually

repressing genes, the repressilator is a unidirectional ring of

three genes that repress one another, and shows stable out-

of-phase oscillations. Both motifs have been synthesized in

biological systems.24,25 We study the super-transient dynam-

ics of these network motifs with delays both experimentally

and theoretically. First, as described in Sec. II, we construct

experimental autonomous Boolean networks using fast digi-

tal electronics. We represent repressing genes as inverter

gates in a digital circuit and explicitly include delays

between the nodes. We find that the toggle switch and

repressilator circuits do indeed reach the stable behavior pre-

dicted by the Glass model, but that the unstable transient dy-

namics leading to the attractor can be extremely long-lived.

These long transients can last for millions or even billions of

characteristic time scales and their duration approximates an

exponential scaling with the delay. The sheer magnitude of

the super-transients may render the stable behavior of these

systems irrelevant in some circumstances.22,23

We then introduce an analytical model based on the

Glass model that includes interaction delays in Sec. III. We

derive explicit transient times for the toggle switch and

repressilator and demonstrate that the model reproduces

metastability that is observed experimentally. Moreover, we

allow interaction delays to vary stochastically and show how

noise affects the metastability and explains the experimen-

tally observed probability distributions.

II. EXPERIMENTAL SYSTEM AND RESULTS

Field-programmable gate arrays (FPGAs) are a type of

programmable integrated circuit that can be used to synthe-

size large, experimental complex networks with arbitrary

topologies, asynchronous (i.e., unclocked) update rules, and

time-delay links.26 Nodes of these experimental autonomous

Boolean networks are built from asynchronous logic ele-

ments on the FPGA, which can be configured to perform ar-

bitrary Boolean functions. By wiring a specific number of

“delay elements” consisting of pairs of inverter gates in se-

ries, the finite rise and fall times of the logic elements can be

exploited to create links with a specific amount of time

delay.26,27

We use an Altera Cyclone IV FPGA to construct two

paradigmatic network motifs—the toggle switch and the

repressilator, which consist of two and three unidirectionally

coupled inverters, respectively—and vary the amount of delay

between each of the nodes to study the transient evolution of

these systems to their stable states. The average delay of a sin-

gle delay element on the Cyclone IV is experimentally meas-

ured to be 520 ps, though heterogeneity between logic

elements due to chip architecture and manufacturing imper-

fections causes the possible delay to vary between 250 and

750 ps. Here, we consider only the case where the number of

delay elements, denoted n ¼ ðn1; n2;…; nNÞ, with N being the

number of links, is the same, i.e., n1 ¼ n2 ¼ � � � ¼ nN .

We study the scaling of average transient durations by

implementing a given network topology on the FPGA and

increasing the time delay between nodes. Initial conditions

of the networks are specified by holding each of the nodes in

either the 0 or 1 state for a period of 60 ms. The networks

begin their dynamical evolution when the nodes are released

simultaneously (to within 100 ps) from their initial condi-

tions by a control signal from a clocked register. At this

point, the dynamical state of each node evolves asynchro-

nously with its inputs until a stable state of the network is

reached. A 50 MHz counter implemented on the FPGA

records the time elapsed from when the network is released

from its initial conditions to when the stable behavior is

detected with a precision of 20 ns. For each n, approximately

3� 104 transients are recorded to produce histograms that

estimate the probability density function of the transient

durations.

Toggle switch—The dynamical evolution of the toggle

switch with no delay (n¼ 0) is illustrated in Fig. 1(b). It is

seen that the states (0, 1) and (1, 0) are stable fixed points. If

the network is initialized in any other state, it quickly

evolves to one of these two fixed points and remains there

for all time.1

An example of the evolution of an experimentally-

realized toggle switch with time delays is shown in Fig. 2. A

toggle switch with time delays of n¼ (2, 2) delay elements

along its links is initialized with both nodes in the 0 state.

Immediately after being released, the network displays in-

FIG. 1. Cartoon topology and Boolean hypercube state space visualization of

the toggle switch [(a) and (b)] and repressilator [(c) and (d)]. Transitions allowed

by network topology are indicated with arrows, and stable states are bolded. In

the case of the toggle switch, the states {0, 1} and {0, 1} are stable fixed points,

and in the case of the repressilator, the path f0; 1; 0g ! f1; 1; 0g ! f1; 0; 0g
! f1; 0; 1g ! f0; 0; 1g ! f0; 1; 1g is a stable limit cycle.
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phase oscillations. Over time, however, heterogeneities in

the network cause a shortening of the pulses generated

by each node. When the pulses become shorter than

the response time of the nodes (approximately 410 ps), the

pulses are rejected outright and the network collapses into a

stable state.

We find that the mean transient duration Tm of toggle

switches tends to increase non-monotonically with the

amount of time delay between the nodes, as shown in Fig. 3.

The exponential trend is however clear. For transients of

moderate length (i.e., hundreds to thousands of oscillations),

the distributions of durations are short-tailed. As the time

delays along the links are increased above s� 2 ns, however,

for some experimental realizations the tail of the distribu-

tions becomes dramatically longer and resembles a power

law. Moreover, the mean transient duration Tm is different

for the two initial conditions that we used. Typical probabil-

ity mass functions of the transient times in the short-tail

(long-tail) regime are shown in Fig. 4(a) (Fig. 4(b)). In addi-

tion, some choices of delays give rise to bistability, in which

networks initialized with nominally the same initial condi-

tions eventually collapse to either of two co-existing stable

attractors, (0, 1) or (1, 0).

The super-transients with broad distributions in toggle

switches only occur for specific values of delays, however.

We relate this phenomenon, as well as the nonmonotonic scal-

ing of the transient length, and the difference between the two

initial conditions that we used, to the high sensitivity of the

circuit to small differences between the logical gates, which

cause a heterogeneity between the link delays. Moreover, the

gates can show a difference in response time between the

upward transition and the downward transition.26,28 These

rise/fall asymmetries are as well specific for each node, and

combine to a rise/fall asymmetry over the whole delay line.

The effect is theoretically modeled in Section III D.

Repressilator—We perform similar experiments for the

repressilator. The allowed dynamical transitions of a repres-

silator with no delay are shown in Fig. 1(d). For this net-

work, it can be seen that the limit cycle f0; 1; 0g ! f1; 1; 0g
! f1; 0; 0g ! f1; 0; 1g ! f0; 0; 1g ! f0; 1; 1g is stable. A

network with initial conditions not on this limit cycle quickly

evolves to this stable behavior.1

The mean transient length Tm of the repressilator is

shown in Fig. 5. Also here we observe an exponential trend,

which is deteriorated by a high sensitivity to the specific

setup (data for n¼ 6 and n¼ 7 do not follow this trend). Just

like for the toggle switch, we find that transients for a repres-

silator with short delays are moderate in duration and short-

tailed, but a regime of super-transients is observed as link

FIG. 2. (a) Time series of a network of a toggle switch with n¼ 2 delay ele-

ments (approximately 1.2 ns) between each node initialized with both nodes

in the 0 state. The oscillatory transient collapses to the (1, 0) state after

approximately 150 ns. (b) Phase diagram of the same time series. The green

square indicates the initial conditions in the (0, 0) state, and the red square

indicates the fixed point of (1, 0) reached by the network.

FIG. 3. Mean transient duration Tm for the toggle switch increase non-

monotonically as the number of delay elements between the nodes is

increased for initial conditions (ic) (0, 0) (red squares) and (1, 1) (blue dots).

Standard deviations are smaller than the width of the markers and are

omitted.

FIG. 4. Probability mass functions of toggle switch transients (a) with short-

tailed durations for n¼ (8, 8) delay elements (approximately 4.8 ns) between

the nodes and (b) with long-tailed (power law) durations for n¼ (5, 5) delay

elements (approximately 3 ns) between the nodes.
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delays are increased above s� 2 ns. The observed super-

transients for the repressilator are however much longer on

average than for the toggle switch, lasting as long as seconds

or even minutes (corresponding to billions of oscillations

cycles). As shown in Fig. 6(b), the tails are distributed expo-

nentially for a repressilator, as opposed to the power law tails

observed for the toggle switch. Unlike for the toggle switch,

repressilator super-transients are found for every network

with delay times larger than s� 2 ns.

This difference between toggle switch and repressilator

can be explained by a symmetry argument: In rings with an

odd numbers of inverter gates, such as the repressilator,

upward transitions become downward transitions on succes-

sive passes around the ring, thus correcting the rise/fall

asymmetry. This correction does not occur, however, for

rings with even numbers of logic elements, resulting in

pulses that are broadened or narrowed on successive passes

through the ring. The rise/fall asymmetry therefore biases

the toggle switch toward one of the stable states over time,

decreasing the likelihood of extremely long-lived transients.

III. ANALYTIC MODEL

We use a piecewise linear model with delay to explain our

experimental results. First, we explicitly derive the duration of

transient times for a symmetric toggle switch and repressilator,

and we recover an exponential dependence of the transient du-

ration on the delay time. Next, we explain how, in the toggle

switch, heterogeneities in the time delays and asymmetries in

rise and fall times of the different gates, implemented as asym-

metric thresholds, affect the duration of the transient, and how

their combined effect can lead to a non-monotonic behavior of

the transient duration with the delay, whereas, in a repressila-

tor, the effect of threshold asymmetries is shown to be much

smaller. Finally, we explicitly implement stochasticity in the

time delays and explain the experimentally observed transient

time distributions.

A. Piecewise linear modeling of a ring of inverters

Following Edwards et al.,16 we model a ring of N inver-

ters as

_xiðtÞ ¼ �xiðtÞ þ Fðxiþ1ðt� siÞÞ ; (1)

with i¼ 1…N and N þ 1 � 1. The function F(x) represents

an inverter gate, which asynchronously thresholds and

inverts its input. We chose here the “on” state as x¼ 1 and

the “off” state as x¼�1 for the sake of symmetry, i.e.,

FðxÞ ¼ 1 if x < 0

¼ �1 if x � 0: (2)

Inspired by the Glass model,1 this model (Eq. (1)) takes into

account an internal response time of the signal. As the input

signal F(x) switches, the output follows exponentially. This

response time, which is measured experimentally to be approxi-

mately 410 ps, is normalized to unity in our model. In contrast

to the Glass model, we also include a delay time si of each link.

Since the modeling equations are piecewise linear, it is

possible to treat the system analytically. The system allows

for almost synchronous in-phase oscillations. The inverters

are slightly time-shifted29 and exhibit square-wave oscilla-

tions with a period P ¼ 2sþ 2lnð2� e�sÞ, with s being the

average delay in the ring. The motion is then described as

xðtÞ ¼ �1þ ð2� e�sÞe�t�nP

for nP � t < nPþ P=2

xðtÞ ¼ �xðt� P=2Þ
for nPþ P=2 � t < ðnþ 1ÞP :

(3)

This solution exists in a ring of any number of elements, but

it is unstable if there is more than one inverter.

B. Transient duration in the toggle switch

We calculate explicitly the transient time to reach the

stable state for a toggle switch with heterogeneous delays,

starting from initial conditions x1ðt � 0Þ ¼ x2ðt � 0Þ ¼ 1. A

FIG. 5. Mean transient durations Tm for the repressilator increase exponen-

tially (and monotonically) as the number of delay elements between the

nodes is increased. The transition from short-tailed to long-tailed distribu-

tions can be seen in the growth of the vertical bars, which indicate the stand-

ard deviation of the distribution.

FIG. 6. Probability mass functions of the transient durations for repressila-

tors with (a) n¼ (2, 2, 2) delay elements (approximately 1.2 ns) and (b)

n¼ (7, 7, 7) delay elements (approximately 4.2 ns). The repressilator consis-

tently produces short-tailed transient distributions for short delay and long-

tailed transient distributions for long delay.

094810-4 D’Huys et al. Chaos 26, 094810 (2016)



difference in link delays is mathematically equivalent to a

difference in initial conditions, as long as the number of

edges is the same: one can transform29 a system with the

same delays s1 ¼ s2 ¼ s and different initial conditions

x1ð�s < t � �sþ DÞ ¼ �1; x1ð�sþ D < t � 0Þ ¼ 1 and

x2ðt � 0Þ ¼ 1, into a system with the same initial conditions

x1ðt � 0Þ ¼ x2ðt � 0Þ ¼ 1 and heterogeneous delays s1;2

¼ s7D. The heterogeneity in our model s2 � s1 thus results

from the combination of different link delays and differences

in timing at the initialization of the nodes. We reformulate

the dynamics of toggle switch as a map.16 Our method is

based on the approach of Pakdaman et al.,21 and extends and

refines their results, to include multiple inverters, asymmetry

and stochastic delays.

The electronic toggle switch is modeled as

_x1 ¼ �x1 þ Fðx2ðt� s1ÞÞ
_x2 ¼ �x2 þ Fðx1ðt� s2ÞÞ :

(4)

Initializing the inverter gates as x1ðtÞ ¼ x2ðtÞ ¼ 1 for

t� 0, we find that both inverters evolve exponentially

towards the “off” state as the system is released

x1ðtÞ ¼ x2ðtÞ ¼ �1þ 2e�t : (5)

At t0 ¼ lnð2Þ the inverters cross the threshold x¼ 0.

Consequently, at t1;1 ¼ t0 þ s1; x1ðtÞ changes direction. The

other inverter x2ðtÞ switches direction at t1;2 ¼ t0 þ s2. We

define a1 and b1 as the respective distances of the inverters

from the steady states x ¼ 61

a1 ¼ j1þ x1ðt1;1Þj ¼ e�s1

b1 ¼ j1þ x2ðt1;2Þj ¼ e�s2 :
(6)

For s1 < s2, we find b1 < a1, meaning that the second in-

verter comes closer to the steady state than the first one. In

the next delay interval t > t1;i, the inverters evolve towards

the “on” state again. Their dynamics are given by

x1ðtÞ ¼ 1� ð2� a1Þe�ðt�t1;1Þ

x2ðtÞ ¼ 1� ð2� b1Þe�ðt�t1;2Þ :
(7)

The difference in amplitude between the voltages causes an

additional difference in timing between the edges. We find

for the next switching points

t2;1 ¼ t1;2 þ lnð2� b1Þ þ s1

t2;2 ¼ t1;1 þ lnð2� a1Þ þ s2 ;
(8)

such that the plateau lengths are given by

Dt1 ¼ t2;1 � t1;1 ¼ s2 þ lnð2� b1Þ
Dt2 ¼ t2;2 � t1;2 ¼ s1 þ lnð2� a1Þ :

(9)

As each inverter shows asymmetric square waves with

approximate plateau lengths s1 þ ln 2 and s2 þ ln 2, we

define ak and bk as the distances from 61 for the short and

the long plateaus, respectively. We thus follow a plateau,

rather than an inverter. The next distances a2 and b2 are

given by

a2 ¼ j1� x2 t2;2ð Þj ¼ 2� b1ð Þe�Dt2 ¼ 2� b1

2� a1

e�s1

b2 ¼ j1� x1 t2;1ð Þj ¼ 2� a1ð Þe�Dt1 ¼ 2� a1

2� b1

e�s2 :

(10)

Following this method, we can predict the minimal and max-

imal voltages (and plateau lengths) over the next delay inter-

vals. This leads to a map

akþ1 ¼
2� bk

2� ak
ak

bkþ1 ¼
2� ak

2� bk
bk :

(11)

Using a1 ¼ e�s1 and b1 ¼ e�s2 , we find akbk ¼ e�ðs1þs2Þ. At

each transition, the series bk converges to zero while the se-

ries ak diverges, i.e., the difference between the amplitudes

of the oscillators increases. When aK � 1, we find x1ðt1;KÞ
¼ aK � 1 > 0 (or x2ðt2;KÞ ¼ 1� aK < 0) at the onset of an

upward (downward) transition. As one of the inverters does

not cross the threshold, the pulse is not being transmitted

and the steady state is reached.

The map (11) can be explicitly written as

ak ¼ e�s1
2þ e�sð Þk þ 2� e�sð Þk

� �
� e

s1�s2
2 2þ e�sð Þk � 2� e�sð Þk
� �

2þ e�sð Þk þ 2� e�sð Þk
� �

� e
s2�s1

2 2þ e�sð Þk � 2� e�sð Þk
� � ; (12)

with s ¼ 1
2

s1 þ s2Þð . The transient length is given by

T ¼ Kðsþ lnð2� e�sÞ, where K is determined by the condi-

tion aK > 1, multiplied by the mean plateau length. In the

long delay limit e�s ! 0, we can approximate

0 � e�s1

aK
¼ 2þ e�sð ÞK þ 2� e�sð ÞK
� �

�e
s2�s1

2 2þ e�sð ÞK � 2� e�sð ÞK
� �

;

and find

K �
ln coth

s2 � s1

4

� �
ln 2þ e�sð Þ � ln 2� e�sð Þ (13)

� es ln coth
s2 � s1

4

� �
: (14)
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We recover here the fundamental property of metastabil-

ity: the transient length scales exponentially with the average

delay time.21 For s1 � s2,

K / �esln
s2 � s1

4

� �
;

and for large difference in delay lengths s2 � s1 	 1 we find

K / e�s1 :

This dependency on the heterogeneity s2 � s1 is exemplified

in Fig. 8.

A typical time series of these unstable synchronous

oscillations in a toggle switch is shown in Fig. 7, together

with a phase diagram that shows the diverging oscillators.

We indicated the first extrema 617a1;2;617b1;2, and the

corresponding switching times in the graph.

Comparing numerical simulations of the map ak (Eq.

(11)) with the analytic approximation (Eq. (14)), we find that

the integer part of the approximation is equal to the numeri-

cally obtained number of oscillations in all cases. The numeri-

cal results and the approximation are hence indistinguishable

in Fig. 8.

C. Generalization to N nodes

This model may be generalized to a ring with N inver-

ters. If all inverters are initialized equally at one of the steady

states xiðt < 0Þ ¼ 61, we can construct a similar map as for

the toggle switch (Eq. (11))

ai
kþ1 ¼

2� aiþ1
k

2� ai
k

ai
k (15)

with ai
K the distance of the i-th plateau from the steady

states, N þ 1 � 1 and Pai
k ¼ e�stot . This map can be written

out as

ai
k ¼ e�si

PN
l¼0

exp
Pl

m¼1

siþm�1 � ls

 !PN
s¼1

eish 2� e�ih�sð Þk

PN
l¼0

exp
Pl

m¼1

siþm � ls

 !PN
s¼1

eish 2� e�ih�sð Þk
;

(16)

where h¼ 2p/N.

For a repressilator (N¼ 3), the duration of the transient

length can then be estimated by calculating the smallest K
for which any of the ai

K > 1. In this case, two transitions col-

lide so that one pulse becomes too short and is annihilated

and only one transition remains per round trip delay (the sta-

ble out-of-phase oscillation). It is no longer possible to deter-

mine the number of oscillation cycles K analytically, but the

transient length may be estimated graphically. For N¼ 3, the

denominator in Eq. (16) can be rewritten as

aAk þ bBk þ b
B
k ;

with A ¼ 2� e�s, and B ¼ 2� eih�s; a ¼ 1þ es2�s

þ es2þs3�2s; b ¼ 1þ e�ihes2�s þ eihes2þs3�2s; h ¼ 2p=3 and

the star denoting complex conjugation. As an approximation

for transient collapse, the denominator equals zero for k¼K.

This leads to a condition

aAK ¼ �2jbjjBjK cos K/þ gð Þ

() K ¼ ln a� lnj2bj � ln �cos K/þ gð Þð Þ
lnjBj � ln A

; (17)

where / ¼ argðBÞ and g ¼ argðbÞ. When cosðK/þ gÞ > 0,

the transient cannot collapse. This phase effect leads to char-

acteristic cusps when calculating the transient lengths for

varying heterogeneities. Moreover, we obtain a lower limit

for the transient length and recover the exponential scaling

of the transient length with the mean time delay

FIG. 8. Duration T of the transient synchronous waves for varying heteroge-

neity in interaction delays s2 � s1, in a toggle switch, obtained by simulating

the map (Eq. (11)) (red full line) and by the long delay approximation Eq.

(14). The upper blue full curve shows the transient length for a repressilator

with similar parameters, obtained by simulating Eq. (15), and the gray

dashed curve is the analytically obtained lower bound (Eq. (18). Parameters

are s¼ 6, d¼ 0 and, for the repressilator s3 ¼ 6. The inset zooms in on the

transient length for very small heterogeneities between the delays.

FIG. 7. (a) Time series of x1ðtÞ (black dashed curve) and x2ðtÞ (full red

curve) in a toggle switch as modeled in Eq. (4). Parameters are s1 ¼
2:5; s2 ¼ 3:5 and m¼ 0; initial conditions are x1ðt < 0Þ ¼ x2ðt < 0Þ ¼ 1.

The first two switching times and extrema, on which the description as a

map is based, are also marked; variables in black (red) relate to the first (sec-

ond) inverter. (b) Phase diagram of the same time series. The green square

indicates the initial conditions (1, 1) and the red square denotes the steady

state (1, �1) eventually reached by the toggle switch.
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K � ln a� lnj2bj
lnjBj � ln A

� 4

3
esln

a
2jbj

� �
: (18)

Figure 8 compares the duration of the in-phase oscilla-

tory transient in the repressilator (obtained by simulations of

the map Eq. (15)) and toggle switch, for varying heterogene-

ity. Although the transients last somewhat longer in the

repressilator, the transient duration is of a similar magnitude

in both motifs. Cusps in the repressilator transient duration

are visible at s2 � s1 � 0:004 and s2 � s1 � 0:15.

D. Influence of threshold asymmetries

To better approximate the experiment, we implement

asymmetries within each inverter between the rising and fall-

ing edge. These asymmetries in the model account for the

accumulated effect over the whole delay line. The easiest way

to incorporate those in the model is by shifting the threshold

of the gate input. The toggle switch is then modeled as

_x1 ¼ �x1 þ F1ðx2ðt� s1ÞÞ
_x2 ¼ �x2 þ F2ðx1ðt� s2ÞÞ ;

(19)

with

F1;2ðxÞ ¼ 1 if x < d1;2

¼ �1 if x � d1;2 : (20)

The asymmetry of the gate causes a constant bias: if d> 0

(d< 0) a falling (rising) edge is advanced, while a rising (fall-

ing) edge experiences a longer delay time. As one edge is

always rising in the same gate, and falling in the other, the

two edges consistently experience a different bias over the

duration of the transient if the gates are nonidentical. In the

following, we choose d ¼ d1 ¼ �d2, but the general case

(d1 6¼ d2) is similar. The effect is not caused by the threshold

asymmetries themselves, but by the fact that these are not the

same for all inverters in the model, or for all the logical gates

in the experiment. In the asymmetric case, for initial condi-

tions xi(t� 0)¼61 the map (Eq. (11)) becomes

akþ1 ¼ ak
1þ d
1� d

2� bk

2� ak

bkþ1 ¼ bk
1� d
1þ d

2� ak

2� bk
;

(21)

with akbk ¼ ð1� d2Þe�ðs1þs2Þ. The unstable fixed point of

the map, which corresponds to synchronous oscillations of

the toggle switch, is given by

dþ 1

d� 1
¼ 2� a1

2� b1

or

2d � e�ssinh
s2 � s1

2

� �
:

The map is no longer exactly solvable, but the transient dura-

tion may be determined numerically. In Fig. 9(a), we show

the transient duration as a function of asymmetry, for differ-

ent heterogeneities in the delay times. Heterogeneity in the

link delays and threshold asymmetry between the gates may

compensate each other, and this phenomenon could explain

the non-monotonic increase of the transient duration with the

link delay in the experiment.

In Fig. 9(c), we show the transient duration for increas-

ing link delays in the presence of a threshold asymmetry.

The exponential scaling with the delay can break down for

large delay times: When d	 e�s holds, the transient length

only scales quadratic with the delay, as can be inferred from

the map Eq. (21).

For the repressilator (or, more generally, any ring with

an odd number of inverters), the threshold asymmetries play

FIG. 9. (a) and (b) Duration T of the transient synchronous oscillations for

varying asymmetry d, in a toggle switch (a) and a repressilator (b).

Parameters for the toggle switch are (full black curve) si ¼ s ¼ 6, (blue,

dashed-dotted) s1 ¼ 5; s2 ¼ 7 and (red) s1 ¼ 4; s2 ¼ 8. For the repressilator

we chose (full black curve) s1 ¼ 5:9999; s2 ¼ 6:0001 and s3 ¼ 6 (red, dot-

ted) s1 ¼ 5:75; s2 ¼ 6:25 and s3 ¼ 6 and (blue, dashed-dotted) s1 ¼
5:5; s2 ¼ 6:5 and s3 ¼ 6. (c) Duration of the transient oscillations in a setup

with asymmetry, for increasing delay time s. The red dashed curve shows

the repressilator transient length, the full black curve represents the toggle

switch. Parameters are d1 ¼ �d2 ¼ 0:01 and for the repressilator, d3 ¼ 0.

The heterogeneity is chosen s2 � s1 ¼ 0:1; s3 ¼ s (repressilator).
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a less important role.20 Rising edges become falling edges

(and vice-versa) after a round trip, compensating for the

effect of threshold asymmetries. Specifically, the general

map now reads

ai
kþ1 ¼

1þ �1ð Þkþ1
dj

1þ �1ð Þkdjþ1

2� aiþ1
k

2� ai
k

ai
n : (22)

and j ¼ k mod N.

We show the effect of asymmetry on transient times for

the repressilator in Fig. 9(b). The effect is much less pro-

nounced in the repressilator than in the toggle switch.

Moreover, we observe similar cusps in the transient length

for varying heterogeneity as for varying asymmetry. In Fig.

9(c), where we show the transient length for increasing delay

times, in the presence of an asymmetry, the different effect

of an asymmetry on the toggle switch and repressilator is

even better exemplified, as in the repressilator the transient

still increases exponentially with the delay when introducing

an asymmetry.

It is interesting to compare our results for the toggle

switch with the transient oscillations in a larger ring of an

even number of inverters, coupled without delay, as studied

by Horikawa and H. Kitajima.30,31 We recover the same scal-

ing limit situations for the transient time (Eq. (14)), where

the role of the round trip delay in our system is played by the

number of inverters in the ring. Also the effect of asymme-

tries is similar in both models. Our modeling simplifica-

tion—replacing the inverters in the delay line by a coupling

delay, rather than explicitly including their dynamics—thus

proves useful.

E. Stochastic delays

In Subsections III A–D, we have only considered deter-

ministic dynamics. However, in the experiments, we observe

broad distributions of transients, which cannot be explained

based on deterministic dynamics solely, and must result

from the small changes as we run the experiment: There are

thermal fluctuations in the charge on each gate on a short

time scale, and the core temperature and voltage fluctuates

on a longer time scale comparable to or shorter than the

observed transient times. These effects cause jitter in the

delay times of logic elements on the order of 10 ps.

Consequently, the experimental delays are inherently sto-

chastic, with variations on the order of 1% of the average

time delay.

The description of the system as a map provides a

framework to incorporate stochastically varying time delays

in a straightforward way. The map describing the toggle

switch (Eq. (21)) is adapted in the following way:

akþ1 ¼
1þ d
1� d

2� bkð Þe�Dt1;k

bkþ1 ¼
1� d
1þ d

2� akð Þe�Dt2;k

(23)

Dt1;kþ1 ¼ Dt1;k þ lnð2� akþ1Þ � lnð2� bkÞ þ n1;kþ1 � n2;k

Dt2;kþ1 ¼ Dt2;k þ lnð2� bkþ1Þ � lnð2� akÞ þ n2;kþ1 � n1;k ;

where nj;k denotes white Gaussian noise in the delay times,

with zero mean and a variance of r2. Noise in the time delays

is implemented in the different Dtj, which represent the plateau

lengths between the consecutive transitions. Without noise, we

recover the maps Eqs. (11) and (21). The initial conditions are

a0 ¼ e�s1 ; b0 ¼ e�s2 ;Dti;0 ¼ si þ ni;0 þ lnð2� e�siÞ.
We simulated 106�108 transients in a noisy toggle

switch. When considering the most symmetric situation,

where heterogeneities and asymmetries are absent (s1 ¼ s2

¼ s and d¼ 0, respectively), we observe distributions start-

ing from a minimal length and with an exponential tail.

Some typical examples are shown in Fig. 10. The exponential

tail decreases slower with the delay time and does not depend

on the noise strength. As the noise decreases, however, the

minimal transient length increases, and the cutoff becomes

less sharp. Overall, as noise and delay grow smaller, the distri-

bution becomes shorter-tailed, similar to our experimental

observations for short delays, shown in Fig. 4(a))

We show the scaling of the mean duration time in Fig.

11(a). For small delays and weak noise, we recover the deter-

ministic exponential scaling of the mean transient length

with the delay time, as predicted in Eq. (14). In contrast, for

stronger noise and larger delays, the mean transient duration

scales as a power law with delay time, as shown in the inset.

The mean transient duration for varying noise strength is

shown in Fig. 11(b): It scales approximately inversely with

the noise variance for all delays.

We observe a combination of two effects in the toggle

switch model. Without noise, the system drifts slowly

towards one of the steady states due to its finite response

time. With noise but no internal response time, the system

performs a random walk between two absorbing boundaries

(Dt1 ¼ 0 and Dt2 ¼ 0). We see exponential scaling in the

mean transient lengths for small noise and short time delays,

when the dynamical terms dominate and e�2s > r2. As the

delay and noise increase, r2 > e�2s, and the stochastic terms

dominate the dynamics, causing a stochastic power law scal-

ing. Also the shape of the distributions is similar to those

FIG. 10. Probability mass functions (PMF) of the transient lengths T in sym-

metric noisy toggle switch, for s1 ¼ s2 ¼ 3:32, d¼ 0 and r2 ¼ 0:0001 (right

blue dashed curve), r2 ¼ 0:0025 (middle black full curve) and r2 ¼ 0:0081

(left red dashed-dotted curve). As the noise decreases, the curve resembles

more a Gaussian shape (parabolic in a logarithmic plot). The decay of the

exponential tail is the same in all three cases however.
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observed for a symmetric random walk with two absorbing

boundaries.32

The exponential tail of the distribution results from the

symmetry of the system. We performed simulations for a

gradually increasing asymmetry d, and some resulting proba-

bility density functions are shown in Fig. 12. As the

asymmetry d increases, the tail of the distribution gradually

changes from exponential into power law as the asymmetry

overcomes the noise strength. We thus relate the experimen-

tally measured power law distributions for the toggle switch

(Fig. 4) to the asymmetry between rise and fall times in the

system.

The results for a symmetric repressilator are similar as

for a symmetric toggle switch. We show the mean transient

length for varying delays in Fig. 13. Just like for the toggle

switch, we observe a transition from exponential scaling to

power law scaling with the delay. The distributions have an

exponential tail as well, similar to the experimental distribu-

tions (shown in Fig. 6).

IV. DISCUSSION

Our experiments show that link delays in ABNs can

give rise to extremely long transients in small network

motifs. In the toggle switch, we observe these super-

transients, with a duration of millions of oscillation cycles or

more, for link delays starting from five times the internal

response time. These transient patterns appear inconsistently,

however, due to sensitivity to logic element heterogeneities

and asymmetries. We observe even longer mean transients in

the repressilator. Moreover, in this case, the super-transients

appear consistently for all experimental setups for long

enough link delays.

We reproduce our experimental results in a qualitative

way with a simple piecewise linear model with stochastic

time delays. Because of the piecewise exponential dynamics

and the simple ring structure, we are able to determine ana-

lytically the duration of the transient, and retrieve the

expected exponential scaling with the delay time. By includ-

ing stochastic delays in our model, we reproduce the broad

distributions that we observe in the experiment. We show

how noise can suppress the exponential scaling with the time

delay and how the asymmetry can change the shape of the

distribution in the toggle switch.

The large number of logic elements on the FPGA ena-

bles easy scalability from network motifs to larger

FIG. 11. (a) Mean duration Tm of the transient synchronous waves in a tog-

gle switch for varying mean delay (upper), with symmetric delay lengths

s1 ¼ s2 ¼ s. Noise strengths are r2 ¼ 0:0001 (upper blue circles) and r2 ¼
0:0025 (lower black triangles). The inset shows the mean transient length

for varying delay times in a double logarithmic plot, illustrating the evolu-

tion towards polynomial scaling as the delay and noise strength increase.

Parameters are r2 ¼ 0:0025 (upper blue circles) and r2 ¼ 0:0081 (lower

black triangles). (b) Mean duration of the transient for varying noise

strength, for a delay s¼ 9.31 (upper blue circles) and s¼ 19.31 (lower black

triangles).

FIG. 12. Probability mass function of the length T of the transient synchro-

nous oscillations in a toggle switch for different asymmetries. The distribu-

tion gradually deviates from an exponential as the asymmetry increases.

Parameters are s1 ¼ s2 ¼ 8; r2 ¼ 10�8 and d¼ 0 (right blue dashed curve),

d¼ 0.005 (middle black full curve), and d¼ 0.01 (left red dotted-dashed

curve).

FIG. 13. Mean duration Tm of the transient synchronous oscillations in a

repressilator for varying mean delay, with symmetric delay lengths

s1 ¼ s2 ¼ s3 ¼ s. Other parameters are r2¼ 0.0001 (upper blue dots) and

r2¼ 0.0025 (lower black triangles).
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networks with complex topologies. Also our hybrid model

involving stochastic link delays can be easily be extended

to different Boolean logic and more complex network

configurations.

Our experiments suggest that supertransients generally

arise in ABNs, if link delays are taken into account. The

Boolean approximation of a sigmoidal function in general

holds well,11 and thus we conjecture that similar transients

occur in networks with switchlike interactions. Moreover,

the same transient patterns, however of shorter duration, are

observed in more biologically realistic simulations of a tog-

gle switch and repressilator when accounting for the explicit

delays arising from transcription and translation processes.17

Even if in a biologically more realistic context, transients

might be a lot shorter-lived in small motifs (in terms of num-

ber of oscillations) than in our experimental setup, link

delays could still give rise to supertransients in a complex

regulatory network. For the functionality of a network, the

transient dynamics might hence be relevant as well, and not

only the stable attractors.

Our results relate to universal nonlinear phenomena, and

are relevant beyond a context of ABNs, or time delay net-

works. In spatially extended systems, it is well known that

the interaction between fronts depends exponentially on their

spatial separation.33 Also transient lengths that increase

exponentially with system size have been found in bistable

reaction-diffusion systems.34 As a time-delay system can be

mapped onto a spatially extended system,35 it makes sense to

compare the transitions in our network in terms of fronts:36,37

We find a similar scaling, where the smaller plateau length

plays the role of the separation between fronts. Moreover,

super-transients have been found as well in networks, where

the duration scales with number of nodes30,38,39 and the phe-

nomenon is related to more complex dynamics, such as tran-

sient chaos in coupled maps or spatially extended

sytems.22,23,40–42
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