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Abstract: Coating is one of the most effective measures to protect metallic materials from corrosion.
Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in
a quest to find durable coatings to resist electrochemical decay of metals in industrial applications.
Many polymeric composite coatings have proved to be resistant against aggressive environments.
Two major applications of ferrous materials are in marine environments and in the oil and gas
industry. Knowing the corroding behavior of ferrous-based materials during exposure to these
aggressive applications, an effort has been made to protect the material by using polymeric and
ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline
material was investigated during corrosion resistance by employing EIS (electrochemical impedance
spectroscopy) and electrochemical DC corrosion testing using the “three electrode system”. Cast iron
pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene) and
TiO2/GO (graphene oxide) nanocomposite by dip-coating. The EIS data indicated better capacitance
and higher impedance values for coated samples compared with the bare metal, depicting enhanced
corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig;
Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

Keywords: nanocomposite coating; corrosion; Electrochemical Impedance Spectroscopy (EIS); seawater;
crude oil; few layers grapheme Polyvinyl alcohol (PVA); Titanium Oxide (TiO2); direct current (DC);
alternating current (AC); Polyaniline (PANI)

1. Introduction

Corrosion of various structural components and service pipelines are quite common in industrial
applications. A huge amount of resource and effort is continually dedicated to increasing the service
life of components since corrosion causes significant loss in terms of costs and most importantly in
human life [1]. Many techniques are used for protecting the structures against corrosion: corrosion
inhibitors [2,3]; cathodic and anodic protection [4,5]; design modification, alteration with environment
and most importantly changing the material which is probably more corrosion resistant e.g., stainless
steel [6]. Application of various types of protective coatings is another popular method for protecting
metals from aggressive corrosion reactions [7,8]. Researchers are continuously seeking new innovative
coatings which will enhance corrosion protection of assets in conventional environments [9].
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Nanocomposite materials are high-performance materials having at least one of the phases
consisting of dimension <100 nm [10]. In the current study, PVA/PANI/FLG, a polymeric
nanocomposite coating and TiO2/GO, a ceramic nanocomposite coating, have been investigated
for protection of cast iron pipeline material against corrosion in seawater and “produced water” from
crude oil wells. Each constituent of the coatings is believed to contribute towards improvement in
corrosion resistance, as previously discussed by Fontana et al. [11]. It has been demonstrated that vinyl
polymers remain unaffected in low acidic and alkaline environments and it also reveals low water
absorption behavior of PVA as it behaves as a corrosion inhibitor by forming complexes and covering
surfaces to protect the metallic material from corrosion [12]. Corrosion protection has been attributed
to increased corrosion potential [7]. The high electrical resistivity of TiO2 indicates its capability
to provide reasonably good corrosion protection [13]. Additionally, graphene, which was used as
reinforcement in both coatings, has also demonstrated its significant anticorrosion properties [14]
owing to its hydrophobic nature due to its non-polar covalent double bond [15]. The current study
discusses the relative corrosion resistance performances of the two coatings.

Electrochemical Impedance Spectroscopy (EIS) is considered to be a powerful technique which
uses a small perturbation AC signal to study an electrochemical cell [16]. EIS technique was used to
characterize the interface of the metal immersed in electrolyte using a Potentiostat. Data obtained from
EIS generated two plots: the first, a Bode plot in which magnitude of impedance and phase shift was
plotted against frequency; the second, Nyquist plot where imaginary impedance was plotted against
real impedance. Corrosion resistance of the coatings was analyzed using both plots.

2. Experimentation

2.1. Sample Preparation

An industrial pipeline cast iron sample was used for investigation; the samples were ground
using 80, 120 and 240 grit papers in order to generate a relatively smooth surface of the samples [17].

2.2. Synthesis of Coating Material

2.2.1. PVA/PANI/FLG

Materials used in the synthesis of this coating are given in Table 1.

Table 1. Materials used for PVA/PANI/FLG coating.

Material Manufacturer

Polyvinyl alcohol ERKOL
Polyaniline Prepared in lab

Few layer graphene I. Janowska

Preparation of Polyaniline

100 mL of deionized water was mixed with Aniline monomer and 1 mol HCl solution was slowly
added. Ammonium peroxydisulfate was added as an initiator and appearance of green color indicated
that the polymerization was completed. The solution was washed several times and then dried to get
the required Polyaniline powder.

Preparation of PVA Solution

The 100 mL amount of deionized water was heated to 90 ◦C, followed by the addition of PVA
powder while the solution was continuously stirred on a magnetic stirrer (D0310 Analog Magnetic
Stirrer, Labnet Internatiional, Edison, NJ, USA) at a constant speed of 500 RPM. A clear solution of
PVA was obtained after 20 min.
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Preparation of Nanocomposite Solution

Deionized water was heated to 90 ◦C and PVA was slowly added until a complete clear solution
was obtained; it was followed by slow addition of PANI till the color of the solution changed to dark
green. In the next step the required amount of FLG was added in the solution when PVA and PANI
was completely dissolved. The selected amount for PVA/PANI/FLG nanocomposite in percentages
was 90/10/0.5 respectively. The solution was then kept on a sonication probe for 45 min to disperse
the PANI. The complete process has been described elsewhere [18].

2.2.2. TiO2/GO Coating

Synthesis of TiO2 Nanoparticle

TiO2 nanoparticles were formed by the sol-gel method using titanium tetra isopropoxide (TTIP)
as precursor; ethanolamine was used to enhance the stability (linker) of the sol, and methoxyethanol
was used as solvent to exhibit good mechanical stability and electrochemical response. An inert
environ ment was provided to an empty three-necked flask for 15 min. TTIP (≥97%) of Sigma Aldrich,
Saint Louis, MO, USA, 2-methoxyethanol (99.9+ %), and ethanolamine (99+ %) in a fixed molar ratio
(1:4:0.5) were introduced to the three-necked flask, refluxed and stirred at room temperature for 1 h
under an inert atmosphere. Then it was heated at 80 ◦C for 1 h. Temperature of the solution was
increased to 120 ◦C and the stirring was maintained for 2 h at the same temperature. This technique
resulted in a clear solution indicating complete dissolution of the precursors in the solvent.

Synthesis of TiO2/Graphene Composite Solution

The solution of 0.5 mg/1 of graphene oxide in 2-methoxyethanol was prepared and sonicated
for 50 min in an ultrasonic water bath in order to ensure good dispersion of the graphene oxide.
This graphene oxide solution was mixed in the already-prepared TiO2 solution. The resulting mixture
was heated in an electric oven at 60 ◦C for 20 h [19].

2.3. Dip Coating

The samples were coated with respective nanocomposite coating by the dip-coating technique;
the samples were initially dipped in the coating solution and kept in the solution for about 2 min,
however, the step was repeated to achieve desired thickness. After drainage of the surplus solution,
the samples were kept in a furnace (below Tg of polymers) to evaporate the solvent and to obtain
the deposited thin films. The parameters were set to acquire the required thickness of the coatings
in accordance to the Landau Levich equation for dip-coating [20]; the thickness of the coatings were
estimated to be about 5 µm.

2.4. Electrochemical Corrosion Studies

The electrochemical study was performed by employing the Gamry® framework. EIS studies
were performed using a two-electrode cell and corrosion behavior diagrams were generated using
the three-electrodes system which helped to determine corrosion rate of the coated and uncoated
samples. The three-electrodes electrochemical measurement system has been described in various
locations, e.g., [21,22], which follows the theory explained by Fontana and Greene [23]. The coated
sample was made as one electrode; SCE (Saturated Calomel Electrode) was used as a reference, and a
graphite rod was employed as a counter electrode. The Gamry® framework, which encases all required
apparatuses such as a potentiostat, a zero-resistance ammeter and a sweep generator, all controlled
by its software module DC105™, has a built-in capability of not only generating “E-log I” diagrams
but also calculating corrosion rate. EIS300™ of the Gamry® framework was used for Electrochemical
Impedance Spectroscopy of coated samples, employing a two-eletrode system where the counter
electrodes also serve for the reference [24].
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Two types of electrolytes were used for corrosion investigation: (1) seawater obtained from
Karachi, Pakistan (pH 7.9 and conductivity 51–53 mS/cm); and (2) “produced water” obtained from
a natural gas well in Khyber Pakhtoon Khah, Pakistan (pH 7.6 and conductivity 148–152 µS/cm).
Sample exposed surface areas were around 3 × 3 cm2 and kept immersed for about 40 min before
starting electrochemical testing.

3. Results

3.1. Equivalent Circuit Modelling

The equivalent circuit model for a coated metal as documented in the literature is given in Figure 1,
which displays various portions of the electrochemical cell and their behaviors.
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3.2. EIS in Seawater

Figure 2 displays Bode plots of uncoated and coated samples with PVA/PANI/FLG and TiO2/GO
coatings. As revealed by the graph, both the coatings showed significant improvement in corrosion
resistance. Between the two coatings, the TiO2/GO coating showed the higher resistance in seawater
compared with PVA/PANI/FLG as displayed by higher value of impedance of this coating and a
noticeable difference in phase shift. The data suggested that in seawater TiO2/GO nanocomposite
coating was more resistant against corrosive ions and resisted ionic attack before degradation.
However, PVA/PANI/FLG coating displayed relatively low resistance to corrosion and provided
lower protection, as evident from its comparison with the other coatings and the bare metal; an early
degradation of this coating was evident compared with the other coating.
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Figure 3 shows Nyquist plots for the three cases. As evident from the figure, TiO2/GO
demonstrated the highest resistance in terms of coating strength before it got degraded compared
with PVA/PANI/FLG and the bare sample, which appeared inferior to the both coatings. Although
PVA/PANI/FLG coating showed a relatively higher impedance indicating greater protection, however,
the impedance values were far lower than the TiO2/GO coating.
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Table 2 shows that pore resistance (Rpore) for TiO2/GO coating appeared to be higher compared
with PVA/PANI/FLG coating, indicating better coating stability. It can be attributed to lower population
of pores generated during exposure of metal to the electrolyte as the corrosion was suppressed of the
polymeric coating; pores are considered to play a significant role in increasing or decreasing the corrosion
reaction. Polymeric coating showed a higher coating capacitance (Cc) compared with ceramic coating as
indicated by lower impedance, since the two properties are inversely proportional. It was also believed
that polymeric coating with higher capacitance can store higher charge, thereby degrading the coating
faster as compared to the ceramic base coating exhibiting lower coating capacitance.

Table 2. Pore resistance and coating capacitances in seawater.

PVA/PANI/FLG TiO2/GO

Rpore 4.219 ohms Rpore 7.626 ohms
Cc 24.87 × 10−3 F Cc 11.50 × 10−3 F

3.3. DC Corrosion Testing in Seawater

Figure 4 reveals “E-log I” curves for coated and uncoated metallic samples exposed to seawater,
and the corrosion rates determined from these diagrams are given in Table 3.

Table 3. Corrosion rates in seawater (mpy).

Bare Metal PVA/PANI/FLG TiO2/GO

19.56 9.477 1.315
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The comparison of bare and coated metallic samples indicates that both the coatings provided
a significant decrease in the corrosion rate of cast iron. Individually, the PVA/PANI/FLG coating
reduced the corrosion rate to one half of that of the bare metal, whereas the TiO2/GO coating caused
a significant decrease in the corrosion rate, amounting to 15 times less than the bare metal. Due to
better stability, the corrosion rate of TiO2/GO coating in seawater happened to be seven times better
than the PVA/PANI/FLG coating when exposed to seawater. It was believed that the seawater
resulted in pitting, leading to the development of microcracks of the PVA/PANI/FLG polymer coating,
presumably due to the presence of chloride ions [11]. The chloride ion, however, did not prove to be
aggressive towards the ceramic base coating, revealing higher resistance. Figure 5 reveals the coatings
after electrochemical tests in the seawater environment and it is evident from the SEM images that
both the coatings were observed to be distorted and ruptured due to the vigorous attack of corrosive
ions; cracks were evident, which widened the pores resulting in the sample becoming exposed and the
corrosion reinitiated.
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3.4. EIS in “Produced Water” from an Oil Exploration Plant

Figure 6 displays a Bode plot of coated and uncoated samples exposed to “produced water”.
The bare metal appeared to be significantly weak in magnitude and the phase shift as indicated
by two horizontal lines. It was also evident from Figure 5 that PVA/PANI/FLG polymeric coatings
appeared to be offering higher protection in “produced water” compared with ceramic-based TiO2/GO
coatings, as evident form the value of impedance and the degree of phase shift for polymeric coating
sample. The greater the stability of coating in the corrosive environment surely offered more corrosion
resistance to the PVA/PANI/FLG coated sample then the ceramic coating.
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The Nyquist plots for the three samples is shown in Figure 7, which also supports the findings of
Figure 6, i.e., the PVA/PANI/FLG coated sample offers a higher stability in the corrosive environment
of the crude oil, while TiO2/GO coating, although inferior compared with the polymeric coating,
appears to afford significantly higher protection compared with the bare sample.
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Pore resistance and coating capacitance value for PVA/PANI/FLG obtained was 303.9 × 10−3

ohms and 17.59 × 10−3 F respectively as shown in Table 4. While 166.1 × 10−3 ohms pore resistance
and 28.79 × 10−3 F coating capacitance was observed for the case of TiO2/GO as mentioned in Table 4.
The data reveals that relatively higher value of pore resistance for PVA/PANI/FLG indicates better
stability when exposed to the “produced water” environment, offering higher impedance thereby
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hindering pores’ generation [9]. On the other hand, coating capacitance of the ceramic-based coating
appeared to be higher, indicating a lower value of impedance resulting in lower resistance against
pores’ generation.

Table 4. Pore resistance and coating capacitances in Produced water.

PVA/PANI/FLG TiO2/GO

Rpore 303.9 × 10−3 ohms Rpore 166.1 × 10−3 ohms
Cc 17.59 × 10−3 F Cc 28.79 × 10−3 F

3.5. DC Corrosion Testing in “Produced Water”

“E-log i” plots of bare metal and the coated surfaces exposed to “produced water” are shown in
Figure 8, and the corrosion rates data are summarized in Table 5. The data reveal that the polymeric
coating offered a significant decrease in the corrosion rate of about 1/7th of the rate without coating,
whereas the ceramic base coating reduced the corrosion rate to about one half. The Tafel plots also
support the previously mentioned indicators of the coatings’ performances in “produced water”.
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Table 5. Corrosion rates in “produced water” (mpy).

Bare Metal PVA/PANI/FLG TiO2/GO

21.76 3.140 9.315

Corrosion rates of bare metal and the coated surface exposed to seawater and the “produced
water”, mentioned in Tables 3 and 5, respectively, reveal that PVA/PANI/FLG coating sustained
protection to a better extent in “produced water” compared with seawater, whereas the ceramic
TiO2/GO coating behaved the other way round, presumably due to higher capacitance and pore
resistance of TiO2/GO coating. SEM micrographs of the coated samples are shown in Figure 9,
which reveals deformation and rupturing of the coating after exposure to the produced water. This
degradation explains that the pores in the coating widens up, thereby leading towards corrosion of
the substrate.
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Figure 9. SEM micrographs of coated samples exposed to “produced water”. (a) PVA/PANI/FLG;
(b) TiO2/GO.

4. Conclusions

It was concluded that both polymeric-based as well as ceramic-based coatings provided protection
against environmental attacks posed by seawater and “produced water”, however, the degree of
resistance varied between the two electrolytes. In the seawater environment, the PVA/PANI/FLG
coating reduced the corrosion rate to about 52% compared with bare metal whereas in “produced
water” the decrease in corrosion rate was up to 86%. The TiO2/GO coated surface offered a reduction
in corrosion rate in seawater to about 94% whereas in “produced water”, the decrease in corrosion rate
was about 57% compared with the bare metal. The porosity and coating capacitance plays a vital role in
obtaining the abovementioned values, since a greater number of pores means a greater number of ions
that diffuse through the coating, which exposes more surface area of the metal to corrosion reaction.
Therefore, due to this mechanism, the coating which shows better pore resistance in any particular
environment performed better compared with the one with the lesser value of coating resistance.
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