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The evolutionary forces that drive fitness variation in species are of
considerable interest. Despite this, the relative importance and
interactions of genetic and social factors involved in the evolution
of fitness traits in wild mammalian populations are largely un-
known. Todate, a few studies have demonstrated thatfitnessmight
be influenced by either social factors or genes in natural popula-
tions, but none have explored how the combined effect of social and
genetic parameters might interact to influence fitness. Drawing
from a long-term study of wild bottlenose dolphins in the eastern
gulf of Shark Bay, Western Australia, we present a unique approach
to understanding these interactions. Our study shows that female
calving success depends on both genetic inheritance and social
bonds. Moreover, we demonstrate that interactions between social
and genetic factors also influence female fitness. Therefore, our
study represents a major methodological advance, and provides
critical insights into the interplay of genetic and social parameters
of fitness.

animal model | gene-culture coevolution | social learning | reproductive
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The reproductive consequences of sociality in mammalian-
societies attract substantial interest. Although a few studies

have demonstrated a direct link between social parameters and
fitness (1–3), our knowledge about how social relationships might
drive fitness variation still remains incomplete (4). In particular,
the ways in which social and genetic parameters might interact to
influence fitness variation in wild mammalian populations has, to
date, received no attention. This gap is partially due to the diffi-
culties associated with data collection as well as the lack of analytic
techniques for partitioning social and genetic effects and for ex-
amining interactions. The methodology presented here addresses
this gap. We present evidence that, in species characterized by
complex social systems, individual variation in fitness may be best
understood by investigating the influence of genetic heritability
and social associations upon those traits, and the interactions of
genes and sociality.
The genetic heritability of fitness traits has been widely exam-

ined in both experimental settings (5) and free-ranging popula-
tions (6–8). However, in species characterized by slow life histo-
ries, extended maternal care, and complex sociality (e.g., primates,
elephants, small delphinids), individual variation in fitness traits
might be best understood when also accounting for an individual’s
behavioral context, such as their common associates or group
membership. In cases in which social transmission of information
occurs, the fitness of social learners can be dependent upon the
individuals from whom they acquire information or from whom
they learn (9, 10). Only a few studies have investigated the corre-
lation between shared group membership or close association and
fitness traits (2, 3). For instance, in female feral horses (Equus
caballus), social integration between unrelated females was shown
to increase both foal birth rates and survival, independent of ma-
ternal habitat quality, social group type, dominance status, and age
(1). Yet, in wild populations, genetic heritability and the social
components of fitness have not been examined together.

Characterized by complex cognitive abilities and a highly in-
tricate social system, bottlenose dolphins (Tursiops sp.) are prime
candidates for investigating how genetic and social parameters
may affect fitness. Like the great apes (11, 12), bottlenose dolphins
have slow life histories characterized by late sexual maturity, long
interbirth intervals, and extensive maternal care (13, 14). In the
eastern gulf of Shark Bay, Western Australia, bottlenose dolphins
have been the focus of extensive study since the mid-1980s (15),
making them one of the most comprehensively studied dolphin
populations in the world. This population of bottlenose dolphins
exhibits an elaborate social system, with some characteristics, such
asmultilevel male alliances within social groups, that are otherwise
found only in humans (16). Adult males and females are generally
found in separate groups within an open fission–fusion social
system (15), in which group composition and size frequently
change (15). Social learning has also been documented in this
population (17, 18). All females in the study population were
recognizable, and their survival and reproductive rates have been
monitored (13). We focused on life history data from 52 female
bottlenose dolphins in this population.
We explored the genetic and social effects on a partial measure

of fitness, namely, female calving success (Cs), using a pedigree-
free animal model (19). This recently developed pedigree-free
animal model uses a matrix of pairwise genetic relatedness, rather
than pedigree information, to assess the heritability and genetic
variance of complex traits in wild populations (19). To make a
comparable investigation of genetic and social factors, we de-
veloped this method further by using two measures for each pair
of females: pairwise genetic relatedness (Queller and Goodnight
measure, ref. 20) and a measure of sociality based on pairwise
association [half weight index (HWI), ref. 21]. We also examined
whether genetic heritability and social effects interact in their
effects on female Cs.

Results
The animal model showed that both additive genetic variance
(A-GV) and additive social variance (A-SV) were significantly
different from zero (Table 1, for A-GV 0.001 < P ≤ 0.032, for A-
SV 0.001 < P ≤ 0.028) and were robust to removal of single
individuals (Table S3). Thus, A-GV and A-SV are both significant
predictors of female fitness. Additive genetic variance accounted
for 16.2% of the variation in female Cs (h2G = 0.162, Table 1),
whereas additive social variance accounted for 44% of the var-
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iation in female Cs (h2S = 0.44, Table 1). A randomization test
showed that the heritability estimates were significantly different
from random expectations (“Random” in Table 1, for A-GV P ≤
0.03, for A-SV P ≤ 0.02).
Current animal models cannot incorporate multiple matrices as

predicting variables, and therefore cannot be used to investigate
interactions between predictors. To investigate how genetic rela-
tionships and social associations between individuals might cor-
relate and/or interact in their effects on Cs, we therefore used two
alternative approaches. First, we measured breeding values. In this
study, a female’s breeding value for Cs is the total additive effect of
her genes on Cs. For the social analysis, a female’s breeding value
shows the effects of social interactions on her Cs. The animalmodel
was used to generate best linear unbiased predictors (BLUPs) to
estimate, for each female, the genetic breeding value (G-EBV) and
social breeding value (S-EBV) of female Cs (Cs), and found that
they were indeed positively correlated (P=0.0001; Fig. 1). Second,
we used generalized linear mixed models (GLMM) to investigate
whether a female’s Cs correlates with the Cs of her close relatives
(genetic effect) and preferred associates (social effect) and whether
there was an interaction between these two effects. We found that
the mean Cs of a female’s close relatives (genetic effect) and the
mean Cs of her preferred associates (social effect) showed a signif-
icant multiplicative interaction in their effect on Cs (Table 2 and
Fig. 2). The significance of the multiplicative genetic and social in-

teraction on Cs was also confirmed when compared with a null
model with no interaction (Wald test: df = 51, χ2 = −3 118.33,
P < 2.2e-16). In addition, we compared this model to three other
models that did not include the genetic and social interaction; in all
three cases, the models showed higher Akaike information co-
efficient values, that is, poorer fit (Table S1). The inclusion of the
interaction of social and genetic effects in the GLMMmodel led to
the nonsignificance of the individual factors (genetic or social)
(Table2).Tovisually display thenatureof the significant interaction
of the genetic and social effects on Cs, we separated the Cs of
preferred associates (social effect) into pairs of females with low
relatedness (Fig. 2, squares) and pairs of females with high re-
latedness (Fig. 2, circles). In particular, we found that the social
effect (extent of fitness of preferred associates) wasmore important
for female pairs with low relatedness than for female pairs with high
relatedness (Fig. 2).
Last, we did not find correlations between Cs and the extent of

relatedness of preferred associates, the amount of time that
a female spends in social groups, the size of her home range, or
the interactions of these variables (Table S2).

Discussion
Our approach offers insights into the adaptive value of sociality
in mammalian societies. We show that both heritable genetic and
social factors contribute to the variation of a fitness trait in a wild

Table 1. Genetic and social effects on the fitness trait “calving success” in female bottlenose dolphins, using a pedigree-free animal
model

Effect Additive variance Residual h2
Coefficient of

additive variance Null LRT P Const LRTP Random P

Genetic effect A-GV = 0.005 (± 0.002) A-GR = 0.026 (± 0.02) h2
G = 0.162 (CVA-G) = 48.43 0.032 <0.001* 0.03

Social effect A-SV = 0.007 (± 0.003) A-SR = 0.009 (± 0.025) h2
S = 0.44 (CVA-S) = 57.3 0.028 <0.001

†

0.02

Table shows additive genetic variance (A-GV), residuals (A-GR), genetic heritability (h
2
G), and coefficient of additive genetic variance (CVA-G). In brackets are

the SEs. Three tests for significance were conducted, which are detailed in Materials and Methods: a null log-likelihood ratio test of the additive variances
(Null LRT), a constrained log-likelihood ratio test of the additive variances (Const LRT), and a randomization procedure test of the h2 values (Random).
Females’ identity was added to the model as fixed effect. To account for heterogeneity of number of records per female, the pedigree-free animal model was
weighted by the number of years for which each female was monitored. When the relatedness matrix is replaced by the social association (HWI) matrix, A-SV,
A-SR, h

2
S and (CVA-S) are the equivalent statistics for social effects on Cs.

*Cons-LRT-Genetic Effect: − 2× difference in log-likelihood between unconstrained model (our full model) and constrained model (A-GV variance set to zero) =
10.8, χ21 = 10.8, P < 0.001.
†Cons-LRT-Social Effect: − 2× difference in log-likelihood between unconstrained model (our full model) and constrained model (A-SV variance set to zero) =
12.2, χ21 = 12.2, P < 0.001.
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Fig. 1. Significant regression of social (S-EBV) on genetic (G-EBV) breeding values (BLUP) of female Cs. Vertical axis shows S-EBV, the additive social effects on
Cs for each female, and the horizontal axis shows G-EBV, the additive genetic effect on the Cs of the same female. Triangles represent females with high
fitness (Cs ≥ 0.2; n = 16); squares represent females with medium fitness (0 < Cs < 0.2; n = 28); and diamonds represent females with low fitness (Cs = 0; n = 8).
(S-EBV) = −0.006 + 0.74(G-EBV), adjusted R2 = 0.94, F1,50 = 859.71, P < 0.0001.
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population. The social effect is consistent with either social trans-
mission of reproductive prowess, or with the suggestion that fe-
males with calves associate with other females with calves (22),
a type of homophily. For instance, females with calves might at-
tract other females with calves during times of high predation
pressure (23, 24) to lower the requirement for individual vigilance
(e.g., kangaroos; 25) or for other social benefits. Furthermore, the
social effect provides evidence for the hypothesis that social effects
can drive phenotypic evolution whenever the phenotype of one in-
dividual influences the phenotype or fitness of a conspecific (26–28).
Although we understand that there are concerns about using

BLUPs (29), the individual breeding values that they generate
comprise, to date, the only identifiable method that allows us to
directly investigate how two pedigree-free animal models might
correlate in their effects on a phenotypic trait. Moreover, the
BLUP analysis was confirmed by an independent analysis (GLMM,
Table 2), which also identified the significant interaction between
genetic and social effects (Table 2). The two analyses are in agree-
ment, together providing evidence that social and genetic factors
have a significant effect, with interaction in their effects on Cs.
Pairs of females that are closely related have similar fitness, and
pairs of females that preferentially associate also have similar fit-
ness. Although this pattern might simply result from preferential
association of close relatives, this is not the case for the three fol-
lowing reasons. First, it is important to note that the pairs of
females that are closely related might not be the same pairs as
those that preferentially associate with each other. This was con-

firmed by Frère et al. (30), who showed that the social and re-
latedness matrices were only very weakly correlated (r < 0.06) in
this population. This indicates that females’ associates include
individuals other than close relatives. Second, the social and ge-
netic GLMM analysis further emphasizes that the relationship
between the genetic and social effect on fitness is not simply col-
linear, but that the genetic and social effects interact to influence
fitness. In other words, this means that the genetic and social
effects on fitness are not simply additive. Last, we did not find that
preferentially associating with close relatives resulted in high Cs
(Table S2).
We also investigated possible alternative explanations for the

patterns that we observed. In particular, we investigated whether
high Cs could be a function of either the amount of time that
a female spends in social groups or the size of her home range, but
we found that neither of these effects was significant (Table S2).
This is not to say that the environment does not influence re-
production, because females that tend to preferentially associate
also overlap in home range (30). This relationship found between
female–female association patterns and home range overlap in
our study population highlights the fact that the social matrix also
contains critical environmental information. This overlay of social
and environmental information within the social matrix might be
part of the reason for the high h2S estimate (44%). For instance,
water depth was found to predict female reproductive success in
our study population, possibly because females found in shallow
watermay benefit from higher prey density (31). In addition, other
parameters, such as age and previous breeding experience, were
also found to affect female reproductive success in other marine
mammals (32–34).
Although a few studies have demonstrated that fitness might

be influenced by either sociality or genes in natural populations,
none have explored how the combined effect of social and ge-
netic parameters might interact to influence fitness. By extending
the pedigree-free animal model, this study presents a unique
attempt to investigate such interactions. We demonstrate not
only that a female fitness trait is influenced by both genetic and
social effects, but that these effects on the evolution of fitness
traits are strongly intertwined (35–37).
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Fig. 2. Visual representation of significant multiplicative interactions between social and genetic effects on females’ Cs identified in Table 2. Each point
represents a single female. Vertical axis shows her Cs, and horizontal axis shows the mean Cs of her preferred associates (as defined in Materials and
Methods). This is plotted separately for preferred associates with high relatedness (circles) and preferred associates with low relatedness (squares). Re-
latedness cutoff values are defined in Materials and Methods. The relationship between females’ Cs and mean Cs of their preferred associates changed
depending on whether their preferred associates showed (i) high relatedness or (ii) low relatedness, as expected from Table 2, which showed significant
interaction between social and genetic effects on Cs.

Table 2. Predictors of female Cs (n = 52)

Model Average effect SE t df P

Cs ∝ MCs-PA + MCs-CR + MCs-PA: MCs-CR
MCs-PA −3.75 2.69 −1.41 48 0.164
MCs-CR −4.35 2.55 −1.70 48 0.095
MCs-PA: MCS-CR 38.14 15.43 2.47 48 0.0171

GLMMmodel assumed a binomial distribution and was weighted by num-
ber of years for which each female was monitored. Female identity was
added as random effect. Explanatory factors are mean Cs of a female’s pre-
ferred associates (MCs-PA), mean Cs of a female’s close relatives (MCs-CR), and
their multiplicative interactions (MCs-PA: MCs-CR). Wald test: df = 51, χ2 = −3
118.33, P < 2.2e-16. Bold indicates significant P values.
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Materials and Methods
Study Site. The eastern gulf of Shark Bay is situated 850 km north of Perth in
Western Australia (25°47′S, 113°43′E). The population of bottlenose dolphins
(Tursiops sp.) has been the focus of extensive study since the mid-1980s (15,
38), making this study, along with the Sarasota, Florida, study (Wells et al.,
14, 39, 40), one of the most comprehensive and detailed studies of bot-
tlenose dolphins.

Calving Success and Age. We used life history data on 52 female bottlenose
dolphins (Tursiops sp.) collected as a part of an ongoing longitudinal field
study between 1984 and 2004. Female Cs was defined as the number of
offspring surviving to age three divided by the number of years of re-
productive data available for that particular female. In other words, Cs is the
proportion of years in which the female produces a calf of age 3 y. Age 3 y
was chosen because although most calves nurse beyond age 3 y, no nursing
calves older than 3 y died before weaning, indicating that a calf surviving to
age 3 y will usually reach juvenile (weaned) status and thus will have the
potential to pass its mother’s genes on to the next generation. If a female
was of known age, her total reproductive years were counted from her 12th
year (13). Otherwise, reproductive years were counted from her first known
birth. Female age was determined by known birthdate (accurate ± 6 mo) or
was estimated based on ventral speckling rates for females of known age
compared with speckling of females of unknown age.

Relatedness Matrix. In comparison with the study by Frentiu et al. (19), which
used 11 microsatellites containing a total of 44 alleles, the relatedness matrix
used in our study was estimated using 12microsatellite loci containing a total
of 147 alleles. The microsatellite data used here were generated from pre-
vious studies (41, 42). They showed no linkage disequilibrium, null alleles, or
departure from Hardy–Weinberg equilibrium (41). Furthermore, there was
no need to partition the dataset to accommodate population structure be-
cause, within our study locality, population subdivision was minimized by
high gene flow between areas (42). After trials on our data (41), we chose to
generate the relatednessmatrix using the Queller andGoodnight relatedness
index, which ranges between −1 and 1 (20). This index was also used in the
study by Frentiu et al. (19). The relatedness matrix among the 52 females was
generated using the allele frequencies measured from 218 individuals. The
mean relatedness estimate for the whole population was 0.005 with a SE of
0.0002 and a 95% confidence interval of 0.0004. The pairwise relatedness
estimates among the 52 females ranged from −0.44 to 0.68.

Social Matrix. The association matrix was generated using group composition
and behavioral data collected from 11,964 group encounter surveys. Surveys
were completed for each individual or group that was encountered, and
group composition was assessed using standard photo-identification meth-
ods (43). Unidentified individuals as well as ambiguous identifications were
removed from the analyses (∼10%). Variation in effort between years could
also bias the data, which we addressed in two ways (30). First, association
estimates between pairs of females were calculated using the half-weight
index (HWI) (21), generated from SOCPROG 2.2 (44). The HWI is the most
appropriate association index when members of each possible pair are more
likely to be scored when separate than when together (21). The HWI ranges
from 0 (never seen together) to 1 (never seen apart). Second, only females
sighted more than 30 times were included in the analysis, so as to increase
the likelihood to have sampled all possible associations and to ensure that
females were sighted in multiple years. We also excluded nursing calves
from the analysis due to their unique dependent relationship with their
mothers (13).

Identification of Preferred Associates for Table 2 and Fig. 2. Foreach female,we
measuredher pairwise association estimates to all other females in the study as
described above. Pairwise association estimates are nonnormally distributed.
Therefore, a female’s cutoff value for preferred associates was measured as
any pairwise association estimates equal to or above that female’s 97.5%
percentile HWI distribution. We used such a conservative (i.e., high) cutoff
value to increase the probability of capturing real preferred associations (most
often seen with). Although we investigated other methodologies to catego-
rize preferred associations, we found that the other methodologies were
more appropriate for male alliances or did not account for individual varia-
tion in the degree of sociality (45).

Identification of Close Relatives for Table 2 and Fig. 2. For each female, we
measured her pairwise relatedness estimates to all other females in the study
as described above. Pairwise relatedness estimates are normally distributed.

Therefore, a female’s cutoff value for close relatives was calculated as any
pairwise relatedness estimates two or more SDs above her mean relatedness
to all other females (n = 51). At the other end of the relatedness spectrum,
a female’s cutoff value for distant relatives was calculated as any pairwise
relatedness estimates two or more SDs below her mean relatedness to all
other females (n = 51). We used such a conservative (i.e., high) cutoff value
to increase the probability of capturing a female’s closest relatives.

Home Range Size. As in the work by Frère et al. (30), home ranges (km2) were
measured using survey and focal follow data using the last sighting of each
female per day. These points were restricted to well-surveyed areas, as de-
termined by global positioning system (GPS) logs of boat tracks (a proxy for
search effort). Total home range area was calculated using 100% minimum
convex polygons (Universal Transverse Mercator projection 1983, zone 49S;
ESRI, ArcGIS v. 9.3, Hawth’s Tools extension).

Quantitative Genetic Analysis with the Pedigree-Free Animal Model. Additive
genetic variance components (A-GV) and BLUP estimates of genetic breeding
values (G-EBV) for Cs were generated using the pedigree-free animal model
(19) based on restricted maximum-likelihood (REML) (46). The pedigree-free
animal model was run using the PROC MIXED procedure in SAS (2001; SAS
Institute). For (A-GV), this particular mixed model uses estimates of related-
ness derived entirely from molecular markers to extract the additive genetic
component (19). Because pairwise estimates need to be represented in
a positive-definite matrix in the REML approach, we tested the relatedness
matrix for positive-definiteness (i.e., positive eigenvalues of all eigenvectors)
by measuring the eigenvalues of the square matrices in PopTools (CSIRO,
Canberra, Australia) version 3.0.3 (47). Although the upper and lower re-
latedness estimates of the relatedness matrix are identical (e.g., i-j = j-i), the
relatedness matrix was still found to be negative-definite. Only the last three
eigenvalues of 52 were negative, indicating that the departure from positive-
definite was only minor. In the case of identical by descent matrices gener-
ated from microsatellites, the negative-definite attribute of the matrix may
be due to internal inconsistencies in relatedness estimates among multiple
individuals generated by pairwise estimators. This is because the construction
of the relatednessmatrix is not based on a joint distribution for all individuals,
but it is computed for two individuals at a time, marginalizing over the rest.
Relatedness estimates measured in this way result in approximate marginal
probabilities in the relatedness matrix instead of a joint distribution. The
occurrence of negative-definite matrices is common in genetics (48–51). Ge-
netic covariance matrices are well known for being non–negative-definite, as
are identity-by-descent matrices (50, 51). Bending procedures (48, 49), are
commonly used to correct non–negative-definiteness in genetic matrices (52),
as they bend matrices until their lowest eigenvalues exceed a preset limit
(e.g., zero to achieve non–negative-definiteness). To transform our negative-
definite relatedness matrix into a positive-definite matrix, we used the For-
tran Program (IBM Mathematical Formula Translating System, San Rose, CA)
stepwise bending procedure, called Bendpdf (48). This was done by regressing
the eigenvalues of the product of the negative-definite relatedness and
positive-definite reference covariance matrix toward their mean (48). In our
case, the bended relatedness matrix showed an extremely good correlation
with the nonbended relatedness matrix (Mantel test: r = 0.9999, P < 0.0001).
The prebending and postbending matrices for 20 of 52 individuals are shown
in Tables S4 and S5, and show that the bending procedure retained relative
values of the relatedness estimates, but altered them to be smaller relative to
the diagonal elements (unity), the most common bending procedure. Finally,
to account for variation in number of records per female, we weighted the
model by the number of years for which each female was monitored. Age
was added as a fixed effect. The genetic narrow-sense heritability (h2

G) was
estimated as the ratio of the additive genetic variance (A-GV) to the total
phenotypic variance (VP = A-GV + A-GR). To give the best presentation of the
explanatory power of our data and to enable comparison with other studies,
we also measured the coefficient of additive genetic variance (CVA-G) (53),
which scales the additive genetic variance by themean (μ) of the trait (CVA-G =
100 × (√ A-GV)/μtrait).

Quantitative Social Analysis with the Pedigree-Free Animal Model. We also
needed to create measures of the social effects on fitness comparable to
genetic measures. To do this, we noted that the covariance matrices which
form the basis of mixed models such as the pedigree-free animal model do
not necessarily have to be genetic. Thus, the genetic relatedness matrix can
easily be substituted by an association matrix (HWI). By use of the pedigree-
free animal model, we were able to generate estimates of additive social
variance components (A-SV) and social BLUP estimates (S-EBV) of female
fitness (Cs). Unlike the relatedness matrix, the HWI association matrix was
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positive-definite and did not require any bending. Analogous to genetic
heritability, the social effect (h2

S) was estimated as the ratio of the additive
social variance (A-SV) to the total phenotypic variance (VP). We also mea-
sured the coefficient of additive social variance (CVA-S) as detailed above.
Details about fixed effects and weights of the pedigree-free animal model
are described above.

Significance of the Pedigree-Free Animal Models. The animal model in PROC
MIXED does not provide error estimates for heritabilities. These could be
derived from errors for the additive and residual variation, but only under
assumptions that are unrealistic, such as normality and no covariance of
additive and residual variation. Therefore, we chose to measure significance
of the pedigree-free animal models using three different approaches. First,
we used the null model likelihood ratio test in PROC MIXED. This “Null LRT”
test measures significance by comparing the log-likelihood value of our full
model (random + fixed effects) to log-likelihood value of a null model
which only contains the fixed effects. PROC MIXED then measures −2 ×
difference in log-likelihood between the full and null models. This test
statistic, equal to twice the absolute difference in these log-likelihoods, is
assumed to be distributed as χ2 with 1 df. Second, in the “Const LRT” test,
we tested whether the observed additive genetic and social variances were
significantly different from zero. To do so, we compared the log-likelihood
value of our full genetic and social models to the log-likelihood value of
their relevant constrained models, in which the additive genetic and social
covariances were set to zero using the parms function in SAS. We then
measured −2 × difference in log-likelihood between the unconstrained and
constrained models, and assessed significance based on a χ2 distribution
with 1 df as described above. Last, we applied a randomization procedure
(“Random”) to assess whether the observed genetic heritability h2

G and
social h2

S were greater than expected randomly. To do so, we generated
random matrices by randomly allocating, with replacement, a female’s
pairwise estimates (social or relatedness) to each of the 51 females. We
generated 100 such random relatedness and social matrices and measured
their random additive genetic and social variances as well as their residuals.
From these results, we assessed the number of times that random h2

G and
h2

S estimates were found to be greater than or less than the observed
estimates. Last, we investigated the robustness of our results by randomly

removing one individual at a time from our dataset to test whether this
would affect the significance of the h2

G and h2
S estimates.

GLMM. To investigate how genetic and social relationships might interact to
affect the Cs, we analyzed the interactions between female Cs and (i) the
mean Cs of their preferred associates, and (ii) the mean Cs of their close
relatives, we fitted a GLMM. This allows one to deal with nonnormal data by
using link functions and the exponential family (54). In our GLMM model,
each female’s Cs was treated as the response variable. To account for vari-
ation in the number of records per female, we weighted the model by the
number of years for which each female was monitored. We incorporated
female identity as a random factor to control for individual effects. Because
Cs is a proportion, the error structure was fitted with a binomial distribution
(54). In addition to the GLMM significance methodology, we also tested for
significant departure from a null model using the Wald test. GLMMs and
Wald tests were conducted using the lme4 package in R (R Development
Core Team, Vienna).
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Table S1. Comparison of four models predicting female Cs (n = 52)

Model Average effect SE t df P

Cs ∝ MCs-PA AIC = 1,920.6
MCs-PA 2.25 1.01 2.09 50 0.035
Cs ∝ MCs-CR AIC = 1,927.6
MCs-CR 1.89 1.11 1.68 50 0.095
Cs ∝ MCs-PA + MCS-CR AIC = 1,907.8
MCs-PA 1.99 1.35 1.47 49 0.147
MCS-CR 1.20 1.20 1.00 49 0.320
Cs ∝ MCs-PA + MCs-CR + MCs-PA: MCs-CR AIC = 1,845
MCs-PA −3.75 2.69 −1.41 48 0.164
MCs-CR −4.35 2.55 −1.70 48 0.095
MCs-PA: MCS-CR 38.14 15.43 2.47 48 0.0171

GLMM model assumed a binomial distribution and was weighted by number of years for which each female
was monitored. Female identity was added as random effect. Explanatory factors are mean Cs of a female’s
preferred associates (MCs-PA), mean Cs of a female’s close relatives (MCs-CR), and their multiplicative interactions
(MCs-PA: MCs-CR). AIC, Akaike information coefficent.

Table S2. GLMM predictors of female Cs (n = 52): Total time spent socializing, relatedness of
preferred associates, and home range overlap

Model Average effect SE df t P

Cs ∝ MHWI + MR-PA + HR+ MHWI: MR-PA: HR
MHWI 30.23394 25.94688 44 1.165225 0.2502
MR-PA −9.38067 13.32786 44 −0.70384 0.4852
HR 0.01084 0.01404 44 0.772323 0.4441
MHWI: MR-PA 129.2125 277.6143 44 0.465439 0.6439
MHWI:HR −0.35773 0.32468 44 −1.10177 0.2766
MR-PA:HR 0.09094 0.19865 44 0.457792 0.6494
MHWI MR-PA:HR −0.81983 3.98184 44 −0.20589 0.8378

A binomial distribution of Cs was assumed. To account for heterogeneity of number of records per female, we
weighted the model by the number of years for which each female was monitored. Female identity was added
as random effect. The procedure was as for other GLMM models previously described, but with a different set
of variables. The explanatory factors are the mean association index to all other females (MHWI), the mean
relatedness to preferred associates (MR-PA), the home range size (HR), and their multiplicative interactions.

Table S3. Effect of removal of one individual at a time on significance of both genetic and social
pedigree-free animal models

Model Null LRT Min – Max P values Const LRT Min – Max P values

Genetic animal model 0.009–0.0461 <0.001*
Social animal model 0.0202–0.049 <0.001†

The possible effect of removal of one individual at a time on significance of both genetic and social pedigree-
free animal models was tested by removing one female at a time from the analysis, and measuring new sets of
additive genetic and social variances as well as their residuals. Significance of these sets was assessed using both
the null model (Null LRT) and constrained model (Const LRT) log-likelihood ratio tests described inMaterials and
Methods. All 51 new sets of analyses were found to be significant for both tests. This indicates that removal of
one individual at a time does not change the significance of either the genetic or social animal model.
*Cons LRT-Genetic Effect: Mean − 2× difference in log-likelihood between unconstrained model (our full new
models) and constrained model (variance sets to zero) ± SD = 11.58 ± 2.3, mean χ21 = 11.58 ± 2.3, P < 0.001.
†Cons LRT-Social Effect: − 2× difference in log-likelihood between unconstrained model (our full model) and
constrained model (variance sets to zero) ± SD = 13.2 ± 2.7, meanχ21 = 13.2 ± 2.7, P < 0.001.

Frère et al. www.pnas.org/cgi/content/short/1007997107 1 of 2

www.pnas.org/cgi/content/short/1007997107


Table S4. Prebending relatedness matrix for 20 of 52 individuals

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1.00 −0.11 −0.11 −0.05 −0.07 −0.01 −0.14 0.07 0.23 0.05 −0.05 −0.05 −0.06 0.08 −0.11 −0.01 −0.14 0.09 −0.02 −0.14
2 −0.11 1.00 −0.03 0.24 0.08 −0.20 −0.30 0.20 −0.01 0.10 0.07 0.42 0.03 −0.38 −0.06 −0.05 0.16 −0.05 0.10 −0.22
3 −0.11 −0.03 1.00 0.05 −0.03 0.16 0.05 0.03 0.25 0.54 0.09 0.14 0.06 0.33 0.12 −0.38 0.27 −0.06 0.20 0.04
4 −0.05 0.24 0.05 1.00 0.40 0.19 0.08 0.09 −0.11 0.24 0.12 0.18 0.07 −0.11 0.06 0.16 0.26 0.05 0.23 −0.11
5 −0.07 0.08 −0.03 0.40 1.00 −0.16 0.02 0.01 0.15 −0.02 0.40 0.28 0.10 −0.08 −0.07 0.04 0.14 −0.08 0.17 0.03
6 −0.01 −0.20 0.16 0.19 −0.16 1.00 0.34 −0.04 0.00 −0.05 −0.15 −0.19 −0.09 0.09 0.26 0.17 0.14 −0.13 0.24 0.32
7 −0.14 −0.30 0.05 0.08 0.02 0.34 1.00 −0.12 0.03 0.11 −0.06 0.22 0.07 0.33 0.13 0.05 −0.13 −0.10 0.09 0.29
8 0.07 0.20 0.03 0.09 0.01 −0.04 −0.12 1.00 −0.01 0.10 0.23 0.14 −0.09 −0.12 0.14 0.10 0.06 0.05 0.25 −0.06
9 0.23 −0.01 0.25 −0.11 0.15 0.00 0.03 −0.01 1.00 0.16 0.04 0.11 0.06 0.27 0.04 −0.31 −0.08 −0.15 0.05 0.03
10 0.05 0.10 0.54 0.24 −0.02 −0.05 0.11 0.10 0.16 1.00 0.09 0.13 0.18 0.16 0.19 −0.13 0.30 0.11 0.11 −0.15
11 −0.05 0.07 0.09 0.12 0.40 −0.15 −0.06 0.23 0.04 0.09 1.00 0.02 −0.22 0.08 0.11 0.05 0.05 −0.12 0.22 −0.11
12 −0.05 0.42 0.14 0.18 0.28 −0.19 0.22 0.14 0.11 0.13 0.02 1.00 0.30 −0.11 0.09 −0.07 −0.04 0.26 0.44 −0.05
13 −0.06 0.03 0.06 0.07 0.10 −0.09 0.07 −0.09 0.06 0.18 −0.22 0.30 1.00 −0.02 −0.06 −0.09 −0.21 0.24 −0.05 −0.01
14 0.08 −0.38 0.33 −0.11 −0.08 0.09 0.33 −0.12 0.27 0.16 0.08 −0.11 −0.02 1.00 0.02 −0.04 −0.09 −0.10 −0.09 −0.09
15 −0.11 −0.06 0.12 0.06 −0.07 0.26 0.13 0.14 0.04 0.19 0.11 0.09 −0.06 0.02 1.00 −0.02 0.02 0.12 0.48 −0.04
16 −0.01 −0.05 −0.38 0.16 0.04 0.17 0.05 0.10 −0.31 −0.13 0.05 −0.07 −0.09 −0.04 −0.02 1.00 −0.12 −0.04 0.12 −0.04
17 −0.14 0.16 0.27 0.26 0.14 0.14 −0.13 0.06 −0.08 0.30 0.05 −0.04 −0.21 −0.09 0.02 −0.12 1.00 −0.16 0.22 −0.12
18 0.09 −0.05 −0.06 0.05 −0.08 −0.13 −0.10 0.05 −0.15 0.11 −0.12 0.26 0.24 −0.10 0.12 −0.04 −0.16 1.00 0.12 0.01
19 −0.02 0.10 0.20 0.23 0.17 0.24 0.09 0.25 0.05 0.11 0.22 0.44 −0.05 −0.09 0.48 0.12 0.22 0.12 1.00 0.02
20 −0.14 −0.22 0.04 −0.11 0.03 0.32 0.29 −0.06 0.03 −0.15 −0.11 −0.05 −0.01 −0.09 −0.04 −0.04 −0.12 0.01 0.02 1.00

For ease of presentation, data for only 20 of the 52 individuals are shown.

Table S5. Postbending relatedness matrix for 20 of 52 individuals

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1.00 −0.06 −0.06 −0.03 −0.04 0.00 −0.07 0.04 0.12 0.03 −0.03 −0.02 −0.03 0.04 −0.06 −0.01 −0.08 0.05 −0.01 −0.08
2 −0.06 1.00 −0.02 0.13 0.04 −0.11 −0.16 0.10 0.00 0.05 0.03 0.22 0.02 −0.20 −0.03 −0.03 0.09 −0.03 0.05 −0.12
3 −0.06 −0.02 1.00 0.02 −0.02 0.08 0.03 0.01 0.13 0.28 0.05 0.08 0.03 0.17 0.07 −0.20 0.14 −0.03 0.10 0.02
4 −0.03 0.13 0.02 1.00 0.21 0.10 0.04 0.05 −0.06 0.12 0.06 0.10 0.04 −0.06 0.03 0.09 0.13 0.03 0.12 −0.06
5 −0.04 0.04 −0.02 0.21 1.00 −0.09 0.01 0.01 0.08 −0.01 0.21 0.15 0.05 −0.04 −0.04 0.02 0.08 −0.04 0.09 0.02
6 0.00 −0.11 0.08 0.10 −0.09 1.00 0.18 −0.02 0.00 −0.03 −0.08 −0.10 −0.05 0.05 0.14 0.09 0.07 −0.07 0.13 0.17
7 −0.07 −0.16 0.03 0.04 0.01 0.18 1.00 −0.06 0.02 0.06 −0.03 0.12 0.04 0.18 0.07 0.02 −0.07 −0.05 0.05 0.15
8 0.04 0.10 0.01 0.05 0.01 −0.02 −0.06 1.00 −0.01 0.05 0.12 0.07 −0.05 −0.06 0.07 0.05 0.03 0.03 0.13 −0.03
9 0.12 0.00 0.13 −0.06 0.08 0.00 0.02 −0.01 1.00 0.09 0.02 0.06 0.03 0.14 0.02 −0.16 −0.04 −0.08 0.03 0.02
10 0.03 0.05 0.28 0.12 −0.01 −0.03 0.06 0.05 0.09 1.00 0.05 0.07 0.09 0.08 0.10 −0.07 0.16 0.06 0.06 −0.08
11 −0.03 0.03 0.05 0.06 0.21 −0.08 −0.03 0.12 0.02 0.05 1.00 0.01 −0.11 0.04 0.06 0.03 0.03 −0.06 0.11 −0.06
12 −0.02 0.22 0.08 0.10 0.15 −0.10 0.12 0.07 0.06 0.07 0.01 1.00 0.16 −0.06 0.05 −0.04 −0.02 0.14 0.23 −0.03
13 −0.03 0.02 0.03 0.04 0.05 −0.05 0.04 −0.05 0.03 0.09 −0.11 0.16 1.00 −0.01 −0.03 −0.05 −0.11 0.13 −0.02 −0.01
14 0.04 −0.20 0.17 −0.06 −0.04 0.05 0.18 −0.06 0.14 0.08 0.04 −0.06 −0.01 1.00 0.01 −0.02 −0.05 −0.05 −0.05 −0.05
15 −0.06 −0.03 0.07 0.03 −0.04 0.14 0.07 0.07 0.02 0.10 0.06 0.05 −0.03 0.01 1.00 −0.01 0.01 0.06 0.25 −0.02
16 −0.01 −0.03 −0.20 0.09 0.02 0.09 0.02 0.05 −0.16 −0.07 0.03 −0.04 −0.05 −0.02 −0.01 1.00 −0.07 −0.02 0.06 −0.02
17 −0.08 0.09 0.14 0.13 0.08 0.07 −0.07 0.03 −0.04 0.16 0.03 −0.02 −0.11 −0.05 0.01 −0.07 1.00 −0.08 0.12 −0.06
18 0.05 −0.03 −0.03 0.03 −0.04 −0.07 −0.05 0.03 −0.08 0.06 −0.06 0.14 0.13 −0.05 0.06 −0.02 −0.08 1.00 0.06 0.01
19 −0.01 0.05 0.10 0.12 0.09 0.13 0.05 0.13 0.03 0.06 0.11 0.23 −0.02 −0.05 0.25 0.06 0.12 0.06 1.00 0.01
20 −0.08 −0.12 0.02 −0.06 0.02 0.17 0.15 −0.03 0.02 −0.08 −0.06 −0.03 −0.01 −0.05 −0.02 −0.02 −0.06 0.01 0.01 1.00

For ease of presentation, data for only 20 of the 52 individuals are shown.
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