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Abstract—Manual dexterity is one of the most important surgical skills,
and yet there are limited instruments to evaluate this ability objectively. In
this paper, we propose a system designed to track surgeons’ hand move-
ments during simulated open surgery tasks and to evaluate their manual
expertise. Eighteen participants, grouped according to their surgical ex-
perience, performed repetitions of two basic surgical tasks, namely single
interrupted suture and simple running suture. Subjects’ hand movements
were measured with a sensory glove equipped with flex and inertial sen-
sors, tracking flexion/extension of hand joints, and wrist movement. The
participants’ level of experience was evaluated discriminating manual per-
formances using linear discriminant analysis, support vector machines, and
artificial neural network classifiers. Artificial neural networks showed the
best performance, with a median error rate of 0.61% on the classification of
single interrupted sutures and of 0.57% on simple running sutures. Strate-
gies to reduce sensory glove complexity and increase its comfort did not
affect system performances substantially.

Index Terms—Gesture recognition, manual dexterity, motion capture,
training evaluation, wearable systems.

I. INTRODUCTION

The most effective educational approach for trainee surgeons is to
experience directly on patients in the operating room (OR) under the
supervision of expert surgeons. However, this approach can represent a
potential issue for patients’ safety. Laboratory-based surgical education
has received increasing interest, allowing trainees to practice without
risks to patients. Outside the OR, simulators can successfully enhance
surgeon’s skill [1], [2]; however, there are still significant limitations
due to the variability in the requirements associated with different
surgical techniques. For instance, minimally invasive surgery (MIS)
has a limited workspace and the fulcrum-mediated motion restricts
surgeon’s hand movements to four degrees of freedom (DoFs) only [3].
In open surgery (OS), instead, the workspace is the entire surrounding
environment, and surgeon’s hand operates surgical instruments in a full
DoF scenario. As a result of this, simulators have been more widely
accepted for MIS procedures, such as laparoscopic [4] and robotic [5]
surgery, rather than the OS setting [6].
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Independently of the educational approach, the main goal is to in-
crease surgeon’s skills, since clinical outcome is strongly related to skill
levels [7]. Manual dexterity is one of the most valuable of those skills
[3], and its objective evaluation should be a critical part of a surgeon’s
assessment.

The aim of this study was to evaluate manual performance while par-
ticipants manipulated real surgical instruments in a laboratory setting,
in the context of OS tasks. Using classification algorithms, we evalu-
ated the relationship between quantitative metrics obtained by a hand
tracking system and qualitative metrics expressing the participants’
surgical “level of competence.”

To overcome some of the limitations and costs of the most frequently
used tracking technologies based on camera capture and video analysis
[8], [9], our hand tracking system was a 20-DoF sensory glove that
measured flexion/extension of hand joints and wrist movements. In fact,
camera-based technologies need an expensive dedicated environment, a
free line of sight, and model the hand as a single point in the 3-D space,
with consequent loss of detail on movements of individual fingers.
Alternative hand tracking technologies are based on accelerometers
[10] and on measurement of electromagnetic fields [11]. Despite their
low invasiveness and cost, these systems are only able to measure a
reduced number of hand’s DoF with reduced measurement accuracy.

We evaluated surgeons’ maneuvering expertise (qualitative metrics)
attributing hand movements to a surgical “class of competence,” e.g.,
novice, intermediate, and expert, detected by means of classification
techniques [12], [13]. Classifiers based on the Markov model and the
hidden Markov model have been successfully used in the literature;
however, they present a high computational complexity [3], [12], [14].
Alternative less demanding approaches based on linear discriminant
analysis (LDA) [13], [15], support vector machines (SVMs) [16], ar-
tificial neural networks (ANNs), or artificial neuro-fuzzy inference
systems [17] have been explored. In this study, we compared the per-
formance of three of these classifiers, LDA, SVM, and ANN, being the
most suitable for future real-time implementations on sensory gloves.
Moreover, the classification framework was designed to address the
limitations of our previous studies [18]–[20], in which we investigated
the possibility to objectively assess manual performances during OS
training, although they were evaluated on a simple task and with a
less accurate classification scheme. A further aim of our study was to
explore strategies to reduce the overall number of sensors and to make
the system as comfortable as possible.

II. MATERIALS AND METHODS

A. Participants

Eighteen subjects signed an informed consent, in accordance with
our local ethical committee, and took part to the study. Participants
were grouped into two classes according to their surgical experience. In
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Fig. 1. System. A sensory glove equipped with flex and inertial sensors fed
an electronic circuit, which elaborates and sends data to a computer, which
elaborates information and virtually represents the hand movements by an
avatar. Solid path line (left): glove/circuit interface; dotted path line (right):
circuit/computer interface. Rref : reference resistance; Vin and Vout : input and
output voltages, respectively; Gnd: ground; IMU: inertial measurement unit;
MUX: multiplexer; µC: microcontroller; ADC: analog-to-digital converter.

particular, three men and six women (aged 34–37 years) were allocated
to the reference group “Expert,” and seven men and two women (aged
26–30 years) to the testing group “Novice.” Subjects of the first group
were senior surgical residents in general surgery in their final three-year
period of training, whereas subjects of the second group were students
without any surgical experience.

All the subjects declared to be right handed and performed the ex-
periments with the dominant hand.

B. Sensory Glove and Electronics

We designed and developed two sensory gloves (a small size and a
medium size to best fit users’ hands) and the electronics to acquire and
elaborate data from sensors.

Each glove was implemented with a polyester/elastane mixed fabric
and was equipped with 15 sensors [21]. Of these, 14 resistive flex
sensors (RFSs) (by Flexpoint Sensor Systems, Inc., Draper, UT, USA)
were placed on the finger joints, and one six-DoF inertial measurement
unit (IMU) (Analog Combo Board Razor by SparkFun Electronics,
Niwot, CO, USA) was placed on the back of the glove (see Fig. 1).

The increase of RFS electrical resistance due to fingers’ bending
[22] allowed measuring the flexion/extension of the metacarpopha-
langeal (MCP), proximal interphalangeal (PIP), and distal interpha-
langeal (DIP) joints of the index, middle, ring, and little fingers and the
MCP and interphalangeal joints of the thumb. The IMU, equipped with
a three-axis accelerometer and a three-axis gyroscope, allowed measur-
ing the flexion/extension, pronation/supination, and radial/ulnar devia-
tion of the wrist. All the sensors were individually hosted into suitable
fabric pockets sewn on the dorsal aspect of the glove. Thanks to the
adopted sensors, we obtained measurements with an angular resolution
of the order of one degree for each DoF [22].

The resistance values coming from the 14 flex sensors were individ-
ually converted to voltage values by means of 14 series resistors, which
formed 14 voltage dividers. Resistance values of the series resistors,

Rref , i (i = 1, 2, . . . , 14), were obtained according to the following
formula [23]:

Rref , i =
√

Rm ax , iRm in , i (1)

where Rm ax , i and Rm in , i are the maximum and minimum resistance
values of the ith RFS, within its working range, respectively.

The 20 analog voltages (14 from the flex sensors through the volt-
age dividers and six directly from the IMU) were multiplexed (two
16-channel analog multiplexers MC14067 by Motorola, Inc.) and sent
to a microcontroller (PIC18F4550 by Microchip Technology Inc.,
Chandler, AZ, USA). The microcontroller managed the multiplexers
and performed the A/D conversion and the data transmission to a per-
sonal computer at a frequency of 57.5 Hz.

A custom-made software received and saved data to allow, both in
real-time and offline, the reproduction of hand movements by means of
an avatar [24] (see Fig. 1). Differently from a video-based reproduction
of the movements of a real hand, the avatar-based reproduction allows
viewing fingers’ details and hand’s movements from any possible point
of view, thanks to the availability of image rotation options.

In order to take into account differences among users’ hands and to
map the analog sensor values to the corresponding joint angles, a cali-
bration procedure of the sensory glove was required [25]. We decided
to omit this time-consuming phase, adopting an uncalibrated approach,
which was successfully used in previous glove-based classification
studies [26]. The 20 raw analog sensor readings, which indirectly de-
scribe hand movements, were used as direct input to the data analysis,
avoiding the conversion of their voltage data into angle data.

C. Experimental Setup and Protocol

Basic technical-training OS suturing tasks were performed on a
simulated cutaneous wound, which was developed using a 7.5 cm
× 10.0 cm soft foam pad with a vertical incision. Participants used
standard surgical tools, such as a needle holder and a needle with
suture thread.

Participants were asked to perform two tasks: a single interrupted
suture (SIS), which consists in joining the two foam-pad vertical edges
together by sewing, and a simple running suture (SRS), which consists
in five single sutures without interruptions and without knot tying. We
chose these two tasks since they are key to correct surgical manual
dexterity.

Each participant sat in front of a desk with the foam pad on top
and wore the sensory glove of an appropriate size. A contour of the
hand was drawn on the desk to indicate the start/end position of the
hand in each trial. “Experts” performed the tasks based on their own
experience, while “Novices” were trained to perform the tasks by the
“Experts.” No restrictions were set about the suture placements and the
execution time. Fig. 2 shows the experimental setup.

Each participant performed 24 trials consisting of 12 SISs and
12 SRSs. Tasks were performed in two different days, but only data
recorded on the second day were analyzed, after participants had gained
familiarity with the assignment. The first and the last repetitions of each
task were discarded, as they might have been affected by subjects’ low
practice (the first repetition) and high fatigue (the last repetition).

D. Data Analysis

Manual dexterity was evaluated using a trial-based classification and
a subject-based classification. For the former, each task repetition was
classified based on whether it was performed by a trained or by an
untrained user; for the latter, each subject was classified as an expert or
a novice. Classification procedures were performed considering both
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Fig. 2. Experimental setup. A soft foam pad with a precut vertical incision
was used to simulate a cutaneous wound. Participants were asked to wear the
sensory glove and to perform sutures with standard surgical instruments.

the full-set of sensors and a subset of them to investigate the possibility
of reducing the number of sensors without significantly affecting the
classification performance.

All the analyses were performed using ad-hoc routines written in
MATLAB (R2013a, The MathWorks, Inc., Natick, MA, USA), and
each step of the process is described in the following sections.

1) Preprocessing: To increase the signal-to-noise ratio, data from
flex and inertial sensors were preprocessed with a five-sample-sized
moving average filter. A data-cutting algorithm based on a discrete
moving average filter was then applied to discard data that preceded
and followed in time the real task execution. Each recording was time-
normalized by a resampling procedure to obtain N uniformly spaced
time points, with N set to 1000 for the SIS and to 4000 for the SRS
task, respectively.

2) Feature Extraction: Each data recording was empirically seg-
mented into a series of 300 sample-length windows, overlapping by
75 samples. Each time-normalized trial registration was then segmented
into ten for the first task and 50 windows for the second.

Mean, variance, root mean square, waveform length, slope sign
change, and zero crossing were computed to represent typical time-
domain features of the signal [27], [28]. For each subject, features
were extracted from each window of each sensor and arranged into
a feature vector. Forty-one feature vectors composed either of single
features or of multiple combinations of up to three different features
were then tested.

3) Expertise Classification: Three different classifiers, LDA,
SVM, and ANN, were adopted and compared.

LDA allows rearranging input data into one linear dimension max-
imizing the distance between classes by means of a hyperplane that
linearly separates input data. To reduce misclassification errors that can
occur due to bad estimation of covariance matrices (bias), a shrinkage-
based regularization was implemented [29].

The SVM tries to find the best hyperplane that separates all data
points of one class from those of the other class, that is, the hyperplane
with the maximum margin between the classes. In the case of data
characterized by intrinsic nonlinearity, the SVM makes use of kernel
functions, which project data into a higher dimensionality space, in
which data can be linearly separated again [28]. We adopted an SVM
with a linear kernel. We set the maximum number of iterations to
solve the optimization problem to 107 and then used the default setting

available in the svmtrain MATLAB function in which training data
points are shifted and scaled to have zero mean and unit variance.

An ANN is based on a network with nodes (artificial neurons) in-
terconnected by weighted and directed connections. It is suitable to
solve complex problems and capable to update itself according to the
training data [30]. In this study, we implemented a multilayer percep-
tron ANN, with one hidden layer composed of ten neurons, one neuron
in the output layer, and the Levenberg–Marquardt error backpropa-
gation algorithm [31], [32] as the training algorithm. The activation
functions were sigmoid for the hidden layer and linear for the output
layer. Weight and bias values for the ith layer were initialized using the
Nguyen–Widrow initialization method [33]. In order to find the best
ANN architecture, 70% of the whole training test samples were used for
the network training, 15% to validate that the network is generalizing
and to stop training before overfitting, and the last 15% was used as a
completely independent test of network generalization. Potential over-
fitting was avoided, thanks to the early stopping procedure provided in
MATLAB.

We evaluated the performances of each classifier using a leave-one-
out cross-validation approach [30]: each trial of the whole set was used
as a testing set and the remaining trials as a training set. The procedure
was iterated until each trial was used at least once for the testing.

Classification results were evaluated for each combination of feature
vector/classifier computing the misclassification rate, i.e., the error rate
associated with the classification of all the windows of all the trials. As a
result, the classification stage determined a [41× 3]matrix, rows being
the feature vectors and columns being the three classifiers. The normal
distribution of the error rates relative to each classifier (columns) was
assessed with the Kolmogorov–Smirnov test. The Friedman test (i.e.,
the nonparametric equivalent of the repeated-measures analysis of vari-
ance) was used to detect significant differences in performance of the
three classifiers. Alpha value was set to 0.05. When the null hypoth-
esis was rejected post-hoc analysis with Wilcoxon signed-rank tests,
a Bonferroni multiple-comparison correction (p < 0.05/3 = 0.017)
was further performed to identify which of the dependent variables
was influenced by classifiers.

The “best” classifier was determined by comparing the medians
computed on the 41 error rates obtained for each classifier and selecting
the classifier with the lowest value. Then, we identified the “best”
feature vector of the best classifier as the one with the lowest error rate
among the 41 available ones.

The best classifier and the best feature vector were used to determine
whether a single task repetition was performed by an expert or by
a novice (trial-based classification). To this aim, we evaluated each
trial according to the number of correctly classified windows. Let w
be the number of windows for each trial, with w = 10 for the SIS
and w = 50 for the SRS; we considered a trial as performed by an
expert/novice subject if at least the 90% of w was assigned to the correct
class. Results filled a confusion matrix with experienced/inexperienced
classes [28], furnishing the error distribution across the 180 trials (i.e.,
18 subjects and ten repetitions). Similarly, we evaluated each subject
according to the number of his/her correctly classified trials (subject-
based classification). Thus, we considered a participant as an expert or
a novice if at least nine out of the ten trials were correctly assigned to
their respective class; the entire procedure was performed for each of
the two tasks.

4) Sensor Selection: For each task and each subject, we used
the principal component analysis to reduce datasets’ dimensionality,
while maintaining the 90% of the original data variability [34]. We
obtained k significant principal components (PCs) for each dataset,
with kM AX being the highest value of k. Linear correlation coefficients
were computed between each of the k PCs and the original dataset,
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Fig. 3. Total error rates for each classifier and for both tasks (task 1: SIS,
task 2: SRS). Friedman test results are reported as p-values (Alpha value was
set to p = 0.05).

TABLE I
BEST ANN CLASSIFICATION RESULTS∗

Sensors Task Error [%] BFV

All 1# 0.17 Var + M + ZC
2§ 0.30 M

Subset 1# 0.56 RMS + SSC
2§ 0.48 M + WL

Abbreviations: BFV, best feature vector; Var, variance;
M, mean; ZC, zero crossing; RMS, root mean square;
SSC, slope sign change; WL, waveform length.
∗The best feature vector and its error rate are shown for
each case.
#Task 1: SIS.
§Task 2: SRS.

and one sensor was associated with each of the k PCs according to the
highest correlation value with the PC itself [34]. We then counted the
number of times each sensor was identified as the one with the highest
correlation among all the subjects. Variables were, therefore, ranked in
descending order, and the first kM AX sensors were selected as the new
subset. To generalize the results to both tasks, we kept into account the
sensors included in at least one out of the two new subsets. Following
this procedure, a new dataset with a lower number of variables was
obtained and constituted the new input data for the classification.

III. RESULTS AND DISCUSSION

Test for normality showed that at least two out of three sets of
error rates were not coming from a continuous probability distribu-
tion (p < 0.05). The Friedman test showed that, for each task, the
three classifiers performed differently (p < 0.05), and post-hoc analy-
sis demonstrated significant differences among each pair of classifiers
revealing their independence (p < 0.017).

Fig. 3 summarizes classification results by means of box plots re-
ferred to median (M) and interquartile range (IQR) values of the total
error rates. In particular, for SIS, we had M [IQR] equal to 8.06%
[1.11–15.64], 0.89% [0.66–6.21], and 0.61% [0.33–5.90], respectively,
for LDA, SVM, and ANN; for SRS, we had 5.86% [3.43–11.66], 2.08%
[1.25–6.48], and 0.57% [0.43–2.95], respectively, for LDA, SVM,
and ANN.

The ANN showed the lowest median values and outperformed LDA
and SVM in all the cases. Table I reports the resulting best classi-
fier/feature vector couple for each task.

TABLE II
TRIAL-BASED CLASSIFICATION RESULTS: CONFUSION MATRICES∗

Sensors Task Exp Nov

All 1# Exp 90 0
Nov 0 90

2§ Exp 90 0
Nov 0 90

Subset 1# Exp 89 1
Nov 2 88

2§ Exp 89 1
Nov 1 89

Abbreviations: Exp, “Expert” group; Nov,
“Novice” group.
∗Trials are 180 for each case: 18 subjects and
ten repetitions.
#Task 1: SIS.
§Task 2: SRS.

Fig. 4. Sensor selection results. Sensors are coded following the table (right)
and placed on the glove as shown in the picture (left). In the table, ticks indi-
cate the selected sensor outputs and crosses indicate the discarded ones. Joints
nomenclature: DIPJ, distal interphalangeal joint; PIPJ, proximal interphalangeal
joint; MCPJ, metacarpophalangeal joint; and IPJ, interphalangeal joint. Fingers
nomenclature: 1, thumb; 2, index; 3, middle; 4, ring; and 5, little.

Table II shows the confusion matrices that summarize the perfor-
mances obtained by classifying each single task repetition as performed
by an expert or by a novice using the best classifier/feature vector cou-
ple for each task. The results obtained considering the full-set of sensors
and a subset of them (see hereafter in this section) are shown together
in Tables I and II for comparison. According to these results, trial-
based classification achieved an error rate of 0% for both tasks, all the
180 trials being assigned to the correct experience class. Subject-based
classification successfully evaluated at least nine out of the ten trials for
each subject for both tasks, and consequently, each user was matched
with the correct experienced/inexperienced class.

Moreover, the sensor selection procedure identified 11 sensor outputs
out of 20 as the most significant (see Fig. 4 for reference). Fig. 5 reports
the results of the classification performances using the selected sensor
subset. Error rates were organized in a [41 × 3] table, and test for
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Fig. 5. Box plots of the classification performances using the selected sensor
subset: total error rates are shown for each classifier and for both tasks (task 1:
SIS, task 2: SRS). Friedman test results are reported as p-values (Alpha value
was set to p = 0.05).

normality showed that at least two column data out of three were not
coming from a continuous distribution (p < 0.05) for both the task
datasets. Friedman test results and the post-hoc analysis demonstrated
that the classifiers performed differently (p < 0.05), with significant
differences among each pair of classifiers (p < 0.017).

The ANN performed better than SVM and LDA (see Fig. 5), and
its relative best feature vector results are reported in Table I. Trial-
based classification error rate was 1.67% for the first task and 1.11%
for the second one, three and two trials out of 180 being wrongly
classified, respectively, for the two tasks, as Table II shows. Even when
considering a reduced number of sensors, subject-based classification
correctly evaluated at least nine out of ten trials for each subject and
allowed each subject to be correctly classified as an expert/novice.

Finally, the ANN achieved the lowest error rate and outperformed
LDA and SVM in all the tests. ANN performance was not negatively
affected by the variability of input training data resulting from differ-
ences in subjects’ hand anatomy, level of experience, familiarity with
surgical instrumentations, etc. This was largely due to the possibility
of varying the number of neurons in each layer and of adapting weight
of connections according to the input data. The SVM, by means of
the kernel function, is characterized by a decision rule that is a simple
linear function in the kernel space and this makes it more stable and
characterized by low variance (variance reflects the sensitivity of the
classifier to the training set used). LDA, instead, was less accurate than
both SVM and ANN. This classifier is notoriously sensitive to vari-
ability of input data and to bad dimensionality of the training matrix,
and this could have affected its performance in our specific analyses,
despite the shrinkage regularization.

IV. CONCLUSION

This work describes a sensory-glove-based framework for the ob-
jective classification of technical surgical expertise during OS training.
To the best of our knowledge, this is the first application of a sensory
glove to the evaluation of OS training. Glove-based technology appears
to be one of the most promising solutions to capture the complexity
of hand movement assessment in OS training. Previous works already
assessed surgical performances using a sensory glove [14], [35], [36],
[37], but attempts were mainly focused on the MIS approach.

The proposed method adopts descriptive statistical parameters as
features for the classification stage to develop an assessment tool avail-
able for a wide range of surgical contexts, removing the need of specific

sensor- or task-based metrics. A further advantage of this method is its
low computational complexity.

In conclusion, the developed glove-based system can represent a
feasible evaluation tool for OS training, contributing to facilitate the
introduction of new technology-based skill assessments as new stan-
dards in surgical education.
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