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Abstract

Clustering is an important direction in many fields, e.g., machine learning, data

mining and computer vision. It aims to divide data into groups (clusters) for the

purposes of summarization or improved understanding. With the rapid develop-

ment of new technology, high-dimensional data become very common in many

real world applications, such as satellite returned large number of images, robot

received real-time video streaming, large-scale text database and the mass of in-

formation on the social networks (i.e., Facebook, twitter), etc, however, most

existing clustering approaches are heavily restricted by the large number of fea-

tures, and tend to be inefficient and even infeasible. In this thesis, we focus

on finding an optimal low dimensional representation of high-dimensional data,

based nonnegative matrix factorization (NMF) framework, for better clustering.

Specifically, there are three methods as follows:

• Multiple Components Based Representation Learning

Real data are usually complex and contain various components. For exam-

ple, face images have expressions and genders. Each component mainly reflects

one aspect of data and provides information others do not have. Therefore, ex-

ploring the semantic information of multiple components as well as the diversity

among them is of great benefit to understand data comprehensively and in-depth.

To this end, we propose a novel multi-component nonnegative matrix factoriza-

tion. Instead of seeking for only one representation of data, our approach learns

multiple representations simultaneously, with the help of the Hilbert Schmidt

Independence Criterion (HSIC) as a diversity term. HSIC explores the diverse

information among the representations, where each representation corresponds to

a component. By integrating the multiple representations, a more comprehensive

representation is then established. Extensive experimental results on real-world

datasets have shown that MCNMF not only achieves more accurate performance

over the state-of-the-arts using the aggregated representation, but also interprets

data from different aspects with the multiple representations, which is beyond

what current NMFs can offer.

• Ordered Structure Preserving Representation Learning
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Real-world applications often process data, such as motion sequences and

video clips, are with ordered structure, i.e., consecutive neigh-bouring data sam-

ples are very likely share similar features unless a sudden change occurs. There-

fore, traditional NMF assumes the data samples and features to be independently

distributed, making it not proper for the analysis of such data. To overcome this

limitation, a novel NMF approach is proposed to take full advantage of the or-

dered nature embedded in the sequential data to improve the accuracy of data

representation. With a L2,1-norm based neighbour penalty term, ORNMF en-

forces the similarity of neighbouring data. ORNMF also adopts the L2,1-norm

based loss function to improve its robustness against noises and outliers. More-

over, ORNMF can find the cluster boundaries and get the number of clusters

without the number of clusters to be given beforehand. A new iterative up-

dating optimization algorithm is derived to solve ORNMF’s objective function.

The proofs of the convergence and correctness of the scheme are also presented.

Experiments on both synthetic and real-world datasets have demonstrated the

effectiveness of ORNMF.

• Diversity Enhanced Multi-view Representation Learning

Multi-view learning aims to explore the correlations of different information, such

as different features or modalities to boost the performance of data analysis.

Multi-view data are very common in many real world applications because data

is often collected from diverse domains or obtained from different feature extrac-

tors. For example, color and texture information can be utilized as different kinds

of features in images and videos. Web pages are also able to be represented using

the multi-view features based on text and hyperlinks. Taken alone, these views

will often be deficient or incomplete because different views describe distinct per-

spectives of data. Therefore, we propose a Diverse Multi-view NMF approach to

explore diverse information among multi-view representations for more compre-

hensive learning. With a novel diversity regularization term, DiNMF explicitly

enforces the orthogonality of different data representations. Importantly, DiNMF

converges linearly and scales well with large-scale data. By taking into account

the manifold structures, we further extend the approach under a graph-based

model to preserve the locally geometrical structure of the manifolds for multi-view

setting. Compared to other multi-view NMF methods, the enhanced diversity of
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both approaches reduce the redundancy between the multi-view representations,

and improve the accuracy of the clustering results.

• Constrained Multi-View Representation Learning

To incorporate prior information for learning accurately, we propose a novel semi-

supervised multi-view NMF approach, which considers both the label constraints

as well as the multi-view consistence simultaneously. In particular, the approach

guarantees that data sharing the same label will have the same new representa-

tion and be mapped into the same class in the low-dimensional space regardless

whether they come from the same view. Moreover, different from current NMF-

based multi-view clustering methods that require the weight factor of each view

to be specified individually, we introduce a single parameter to control the distri-

bution of weighting factors for NMF-based multi-view clustering. Consequently,

the weight factor of each view can be assigned automatically depending on the

dissimilarity between each new representation matrix and the consensus matrix.

Besides, Using the structured sparsity-inducing, L2,1-norm, our method is robust

against noises and hence can achieve more stable clustering results.

Keywords: Nonnegative matrix factorization, representation learning, low

rank, multi-component, multi-view, constraint
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Chapter 1

Introduction

1.1 Research Background

In the past decade, we have witnessed the explosion and the messiness of data

across numerous fields of pattern recognition, computer vision and machine learn-

ing. With the fast-growing amount of data, partitioning them into different

groups or clusters is of great practical importance to understand data in-depth.

For relatively small collections, it may be possible to partition them manually.

But given large volumes of data, it would be extremely time consuming and dif-

ficult to partition them into different meaningful groups. Thus, clustering which

aims to group data automatically so that data in the same group are with high

similarity, is becoming one of the most important techniques in data analysis

[26, 1]. As an unsupervised technique, clustering which needs no annotation of

training data but considers nature of data only has been widely used in a wide

range of applications [52, 89, 104]. For example, in business analysis, clustering

customers can characterize features of different groups for targeted marketing; in

text mining, clustering documents into specific categories can form semantic top-

ics. In genomic analysis and cancer study, clustering can find common patterns

in the patients’ gene expression profiles that correspond to cancer subtypes and

offer personalized treatments. Besides, clustering can be used as a foundation

for many directions in computer science. Such as in anomaly detection, clus-

tering can find the exception points that are not related to each category [57];

in dictionary-based expression learning, clustering can find class centers to build

dictionaries [83, 92]. Overall, clustering is crucial in the field of data mining,
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CHAPTER 1. INTRODUCTION

machine learning, pattern recognition, computer vision, etc.

In reality, high dimensional data has become very common. For example, an

image dataset may contain a huge number of pixels that correspond to dimen-

sions; a document consists of a sequence of words, each of which can be regarded

as a dimension; a gene expression microarray may have thousands of dimensions

and each of them corresponds to an experimental condition, etc. Traditional clus-

tering approaches which calculate similarity between high-dimensional data sam-

ples directly to perform results, tend to be inefficient and even infeasible, because

the results are greatly affected by noises and may not be robust [23]. Therefore,

it is more reasonable and effective to reduce the dimensions of original data for

clustering, so that noisy data and redundancy of data can be alleviated. To do so,

quite a few matrix factorization techniques [23, 30, 44, 90, 64, 62, 108, 17] have

been proposed to factorize data from the input space to several low-dimensional

matrices. The most popular methods include Principal Component Analysis

(PCA) [45], Singular Value Decomposition (SVD) [23] and Vector Quantiza-

tion [31]. However, the factorizing matrices in these methods can have nega-

tive entries, which makes it hard or impossible to obtain physical interpretations

from the factorizing results. This is because many real-world data (e.g. images

and texts) are nonnegative and the corresponding hidden parts convey physical

meanings only when the nonnegative condition holds. These methods are there-

fore called “holistic” approaches. In contrast, Nonnegative Matrix Factorization

(NMF) [55] as a “parts-based” approach, has been receiving more and more at-

tention. It imposes the nonnegativity constraint on all the factorizing matrices,

allowing only additive but not subtractive combinations during the factorization.

Such nature can exactly discover the hidden parts that have specific structures

and physical meanings, such as each original face image can be approximately

represented by additively combining several “parts” (eyes, noses, lips, etc.).

To summarize, finding a useful low-dimensional representation to achieve sat-

isfactory clustering performance based on the NMF framework is of great sig-

nificance. Based on previous works, this dissertation improves NMF from three

aspects, i.e., extraction of semantic information, exploration of diverse feature in-

formation, as well as constraints fusion, and conducts clustering on the proposed

methods with a wide range of real-world datasets including images, network, texts

and video sequences.
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1.2 Contributions of the Thesis

This thesis studies NMF from both theoretical analysis and application aspects,

as shown in figure 3.2. In theory, different from existing single-view NMFs that

find a single representation based on global feature only, we explore embedded

multiple components of data with capturing more comprehensive information

and interpreting data from different perspectives at a sematic level. Considering

that sequential data contain ordered nature, we also incorporate such nature to

enhance clustering performance. Since data often consist of multiple features

which describe data from different perspectives, we further study NMF in multi-

view setting by feature fusion. Instead of learning a consensus representation

across different views as existing multi-view NMFs, we emphasize the diversity of

each view so as to capture more comprehensive information among views. Finally,

we incorporate prior information in multi-view clustering effectively to guide the

clustering process. From application perspectives, the study of single-view NMF

is based on image or video sequence clustering, while we explored multi-view

NMF on a wider range of data, including images, texts and networks. In more

details, my main research work include the following three works:

1. Multiple Components-based NMF

Given that data contain different subsets of features, namely components, we

obtain corresponding representations and achieve multiple clustering results. A

diversity regularization is introduced to enhance the independency between dif-

ferent representations. By integrating different representations, a comprehensive

representation with diverse information is established. The main contributions

are

• This work is the first to explore components of data and achieve multiple

representations where each representation corresponds to a component.

• A diverse term is introduced to explore the diverse information among the

representations so as to capture comprehensive information.

• A novel multiplicative updating rule is derived to solve the objective func-

tion, along with its convergence proof correctness analysis.

• We conduct clustering experiments on image datasets. The results have

demonstrated that the proposed approach exploits semantic meaning of
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Figure 1.1: The framework of the thesis.
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data by interpreting data from different aspects with the multiple represen-

tations, which is beyond what current NMFs can offer.

2. Ordered Structure Preserved NMF

Different from existing NMFs assume the data samples and features to be

independently distributed, the approach captures ordered nature embedded in

the sequential data, such as video sequences. Based on a novel neighbour penalty

term, it enforces the similarity of neighbouring data to improve the discriminating

power of the data representations. The main contributions are

• With a novel neighbour penalty term, it enforce the similarity of the con-

secutive data representations by incorporating the ordered structure as ad-

ditional constraints.

• In ideal cases, it can correctly find the cluster boundaries and get the num-

ber of clusters without needing the number of clusters beforehand.

• A L2,1-norm based loss function is adopted to improve its robustness against

noises and outliers.

• A new iterative updating optimization scheme is derived to solve ORNMF’s

objective function, along with its convergence and correctness proofs.

3. Diversity Enhanced Multi-View NMF

With a novel penalty term, the information among different views are con-

strained to be diverse enough to each other, thus the mutually redundant infor-

mation among views are reduced. The proposed approach can scales well with

large-scale data due to its linear computational time. The main contributions are

• A novel diversity regularization term is proposed to enforce the orthogonal-

ity of different data representations, so that the diversity among views are

enhanced and mutually redundancy are reduced.

• The proposed approach is computationally linear thus has good scalability

to large-scale datasets.

• By taking into account manifold structures of data in each view, we further

extend the proposed approach by incorporating local geometry information

which leads to further improved performances.
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4. Constrained Multi-View NMF

The approach takes both prior information and the consistency of multiple

views into account. It learns a consensus representation across multiple views

jointly with a constrained label matrix. Moreover, the weights of representations

which reflect the importance of different views are learnt adaptively. The main

contributions are

• Incorporating label information as hard constraints to enhance the discrim-

inating power of new representations so that all data with the same label

are clustered together regardless of their views.

• A single parameter is introduced to learn the weight of each view adaptively.

Each weight is assigned automatically depending on the dissimilarity be-

tween each new representation matrix and the consensus matrix.

• Using L2,1-norm to measure the approximation errors, it is robust against

noises and hence can achieve more stable clustering results.

• The clustering experiments are conducted in well-known real-world datasets,

which have demonstrated its effectiveness and robustness in comparison to

the state-of-the-arts.

1.3 Thesis Outline

• Chapter 1 introduces the research background and the main contributions

of this thesis.

• Chapter 2 focuses on unsupervised single-view representation learning. We

present a novel multi-component nonnegative matrix factorization approach,

which interprets data from different aspects through seeking for multiple

representations simultaneously.

• Chapter 3 focuses on unsupervised single-view representation learning for

sequential data. A novel ordered structure preserved nonnegative matrix

factorization approach is proposed to enforce the similarity of data presen-

tations.
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• Chapter 4 focuses on unsupervised multi-view representation learning. We

propose a diversity enhanced approach to enhance diverse information and

reduce the redundancy among multi-view representations for more compre-

hensive learning.

• Chapter 5 focuses on semi-supervised multi-view representation learning.

We propose a constrained approach, which considers both the label infor-

mation as well as the multi-view consistence simultaneously.

• Chapter 6 summarizes the work of this thesis and discusses future works of

nonnegative representation learning.
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Nonnegative Matrix

Factorization

Nonnegative Matrix Factorization (NMF) is a popular matrix decomposition

method with various applications in e.g. machine learning, data mining, pat-

tern recognition, and signal processing. The nonnegativity constraints have been

shown to result in parts-based representation of the data, and such additive prop-

erty can lead to the discovery of datas hidden structures that have meaningful

interpretations. In this chapter, we will first give a brief introduction to NMF

before reviewing NMF-based approaches.

2.1 Introduction

Nonnegative Matrix Factorization was first introduced by Paatero and Tapper

[81], and gained popularity by the works of Lee and Seung [55] published in Nature

in 1999. Mathematically, given a n data matrix X = [x1,x2, ...,xn] ∈ Rm×n
+

where each column is a m-dimensional data vector, NMF [55] aims to find two

nonnegative matrices W ∈ Rm×k
+ and H ∈ Rk×n

+ , where the product of the two

matrices can well approximate the original matrix, represented as

X ≈WH. (2.1)

Here R+ denotes the set of nonnegative real numbers. The columns of W form a

basis of a latent space and are called basis vectors. The representation matrix H
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contains coefficients that reconstruct the input matrix X by linear combinations

of the basis vectors, and the product term WH is called the compressed version

of the X or the approximating matrix of X. Typically we have k ≪ min(m,n),

i.e., the original data points in the m-dimensional space are reduced to a much

lower-dimensional space of dimension k. An appropriate selection of the value k

is critical in practice, but its choice is usually problem dependent.

There are several ways to quantify the difference between the data matrix X

and WH. But the most used measure is the Frobenius norm, and the objective

function of NMF is

minDF (X,WH) = min
W,H≥0

∥X−WH∥2F (2.2)

where ∥ · ∥F denotes the Frobenius norm and “≥ 0” indicates entrywise nonneg-

ativity.

2.2 Multiplicative update algorithms

A wide range of numerical optimization algorithms [93, 15, 16] have been proposed

for solving (2.2) . Since (2.2) is nonconvex, in general we cannot expect an

algorithm to reach the global minimum but local minimum. This can be found

by an iterative procedure alternating between updating one matrix while keeping

the other one fixed. The pseudo code to do so is given in Algorithm 2.1. Among

Algorithm 2.1 Pseudo code for the algorithm NMF

Initialize W ≥ 0 and H ≥ 0
repeat
UpdatingH with fixingW(v),DF (X,WHnew) ≤ DF (X,WHold) andHnew ≥
0
Updating W with fixing H(v), DF (X,WnewH) ≤ DF (X,WoldH) and
Wnew ≥ 0

until converges or the maximum number of iterations is reached.

the optimization algorithms, the most popular one is the following multiplicative

update rules [55] as it consists of basic matrix computations and thus is very

simple to implement.

H← H⊙ WTX

WTWH
(2.3)
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W←W ⊙ XHT

WHHT
(2.4)

The multiplicative update algorithm is obtained via the gradient descent by

choosing a smart step size. Thus, for the purpose of implementation (e.g, us-

ing Matlab), a small constant in each update rule is added to the denominator

to avoid division by zero. Besides, since the algorithm suffers from getting stuck

in local minimum, it is recommended to run the algorithm several times using

different initializations. To prove the convergence property of the algorithm, a

common strategy is to measure the decrease of the cost function between succes-

sive iterations, and the algorithm stops if the decrease falls below a predefined

threshold.

2.3 Existing NMF-based approaches

There has been several papers [41, 19, 27, 43, 21, 34, 20, 65, 46] extending and

improving the original NMF in the past decade and NMF has been successfully

applied to many areas such as image processing, face recognition [61], community

detection [112]and document clustering [84], [111]. An elaborate review of NM-

based approaches can be found in [105]. According to the types of features of

data (to be dealt with), current NMFs could be classified into two categories,

single-view NMF and multi-view NMF.

2.3.1 Single-view NMF

Single-view NMF means that the approaches can deal with one type of features

of data only, such as pixels of images or distributions of words in a documents.

Various single-view NMFs [67, 115, 6, 27, 51, 64, 48, 54] have been proposed

to find an proper low-dimensional representation. These approaches modify the

traditional NMF objective function by either using different norms to measure

approximation errors or incorporating auxiliary constraints. Though the forms

of constraints are application dependent, they can be characterized by (2.2) as

follows:

min
W,H≥0

D(X,WH) + αJ1(W) + βJ2(H) (2.5)
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where D(X,WH) represents the approximation errors. J1(W) and J2(H) are

penalty terms regarded as auxiliary constraints. The regularization parameters

α and β balance the trade-off between the approximation errors and the added

constraints.

Sparsity is one of important characters of data, that is, all the features or data

show the positive effect on the final results but only a few provide meaningful

and useful information. Usually, adding sparsity regularization to select the most

useful features [41] can improve the generalization of a method, thus avoiding

the over-fitting problem [113]. Several approaches are proposed to modify NMF

algorithms [40, 24, 41, 47] by penalizing H or W which aims to yield a sparse

representation [94]. For example, Hoyer[40] proposed a sparseness criterion by

leveraging the relationship between the L1 and L2 norm:

sparseness(x) =

√
n− (

∑
|xi|)/

√∑
x2
i√

n− 1
, (2.6)

where x denotes a given vector with dimension n. For instance, the sparseness

criterion imposed on am×k matrixW can be formulated as the following penalty

term:

J1(W) = (α∥vec(W)∥2 − ∥vec(W)∥1) (2.7)

where α =
√
mk−(

√
mk−1)α and vec(·) is an operator that transforms a matrix

into a vector by stacking its columns. The sparseness in W is specified by setting

α to a value between 0 and 1.

Often, the input X contains large noises and outliers, which may greatly in-

fluence performances. To alleviate this issue, some more robust methods were

proposed. For example, Kong et al.[50] adopted L2,1-norm based objective func-

tion to weaken the influence of data outliers:

D(X,WH) = ∥X−WH∥2,1. (2.8)

Since the error for each data point is not squared as standard NMF , and thus

the large errors due to outliers do not dominate the objective function. Later, Du

et al. [22] proposed using the correntropy induced metric to make it insensitive

to outliers. Hamza et al. [37] adopted a hypersurface cost function to make the

NMF robust to the outliers. Zhang et al. [115] proposed to subtract a sparse
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outlier matrix from the data matrix to reduce the effect of the outliers. Recent

research has shown that data are found to lie on a nonlinear low dimensional

manifold embedded in a high dimensional ambient space [2, 85, 60]. However,

the standard NMF fails to discover such intrinsic geometrical structure of the

data space [6]. To this end, Cai et al. [6] proposed a graph regularized NMF

(GNMF) to preserve the local manifold structure with regarding that the data

points nearby have more similar data representations than those far away. By

constructing a weight matrix U, GNMNF is to solve

J1(H) = tr(HLHT ), (2.9)

where L = D - U, D is a diagonal matrix whose entries Djj =
∑

l Ujl. Based on

GNMF, Huang et al. [42] then proposed a robust manifold NMF which simul-

taneously alleviates noises and preserves geometrical structure. Since the per-

formance of GNMF is known to hinge heavily on the choice of nearest neighbor

graph and it is difficult and time consuming to choose a suitable graph. To over-

come this limitation, Wang et. al. [100] proposed a multiple graph regularized

NMF (MultiGNMF) to approximate intrinsic manifold approximation automat-

ically. Similarly, a relational multi-manifold co-clustering (RMC) approach [58]

is proposed to maximally approximate the true intrinsic manifolds of both the

sample and feature spaces simultaneously. Later, Wang et al., [102] proposed two

GNMF-based methods to learn the graph that is adaptive to the selected features

and learned multiple kernels, respectively. In the real world applications, there

is certain amount of prior knowledge such as label information, which could be

used to improve the performance. NMF-α [14] makes a good combination of

NMF and SVM, which utilizes limited labeled samples to achieve the support

vectors of large-margin classifiers. Later, Liu et al. [64] proposed a constrained

NMF (CNMF),

D(X,WH) = ∥X−WZAT∥2F . (2.10)

Here H = ZAT , Z is an auxiliary matrix and A is label constraint matrix which

forces data samples with identical class label to have the same representation so

that the samples are more discriminative. Li et al. [59] proposed a Locally Con-

strained A-optimal nonnegative projection method which not only preserves the

locally geometrical structure of the data but also incorporates label information
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as constraints to enhance the discriminating power. Under the assumption that

data samples from different domains have different distributions, but share same

feature and class label spaces, Wang et al. [101] proposed a novel NMF-based

approach for multiple-domain learning.

Generally, all the existing MMFs which either incorporate regularization terms

or prior information for more accurate learning, all tend to obtain a single rep-

resentation. However, it is well recognized that real data are usually complex

and contain various components. For example, face images have expressions and

genders. Each component mainly reflects one aspect of data only and provides

information others do not have. Therefore, exploring the semantic information

of multiple components as well as the diversity among them is of great benefit to

understand data comprehensively and in-depth. Besides, real data such as video

sequences contain ordered structure, i.e., consecutive neighbouring data samples

are very likely share similar features unless a sudden change occurs. Since this

ordered structure provides valuable information about the relationship between

data, exploiting the ordered structure with NMF holds a great potential for seek-

ing for optimal representations.

2.3.2 Multi-view NMF

All the NMF methods mentioned above are developed to handle a single view

(feature) for finding explicit data representations. In fact, data collected from

various sources or represented by different feature extractors are available in many

real-world applications [109, 4, 28, 9, 97, 107]. For example, a web page that

shown in the figure 2.1, may be represented by multiple contents and hyperlinks;

one document may be translated into different languages; an image or video

can be represented by different visual descriptors, such as SIFT [71], HOG [18]

and GIST [79]; research communities are formed according to research topics

as well as co-authorship links and so on. These heterogeneous features that

are represented by different perspectives of data are referred as multiple views

[74, 110]. Taken alone, each of these views will often be deficient or incomplete

because different views describe distinct perspectives of data. Therefore, a key

problem for data analysis is how to integrate the multiple views and discover the

underlying structures.
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Figure 2.1: Multi-view data: a) a web document represented by its URL and
words on the page, b) a web image depicted by its surrounding text separate to
the visual information, c) images of a 3D object taken from different viewpoints,
d) video clips combined with audio signals and visual frames, e) multilingual
documents with one view in each language [109].

Recently, some NMF-based approaches on learning from multi-view data have

been proposed. With the increasing amount of multi-view data, the approaches

employing NMF-based multi-view learning have attracted attention. Assuming

that a dataset comes with V views, the objective function of multi-view NMF

can be written as

min
W(i),H(i)≥0

V∑
i=1

D(X(i),W(i)H(i)) + α
V∑
i=1

J1(W
(i)) + β

V∑
i=1

J2(H
(i)) (2.11)

. For example, MultiNMF [65] formulates a joint multi-view NMF learning pro-

cess with the constraint that encourages representation of each view towards a
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common consensus.

J2(H
(i)) = ∥H(i)Q(i) −H∗∥2F , (2.12)

where Qi = Diag(
∑m

j=1 W
(i)
j,1,
∑m

j=1W
(i)
j,2, . . . ,

∑m
j=1W

(i)
j,k) to ensure the repre-

sentations of different views are comparable and H∗ is the common consensus

matrix.

Subsequently, several approaches [116, 46, 80, 99] were proposed based on

MultiNMF. Specifically, Zhang et al. [116] developed a multi-manifold NMF

(MMNMF) by incorporating the locally geometrical structure of data across mul-

tiple views. It regards each view as one manifold and the intrinsic manifold of a

dataset as a mixture of the manifolds. Kalayeh et al. [46] proposed a weighted

extension of MultiNMF [65] for image annotation, in which two weight matrices

are introduced to alleviate the issue of dataset imbalance in real applications.

Ou et al. [80] explored the local geometric structure for each view under the

patch alignment framework and adopted correntropy-induced metric to measure

the reconstruction error of each view to improve the robustness. Though exist-

ing approaches have shown superior results, some limitations remain to be dealt

with. Firstly, existing approaches are unable to exploit the distinct information

embedded of each view, so that the learned data representations from existing

approaches contain mutually redundant information and lack diverse informa-

tion. Secondly, given that utilizing a small amount of prior information can pro-

duce considerable improvements in learning accuracy [2], [119], it is potentially

beneficial to incorporate such information to improve the discriminability of rep-

resentations. This has not yet been attempted in existing approaches. Finally,

since each view often contributes to final performance unequally, the selection of

a weight for each view could result in a substantial effect on the results. However,

the current methods only determine weights empirically using the labeled data

or the same weight for all views, which restricts their applications in practice.

Therefore, it is necessary and important to address these limitations and explores

correlations among different views more effectively.
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2.4 Evaluation metrics

To evaluate NMF-based approaches for data clustering, the accuracy (AC) [64],

the normalized mutual information (NMI) [64] and the purity [21] are three widely

used evaluation metrics to assess the quality of the results. For all the three met-

rics, the higher value indicates better clustering quality. These measurements are

widely used by comparing the obtained label of each sample with that provided

by the data set in different clustering approaches.

Clustering accuracy (AC) is used to measure the percentage of correct

labels obtained. Given a data set containing n images, let li and ri be the the

obtained cluster label and label provided from each sample images, respectively.

The AC is defined as follows,

AC =

∑n
i=1 δ(ri,map(li))

n
(2.13)

where δ(x, y) is the delta function that equals one if x = y and equals zero

otherwise, and map(li) is the permutation mapping function that maps each

cluster label li to the equivalent label ri from the data set. The best mapping

can be found by using the Kuhn-Munkres algorithm [82].

Normalized mutual information (NMI) is used to measure the similar-

ity between the cluster assignments and the pre-existing input labeling of the

classes. Let C and C ′ denote the set of clusters obtained from the ground truth

and obtained from our algorithm, respectively, their mutual information metric

MI(C,C ′) is defined as follows,

MI(C,C ′) =
∑

ci∈C,cj ′∈C′

p(ci, cj
′) · log p(ci, cj

′)

p(ci) · p(cj ′)
, (2.14)

where p(ci), p(cj
′) are the probabilities that an image randomly selected from the

data set belongs to the clusters ci and cj, respectively, and p(ci, cj
′) denotes the

joint probability that this randomly selected image belongs to the cluster ci as

well as cj at the same time. In our experiment, we used the normalized metric

NMI(C,C ′) as follows,

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))
, (2.15)
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where H(C) and H(C ′) are the entropies of C and C ′, respectively. It is easy

to check that NMI(C,C ′) ranges from 0 to 1. NMI = 1 when the two sets of

image clusters are identical, and it becomes zero when the two sets are completely

independent.

Purity measures the extent to which each cluster contained data points from

primarily one class. The purity of a clustering solution is obtained as a weighted

sum of individual cluster purity values and is given by

Purity =
K∑
i=1

ni

n
P (Si), P (Si) =

1

ni

max
j

(nj
i ) (2.16)

where Si is a particular cluster of size ni, n
j
i is the number of documents of

the i-th input class that were assigned to the j-th cluster, K is the number of

clusters and n is the total number of points.
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Chapter 3

Multi-Component Nonnegative

Matrix Factorization

3.1 Introduction

This chapter mainly explores semantic information of embedded multiple com-

ponents of data and diverse information among them. In reality, data are usually

complex and contain various components. Taken the Yale dataset1 (Figure 3.1 )

as an example, the face images consist of multiple components including gender,

facial expressions, ethnicity, and lighting direction (under which the images were

taken), etc. Since each component mainly represents one subset of features and

contains the specific information of the data, it is important to explore diverse

information from multiple components in order to represent data more compre-

hensively and accurately. Besides, when clustering the dataset with exploring

latent multiple components, multiple clustering solutions can be obtained such

as one cluster of images can be faces with glasses and another can be faces with

a happy expression. This will also enables us to understand data at a semantic

level.

To this end, a novel NMF based approach is proposed for multi-component

learning. It captures more comprehensive information and interprets data from

different perspectives, by leveraging the multiple components. Specifically, dif-

ferent from existing NMF-based approaches that seek for a single representation

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Figure 3.1: Sample images of the Yale dataset. Each column shows one subject’s
faces. Images in the same rows contain same components, such as faces with
glasses and a neutral expression in row 1; faces without glasses and a happy
expression in row 2; faces lit from left and with a neutral expression in row 3.

matrix, the proposed approach learns multiple representations simultaneously.

By utilizing the Hilbert Schmidt Independence Criterion (HSIC) as a diversity

term, the proposed approach explores the diverse information among the repre-

sentations, where each representation corresponds to a component.

3.2 Single-Component NMF

The previous chapter has briefly introduced NMF. That is, given a n data matrix

X = [x1,x2, ...,xn] ∈ Rm×n
+ where each column is a m-dimensional data vector,

NMF [55] aims to minimize the following nmf22ective function:

min
W,H≥0

∥X−WH∥2F , (3.1)

In essence, current single-view NMF-based approaches are all based on this stan-

dard NMF with regarding the features of data as a whole and seeking for a single

representation matrix. Obviously, they are unable to distinguish these embedded

components and can be considered as single-component approaches.
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3.3 Multi-Component NMF

Real data often contains multiple latent components, since each component pro-

vides distinct information to each other, it is of paramount importance to explore

diversity from multiple latent components for comprehensive and accurate data

representations. Also, it is arguable that the semantic information of data is much

richer than what a single component can capture. Hence, we propose a multi-

component NMF (MCNMF) approach to seek for more accurate learning and

exploit semantic meaning of data simultaneously. Different from current NMF-

based approaches that seek for a single representation matrix, MCNMF learns

multiple representations simultaneously, where each representation corresponds

to each component. Figure 3.2 shows the differences between current NMFs and

MCNMF with application on clustering. We can see that current NMFs get

only one clustering solution (i.e., all face images of a subject being grouped into

one cluster) based on global features of a single representation matrix. However,

based on learning representations of multiple components, MCNMF can achieve

multiple clustering solutions. For example, one cluster of images can be faces

with glasses and another can be faces with a happy expression. In the following

subsection, we will introduce our MCNMF model.

3.3.1 Objective function

Assuming X comes with V components, we use H(i) ∈ Rk(i)×n to denote the

representation with k(i)-dimensional features that corresponds to the i-th (i ∈
{1, 2, . . . , V }) components, and W(i) be the corresponding representation matrix

of H(i). Then the product of each W(i)H(i) should well approximate X, i.e., X ≈
W(i)H(i), from each perspective. To seek for multiple optimal representations

{H(i)∗}Vi=1, we have the following function:

min
W(i)≥0,H(i)≥0

V∑
i=1

∥X−W(i)H(i)∥2F . (3.2)

This will allow us to factorizeX straightforwardly. However, it may fail to explore

the diverse information of multiple components effectively as each H(i) could be

very close to or even same as each other.

37



CHAPTER 3. MULTI-COMPONENT NONNEGATIVE MATRIX
FACTORIZATION

Figure 3.2: The comparison of traditional NMFs and MCNMF, where circles in
different colors represent different clusters.

For any data, xf , it comes with a pair of components, i and j. xf ’s la-

tent distinct information of each component cannot be fully explored unless its

representations of two components, i.e., h
(i)
f and h

(j)
f , are enforced to be inde-

pendent to each other. Given n data vectors, we assume that each ith com-

ponent is drawn from X space and the jth component from Y space. Then,

in essence, we aim to learn a mapping function G of their representations from

S := {(h(i)
1 ,h

(j)
1 ), (h

(i)
2 ,h

(j)
2 ), . . . , (h

(i)
n ,h

(j)
n )} ⊆ X × Y , i.e., G: X → Y , to mini-

mize the dependence between data representations in the X and Y .
To do so, we employ the Hilbert-Schmidt Independence Criterion (HSIC)[32]

due to its several advantages. First, HSIC measures dependence by mapping

variables into a reproducing kernel Hilbert space (RKHS) such that correlations

measured in that space correspond to high-order joint moments between the

original distributions and more complicated (such as nonlinear) dependence can

be addressed. Second, it is able to estimate dependence between variables without

explicitly estimating the joint distribution of the random variables. Hence, it is
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of high computational efficiency. Last but not least, the empirical HSIC turns

out to be equal to the trace of product of the data matrix, which makes our

problem solvable. HSIC computes the square of the norm of the cross-covariance

operator over the domain X × Y in Hilbert Space. As an effective measure of

dependence, the HSIC has been applied to several machine learning tasks recently

[88, 117, 78]. Mathmatically, an empirical estimate of the HSIC [32] is defined as

HSIC(H(i),H(j)) = (n− 1)−2tr(RK(i)RK(j)), (3.3)

where K(i) and K(j) are the centered Gram matrices 2 of kernel functions defined

over H(i) and H(j). R = I − 1
n
eeT , where I is an identity matrix and e is an

all-one column vector.

Thus, to explore the diverse information from more components, we extend

(3.3) and combine it with (3.2) to produce the following function:

min
W(i)≥0,H(i)≥0

V∑
i=1

∥X−W(i)H(i)∥2F + α
∑
j ̸=i

HSIC(H(i),H(j)), (3.4)

where α is the parameter of the diversity regularization term. The first term

represents the error between X and the product of the basis and representation

matrices in different components. The second term ensures that any two of V

representations be diverse to each other.

Here, we use the inner product kernel for HSIC, i.e., K(i) = H(i)TH(i). For

notational convenience, we ignore the scaling factor (n−1)−2 of HSIC, and rewrite

(3.4) to form the final objective function as

min
W(i)≥0,H(i)≥0

V∑
i=1

∥X−W(i)H(i)∥2F+ α
∑
j ̸=i

tr(RK(i)RK(j)). (3.5)

After obtaining the optimal representation H(i)∗ of each component, the final

aggregated representation H∗ can be obtained by combining all H(i)∗, i.e., H∗ =

[H(1)∗,H(2)∗, . . . ,H(V )∗] ∈ R
∑V

i=1 k
(i)×n.

Remarks: When V = 1, (3.1) is exact that of NMF. Moreover, Our method is

not limited to one specific NMF method. Our method is based on standard NMF,

2Given a set V of m vectors ∈ Rn ), the Gram matrix G is the matrix of all possible inner
products of V
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since it is clearer to demonstrate the effectiveness of latent components without

the help of other regularization. Nevertheless, other state-of-the-art NMF-based

approaches, such as GNMF [6], RNMF [50] can also be implemented into our

method and better results can be expected.

3.3.2 Optimization

The optimization problem in (3.5) is not convex in both variables W(i) and

H(i), so it is infeasible to find the global minimum. In addition, as the matrix

R contains negative values, it is technically challenging to solve (3.5) directly.

Here we propose an algorithm that separates the optimization of (3.5) to two

subproblems and optimizes them iteratively, which guarantees each subproblem

converges to the local minima.

W(i)-subproblem: UpdatingW(i) withH(i) fixed in (3.5) leads to a standard

NMF formulation [56], so the updating rule for W(i) is

W(i) ←W(i) ⊙ (XH(i)T )

(W(i)H(i)H(i)T )
. (3.6)

H(i)-subproblem: When updating H(i) with W(i) in (3.5) fixed, we need to

solve the following function:

min
H(i)≥0

J(H(i)) = ∥X−W(i)H(i)∥2F + α
V∑

j=1,j ̸=i

tr(RK(i)RK(j)) (3.7)

In general, the method of Lagrange Multipliers is used to find the solution

for optimization problems constrained to one or more equalities. Since the con-

straints of (3.7) also have inequalities, we need to extend the method to the KKT

conditions.

Definition 1 The KKT conditions is when given a problem

x∗ = argmin
x

f(x)

s.t. hi(x) = 0,∀i = 1, . . . ,m

s.t. gi(x) ≤ 0∀i = 1, . . . ,m
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The expression for the optimization problem becomes:

x∗ = argminL(x, λ, µ) = argmin
x

f(x) +
m∑
i=1

λihi(x) +
n∑

i=1

µigi(x),

here argminL(x, λ, µ) is the Lagrangian and depends also on λ and µ, which are

vectors of the multipliers.

According to the Definition 1, we then introduce a Lagrange multiplier

matrix η = [ηpq] ∈ Rk×n for the nonnegative constraint on H(i). Utilizing

∥A∥2F = tr(ATA), we obtain the following function:

min
H(i)≥0

J ′(H(i)) = tr(XXT )− 2tr(XH(i)TW(i)T )

+ tr(W(i)H(i)H(i)TW(i)T )

+ α

V∑
j=1,j ̸=i

tr(RH(i)TH(i)RK(j)) + tr(ηH(i)).

(3.8)

Setting the derivative of J ′(H(i)) to be 0 with respect to H(i), we have

η = W(i)TX−W(i)TW(i)H(i) − αH(i)R
V∑

j=1,j ̸=i

K(j)R. (3.9)

Following the Karush-Kuhn-Tucker (KKT) condition [5] for the nonnegativity of

H(i), we have the following equation:

(W(i)TX−W(i)TW(i)H(i) − αH(i)R
V∑

j=1,j ̸=i

K(j)R)pqH
(i)
pq = 0. (3.10)

Because R contains negative values, we decompose R into two nonnegative parts

for ensuring H(i) ≥ 0 in each iteration:

R = R+ −R−, (3.11)

where R+
pq = (|Rpq|+Rpq)/2 and R−

pq = (|Rpq|−Rpq)/2. Substituting (3.11) into
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(3.10), we obtain

(W(i)TX−W(i)TW(i)H(i) + αH(i)(R+
V∑

j=1,j ̸=i

K(j)R− +R−
V∑

j=1,j ̸=i

K(j)R+)

− αH(i)(R−
V∑

j=1,j ̸=i

K(j)R−+R+
V∑

j=1,j ̸=i

K(j)R+))pqH
(i)
pq = 0.

(3.12)

This is the fixed point equation whose solution must satisfy at convergence. De-

noteRa = R+
∑V

j=1,j ̸=i K
(j)R−,Rb = R−∑V

j=1,j ̸=iK
(j)R+,Rc = R−∑V

j=1,j ̸=i K
(j)R−,

Rd = R+
∑V

j=1,j ̸=iK
(j)R+, then given an initial value of H(i), the successive up-

date of H(i) is:

H(i) ← H(i) ⊙

√
W(i)TX+ αH(i)(Ra +Rb)

W(i)TW(i)H+ αH(i)(Rc +Rd)
. (3.13)

The correctness of the updating rule (3.13) can be guaranteed by the following

theorem.

Theorem 1. If the updating rule of H(i) converges, then the final solution

satisfies the KKT optimality condition.

Proof of Theorem 1. At convergence, H∞ = Ht+1 = Ht = H, where t

denotes the t-th iteration, i.e.,

H(i) = H(i) ⊙

√
W(i)TX+ αH(i)(Ra +Rb)

W(i)TW(i)H+ αH(i)(Rc +Rd)
(3.14)

Then for each H
(i)
pq , we have

(W(i)TX−W(i)TW(i)H(i) + αH(i)(Ra +Rb)

− αH(i)(Rc +Rd))pq(H
(i))2pq = 0.

(3.15)

which is equivalent to (3.12).

We can now prove the convergence of the updating rule, by making use of an

auxiliary function as in [56]. The definition of the auxiliary function is as follows:

Definition 2. A function G(Q,Q′) is an auxiliary function of the function

J(Q) if G(Q,Q′) ≥ J(Q) and G(Q,Q) = J(Q) for any Q, Q′.

The auxiliary function gives rise to the following lemma [56]:

42



CHAPTER 3. MULTI-COMPONENT NONNEGATIVE MATRIX
FACTORIZATION

Lemma 1. If G is an auxiliary function of J , then J is non-increasing under

the update rule Qt+1 = argminQ G(Q,Qt).

Under the constraint in (3.11), we now have the specific form of the auxiliary

function G(H(i),H(i)′) for the objective function J(H(i)) in (3.7) based on Lemma

2.

Lemma 2. The function

G(H(i),H(i)′) = −2
∑
pq

(W(i)TX)pqH
(i)′

pq(1 + log
H

(i)
pq

H
(i)
pq

′

)

+
∑
pq

(W(i)TW(i)H(i)′)pqH
(i)
pq

2

H
(i)
pq

′

−
∑
pqk

(Ra +Rb)jkH
(i)′

pqH
(i)′

pk(1 + log
H

(i)
pqH(i)

pk

H(i)′
pqH

(i)′
pk

)

+
∑
pq

(H(i)′(Rc +Rd))pqH
(i)
pq

2

H
(i)
pq

′

(3.16)

is an auxiliary function for J(H(i)) in (3.7).

Proof of Lemma 2. We find upper bounds for each of the two positive

terms by the following lemma [20],

Lemma 3. For any nonnegative matrices S ∈ Rn×n, B ∈ Rg×g, F ∈ Rn×g and

F′ ∈ Rn×g, with S and B being symmetric, then the following inequality holds

tr(FTSFB) ≤
n∑

i=1

g∑
p=1

(SF′B)
F2

ip

F′
ip

. (3.17)

Then, we have following inequations:

tr(W(i)TW(i)H(i)H(i)T ) ≤
∑
pq

(W(i)TW(i)H′
i)pq(H

(i))2pq
(H′

i)pq
, (3.18)

tr(H(Rc +Rd)H
T ) ≤

∑
pq

(H′(Rc +Rd))pqH
2
pq

H′
pq

. (3.19)

To obtain lower bounds for the remaining terms, we use the inequality z >
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1 + log z, ∀z > 0 [20] and have

tr(WTXHT ) ≥
∑
pq

(WTX)pqH
′
pq(1 + log

Hpq

H′
pq

), (3.20)

tr(H(Ra +Rb)H
T ) ≥

∑
pqk

(Ra +Rb)jkH
′
pqH

′
pk(1 + log

HpqHpk

H′
pqH

′
pk

). (3.21)

Collecting all bounds, we have the final auxiliary function in Lemma 2.

Based on the lemmas 1 and 2, we can prove the convergence of the updating

rule (3.13).

Theorem 2. The optimization problem (3.7) is non-increasing under the

iterative updating rule (3.13).

Proof of Theorem 2. Lemma 2 provides a specific form G(H,H′) of the

auxiliary function for J(H) in the problem (3.7). We can have the solution for

minHG(H,H′) by the following KKT condition

∂G(H,H′)

∂Hpq

=−2(WTX)pq
H′

pq

Hpq

+2
(WTWH′)pqHpq

H′
pq

− 2
(H′(Ra +Rb))pqH

′
pq

Hpq

+ 2
(H′(Rc +Rd))pqHpq

H′
pq

= 0,

(3.22)

which gives rise to the updating rule in (3.13). Following Lemma 1, under this

updating rule the objective function values of J(H) in (3.7) will be non-increasing.

3.3.3 Complexity analysis

Based on (3.13) and (3.6), we estimate the number of operations for each iter-

ation as above. The complexity of updating W(i) is O(mnk(i)). When update

H(i), the cost of multiplications for W(i)TX, H(i)(Ra +Rb), W
(i)TW(i)H(i) and

H(i)(Rc+Rd) are O(k(i)mn), O(
∑V

j=1,j ̸=i(k
(j)n2+nk(j)2)), O(mk(i)2+nk(i)2) and

O(
∑V

j=1,j ̸=i(k
(j)n2+nk(j)2)), respectively. Since usually {k(i), k(j)} ≪ min(m,n),

the overall computation of MCNMF is O(
∑V

i=1(
∑V

j=1,j ̸=i k
(j)n2+ k(i)mn)). Since

the updating rules for each element of both W(i) and H(i) at each iteration are

independent, the computational cost can be significantly reduced if all elements

are updated in parallel, such as through CUDA [39].
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3.4 Experiments

3.4.1 Description of datasets

We carried several experiments on the following benchmark datasets to show the

effectiveness of MCNMF.

•Yale: It contains 11 facial images for each of 15 subjects. Sample images are

shown in Figure 3.1. For each subject, its face images are either in different facial

expressions (such as happy or sad), or configurations (such as with or without

glasses).

• ORL3: This dataset consists of 400 facial images belonging to 40 different

subjects. Similar to the Yale dataset, the images were taken with various lighting

and facial expressions.

• Notting −Hill[9] This is a video face dataset, which is derived from the

movie “Notting Hill”. The faces of 5 main casts were used, including 4660 faces

in 76 tracks.

• COIL204: It is composed of 1440 images for 20 nmf22ects. The 72 images

of each nmf22ect were captured by a fixed camera at a pose intervals of 5 degree.

For this dataset, we regard the different poses and shapes as components.

3.4.2 Experimental setup

We first compared MCNMF against the standard NMF [56] to verify the effective-

ness of exploring diverse information from multi-components, and then with the

state-of-the-arts: RNMF [50], GNMF [6], Cauchy NMF [69] and LANMF [66].

For each compared method, the parameters were set according to the parameter

settings in original papers. For MCNMF, we varied the regularization parame-

ter α within [0.01, 0.05] with 0.01 interval and fixed the number of components

V = 3 . In addition, we set each k(i) equals to number of clusters according to

the groundtruth of each dataset. The dimensions of obtained optimal represen-

tations H∗ for all the compared methods were all set to be k =
∑V

i=1 k
(i) for fair

comparison.

3http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
4http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Table 3.1: Clustering results ((mean ± standard deviation)%) on the four
datasets (bold numbers represent the best results)

Metric NMF RNMF GNMF Cauchy NMF LANMF MCNMF

AC 40.48 ±3.25 38.55 ±2.76 41.58±2.54 41.45 ±4.26 39.76 ±2.70 46.42±1.95
Yale NMI 46.35 ±2.15 43.98 ±2.46 46.30 ±1.66 49.57 ±2.88 45.52 ±1.25 49.65±1.66

purity 42.91 ±2.16 41.33 ±3.36 42.67±2.73 43.39 ±3.02 42.18 ±1.64 47.15±1.45
AC 54.90±3.44 54.20 ±2.11 59.60±2.50 56.45±2.86 52.40 ±2.31 62.95±1.20

ORL NMI 76.22±1.34 75.33±1.04 77.80±1.12 74.80±1.23 73.11±1.79 79.39±1.10
purity 62.20±2.08 59.75±1.51 64.55±1.59 60.45±1.85 57.80±1.55 66.20±1.47
AC 62.49±1.56 59.57±4.83 68.39±2.62 63.49±4.34 63.17 ±3.98 69.61±1.30

COIL20 NMI 74.35±1.49 73.24±2.21 77.30±1.54 76.34±2.08 76.63±2.51 78.84±0.81
purity 66.40±1.37 64.29±3.75 69.83±2.47 67.28±2.06 67.68±3.51 70.06±1.25
AC 68.04±3.68 74.08 ±2.90 75.88 ±3.40 64.65±4.93 72.64 ±4.17 77.54±1.69

Notting-Hill NMI 60.27±3.50 64.74±2.55 62.97±2.93 56.29±2.32 64.94±3.56 66.63 ±3.33
purity 72.93±5.38 78.39±2.25 77.19±2.85 70.25±3.93 78.67±3.67 79.49±2.79

Figure 3.3: Sample clustering results of the Yale dataset based on each represen-
tation H(i). Images circled in red are outliers.
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3.4.3 Performance analysis

Clustering result. We applied k-means to the obtained representations H∗ for

clustering. Since k-means is sensitive to the initial values, we repeated the clus-

tering process 50 times to give the average performance. Moreover, since all the

compared methods converge to local minimum, we ran each method 10 times to

avoid randomness. The final average clustering results along with standard devi-

ations are reported in Table 3.1. As we can see, MCNMF outperforms the other

methods against all metrics and gets the lowest standard deviations on 9 of 12

results, which demonstrate the robustness of MCNMF. Besides, it can be noticed

that GNMF performs the second best in terms of AC, but not for other metrics.

Especially, MCNMF outperforms GNMF with a large margin: 4.84% and 3.35%

on the Yale and ORL, respectively. This is probably because that the images in

both of the two datasets have more components, such as different lighting and

expressions. Obviously, richer information has been explored and obtained for

comprehensive representations, which brings significant improvements.

Figure 3.4: Sample clustering results of the COIL20 dataset. Each row, from top
to bottom, represents a cluster based on the representations H(1) , H(2) and H(3)

, respectively. Images circled in red are outliers.

Component study. We closely examined the learned representations for

each component to analyze their latent semantics. In particular, we took the

Yale dataset as an example. Like the previous experiment setting, we fixed the
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number of components V to 3, and applied k-means on the representation H(i)

of each component to cluster the data into 3 clusters. The results are shown

in Figure 3.3. We can see that the each representation has effectively captured

some distinct information (such as unhappy or surprised expressions) which is

reflected by a corresponding cluster. This result enables the understanding of

the data from various perspectives in a semantic level, which would be hardly

achievable by current NMF-based methods as they cannot identify components.

Also, note that from H(2) and H(3), there is a common cluster: the right-lit faces.

This is reasonable that although multiple representations usually describe data

from different perspectives, they are not completely exclusive to each other mu-

tually. We further tested MCNMF on a larger dataset COIL20, example results

are shown in Figure 3.4. Again, the results are quite good and promising, with

multiple clusters being obtained through different components (right rotation,

pottery, etc).

Parameter analysis. We tested the effect of parameter α of MCNMF on

the datasets. α varies from 0.01 to 0.05 with an increment of 0.01. Here we

presented the accuracy of MCNMF with respect to α on Yale and ORL as ex-

amples. Seen from Figure 3.5, the accuracy varies slightly showing a relatively

stable performance. Also, for all values of α, the performance of MCNMF is con-
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0.7
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Figure 3.5: The effect of the parameter α.

sistently better than NMF ( Table 6.1). For example, for Yale, the worst result

of MCNMF is about 0.4182, while NMF only gets 0.4048.
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We also tested the effect of the number of components V . Here we fixed

α = 0.01 and varied V from 1 to 7 with an increment of 1. Seen from Figure 3.6,

for both Yale and ORL, the accuracy with multiple components (V ≥ 2) is always

better than MCNMF with V = 1 (NMF). Specifically, the accuracy increases

sharply when V is tuned from 1 to 3, which indicates the effectiveness of MCNMF

by exploring multiple components. Then the accuracy fluctuates slightly when V

increases from 3 to 7. The fluctuation could be due to a compromise between the

amount of features for each representation and the diverse information among

them. When V increases, more diverse information can be utilized. However,

given a fixed k =
∑3

i=1 k
(i), the increase of V will result in reduction of the

feature dimension k(i) for each representation.
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Figure 3.6: The effect of the number of components V .

Convergence analysis. Having proven the convergence of our update rules

of MCNMF in previous sections, here we experimentally demonstrate its conver-

gence in Figure 3.7, where the horizontal axis is the number of iterations and

the vertical axis is the value of nmf22ective function. It can be seen that the

nmf22ective function values are non-increasing and drop sharply within 5 itera-

tions on both datasets.
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Figure 3.7: Convergence curves.

3.5 Conclusion

A Multi-Component Nonnegative Matrix Factorization (MCNMF) approach has

been proposed to find multi-representation of data by exploring embedded la-

tent components. Different from existing NMF-based approaches that seek for

a single representation matrix, MCNMF learns multiple representations simulta-

neously. Utilizing Hilbert Schmidt Independence Criterion (HSIC) as a penalty

term, MCNMF explicitly enforces the diversity of different data representations.

A novel updating rule to optimize the nmf22ective function has been derived,

together with correctness and convergence being proven. Extensive experiments

have demonstrated that MCNMF can not only obtain multiple representations

with each one reflecting one property of data, but also increases the accuracy by

aggregating multiple representations. In fact, often real data such as motion se-

quences and video clips, are with ordered structure, i.e., consecutive neigh- bour-

ing data samples are very likely share similar features unless a sudden change

occurs. MCNMF deal with features of each data points independently, making

it not proper for the analysis of such data. In the next chapter, a novel approach

is proposed to capture the embedded ordered structure of data to enhance per-

formance.
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Chapter 4

Ordered Structured Preserved

Nonnegative Matrix

Factorization

4.1 Introduction

It is well recognized that NMF based approaches have been widely used in the

fields of machine learning and computer vision such as motion segmentation

[12, 72], human activity recognition [33], face recognition [70, 64, 49], etc. Often

the data which these applications process are sequential, such as a video clip, a se-

quence of a subject’s images taken under changing illuminations, etc. These data

can be sampled such that consecutive samples are similar to each other unless

a big or sudden change occurs. This sequential nature or ordered structure pro-

vides valuable information about the relationship between data [75, 91, 106, 36].

For example, to cluster frames of a video clip into scenes they belong to, the

representations of the frames in the same scene based on the existing approaches

could be quite different, due to the fact that the only the frame’s characteristic

features such as illumination or perspective are utilized. Instead, if the ordered

structure is incorporated as a constraint, these differences are reduced because

the representations of every two neighbouring frames are enforced to be similar

which will improve the clustering accuracy. Thus, exploiting the ordered struc-

ture with NMF holds a great potential for seeking for optimal representations.

51



CHAPTER 4. ORDERED STRUCTURED PRESERVED NONNEGATIVE
MATRIX FACTORIZATION

However, the approaches introduced previously are specific to data that data

samples and features are independently distributed. In other words, they are

not able to exploit the sequential relationship and extremely challenging to find

optimal representations of sequential data. Therefore in this chapter we pro-

pose and develop a novel method, named as ordered robust nonnegative matrix

factorization (ORNMF), which takes full advantage of the relationship and se-

quential correlation. A novel neighbour penalty term is constructed to enforce

the similarity of the consecutive data representations. A L2,1-norm loss func-

tion is used to improve the robustness so that ORNMF is insensitive to the data

outliers and applicable to applications with noisy data. An efficient and elegant

iterative updating rule is derived and analyzed theoretically to demonstrate their

correctness and convergence. The experiments on one synthetic and two real

datasets, in comparison with both baselines and state-of-the-art methods, have

demonstrated the superiority of ORNMF in terms of accuracy and normalized

mutual information.

4.2 Ordered Robust NMF (ORNMF)

ORNMF is proposed in this study to enforce the similarity between representa-

tions of neighbouring data. The inspiration behind ORNMF is that the changes

between neighbouring data are usually very subtle, so the representations of these

data should be similar to each other. Taken a video sequence for an example,

since the scenes in the sequence normally change much less frequently than the

frame rate, it is safe to assume that a high similarity exists among consecutive

frames, except when two neighbouring frames are from different scenes.

To achieve the optimal data representations by incorporating this ordered

structure, a novel regularization term is incorporated to the conventional NMF

objective function in two steps. First, we construct the following matrix R ∈
Rn×(n−1), which is a lower triangular matrix with −1 on the diagonal and 1 on
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the second diagonal:

R =



−1 0 0 . . . 0

1 −1 0 . . . 0

0 1 −1 . . . 0
...

...
. . . . . . 0

0 0 0
. . . −1

0 0 0 . . . 1


.

Multiplying H by R gives HR = [H2−H1,H3−H2,H4−H3 . . .Hn−Hn−1]. If

the columns of HR are or nearly equal to zero vectors, i.e. Hi −Hi−1 ≈ 0, data

must be from the same subject/scene because they are similar, or a boundary or

sudden change exists inbetween. Given k subjects, ideally, only k − 1 non-zero

columns should HR have. To guarantee k − 1 non-zeros columns, we introduce

a L2,0-norm, ∥ · ∥2,0, to penalise each column directly and maintain the sparsity

of HR. The quasi-norm L2,0-norm is defined as the number of non-zero columns.

We thereby propose an objective function as

min
W≥0,H≥0

J = ∥X−WH∥2F + α∥HR∥2,0, (4.1)

where α is a trade-off parameter that controls the weight of the regularization

term.

However, solving the problem (4.1) is NP-hard because of the L2,0-norm [76].

According to [76], the L2,1-norm of a given matrix X, i.e., ∥X∥2,1, is the minimum

convex hull of ∥X∥2,0. When X is column-sparse enough, namely, many zero

columns are involved, minimize ∥X∥2,1 is always equivalent to minimize ∥X∥2,0.
Therefore, we can relax the objective function (4.1) as:

min
W≥0,H≥0

J = ∥X−WH∥2F + α∥HR∥2,1. (4.2)

Since the error, i.e. the first term of (4.2) is squared, a few big ones due

to outliers or noises may dominate the objective function. As in [50], we then

propose a more robust function as the following:
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min
W≥0,H≥0

J = ∥V −WH∥2,1 + α∥HR∥2,1, (4.3)

where the L2,1-norm is applied to the loss function and defined as ∥X−WH∥2,1 =∑n
i=1 ∥Xi −WHi∥. With the error for each data not being squared, the impact

of large errors is reduced significantly.

4.2.1 Optimization

Since the optimization problem in (4.3) is not convex in both variables W and H,

it is infeasible to find the global minimum. In addition, as the matrix R contains

negative values, it is technically challenging to solve (4.3) directly. Following [55],

here we propose an algorithm that iteratively updates H with W fixed and then

W with H fixed, which guarantees the objective function values do not increase

with iterations.

Update for H: To update H with W fixed, we need to solve the following

problem:

min
H≥0

J(H) = ∥X−WH∥2,1 + α∥HR∥2,1. (4.4)

We introduce a Lagrange multiplier matrix η = [ηij] ∈ Rk×n for the constraint

H ≥ 0, then we have the following equivalent objective function:

J(H) = tr(XD1X
T− 2XD1H

TWT +WHD1H
TWT )

+ αtr(HRD2R
THT ) + tr(ηH).

(4.5)

where D1 and D2 are diagonal matrices with the diagonal elements being

(D1)ii =
1

∥Xi −WHi∥
, i = 1, 2..., n. (4.6)

(D2)ii =
1

∥(HR)i∥
, i = 1, 2..., n− 1. (4.7)

Setting the derivative of J(H) to be 0 with respect to H, we have

η = 2WTXD1 − 2WTWHD1 − 2αHRD2R
T , (4.8)
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Following the Karush-Kuhn-Tucker (KKT) condition [5] ηijHij = 0, we have

(WTXD1 −WTWHD1 − αHRD2R
T )ijHij = 0. (4.9)

Because R contains negative values, we decompose R into two nonnegative parts

for ensuring H ≥ 0 in each iteration:

R = R+ −R−, (4.10)

where R+
ij = (|Rij| +Rij)/2 and R−

ij = (|Rij| −Rij)/2. Substituting (4.10) into

(4.9), we obtain

(WTXD1−WTWHD1+αH(R+D2R
−T
+R−D2R

+T
)

− αH(R+D2R
+T
+R−D2R

−T
))ijHij = 0.

(4.11)

Denoting Ra = R+D2(R
−)T , Rb = R−D2(R

+)T , Rc = R+D2R
+T

, Rd =

R−D2R
−T

, we then have the following successive update of H with an initial

value of H.

Hij ← Hij

√
(WTXD1 + αH(Ra +Rb))ij

(WTWHD1 + αH(Rc +Rd))ij
. (4.12)

When (4.12) converges, its solution satisfies (4.11).

This updating rule of H satisfies the following theorem, which guarantees the

correctness of the rule.

Theorem 1. If the updating rule of H converges, then the final solution

satisfies the KKT optimality condition.

Proof of Theorem 1. At convergence, H∞ = Ht+1 = Ht = H, where t denotes

the t-th iteration, i.e.,

Hij = Hij

√
(WTXD1 + αH(Ra +Rb))ij

(WTWHD1 + αH(Rc +Rd))ij
. (4.13)

This is the same as

(WTXD1−WTWHD1+αH(R+D2R
−T
+R−D2R

+T
)

− αH(R+D2R
+T
+R−D2R

−T
))ijH

2
ij = 0.

(4.14)
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which is equivalent to (4.11). We now prove the convergence of the updating rule.

To achieve this goal, following [56], we use an auxiliary function as following .

Definition 1 [56] A function G(H,H′) is an auxiliary function of the function

J(H) if G(H,H′) ≥ J(H) and G(H,H) = J(H) for any H and a constant matrix

H′.

The auxiliary function helps because of the following lemma:

Lemma 1 [56] If G is an auxiliary function of J , then J is non-increasing

under the updating rule Ht+1 = argminHG(H,Ht).

Proof. J(Ht+1) ≤ G(Ht+1,Ht) ≤ G(Ht,Ht) = J(Ht)

Now we have the specific form of the auxiliary function G(H,H′) for the

objective function J(H) in the problem (4.4), based on the following lemma.

Lemma 2 The function

G(H,H′) = −2
∑
ij

(WTXD1)ijH
′
ij(1 + log

Hij

H′
ij

)

+
∑
ij

(WTWH′D1)ijH
2
ij

H′
ij

−
∑
ijk

((Ra +Rb)jk)H
′
ijH

′
ik(1 + log

HijHik

H′
ijH

′
ik

)

+
∑
ij

(H′(Rc +Rd))ijH
2
ij

H′
ij

(4.15)

is an auxiliary function for J(H) in problem (4.4).

Proof of Lemma 2. We find upper bounds for each of the two positive terms

by the following lemma,

Lemma 3 [20]. For any nonnegative matrices S ∈ Rn×n, B ∈ Rg×g, F ∈ Rn×g

and F′ ∈ Rn×g, with S and B are symmetric, then the following inequality holds

tr(FTSFB) ≤
n∑

i=1

g∑
p=1

(SF′B)
F2

ip

F′
ip

. (4.16)

Then, we have following inequations:

tr(WTWHD1H
T ) ≤

∑
ij

(WTWH′D1)ijH
2
ij

H′
ij

, (4.17)

56



CHAPTER 4. ORDERED STRUCTURED PRESERVED NONNEGATIVE
MATRIX FACTORIZATION

tr(H(Rc +Rd)H
T ) ≤

∑
ij

(H′(Rc +Rd))ijH
2
ij

H′
ij

. (4.18)

To obtain lower bounds for the remaining terms, we use the inequality z >

1 + log z, ∀z > 0 [20] and have

tr(WTXD1H
T )

≥
∑
ij

(WTXD1)ijH
′
ij(1 + log

Hij

H′
ij

),
(4.19)

tr(H(Ra +Rb)H
T )

≥
∑
ijk

(Ra +Rb)jkH
′
ijH

′
ik(1 + log

HijHik

H′
ijH

′
ik

).
(4.20)

Collecting all bounds, we have the final auxiliary function in Lemma 2.

Based on Lemmas 1 and 2, we can show the convergence of the updating rule

(4.12).

Theorem 2. The problem (4.4) is non-increasing under the iterative updating

rule (4.12).

Proof of Theorem 2. Lemma 2 provides a specific form G(H,H′) of the

auxiliary function for J(H) in problem (4.4). We can have the solution for

minHG(H,H′) by the following KKT condition

∂G(H,H′)

∂Hij

=−2(WTXD1)ij
H′

ij

Hij

+2
(WTWH′D1)ijHij

H′
ij

− 2
(H′(Ra +Rb))ijH

′
ij

Hij

+ 2
(H′(Rc +Rd))ijHij

H′
ij

= 0,

(4.21)

which gives rise to the updating rule in (4.12). Following Lemma 1, under this

updating rule the objective function values of J(H) in (4.4) will be non-increasing.

Update for W: To update W with H fixed, we need to solve the following

problem:

min
W≥0

J(W) = ∥X−WH∥2,1 (4.22)

This is exactly same as that in [50]. So we have the following updating rule for

(4.22).

Wdi ←Wdi
(XD1H

T )di
(WHD1HT )di

. (4.23)
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Table 4.1: Comparison of Clustering Results (%) on Synthetic Data

Noises Ncut NMF RNMF GNMF GNMFKL OM-RPCA OM-CRPCA NMFi ORNMF

0% 100 84.38 86.25 100 100 100 100 96.25 100

AC 20% 100 100 83.57 83.13 85.00 93.50 100 94.38 100

50% 96.06 96.88 96.25 100 81.25 96.25 96.37 98.13 100

0% 100 91.67 91.67 100 100 100 100 92.75 100

NMI 20% 100 100 91.67 91.67 91.67 96.67 100 89.96 100

50% 95.65 95.66 95.18 100 91.67 98.33 98.67 96.36 100

More details on the correctness analysis and convergence proof of (4.23) can be

found in [50].

The details of the algorithm is described in Algorithm 4.1.

Algorithm 4.1 The algorithm of ORNMF
Input:

The sequential data matrix X
The constructed matrix R
The parameter α

Output:
The data representation matrix H

1: Initialize W and H
2: while not converges do
3: Decompose R into two nonnegative parts by (4.10)
4: Calculate the diagonal matrices D1 and D2 by (4.6) and (4.7)
5: Fixing W, update H by (4.12)
6: Fixing H, update W by (4.23)
7: end while

4.2.2 Complexity analysis

Based on (4.12) and (4.23), we estimate the number of operations for each itera-

tion. When we update H, the cost of multiplications for WTXD1, H(Ra +Rb),

WTWHD1 and H(Rc +Rd) are O(kmn + kn2), O(kn2), O(mk2 + nk2 + kn2)

and O(kn2), respectively. And Ra, Rb, Rc and Rd have computational complex-

ity of O(n3) each. So the overall cost for H is O(n3 + kmn) as we usually set

k ≪ min(m,n); similarly, the cost for W is O(kn2 + mnk). Nevertheless, D1,
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D2, Ra, Rb, Rc and Rd are sparse matrices. The overall complexity for H and

W can be greatly reduced with sparse matrices multiplication. Besides, many

optimized libraries for matrix multiplication1, such as OpenBLAS2, are currently

available to further speed up the computation.

4.3 Experiments

We conduct experiments on four datasets including one synthetic dataset and

three real-world datasets to demonstrate ORNMF’s performance and compare

it with a few state-of-the-art approaches. The synthetic data is used to present

and validate the ordered data representations with ORNMF. The Yale dataset3

is to test ORNMF’s performances against benchmark data with quasi sequential

nature. The video sequence dataset [106] that consists of two short videos is

to evaluate ORNMF’s effectiveness on handling the sequential data. For each

experiment, the parameter α of ORNMF in (4.3) is tuned within [0.1, 0.7]. The

corresponding parameters of all competing methods (as listed below) are tuned

for their best performances. k-means is applied on the obtained new data repre-

sentation matrix H and repeated 20 times to produce the average performances.

4.3.1 Methods to compare

1. Standard normalized cut (Ncut) in [86].

2. Nonnegative Matrix Factorization minimizing F-norm cost [55].

3. Robust Nonnegative Matrix Factorization (RNMF) [50]: This is a robust

formulation of NMF which adopts L2,1-norm loss function to alleviate the

noise problem.

4. Graph Regularized Nonnegative Matrix Factorization (GNMF) [6] which

encodes the geometrical information of the data space into matrix factor-

ization. It has two versions: GNMF minimizing F-norm cost and GNMFKL

minimizing KL-divergence cost.

1https://github.com/attractivechaos/matmul
2http://www.openblas.net/
3http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
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5. Optimal Mean Robust Principal Component Analysis (OMPCA) [77] which

can correctly calculate the euclidean distance based mean of robust PCA.

It has two implementations: OMPCA and OMCPCA.

6. Nonnegative Matrix Factorization with Interpolated Coefficients (NMFi)

[13] which incorporates temporal constraint by adding a simple smoothness

on the update rules of NMF.

7. Our proposed Ordered Robust Nonnegative Matrix Factorization(ORNMF).

4.3.2 Experiment on synthetic dataset

To build the dataset we first construct a data matrix A = [A1,A2, . . . ,A8] ∈
R400×8, in which each element of the data vector Ai, i ∈ {1, 2, . . . 8} is a random

number between 0 and 1, i.e., Aji = [0, 1], j ∈ {1, 2, . . . 400}. Multiplying A with

a uniform random weights si ∈ R8 forms a single synthetic data vectorXi (=Asi).

We then duplicate Xi 20 times to construct Xi = [X1,X2, . . . ,X20] ∈ R400×20.

Repeating the progress for Xi 8 times with A being an invariant and combining

allXi, we finally build our artificial data matrixX = [X1,X2, . . . ,X8] ∈ R400×160.

The experiment is expected to group X into 8 clusters.
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Figure 4.1: Comparison on inferring the number of clusters.

When data are clean, ORNMF is able to detect the cluster boundaries and

infer the number of clusters, which can not be achieved by most NMF based

methods. To demonstrate this, we calculateHR = [H2−H1,H3−H2, . . . ,H160−
H159] after obtaining H, and sum the values of each column of HR to find the
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peak values. The visualization results of NMF and ORNMF with clean data are

shown in Figure 4.1. It can be seen that NMF in (a) achieves 6 peak values

indicating 7 clusters, which is incorrect as the predefined number of clusters is 8.

On the contrary, ORNMF finds 8 clusters according to the number of significant

peak values as shown in (b), since all the columns in HR are nearly zeros but the

boundaries. To demonstrate the robustness of ORNMF to k, we then randomly

chose k = 50 and reported result in (c). As we can see, ORNMF can also find

8 clusters. As a result, ORNMF can correctly find the cluster boundaries and

get the number of clusters regardless of the value of k. Nevertheless, in case the

number of clusters is known beforehand or data is noisy, k-means is still a good

option to cluster the data.

(a) NMF (b) ORNMF

Figure 4.2: Top figures in (a) and (b) represent the data representation matrix
H. The horizontal is the number of data and the vertical represents the reduced
dimensionality of each data, k. Every consecutive 20 data belong to one subject.
Each bottom figure displays the clustering results, where different colors represent
different clusters.

According to [91], to further test the robustness of ORNMF, we add 20%

and 50% level of Gaussian noise with zero mean and unit variance onto X and

then normalize the corresponding contaminated X between 0 and 1 to evaluate

the performances. As shown in Table 4.1, although all methods have obtained

promising results, only ORNMF achieves the perfect performances in all three

cases.
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In order to present the performances visually, Figure 4.2 illustrates the data

representation matrix H and the corresponding clustering results of NMF and

ORNMF when data come with 50% level of Gaussian noise. The data represen-

tations within each cluster of H in ORNMF are smooth, which implies that they

are of high similarity despite of being contaminated by noises. This is inline with

the expectation behind our proposed ORNMF. Hence H in ORNMF captures

the ordered structure effectively, leading to the perfect segmentation result which

NMF fails to achieve as shown in the bottom figures.

4.3.3 Face clustering

This experiment is to group a set of face images in the Yale dataset into dif-

ferent clusters. The dataset consists of 11 facial images of 15 subjects/clusters

- total 165 grayscale images. Each image comes with different facial expression

Figure 4.3: Samples of Yale Dataset. Different color indicates different clusters.

or configuration: center-light, w/glasses, happy, left-light, w/no glasses, normal,

rightlight, sad, sleepy, surprised, and wink. Before clustering, images are prepro-

cessed. First, we normalize the images in scale and orientation such that eyes are

all aligned at the same position horizontally. Then, the facial areas were cropped

into the final images for clustering.

To reduce the computational cost and the memory requirements, all face

images are downsized to 32 × 32 pixels with 256 gray levels per pixel as shown

in Figure 4.3 for example. Thus, each image is represented by a data vector

Xi ∈ R1024 and we concatenate all these data vectors in order. Strictly speaking,

these data are not sequential. However, since the similarities among images of the
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Table 4.2: Comparison of Clustering Results (%) on Yale Dataset

k Ncut NMF RNMF GNMF GNMFKL OM-RPCA OM-CRPCA NMFi ORNMF

2 71.82 78.64 90.91 86.36 86.36 86.36 90.91 86.36 91.59

3 57.27 66.36 66.97 60.61 60.61 75.76 75.76 63.64 69.70

4 52.73 63.18 68.18 65.91 65.91 68.18 63.64 63.64 70.45

5 51.27 58.19 68.00 65.45 67.27 61.82 67.27 69.09 74.55

AC 6 49.84 49.09 57.12 57.58 53.03 53.03 54.55 59.09 63.64

7 39.39 44.25 52.07 50.89 50.05 44.27 57.65 50.65 52.92

8 44.66 45.45 54.55 61.36 46.59 54.55 56.82 52.27 64.77

9 43.78 43.34 49.44 57.11 48.28 35.54 44.29 54.55 51.16

10 36.91 48.36 48.18 48.18 44.55 39.09 41.82 50.91 52.59

Avg. 49.37 56.30 63.05 60.35 59.41 59.19 63.46 61.13 66.65

2 33.97 40.76 56.05 41.27 43.23 43.23 56.05 52.30 68.65

3 32.75 37.69 40.32 37.76 37.76 43.30 43.30 41.25 52.60

4 41.23 43.50 57.51 49.14 47.47 43.75 43.28 51.04 66.38

5 43.74 42.39 52.89 39.14 49.36 44.25 52.08 62.66 62.94

NMI 6 44.93 36.07 43.95 40.96 39.31 39.54 48.46 47.74 52.49

7 39.39 44.25 52.07 50.89 50.05 44.27 57.65 44.55 52.92

8 45.51 40.59 46.38 38.14 42.72 46.91 54.16 48.47 62.64

9 43.78 43.34 49.44 57.11 48.28 35.54 44.29 53.07 51.16

10 43.04 46.22 50.69 41.91 46.39 37.72 40.26 53.93 52.31

Avg. 40.93 41.64 49.92 44.04 44.95 42.06 48.84 50.56 58.01

same subject are much stronger than those from different subjects, the dataset

can be regarded as exhibiting a quasi sequential nature.

Similar to the experimental setting in [64], we conduct the experiments for

each method on the different number of clusters from 2 to 10 to make a thorough

comparison. For a fixed cluster number k, we randomly choose k categories from

the dataset, and mix the images of these k categories as the collection X for

clustering.

The clustering results of each k and the overall average performances on all

cases are reported in Table 4.2, in which it can be clearly seen that ORNMF

significantly outperforms other methods in most cases. Specifically, for average

results, compared to the second best method, ORNMF achieves 3.19% improve-
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ments in AC and a bigger margin of 7.45% in NMI.

We also test the effect of the parameter α, which is first selected in a wide

range and then changes within a relative robust range, i.e, from 0.1 to 0.7 with an

increment of 0.1. For a clear presentation, Figure 4.4 illustrates the performances

with even k numbers only. It is easy to see that ORNMF produces excellent and

relatively stable results, which demonstrates ORNMF is insensitive to α.
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Figure 4.4: Left: Comparison of AC w.r.t α. Right: Comparison of NMI
w.r.t α.

4.3.4 Video scene segmentation

We extract video sequences from two short animations available free from In-

ternet, same as that in [106]. The videos 1 and 2 contain 19 and 24 sequences,

respectively. Each sequence is about 10 s (approximately 300 frames), containing

three scenes (that to be segmented). Those frames in which the scene changes

are annotated manually and used as our ground truth data. Each sequence is

then converted from color to grayscale and resized to a resolution of 129 × 96.

The frames are vectorized to Xi ∈ R12384 and concatenated in order to form X

for segmentation. Figure 4.5 is an example of sequences. This experiment aims

to cluster frames into the scene they belong to.

The experimental results on the two videos are shown in Table 4.3. ORNMF

outperforms other methods consistently in both videos 1 and 2. For example,

the improvements against RNMF are 1.51% and 4.1% in terms of AC and NMI
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Figure 4.5: A sequence with three scenes from the video 1 marked by coloured
borders.

in video 1; 6.68% AC and 5.93% NMI in video 2. This is due to the effectiveness

of ORNMF in utilizing the ordered structure of video sequences. Because we

use multiplicative updating rules to obtain the local optimum, it is important

to analyze the convergence. Here we choose a sequence from the video 2 and

compare the convergence speed of ORNMF and RNMF. The convergence criteria

is Jt+1−Jt
Jt

< 10−4, where Jt is the objective function value in tth iteration. The

comparison in Figure 4.6 shows that the objective function values of ORNMF

drop sharply in about 20 iterations and are non-increasing in the whole iterative

procedure. And ORNMF takes about 90 iterations to finish the computation,

which is 20 iterations less than RNMF. This demonstrates ORNMF converges

effectively.

Table 4.3: Comparison of Clustering Results (%) on Video Sequences Dataset

Ncut NMF RNMF GNMF GNMFKL OM-RPCA OM-CRPCA NMFi ORNMF

Video 1 AC 73.37 77.78 77.57 74.46 77.49 77.72 75.97 78.29 79.08

NMI 60.96 66.65 65.33 63.48 67.60 69.40 66.98 66.29 69.43

Video 2 AC 79.86 84.41 85.16 78.69 82.12 80.53 82.45 86.51 91.84

NMI 70.31 76.76 77.95 63.21 76.12 73.44 72.68 76.83 83.88
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Figure 4.6: Comparison on convergence speed.

4.3.5 Human activity segmentation

The aim of this experiment is to segment activities in a sequence from the HDM05

Motion Capture Database [73]. The motion sequences were performed by five ac-

tors according to the guidelines specified in a script. The script consists of five

parts, where each part is subdivided into several scenes. For this experiment we

choose the scene 1-1 which contains 9842 frames and 14 activities. However, there

is no frame by frame ground truth provided. We assembled the ground truth by

watching the replay of the activities and manually labelling the activities using

the activity list provided by [73]. We report clustering performances for this ex-

Table 4.4: Comparison of Clustering Results (%) on HDM05 dataset

Ncut NMF RNMF GNMF GNMFKL OM-RPCA OM-CRPCA NMFi ORNMF

AC 42.13 60.72 58.21 61.14 61.84 58.86 58.86 60.92 71.00

NMI 51.14 68.78 65.16 71.93 71.03 72.16 69.89 71.62 74.15

periment in Table 4.4. It is clear to see that Ncut performs worst with 42.13%

accuracy only, and all the other existing approaches achieve around 60% accura-

cies, while ORNMF gets more than 70% rate which outperforms other methods

with a large margin. This well demonstrates the effectiveness of ORNMF.
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4.4 Conclusion

We have presented a novel approach, called ordered robust nonnegative matrix

factorization (ORNMF) to exploit the ordered nature of sequential data. With a

neighbour penalty term to enforce the similarity of data presentations, ORNMF

has achieved more discriminative and explicit data representations. Using L2,1-

norm based loss function, ORNMF has effectively dealt with noisy data. A

new iterative updating optimization scheme has been derived to solve ORNMF’s

objective function. In comparison to baselines (NMF, Ncut) and state-of-art

approaches (RNMF, GNMF, OM-PCA), ORNMF has achieved the superior per-

formances on both synthetic data, the benchmark dataset (Yale), video sequences

and human activities (HDM05) in accuracy and normalized mutual information.

ORNMF is a single-view approach which can only deal with a type of feature, such

as pixels in images in our experiments. In reality, data are often collected from

various sources or represented by different feature extractors, such as an image

can be represented by different visual descriptors, such as SIFT [71], HOG [18]

and GIST [79]. Therefore, how to apply NMF model in such situation is needed

to be considered. In the following chapter, we focus on exploiting information of

different aspects of data to enhance clustering under NMF framework.
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Chapter 5

Diverse Multi-View Nonnegative

Matrix Factorization

5.1 Introduction

This chapter studies NMF in multi-view setting by exploring diversity among

different views. The diversity means that each view of data contains some dis-

tinct information that other views do not have. A main limitation of existing

multi-view NMF-based approaches is that they all tend to exploit common infor-

mation shared by multiple views but neglect the diversity among views, so that

the learned data representations from multiple views contain mutually redundant

information and lack diverse information. On the contrary, by taking the diver-

sity into account, we can capture more information of data and achieve more

comprehensive and accurate learning, because different views usually describe

data from different aspects. Some researches [4, 11, 103] have also shown that

the diversity is of importance to multi-view learning. Therefore, it is beneficial

to integrate diversity properties of views into NMF learning.

To achieve this goal, we propose a novel Diverse Nonnegative Matrix Factor-

ization (DiNMF) method. With a novel regularization term, DiNMF encourages

the representations from multiple views to be diverse enough to capture compre-

hensive information, so that a diverse and more accurate data representation is

eventually achieved. As illustrated in Figure 5.1, existing approaches (the upper

figure) learn the data representations jointly to capture the underlying common
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Figure 5.1: Comparison of existing NMF-based Multi-view approaches and the
proposed DiNMF. A multi-view dataset X contains two equally important views,
i.e., X(1) and X(2). H(1) and H(2) are the corresponding learned representation
matrices. H∗ is the final representation. For all matrices, the data vectors are
column-wise and the features are row-wise. The ground-truth is shown as group-1
in purple and group-2 in green. By enforcing H(1) and H(2) to be close to H∗, the
existing approaches learn the data representations of two views jointly to capture
the shared underlying common information but cannot ensure their diversity. In
contrast, DiNMF is based on a diversity term (DIVE), which captures diverse
information among data representations. This ensures that H∗ not only contains
common information captured by existing approaches but also preserves some
distinct information from each view, thus more comprehensive and accurate.
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structure shared by two views. They enforce the feature distribution of H(1) and

H(2) to be similar but fail to take advantage of distinct information of each view,

which may lead to unsatisfactory results. It can be seen from the last columns

of H(1) and H(2) that the feature distributions are nearly same and happen to

be similar to columns in the group-1 (purple). Through linear computations, the

corresponding column of H∗ will be categorized into a wrong group, i.e., group-1,

due to the similarity of feature distribution. On the contrary, DiNMF is based on

a novel diversity constraint, i.e., DIVE, which enforces H(1) and H(2) to be as di-

verse as possible. As a result, H∗ contains diverse information for comprehensive

learning, sinceH(2) captures some distinct information thatH(1) lacks. Moreover,

the feature distributions of the two groups are more distinct in-between and this

is in line with the ground truth, leading to more accurate learning. The main

contributions of our work are as follows:

1. We propose a DiNMF approach which not only ensures the diversity to

exploit comprehensive information but also reduces mutually redundancy across

multiple representations for more accurate learning. Furthermore, DiNMF is also

computationally linear thus has good scalability to large-scale datasets.

2. We further develop Locality Preserved DiNMF (LP-DiNMF) to preserve

the locally geometrical structure of the manifolds for multi-view setting, by taking

into account the manifold structures in data spaces. This leads to improved

clustering accuracy compared with DiNMF.

3. We derive novel and efficient algorithms for both DiNMF and LP-DiNMF

to optimize objective functions. The convergence of both algorithms are proved.

4. Experiments on both synthetic and real-world datasets from different do-

mains demonstrate that the proposed methods are not only faster but also achieve

more accurate clustering than other state-of-the-art methods.

5.2 Diverse NMF (DiNMF)

In this section, we first introduce a straightforward approach to extend the single-

view NMF to multi-view setting. After that, we present DiNMF and propose an

efficient optimization algorithm for solving the objective function.

It is well-known that traditional NMF aims to minimize the following objective
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function:

∥X−WH∥2F , s.t. W,H ≥ 0 (5.1)

For the multi-view setting, we assume that X(v) ∈ Rm(v)×n be the feature matrix

corresponding to the vth view. Similarly, W(v) and H(v) are the corresponding

basis matrix and representation matrix, respectively. Thus, given V heteroge-

neous features, we directly integrate all these features together so the objective

function (5.1) becomes

V∑
v=1

∥X(v) −W(v)H(v)∥2F . s.t. W(v),H(v) ≥ 0 (5.2)

Obviously, this approach learns each data representation independently and

cannot ensure the diversity of different views. To facilitate the subsequent dis-

cussion, we call this approach Non-diverse Multi-view Nonnegative Matrix Fac-

torization (NdNMF).

5.2.1 Objective function

A desirable multi-view NMF approach for data analysis needs to satisfy two re-

quirements. First, it should exploit diverse information across multi-view data

representations for more comprehensive and accurate learning. Second, it is scal-

able since the number of data n and dimension of features m could be quite large.

In the following, we describe how DiNMF satisfies these two requirements.

Diversity requires that two data vectors be as orthogonal to each other as

possible, so that more comprehensive information can be exploited. Let h
(v)
i and

h
(w)
i be the ith data representation vectors in two views, i.e, the v-th and w-th

views. To ensure the diversity between the two vectors, their product should be

0, approximately. To achieve this, we can minimize the following function [35]

∥h(v)
i ◦ h

(w)
i ∥0, (5.3)

where ◦ designates the element-wise product, and ∥ · ∥0 is the l0 norm which

indicates the number of non-zero elements. Due to the non-convexity and dis-
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continuity of l0 norm, (5.3) can be relaxed by using l1 norm as follows,

∥h(v)
i ◦ h

(w)
i ∥1 =

k∑
j=1

|h(v)
ji | · |h

(w)
ji |, (5.4)

where | · | is the absolute value. Since the representations obtained by NMF are

non-negative, we can further reformulate (5.4) as

∥h(v)
i ◦ h

(w)
i ∥1 =

k∑
j=1

h
(v)
ji · h

(w)
ji . (5.5)

By extending the calculation of single data vector in (5.5) to n data vectors

setting, we propose the following term to guarantee the diversity among all n

data vectors in two views,

DIVE(H(v),H(w)) =
n∑

i=1

k∑
j=1

h
(v)
ji · h

(w)
ji = tr(H(v)H(w)T ), (5.6)

where tr(·) is the trace function. Therefore, minimizing (5.6) will encourage H(v)

and H(w) to be orthogonal to each other. In other words, the diversity of the

representation matrices in two views is guaranteed.

Given a dataset with more views, we incorporate the DIVE into NdNMF

to guarantee that data representations in any two views be diverse. Then, the

minimization objective function is produced as follows:

V∑
v=1

∥X(v) −W(v)H(v)∥2F + α
∑
v ̸=w

DIVE(H(v),H(w))

s.t. 1 ≤ v, w ≤ V,W(v),H(v),H(w), α ≥ 0,

(5.7)

where α is a trade-off parameter which controls the weight of DIVE. A smooth

regularization term ∥H(v)∥2F is added to avoid over-fitting of a view, which leads
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to the overall objective function as follows:

V∑
v=1

∥X(v) −W(v)H(v)∥2F + α
∑
v ̸=w

DIVE(H(v),H(w)) + β
V∑

v=1

∥H(v)∥2F

s.t. 1 ≤ v, w ≤ V,W(v),H(v),H(w), α, β ≥ 0.

(5.8)

Here β is the weight factor of the smoothness term.

To solve the objective function (5.8), we develop an efficient optimization

algorithm to find the optimal solution of H(v). After that, we calculate the

average value of H(v) in all views for the final multi-view data representation H∗,

i.e., H∗ =
∑V

v=1 H
(v)

V
. Following are the details.

5.2.2 Optimization

Since the objective function (5.8) is not convex with both variablesW(v) andH(v),

it is infeasible to find the global minimum. Instead, we propose an algorithm

to find a local minima by iteratively updating W(v) with H(v) fixed and then

updating H(v) with W(v) fixed.

For each view, the computations of W(v) and H(v) are not dependent on other

views, so minimizing (5.8) gives us

∥X(v) −W(v)H(v)∥2F + α
V∑

w=1;w ̸=v

tr(H(v)H(w)T ) + β∥H(v)∥2F

= tr(X(v)X(v)T − 2X(v)H(v)TW(v)T +W(v)H(v)H(v)TW(v)T )

+ α

V∑
w=1,w ̸=v

tr(H(v)H(w)T ) + βtr(H(v)H(v)T ).

(5.9)

Let η
(v)
ij and ξ

(v)
ij be the Lagrange multipliers for the constraint w

(v)
ij ≥ 0 and

h
(v)
ij ≥ 0, respectively, and η(v) = [η

(v)
ij ], ξ(v) = [ξ

(v)
ij ], then the Lagrange function
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L of (5.9) is

L = tr(X(v)X(v)T − 2X(v)H(v)TW(v)T

+W(v)H(v)H(v)TW(v)T ) + α
V∑

w=1,w ̸=v

tr(H(v)H(w)T )

+ βtr(H(v)H(v)T ) + tr(η(v)W(v)) + tr(ξ(v)H(v)).

(5.10)

Setting the derivative of L to be 0 with respect to W(v) and H(v), we have

ξ = 2W(v)TX(v) − 2W(v)TW(v)H(v) − α
V∑

w=1,w ̸=v

H(w) − 2βH(v), (5.11)

and

η = 2W(v)TX(v) − 2W(v)TW(v)H(v). (5.12)

Following the Karush-Kuhn-Tucker (KKT) condition [5] η
(v)
ij w

(v)
ij = 0 and ξ

(v)
ij h

(v)
ij =

0, we get the equations for w
(v)
ij and h

(v)
ij :

(2W(v)TX(v) − 2W(v)TW(v)H(v) − α

V∑
w=1,w ̸=v

H(w) − 2βH(v))h
(v)
ij = 0, (5.13)

(2X(v)H(v)T − 2W(v)H(v)H(v)T )w
(v)
ij = 0. (5.14)

These equations lead to the following updating rules:

h
(v)
ij ← h

(v)
ij

(2W(v)TX(v))ij

(2W(v)TW(v)H(v) + α
∑V

w=1,w ̸=v H
(w) + 2βH(v))ij

, (5.15)

w
(v)
di ← w

(v)
di

(X(v)H(v)T )di

(W(v)H(v)H(v)T )di
. (5.16)

The procedure to solve (5.8) is summarized in the Algorithm 5.1.
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Algorithm 5.1 The algorithm of DiNMF
Input:
Data for V views {X(1),X(2), ...,X(V )}.
Parameter α and β.
for v = 1 to V do
Normalizing X(v)

Initializing W(v),H(v)

end for
for v = 1 to V do
while not converging do
Fixing W(v), updating H(v) by (5.15)
Fixing H(v), updating W(v) by (5.16)

end while
end for
Calculate the average value of all data representations of each view by H∗ =∑V

v=1 H
(v)

V
.

Output: The final representation matrix H∗.

5.2.3 Convergence of DiNMF

In this section, we prove the convergence of the updating rules (5.15) and (5.16).

Algorithm 5.1 is guaranteed to converge to a local minima by the following the-

orem:

Theorem 1. The objective function (5.8) is non-increasing under the update

rules (5.15) and (5.16).

To prove Theorem 1, we need to show that (5.9) for each view is non-increasing

under (5.15) and (5.16). Since the second term and the third term of (5.9) are

only related to H, we have exactly the same update formula for W in DiNMF as

in [56]. Here, we only prove (5.9) is non-increasing under (5.15). Following [56],

we will apply an auxiliary function, which is defined as follows:

Definition 1 A function G(h, h′) is an auxiliary function of the function J(h)

if G(h, h′) ≥ J(h) and G(h, h) = J(h) for any h, h′.

The auxiliary function helps because of the following lemma [56],

Lemma 1. If G is an auxiliary function of the objective function J , then J

is non-increasing under the update rule

ht+1 = argmin
h

G(h, ht). (5.17)
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Now, we will show that the update for H (5.15) is exactly same as the update

(5.17) with a proper auxiliary function. We rewrite (5.9) as follows:

O1 = ∥X(v) −W(v)H(v)∥2F

+ α

V∑
w=1,w ̸=v

DIVE(H(v),H(w)) + β∥H(v)∥2F

=
m(v)∑
i=1

n∑
j=1

(x
(v)
ij −

K∑
k=1

w
(v)
ik h

(v)
kj )

2

+ α
V∑

w=1,w ̸=v

K∑
k=1

n∑
j=1

h
(v)
kj h

(w)
jk + β

K∑
k=1

n∑
j=1

h
(v)
kj h

(v)
jk .

(5.18)

Given an element h
(v)
ab in H(v), we use F

(v)
ab to denote the part of O1 which is

only relevant to h
(v)
ab . It is easy to check that

F
′

ab = (
∂O1

∂H
)ab =(−2W(v)TX(v) + 2W(v)TW(v)H(v))ab

+ (α
V∑

w=1,w ̸=v

H(w) + 2βH(v))ab,
(5.19)

F
′′

ab = (2W(v)TW(v))aa + 2βIbb. (5.20)

Since our update is essentially element wise, it is sufficient to show that each

Fab is non-increasing under the update rule (5.15). We prove this by defining the

auxiliary function regarding h
(v)
ab as follows:

Lemma 2. The function

G(h
(v)
ab , h

(v)
ab

t
) = Fab(h

(v)
ab

t
) + F

′
ab(h

(v)
ab

t
)(h(v) − h

(v)
ab

t
)

+
2(W(v)TW(v)H(v))ab + α

∑V
w=1,w ̸=v H

(w)
ab + 2βH

(v)
ab

h
(v)
ab

t (h(v) − h
(v)
ab

t
)2

(5.21)

is an auxiliary function for Fab, which is the part of O1 and only relevant to h
(v)
ab .

Proof . Since G(h(v), h(v)) = Fab(h
(v)) is obvious, we need only show that

G(h(v), h
(v)
ab

t
) ≥ Fab(h

(v)). To do this, we compare the Taylor series expansion of
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Fab(h
(v)):

Fab(h
(v)) = Fab(h

(v)
ab

t
) + F

′

ab(h
(v) − h

(v)
ab

t
) + F

′′

ab(h
(v) − h

(v)
ab

t
)2. (5.22)

Introducing (5.19) and (5.20) into (5.22) and comparing with (5.21), we can see

that, instead of proving that G(h(v), h
(v)
ab

t
) ≥ Fab(h

(v)), it is equivalent to prove

(W(v)TW(v)H(v))ab + βH
(v)
ab

h
(v)
ab

t ≥ (W(v)TW(v))aa + βIbb. (5.23)

Since we have

(W(v)TW(v)H(v))ab =
K∑
k=1

(W(v)TW(v))alh
(v)
lb

t

≥ (W(v)TW(v))aah
(v)
ab

t

(5.24)

and

βH
(v)
ab = β

n∑
j=1

h
(v)
aj

t
Ijb ≥ βh

(v)
ab

t
Ibb, (5.25)

(5.23) holds and G(h(v), h
(v)
ab

t
) ≥ Fab(h

(v)).

We can now demonstrate the convergence of Theorem 1.

Proof of Theorem 1. Replacing G(h(v), h
(v)
ab

t
) in (5.17) by (5.21) results in

the update rule

h
(v)
ab

t+1
= h

(v)
ab

t
− h

(v)
ab

t F ′
ab(h

(v)
ab

t
)

(2W(v)TW(v)H(v) + α
∑V

w=1,w ̸=v H
(w) + 2βH(v))ab

= h
(v)
ab

t (2W(v)TX(v))ab

(2W(v)TW(v)H(v) + α
∑V

w=1,w ̸=v H
(w) + 2βH(v))

ab

.

(5.26)

This is exactly the same as (5.15). Since (5.21) is an auxiliary function for Fab,

Fab is non-increasing under (5.15) according to Lemma 1.
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5.3 Locality Preserved DiNMF (LP-DiNMF)

Recent research has shown that data are found to lie on a nonlinear low di-

mensional manifold embedded in a high dimensional ambient space [2, 85, 60].

However, the standard NMF fails to discover such intrinsic geometrical structure

of the data space [6]. To find a compact representation which uncovers the hid-

den semantics and simultaneously respects the intrinsic geometrical structure, we

further extend DiNMF to LP-DiNMF so that local geometrical structure could

be captured in each view.

5.3.1 Objective function

Cai et al. [6] imposed graph regularization on NMF. The method is based on

the manifold assumption which means that, if two data points xi and xj are

close in the original feature space, the representations of these two data points

should be also close to each other. Mathematically, this can be represented by

the following form: ∥xi − xj∥ → 0 ⇒ ∥hi − hj∥ → 0. With multi-view setting, a

locality preserved term corresponding to the vth view is defined as:

1

2

n∑
i,j=1

(a
(v)
ij ∥h

(v)
i − h

(v)
j ∥2)) = tr(H(v)L(v)H(v)T ), (5.27)

where L(v) is the Lagrange matrix L(v) = D(v) −A(v), A(v) = (a
(v)
ij ) is the weight

matrix measuring the spatial closeness of data points andD(v) is a diagonal matrix

with d
(v)
ii =

∑
j a

(v)
ij . One of the most commonly used approaches to define the

weight matrix A(v) on the graph is 0 − 1 weighting [6], since it is simple to

implement and it performs well in practice. If x
(v)
i and x

(v)
j are one of the nearest

neighbors to each other, a
(v)
ij = 1 otherwise a

(v)
ij = 0. Same as [116], we adopt this

approach for it is simple to implement and performs well in practice. Combining

this locality preserved regularizer with the objective function of DiNMF (5.8)
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gives rise to our LP-DiNMF, which minimizes the objective function as follows:

V∑
v=1

∥X(v) −W(v)H(v)∥2F + α
∑
v ̸=w

DIVE(H(v),H(w))

+ β
V∑

v=1

∥H(v)∥2F + γ
V∑

v=1

tr(H(v)L(v)H(v)T )

s.t. 1 ≤ v, w ≤ V,W(v),H(v),H(w), α, β, γ ≥ 0.

(5.28)

Please note that if we set α = β, the objective function (5.28) becomes simpler

as
V∑

v=1

∥X(v) −W(v)H(v)∥2F + α

V∑
v=1

V∑
w=1,w ̸=v

DIVE(H(v),H(w))

+ γ
V∑

v=1

tr(H(v)L(v)H(v)T )

s.t. 1 ≤ v, w ≤ V,W(v),H(v),H(w), α, γ ≥ 0.

(5.29)

The DIVE term in (5.29) not only works on multi-view setting, but also on the

single view. In detail, given different views (v ̸= w), DIVE enforces the diversity

among them. For the single view (v = w), DIVE plays an important role to avoid

over-fitting. This demonstrates the full compatibility of our objective function.

5.3.2 Optimization

Note that comparing with (5.8), the last term of (5.29) is related to H(v) only, so

we provide the optimization solution for updating H(v) with W(v) fixed.

Since updating W(v) and H(v) in each view is independent, (5.29) reduces to

minimize the following formulation

∥X(v) −W(v)H(v)∥2F + α

V∑
w=1,w ̸=v

DIVE(H(v),H(w))

+ γtr(H(v)L(v)H(v)T ).

(5.30)

Let φ
(v)
ij be the Lagrange multipliers for the constraint h

(v)
ij ≥ 0 and φ(v) = [φ

(v)
ij ],
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the Lagrange function L for each view can be written as

L = tr(X(v)X(v)T − 2X(v)H(v)TW(v)T

+W(v)H(v)H(v)TW(v)T ) + α

V∑
w=1,w ̸=v

tr(H(v)H(w)T )

+ αtr(H(v)H(v)T ) + γtr(H(v)L(v)H(v)T ) + tr(φ(v)H(v)).

(5.31)

Requiring that the derivative of L with respect to H(v) equals to 0 and using the

Karush-Kuhn-Tucker (KKT) condition [5] φ
(v)
ij h

(v)
ij = 0, we have

h
(v)
ij ← h

(v)
ij

(2W(v)TX(v) + 2γH(v)A(v))ij

(2W(v)TW(v)H(v) + αQ(v) + 2γH(v)D(v))ij
, (5.32)

where Q(v) =
∑V

w=1,w ̸=v H
(w) + 2H(v).

The whole procedure for solving (5.29) are summarized in the Algorithm 5.2.

Algorithm 5.2 The algorithm of LP-DiNMF
Input:
Data for V views {X(1),X(2), ...,X(V )}.
Parameter α and β.
Calculate weighting matrix of each view, A(v)

Calculate diagonal matrix and Lagrange matrix of each view, D(v) and L(v),
respectively
for v = 1 to V do
Normalizing X(v)

Initializing W(v),H(v)

while not converging do
Fixing W(v), updating H(v) by (5.32)
Fixing H(v), updating W(v) by (5.16)

end while
end for
Calculate the average value of all data representations of each view by H∗ =∑V

v=1 H
(v)

V
.

Output: The final representation matrix H∗.
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5.3.3 Convergence of LP-DiNMF

The Algorithm 2 above is guaranteed to converge to a local minima with the

following theorem.

Theorem 2. The objective function in (5.29) is non-increasing under the

update rules in (5.32) and (5.16).

Same as DiNMF, we omit the proof of (5.16) here. To prove (5.29) is non-

increasing under (5.32), we first rewrite (5.30) as:

O2 = ∥X(v) −W(v)H(v)∥2F + α
V∑

w=1,w ̸=v

DIVE(H(v),H(w))

+ α∥H(v)∥2F + γtr(H(v)L(v)H(v)T )

=
m(v)∑
i=1

n∑
j=1

(x
(v)
ij −

K∑
k=1

w
(v)
ik h

(v)
kj )

2 + α

V∑
w=1,w ̸=v

K∑
k=1

n∑
j=1

h
(v)
kj h

(w)
jk

+ α

K∑
k=1

n∑
j=1

h
(v)
kj h

(v)
jk + γ

K∑
k=1

n∑
j=1

n∑
l=1

h
(v)
kj L

(v)
jl h

(v)
lk .

(5.33)

It is easy to check that

F
′

ab = (
∂O2

∂H
)ab = (−2W(v)TX(v) + 2W(v)TW(v)H(v))ab

+ (α
V∑

w=1,w ̸=v

H(w) + 2αH(v) + 2γH(v)L(v))ab

(5.34)

F
′′

ab = (2W(v)TW(v))aa + 2αIbb + 2γL
(v)
bb . (5.35)

Again, we prove each Fab is non-increasing under the update rule (5.32) based on

an auxiliary function as following.

Lemma 3. Let Qab=H
(w)
ab +2H

(v)
ab , the function

G(h
(v)
ab , h

(v)
ab

t
) = Fab(h

(v)
ab

t
) + F

′

ab(h
(v)
ab

t
)(h(v) − h

(v)
ab

t
)

+
2(W(v)TW(v)H(v))ab + αQab + 2γ(H(v)D(v))ab

h
(v)
ab

t (h(v) − h
(v)
ab

t
)2

(5.36)

is an auxiliary function for Fab which is the part of O2 and only relevant to h
(v)
ab .
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Proof . In fact, we can see that Lemma 2 is a part of Lemma 3. Similar

to the proof of Lemma 2, we incorporate (5.34) and (5.35) to the Taylor series

expansion of F
(h(v))
ab (5.22) and compare it with (5.36). Since Lemma 2 has been

proved with (5.24) and (5.25), here we only need to show

2γ(H(v)D(v))ab

h
(v)
ab

t ≥ 2γL
(v)
bb . (5.37)

Since we have

(H(v)D(v))ab = h
(v)
aj

t
n∑

j=1

D
(v)
jb ≥ h

(v)
ab

t
D

(v)
bb

≥ h
(v)
ab

t
(D(v) −W(v))bb = h

(v)
ab

t
L

(v)
bb ,

(5.38)

(5.36) holds and G(h(v), h
(v)
ab

t
) ≥ Fab(h

(v)).

We can now demonstrate the convergence of Theorem 2.

Proof of Theorem 2. Putting G(h(v), h
(v)
ab

t
) of (5.36) into (5.17), we get

h
(v)
ab

t+1
= h

(v)
ab

t
− h

(v)
ab

t F ′
ab(h

(v)
ab

t
)

(2W(v)TW(v)H(v) + αQ+ 2γH(v)D(v))ab

= h
(v)
ab

t (2W(v)TX(v) + 2γH(v)A(v))ab

(2W(v)TW(v)H(v) + αQ+ 2γH(v)D(v))ab
.

(5.39)

This is in line with (5.32). Since (5.36) is an auxiliary function for Fab, Fab is

non-increasing under (5.32).

5.4 Complexity Analysis

In DiNMF, for each data matrix X(v) ∈ Rm(v)×n, the complexity of updating

W(v) in (5.16) is O(m(v)nk). This is same as that of NMF [56]. The cost of

updating H(v) in (5.15) is O(m(v)nk + knV ). Since usually V ≪ m(v), assuming

the iterative update stops after t iterations, consequently, the overall computation

of DiNMF is O(
∑V

v=1(t(m
(v)nk))). Clearly, its complexity is linear with respect

to the number of data points (n) and it can scale well to large datasets. For LP-

DiNMF, the overall cost of updating W(v) and H(v) is O(
∑V

v=1(tm
(v)nk+m(v)n2)
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because it requires additional O(m(v)n2) to construct the nearest neighbor graph.

The experimental analysis for both complexity is given in the subsection 5.5.7.

5.5 Experiments

In this section, we carry out extensive experiments on clustering to demonstrate

the effectiveness of DiNMF and LP-DiNMF in exploiting the underlying diverse

information across multiple views of data.

5.5.1 Description of datasets

We conduct experiments on one synthetic and several real world datasets, which

are chosen from different domains, including documents, images and networks.

The descriptions of these datasets are summarized in Table 5.1.

Table 5.1: Descriptions of the datasets

Datasets Size view Cluster

Synthetic 5000 2 2

Reuters
Reuters-1 600 3 6

Reuters-2 18578 5 6

Digit 2000 2 10

WebKB

Cornell 195 2 5

Texas 187 2 5

Washington 230 2 5

Winsconsin 265 2 5

Caltech 101 Silhouettes 8641 2 101

• Synthetic: We first randomly generate basis matrices {W(i)}2i=1 of two

views. The dimensions of two matrices are 250 and 800, respectively. The rep-

resentation matrices {H(i)}2i=1 ∈ R20×5000 are generated with the constraint that

the corresponding vectors of these two matrices are orthonormal to each other.

To ensure that the two data representations not only contain respective distinct

information but also share common information, we sample 30% vectors from

one representation matrix by adding Gaussian noise with N (0, 1) and keep these
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corresponding vectors exactly same in the second view. Thus, we have a dataset

that consists of two views, i.e., X(1) and X(2), where X(i) = W(i)H(i). This

dataset is constructed to demonstrate the correctness of the proposed diversity

term and also for the computational speed analysis.

• Reuters1: As in [65], we randomly sample 100 documents each for 6 clus-

ters, and choose English, French and German as three views to form a dataset.

We call it Reuters-1. Besides, to demonstrate the performance of the proposed

methods on large-scale dataset, we also use the original dataset and we call it

Reuters-2. It contains feature characteristics of documents that are translated

into five languages over 6 categories. In our experiments, we choose one language,

English (EN), as the original language source and take the translated documents

in the other four languages as the other four sources.

• UCI Handwritten Digit2 : The dataset is composed of 2000 examples

from 0 to 9 ten-digit classes. Each example is represented by two kinds of features,

pixel averages in 2×3 windows and Zernike moment (Zernike moment represents

properties of an image with no redundancy or overlap of information between the

moments.).

• WebKB3: It is composed of web pages collected from computer science

department websites of four universities: Cornell, Texas, Washington and Wis-

consin. The webpages are classified into 7 categories. Here, we choose four most

populous categories (course, faculty, project, student) for clustering. A webpage

is made of two views: the text on it and the anchor text on the hyperlinks pointing

to it.

• Caltech 101 Silhouettes4: This dataset is based on the Caltech 101 image

annotations [25]. It centers and scales each polygon outline of the primary object

in the Caltech 101 and render it on a 16 × 16 pixel image-plane. The outline

is rendered as a filled, black polygon on a white background. Since this dataset

contains one type of feature only, following [7], we extracted HOG [18] as the

second view.

1http://multilingreuters.iit.nrc.ca
2http://archive.ics.uci.edu/ml/datasets/Multiple+Features
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
4https://people.cs.umass.edu/ marlin/data.shtml
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5.5.2 Methods to compare

We compare the proposed approaches with several representative multi-view clus-

tering methods and their variations.

• Best Single View-NMF (BSV): We run each view of datasets with NMF

[56] and the best single view result is reported.

• Best Single View-GNMF (BSVG): Similar to BSV, we run each view

of datasets with GNMF [6] and report the best single view results.

• Feature Concatenation (FeatConcate): It concatenates the features of

all views and applies NMF to extract the low dimensional subspace representa-

tion.

• ColNMF [87]: It simultaneously factors data matrices of multiple views to

different basis matrices with the shared consensus coefficient matrix.

• MultiNMF [65]: It searches for a compatible clustering solutions across

multiple views by minimizing the differences between data representation matri-

ces of each view and the consensus matrix.

•MMNMF [116]: It preserves the locally geometrical structure of the man-

ifolds for multi-view clustering with regarding that the intrinsic manifold of the

dataset is embedded in a convex hull of all the views’ manifolds, and incorpo-

rates such an intrinsic manifold and an intrinsic coefficient matrix with a multi-

manifold regularizer.

• RMKMC [8]: This multi-view k-means approach integrates heterogeneous

features of data and utilizes the common cluster indicator to do clustering across

multiple views. l2,1-norm is employed to improve the robustness.

• CoRegSPC [53]: This pairwise multi-view spectral clustering method co-

regularizes the clustering hypotheses to enforce corresponding data points in each

view to have the same cluster membership.

• RMSC [107]: This is a multi-view spectral clustering method based on low

rank and sparse decomposition of the transition matrix.

• NdNMF: It conducts each view independently using standard NMF [55],

and then applies k-means on the combination of new representations of each view.
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5.5.3 Experimental setup

For each compared method, we set the parameters according to original pa-

pers where the approaches were first proposed. As BSVG, MMNMF and LP-

DiNMF require construction of the nearest neighbor graph, we set the number

of nearest neighbor equal to the number of classes of the data k, as suggested in

[116]. For DiNMF and LP-DiNMF, we normalize the data first and then initial-

ize both W(v) and H(v) for each view in the range [0,1]. Similar to [97, 42],

the regularization parameters (α, β in (5.8) and α, γ in (5.29)) are chosen

from {0.0001,0.001,0.01,0.1,1,10,100,1000}. To avoid randomness, we run each

method 10 times with different initializations and report the average results and

their standard deviations. The clustering results are evaluated by three widely

adopted evaluation metrics, including accuracy (AC) [64], normalized mutual in-

formation (NMI) [64] and Purity [21](More details of the metrics are already given

in the previous chapter.). Each metric favors different properties in clustering,

and hence we report results on these measures to perform a more comprehen-

sive evaluation. For all these metrics, the higher value indicates better clustering

quality.

5.5.4 Clustering results

Table 5.2 demonstrates the average results and standard deviations for each

method on the datasets. Note that, the results of CoRegSPC and RMSC on

Reuters-2 are not available (N/A) since they demand huge memory. In each row

of the table, the best result is highlighted in boldface and the second best result

in italic. It is clear to see that both DiNMF and LP-DiNMF consistently outper-

form the other methods, sometimes even very significantly, which demonstrates

the advantage of our approaches in terms of clustering performance. Compared

with NdNMF, DiNMF improves performances more than 5% on all datasets in

terms of AC, NMI and Purity, which proves the effectiveness of the proposed

diversity constraints. We also notice that directly concatenating all the features

(i.e., FeatConcate) is not an ideal approach since it always performs worse than

the best single view (BSV). Moreover, LP-DiNMF performs better than DiNMF

on all the datasets. This indicates that exploiting the geometric structures in

data spaces indeed can improve the cluster performance, also verifies the mani-
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fold assumption and confirms the correctness of our approaches.

5.5.5 Analysis of redundancy rate

To verify that DIVE reduces the redundancy information among multiple repre-

sentations, we propose a redundancy rate (RED) metric as follows:

RED(H(1), ...,H(V )) =

∑n
i=1

∑V
v=1,v ̸=w cos2(h

(v)
i ,h

(w)
i )

V (V − 1)n
.

s.t. cos2(h
(v)
i ,h

(w)
i ) =

h
(v)
i ⊙ h

(w)
i

|h(v)
i | ⊙ |h

(w)
i |

(5.40)

It assesses the average sum of similarity of all n data vectors in all pairs of views

and ranges from 0 to 1, where 0 means a completely complementary result, and

1 vice versa.

We compare the redundancy rate of the proposed approaches against Mult-

iNMF, MMNMF and NdNMF, which are all under the framework of NMF and

then take the same approach to obtain the final multi-view representation ma-

trix H∗(=
∑V

v=1 H
(v)

V
). The results of comparison are reported in Table 5.3. It

Table 5.3: Comparison of redundancy rate

Methods Synthetic Reuters-1 Digit Cornell Texas Washington Winsconsin

MultiNMF 0.9986 0.9970 0.5826 0.8503 0.8472 0.8229 0.8521

MMNMF 0.5998 0.4800 0.4437 0.3440 0.4318 0.3598 0.3698

NdNMF 0.4637 0.2658 0. 2755 0.2395 0.2077 0.2683 0.1122

DiNMF 0.1838 0.1087 0.1931 0.0651 0.1873 0.0609 0.0783

LP-DiNMF 0.3509 0.1266 0.2663 0.0894 0.1222 0.1013 0.1852

can be seen that MultiNMF always gets the highest rate followed by MMNMF

and NdNMF, while it is less than 20% for DiNMF in all cases. This demon-

strates the effectiveness of the proposed DIVE that enforces the complementarity

across multiple views. However, LP-DiNMF does not always achieve stable and

low redundancy rate. For example, it gets the lowest redundancy rate in Texas

with 0.1222 compared with other approaches, but a higher rate (0.1852) than

DiNMF in Winsconsin. This is because the representations of multiple views in

LP-DiNMF are co-regularized by both the manifold structure and the diversity
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Figure 5.2: Comparison of redundancy rate on Reuters-1 and Digit dataset

term. There is a tradeoff between the two regularization terms. Thus, different

from DiNMF which is only regularized by the diversity term, LP-DiNMF is less

likely to get the lowest rate.

To have a visual perception of redundancy, we take the Digit (2 views) and

Reuters-1 (3 views) as examples and demonstrate the redundancy rate of each

data vector in details, as shown in Figure 5.2. The horizontal axis represents

the number of data points and the vertical axis means the scaled redundancy

rate. For each approach, the scaled redundancy rate is the percentage of its true

redundancy rates over that of all five approaches. Each method is represented

by one color. The wider area a color occupies, the more redundant information

an approach has. Figure 5.2 shows that DiNMF (marked in purple) occupies

the narrowest area, while MultiNMF occupies the widest area in both Digit and

Reuters datasets.

The results of Figure 5.2 is inline with Table 5.3, which proves that DiNMF

effectively exploits the diverse information across multiple views.

5.5.6 Parameter study

We tested the effect of the parameters α and β of DiNMF, as well as α and γ

of LP-DiNMF. In DiNMF α and β affect the diversity and smoothness, while

in LP-DiNMF, α and γ adjust the effects of the diversity and graph regular-

ization term. For both methods, we picked the value of each parameter from

89



CHAPTER 5. DIVERSE MULTI-VIEW NONNEGATIVE MATRIX
FACTORIZATION

{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}. Taking the Digit and Washington as

examples, we can find that DiNMF in Figure 5.3(a) achieves more than 70% ac-

curacy in Digit and 60% in Washington for α and β in most cases, demonstrating

that the performance of DiNMF is relatively robust to parameter tuning. Figure

5.3(b) shows that LP-DiNMF is relatively stable with varying α, but significantly

affected by γ. This further verified the importance of preserving manifold struc-

ture.
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Figure 5.3: The effect of parameter α and β in DiNMF and α and γ in LP-
DiNMF. Different colors means different accuracies and the color close to red
indicates high accuracy.
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Figure 5.4: Comparison of convergence speed (Note that different scales of axes
are used for clearer illustration)

5.5.7 Study of computational speed

We have proven the convergence of our update rules and analyzed the compu-

tational complexity of DiNMF and LP-DiNMF against MMNMF in previous

sections. Here our experiments demonstrate their convergence curves in Figure

5.4 and computational time in Figure 5.5. All our experiments are conducted on

a PC with two octa-core Intel Xeon CPU processors at 2.5 GHz and 256G bytes

memory.

Because the results of different networks datasets (Cornell, Texas, Washington

and Winsconsin) have similar convergency, here we just took one network (Cor-

nell) as an example. Figure 5.4 shows the convergence curve of the three methods
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Figure 5.5: Running time of DiNMF v.s. MMNMF on Synthetic dataset.

on Synthetic, Reuters, Digit and Cornell. For each figure, the horizontal axis is

the number of iterations and the vertical axis is the value of objective function.

We can see that MMNMF (Figure 5.4(a)) needs around 100 iterations for each

dataset, while DiNMF (Figure 5.4(b)) is the most efficient, since the objective

function values are non-increasing and drop sharply within a small number of

iterations (10 iterations) in all cases. Although LP-DiNMF (Figure 5.4(c)) re-

quires nearly 100 iterations for the Synthetic and Digit database, its objective

values drop faster than that of MMNMF. This empirically proves our convergence

theory.

As discussed in section 5.4, DiNMF has linear time complexity with the num-

ber of data points. Here, we verify this claim on the Synthetic dataset. Figure

5.5 reports the average running time of each iteration of three methods on the

Synthetic dataset. The default setting is 5000 data points, 2 clusters, and 2 views.

During the experiment, we fixed the number of clusters and views but changed

the number of data. Figure 5.5 (a) shows the running time of three methods

in terms of varying data points within {0.05, 0.25, 0.5, 1, 1.5, 2} × 104. Clearly,

DiNMF is linear in execution time, and MMNMF costs significantly more time

than DiNMF and LP-DiNMF. To better demonstrate DiNMF’s linearity and good

scalability to large datasets, we increased the amount of data to a large scale,

i.e., {0.2, 0.5, 1, 2, 3, 4, 5} × 105 and reported corresponding running time each in
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Figure 5.5 (b). Clearly, the results are in line with the analysis in subsection 5.4.

5.6 Conclusion

In this chapter, we have advanced the frontier of NMF by proposing a novel idea

that explores diverse information among multi-view representations. To achieve

this, we have proposed a Diverse Nonnegative Matrix Factorization (DiNMF) ap-

proach for more comprehensive and accurate multi-view learning. With a novel

diversity regularization term, DiNMF explicitly enforces the orthogonality of dif-

ferent data representations. Importantly, DiNMF converges linearly and scales

well with large-scale data. Taking a step further, we have extended DiNMF

by incorporating manifold information and proposed Locality Preserved DiNMF

(LP-DiNMF) method. Extensive experiments conducted on both synthetic and

benchmark datasets have demonstrated promising results of our methods, which

conform to our theoretical analysis. DiNMF is inapplicable to many real-world

problems where limited knowledge from domain experts is available such as label

information. In reality, the cost associated with the labeling process may ren-

der a fully labeled training set infeasible, whereas acquisition of a small set of

labeled data is relatively inexpensive. The labeled data, which if utilized, could

be benefit for more accurate learning. In the next chapter, we tend to extend

multi-view NMF to a semi-supervised setting by taking integration of multi-view

information and label information into consideration.
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Chapter 6

Adaptive Multi-View

Nonnegative Matrix

Factorization

6.1 Introduction

In reality, often some supervised information, e.g., labels of data or the pairwise

information (such as must-link constraints) between data, are often available.

Such information indicate whether the data must be or cannot be in the same

cluster, therefore stronger discriminant information can be delivered for clustering

performances. Although, semi-supervised learning approaches [98, 29, 68, 114,

64] have received a great attention recently, few have utilized semi-supervised

multi-view learning methods. For multi-view learning, the supervised information

usually has consistency across multiple views. If we can guarantee data with same

label but come from various views are still grouped into the same cluster, this

will improve the clustering accuracy [2], [119]. Therefore, how to utilize this

discriminative information for guiding the multi-view learning is of great value.

Besides, existing approaches are difficult to determine the weight of each view

and treat them equally. This oversimplified way are not always satisfied in the

real-world application, since each view may have different contributions. Taking

faces and cars as example, although they can be represented by a combination

of multiple viewpoints, some of the views are more informative hence are better
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representations than others. For instance, a frontal or a three-quarter view is a

better representation for faces than a profile view [3], [63]. Similarly, the side or

frontal view of a car is more informative than the top view of it. Finally, outliers

or noisy data are ubiquitous, and thus, a robust multi-view learning approach is

required for practical applications.

To address these challenges altogether, we propose a new multi-view NMF

approaches, called Adaptive Multi-View Semi-Supervised Nonnegative Matrix

Factorization (AMVNMF), which not only considers the consistency of multi-

view and supervised information, but also can adjust the weight of each view

automatically. The overall advantages of this approach are as follows:

1. By taking the label information as hard constraints, AMVNMF guarantees

that data sharing the same label will have the same new representation and be

mapped into the same class in the low-dimensional space regardless whether they

come from the same view.

2. To our best knowledge, this is the first attempt to introduce a single

parameter to control the distribution of weighting factors for NMF-based multi-

view clustering. Consequently, the weight factor of each view can be assigned

automatically depending on the dissimilarity between each new representation

matrix and the consensus matrix.

3. Using the structured sparsity-inducing, L2,1-norm, AMVNMF is robust

against noises and hence can achieve more stable clustering results.

6.2 Review of Constrained NMF

Given n data X = [x1, x2, ..., xn] ∈ Rm×n, traditional NMF is to measure the

dissimilarity between X and WHT as

∥X−WHT∥2F , (6.1)

where W ∈ Rm×k and H ∈ Rn×k.

NMF is an unsupervised learning algorithm. That is, NMF is inapplicable

to many real-world problems where limited knowledge from domain experts is

available. However, some supervision information such as labels or instance-level

constraints including must-link constraints and cannot-link constraints [95, 96]
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is often available, which can be a valuable guidance for finding a more discrim-

inative representation. To this end, Liu et al. [64] proposed a constraint NMF

(CNMF) to extend the traditional unsupervised NMF to a semi-supervised learn-

ing approach. It builds a label constraint matrix which incorporates the label

information as hard constraints so that the data sharing the same label have

the same new representation. In particular, assuming the first l data points are

labeled with c classes, then an indicator matrix C can be constructed, where

ci,j = 1 if vi is labeled with jth class; or ci,j = 0 otherwise. Then, the label

constraint matrix A can be defined as follows,

A =

(
Cl×c 0

0 In−l

)
, (6.2)

where In−l is a (n− l) × (n− l) identity matrix. For example, consider n data

points, among which x1, x2 are labeled with class I, x3, x4 are labeled with class

II, x5 is labeled with class III, and the other n−5 data points are unlabeled. The

label constraint matrix A based on this example can be represented as follows:

A =



1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 In−5


. (6.3)

Recall that NMF maps each data point xi to its new representation hi from

P -dimensional space to k-dimensional space, where hi represents the ith row of

H. To incorporate label information, we introduce an auxiliary matrix Z with

H = AZ. As we can see from A, if xi and xj have the same label, then the ith

row and jth row of A must be the same, and so hi=hj, which guarantees that

data sharing the same label have the same new representation. Therefore, the

objective function can be written as follows,

min
W≥0,Z≥0

∥X−WZTAT∥2F . (6.4)
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6.3 Aaptive Multi-View NMF(AMVNMF)

The framework of AMVNMF to enhance multi-view learning by incorporating

label information as constraints is shown in the Figure 6.1. Given a dataset with

extracted V features, represented by {X(1),X(2), ...,X(V )} and a label matrix A,

AMVNMF aims to obtain a common consensus representation Z∗ that contains

information from different views with utilizing A to enforce the data points that

are of the same label to have the same representation. The weight of each view

α(v) is learnt adaptively according to the differences between each corresponding

representation Z(v) and the consensus Z∗. In the following, we will introduce how

we construct the objective function of AMVNMF.

Figure 6.1: The framework of AMVNMF.

6.3.1 Objective function

As mentioned earlier, CNMF is a semi-supervised learning method which can be

only used under single-view situation. In order to integrate all the V available
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views, for each view X(v), CNMF is extended straightforwardly as

min
W≥0,Z≥0

V∑
v=1

∥X(v) −W(v)Z(v)TA(v)T∥2F , (6.5)

where W ∈ Rdv×K and Z ∈ RK×N . Since the matrix A above is constructed

only based on the label information and consistent for different features, which

means different features share the same constraint matrix A. Thus, given V

types of heterogeneous features, v = 1, 2, ...V , we naturally integrate all these

view together and propose the objective function as follows,

min
W≥0,Z≥0

V∑
v=1

∥X(v) −W(v)(Z(v))TAT∥2F . (6.6)

Assuming that, new representation matrices of V views are regularized towards a

common consensus matrix H∗, we aim to obtain H∗, which uncovers the common

latent structure shared by multiple views. With the constraint matrix A and a

consensus auxiliary matrix Z∗, we have H∗ =AZ∗. Since A is known, we turn

the problem of finding H∗ into the problem of finding Z∗. The objective function

can be rewritten as follows,

min
W(v),Z(v),Z∗≥0

V∑
v=1

∥X(v) −W(v)(Z(v))TAT∥2F

+
V∑

v=1

λv∥Z(v) − Z∗∥2F ,

(6.7)

where λv is the weight factor for vth view.

Note that different views may not be comparable at the same scale. Thus,

without loss of generality, we assume ∥X(v)∥1 = 1. Also, in order to make dif-

ferent Z(v) comparable and meaningful, we constrain ∥W(v)∥1 = 1. To do so, we

introduce

Q(v) = Diag(
V∑
i=1

W
(v)
i,1 ,

V∑
i=2

W
(v)
i,2 , ...,

V∑
i=1

W
(v)
i,k ), (6.8)

to normalize W(v) by using W(v) = W(v)Q(v)−1
. In this way, we can approxi-

mately constrain ∥(Z(v))TAT∥1 = 1 so that Z(v) is within the same range [65].
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Due to W(v)Z(v)TAT = W(v)Q(v)−1
(Z(v)Q)(v)

T
AT , (6.7) could then be written

as

min
W(v),Z(v),Z∗≥0

V∑
v=1

∥X(v) −W(v)(Z(v))TAT∥2F

+
V∑

v=1

λv∥Z(v)Q(v) − Z∗∥2F .

(6.9)

Normally, for all V views, one needs to specify each parameter λv which

reflects each view’s importance. Apparently, without any prior knowledge, it is

hard to decide which view will contribute more or less. In order to reduce the

number of these parameters, and also learn the weights of each view adaptively,

we propose the following formula:

J = min
W(v),Z(v),Z∗,α(v)≥0

V∑
v=1

∥X(v) −W(v)(Z(v))TAT∥2F

+
V∑

v=1

(α(v))γ∥Z(v)Q(v)−Z∗∥2F

s.t.
V∑

v=1

α(v) = 1.

(6.10)

We can see that instead of setting V fixed values separately, we use a single

parameter γ to control the distribution of weight factors, such as the important

views will get bigger weights adaptively during the multi-view clustering.

However, the objective function uses F -norm to measure the approximation

errors is unstable and sensitive to outliers, because large errors are squared so can

easily dominate the objective function. We incorporate L2,1-norm loss function

to alleviate noises and outliers effectively, which is defined as

∥G∥2,1 =
n∑

i=1

√√√√ V∑
j=1

G2
ji =

n∑
i=1

∥gi∥, (6.11)

where gi is the ith column of G. Thus, for traditional NMF, the robust formula-
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tion of the error function can be written as

∥X−WHT∥2,1 =
n∑

i=1

√√√√ V∑
j=1

(X−WHT )2ji

=
n∑

i=1

∥xi −Whi∥.

(6.12)

Comparing this robust formulation with (6.1), we can see that the error for each

data point is ∥xi−Whi∥, which is not squared, and thus the large errors due

to outliers do not dominate the objective function. Here, for each view v, by

incorporating L2,1-norm, the robust formulation of the error function can be

written as,

∥X(v)−W(v)(Z(v))TAT ∥2,1=
N∑
i=1

√√√√ dv∑
j=1

(X(v)−W(v)(Z(v))TAT )2ji

=
N∑
i=1

∥x(v)i −W(v)(z
(v)
i )TAT ∥,

(6.13)

where z
(v)
i is the ith column of Z(v). In this formulation, we can see that the

error for each data is ∥x(v)
i −W(v)(z

(v)
i )TAT∥, which is not squared, and thus

preventing the large errors from dominating the objective function.

Therefore, the overall error of the objective function (6.9) could be reduced

greatly. Taking above into consideration, we propose the final formula as follows,

J = min
W(v),Z(v),Z∗,α(v)≥0

V∑
v=1

∥X(v) −W(v)(Z(v))TAT∥2,1

+
V∑

v=1

(α(v))γ∥Z(v)Q(v)−Z∗∥2F

s.t.

V∑
v=1

α(v) = 1.

(6.14)

6.3.2 Optimization

To solve this optimization problem, an iterative updating algorithm is presented.

When Z∗ is fixed, for each given v, the computation of W(v) or Z(v) does not
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depend on W(v′) or Z(v′), where v ̸= v′. Therefore, we use X, W, Z, and Q to

represent X(v), W(v), Z(v) and Q(v) for brevity.

The objective function is defined as follows,

J = min
W,Z,Z∗,α(v)≥0

∥X−WZTAT∥2,1

+(α(v))
γ∥ZQ− Z∗∥2F .

(6.15)

Then the following multiplicative updating rules for W, Z and D are applied to

update their values sequentially and iteratively.

(1) Fixing Z∗, W, Z and α(v), updating D

D ∈ RN×N is the diagonal matrix corresponding to the i-th entry with the

diagonal elements given by

Dii =
1

∥Xi −W(ZTAT )i∥
. (6.16)

(2) Fixing Z∗, Z, D and α(v), updating W

Let Φi,k be the Lagrange multiplier matrix for the constraint Wi,k ≥ 0, and

Φ = [Φi,k]. The Lagrange function is L1 = J + Tr(ΦW), we only care the terms

that are relevant to W(v).

L1 = Tr(−2XDAZWT +WZTATDAZWT )

+(α(v))
γ
Tr(ZQQTZT − 2ZQ(Z∗)T ) + Tr(ΦW).

(6.17)

Taking the derivatives of L1 with respect to W gives

∂L1

∂W
= −2XDAZ+ 2WZTATDAZ+(α(v))

γ
R+ Φ, (6.18)

where

R = 2(
dv∑
f=1

Wf,k

N−l+c∑
j=1

Z2
j,k −

N−l+c∑
j=1

Zj,kZ
∗
j,k), , ∀1 ≤ i ≤ dv, 1 ≤ k ≤ K. (6.19)

Using the Kuhn-Tucker condition Φi,kWi,k = 0, we get the following equations
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Algorithm 6.1 The algorithm of AMVNMF
Input:
Data for V views {X(1),X(2), ...,X(V )} and X(v) ∈ Rdv×n.
Parameter γ.
Number of clusters k.

Output:
Basis matrices {W(1),W(2), ...,W(V )}.
Coefficient matrices {Z(1),Z(2), ...,Z(V )}.
Consensus matrix Z∗.
The learned weight α(v) for each view.
Normalizing each view X(v) such that ∥X(v)∥1 = 1
Initializing W(v),Z(v),D(v) and Z∗

Initializing the weight factor α(v) = 1
V

repeat
for v = 1 to V do
repeat
Fixing Z∗, W(v), Z(v) and α(v), updating D(v) by (6.16)
Fixing Z∗, Z(v), D(v) and α(v), updating W(v) by (6.21)
Normalizing W(v) and Z(v) as in (6.22)
Fixing Z∗, W(v), D(v) and α(v), updating Z(v) by (6.27)

until (6.15) converges.
end for
Fixing W(v), Z(v), D(v) and α(v), updating Z∗ by (6.29)
Fixing Z∗, W(v), Z(v) and D(v) updating α(v) by (6.34)

until (6.14) converges.

for Wi,k

((XDAZ)i,k + (α(v))
γ
N−l+c∑
j=1

Zj,kZ
∗
j,k)Wi,k

−((WZTATDAZ)i,k + (α(v))
γ

dv∑
f=1

Wf,k

N−l+c∑
j=1

Z2
j,k)Wi,k = 0.

(6.20)

The following update rule can be derived based on this condition,

Wi,k=Wi,k·
(XDAZ)i,k+(α(v))

γ∑N−l+c
j=1 Zj,kZ

∗
j,k

(WZTATDAZ)i,k+(α(v))
γ∑dv

f=1Wf,k
∑N−l+c

j=1 Z2
j,k

. (6.21)

(3) Fixing Z∗, W, D and α(v), updating Z
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Note that Z(v) in different views might not be comparable at the same scale.

To let them theoretically meaningful for clustering, a L1-norm with respect to

W(v) is proposed to constraint different Z(v) in the same range and then compute

the distance measure. The normalization is shown as follows,

W←WQ−1,Z← ZQ. (6.22)

Thus, the object function equals

min
W,Z,Z∗,α(v)≥0

∥X−WZTAT∥2,1 + (α(v))
γ∥Z− Z∗∥2F . (6.23)

Let Ψ be the Lagrange multiplier matrix for the constraint Z ≥ 0, andΨ = [Ψj,k].

Requiring that

L2 = Tr(−2XDAZWT + 2WZTATDAZWT )

+(α(v))
γ
Tr(2ZZT − 2Z(Z∗)T ) + Tr(ΨZ).

(6.24)

Taking derivative of L2 with respect to Z, we have

∂L2

∂Z
= −2ATDXTW + 2ATDAZWTW

+(α(v))
γ
(2Z− 2Z∗) + Ψ,

∀1 ≤ j ≤ N − l + c, 1 ≤ k ≤ K.

(6.25)

Using the Kuhn-Tucker condition Ψj,kZj,k = 0, we get the following equations for

Zj,k

((ATDXTW)j,k + (α(v))
γ
Z∗

j,k)Zj,k

−((ATDAZWTW)j,k + (α(v))
γ
Zj,k)Zj,k = 0.

(6.26)

This leads to the updating rule as follows,

Zj,k = Zj,k ·
(ATDXTW)j,k + (α(v))

γ
Z∗

j,k

(ATDAZWTW)j,k + (α(v))
γ
Zj,k

. (6.27)

(4) Fixing W, Z, D and α(v), updating Z∗
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Taking the derivative of the objective function J in (6.14),

∂J

∂Z∗ =
∂
∑M

v=1 (α
(v))

γ∥Z(v)Q(v) − Z∗∥2F
∂Z∗

=
M∑
v=1

(α(v))
γ
(−2Z(v)Q(v) + 2Z∗) = 0,

(6.28)

we get

Z∗ =

∑M
v=1 (α

(v))
γ
Z(v)Q(v)∑M

v=1 (α
(v))

γ . (6.29)

(5) Fixing Z∗, W, Z and D updating α(v)

We only consider the term that relevant to α, thus, it is equal to minimize

J =
M∑
v=1

(α(v))
γ∥Z(v)Q(v) − Z∗∥2F . (6.30)

By setting G(v) = ∥Z(v)Q(v) − Z∗∥2F , and due to
∑M

v=1 α
(v) = 1, (6.30) equals

J =
M∑
v=1

(α(v))
γ
G(v) − λ

M∑
v=1

(α(v) − 1). (6.31)

The solution can be obtained by the following updating rule:

∂J

∂α(v)
= γG(v)(α(v))

γ−1 − λ = 0. (6.32)

Thus,

α(v) = (
λ

γG(v)
)

1
γ−1 . (6.33)

Substituting the result in (6.33) to the condition, i.e.,
∑M

v=1 α
(v) = 1, α(v) can be

obtained as

α(v) =
(γG(v))

1
1−γ∑M

v=1(γG
(v))

1
1−γ

. (6.34)

We summarize the proposed algorithm in the Algorithm 6.1.
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6.4 Experiments

6.4.1 Description of datasets

In this chapter, we compare our method, AMVNMF, to the state-of-the-art meth-

ods on five benchmark multi-view datasets.

• SensIT: This is obtained from wireless distributed sensor networks (WDSN).

It uses two sensors, acoustic and seismic, to record different signals and to classify

three types of vehicle in an intelligent transportation system. We download the

processed data from LIBSVM [10] and randomly sample 100 data for each class.

Thus, we utilize 300 data samples, 2 views and 3 classes.

• ORL: This data set consists of 400 facial images belonging to 40 different

subjects. For each subject, the images are in great varieties because of different

taking time with changing lighting variance, facial details and facial expressions.

The images are gray scale and have been normalized to 112× 92 pixels. The first

view contains the raw pixel values and the second view contains GIST [38].

• Reuters: This data set contains feature characteristics of documents orig-

inally written in five different languages, and their translations, over a common

set of 6 categories. We use the original English documents as the first view, their

French and German translations are regarded as the second and third views. We

randomly sample 600 documents from this collection, with each of the 6 clusters

having 100 documents [65]. In the experiment, the frequency of words is used as

the features of each document,.

• Citeseer and • Cora are are composed of publications. These publications

are linked via citations. Both of them take contents and citations as two views.

6.4.2 Methods to compare

To demonstrate how the clustering performance can be improved by the proposed

approach, we compared with the following algorithms:

1. Best Single View (BSV): Using the most informative view which achieves

the best performance with our AMVNMF.

2. ConCNMF: The method firstly concatenates the features of all views and

applies CNMF [64] to extract the low dimensional subspace representation.

3. MultiNMF: The NMF-based multi-view clustering method proposed in
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[65].

4. RMKMC : The multi-view k-means proposed in [8].

5. CoRegSPC : The co-regularized pairwise multi-view spectral clustering

method proposed in [53].

Table 6.1: Clustering results on five real-world datasets (%)
Metrics Datasets BSV ConCNMF MultiNMF RMKMC CoRegSPC AMVNMF

SensIT 69.66 52.30 55.04 60.07 61.67 71.33
ORL 74.3 49.59 54.6 45.5 78.20 80.5

AC Reuters 57.50 49.59 51.87 39.80 54.40 59.88
Citeseer 50.08 40.70 34.36 43.21 47.42 53.14
Cora 33.42 32.42 44.83 43.90 37.20 48.71
SensIT 30.14 15.67 19.87 14.84 17.75 31.73
ORL 89.29 51.32 75.23 65.34 90.84 91.73

NMI Reuters 41.95 30.37 36.14 21.82 36.57 42.75
Citeseer 21.38 13.34 20.97 20.61 21.10 26.13
Cora 26.73 9.87 27.95 21.27 15.44 34.59

6.4.3 Experimental setup

Prior to clustering, for each type of features, we normalize the data first, making

the sum of values of each view equal to 1. For fair comparison with previous

works, we follow the experimental settings as in [65]. In our experiments, the pa-

rameter γ in (6.34) varies in the range from 2 to 902 with an incremental step 100,

and the best parameter γ is selected in the smaller and more robust ranges for all

views and data sets. The parameters for all competitors are also tuned to achieve

the best performance. 30% of labeled data are randomly picked up from each

view as priors for semi-supervised learning (AMVNMF and ConCNMF). Since

clustering performances depend on the initializations, we repeat each method 10

times with random initializations and report the average performance.

6.4.4 Results analysis

Table 6.1 summarizes the clustering performances of different algorithms on the

five datasets. It is clear to see that AMVNMF outperforms the second best
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algorithm in all cases. Furthermore, BSV always gets the second best perfor-

mance. It outperforms other multi-view methods greatly, i.e., 7.99%/10.27% on

SensIT and 3.10%/5.38% on Reuters in terms of AC and NMI, respectively. This

is mainly due to AMVNMF guarantees that all the data sharing the same la-

bels are grouped together, regardless they are come from the same or different

views. Therefore, both AMVNMF and BSV ( running AMVNMF with single

view) produce superior results.

6.4.5 Parameter analysis

We show the parameter tuning on SensIT, ORL and Reuters as examples in

Figure 6.2. The parameter γ controls the distribution of weight factors α(v) for

different views. More preciously, when γ →∞, the weight for all views is equal.

When γ → 1, the weight factor of 1 is assigned to the most important view

whose G(v) value is the smallest and 0 is assigned to the weights of the other

views. Hence, this strategy allows well adjusting the ratio of each view and

saves the cost of tuning multiple parameters. As shown in Figure 6.2, AMVNMF

performs stably with varying γ (from 2 to 902). Please note that even the worst

results of AMVNMF are always better than other approaches in most cases.
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Figure 6.2: Performance of AMVNMF w.r.t. parameter γ.
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6.4.6 Study of convergence

The updating rules for minimizing the objective function of AMVNMF in (6.14)

are essentially iterative. We now check its convergence property. Fig. 6.3 shows

the convergence curve together with performance. The blue solid line shows the

value of the objective function and the red dashed line indicates the accuracy. It

can be seen that the value of the objective function decreases steadily with more

iterations and converges after around 20 times.

6.4.7 Effect of labeled data

Since AMVNMF is a semi-supervised method, we also randomly pick up 10% and

20% labeled data to further demonstrate the benefits of priors. Notice that ORL

has only 10 images for each category, thus 10% gives one image only. However,

one label is meaningless for AMVNMF since this algorithm maps the images

with the same label onto the same coordinate in the new representation space.

Thus, we omit the result with 10% labeled data. From Figure 6.4, it can be seen

that both AC and NMI are improved with more labeled data. Also, it is worth

pointing out that even with only 10% labeled data, AMVNMF performs better

than other approaches when 30% labeled data are applied. For example, for the

SensIT dataset, AMVNMF achieves 62% AC and 20% NMI with 10% labeled

data, which is better than the best performance of other approaches, i.e., 61.67%

AC and 19.87% NMI (as shown in Table 6.1).
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Figure 6.3: Convergence and corresponding performance curve.
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Figure 6.4: Performance of AMVNMF w.r.t. labeled data.

6.5 Conclusion

A novel NMF-based multi-view method, AMVNMF, is proposed in this chap-

ter. It efficiently learns the underlying clustering structure embedded in multiple

views, by regularizing the new representation matrices learnt from different views

towards a common consensus. The advantages of AMVNMF are shown in three

aspects. First, it guarantees that labeled data come with multiple views can be

clustered into the same low-dimension space. Second, it learns each view’s cor-

responding weight adaptively with a single parameter γ. Third, it handles the

noises more effectively.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Data clustering is the task of partitioning data into different groups such that

the data in the same group are highly similar. In many real applications, such as

information retrieval, digital image processing and bioinformatics, it has been an

active research field where many approaches have been developed using various

objective functions. Recently there has been significant development in the use

of non-negative matrix factorization (NMF) methods for various clustering tasks.

NMF approximates a nonnegative data matrix by a product of two low-rank

factorizing matrices under nonnegative constraints. The additive nature of NMF

can often result in parts-based representation of the data, and this property is

especially desired for data clustering.

This thesis has presented advances in NMF with application on data cluster-

ing. Firstly, the research background is introduced in the Chapter 1. Acompre-

hensive review of standard NMF as well as existing different variants on NMF

formulations is then provided in Chapter 2. Generally, NMF-based approaches

for data clustering could be divided into two steps: 1) They all aim to find a

lower dimensional feature representation matrix via factorizing the input high-

dimensional feature matrix; 2) A post-processing such as k-means is conducted

on the representation matrix to achieve the final clustering results. The first step

is more important as the success of the NMFs largely depends on learning an ef-

fective feature representation matrix. In Chapter 3, 4, 5 and 6, we have presented

four novel approaches by exploring more useful feature information for accurate
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representation learning. In detail, considering that real data are usually complex

and contain various components (e.g. face images have expressions and genders),

a novel multi-component NMF approach has been proposed to explore the se-

mantic information of multiple components as well as the diversity among them

in chapter 3. Different from current approaches that factorizing the data matrix

into a single basis and representation matrix, MCNMF learns multiple representa-

tions based on different basis matrices. The diverse information contained by the

multiple learned representations are enforced with the Hilbert-Schmidt Indepen-

dence Criterion (HSIC) [32] as a diversity regularization term. Thus, MCNMF

captures more comprehensive information by integrating these multiple represen-

tations and hence increase clustering accuracy. Besides, clustering is conducted

on each learned representation, so that multiple semantic clusters are achieved

simultaneously with each one represents one property of data. However, MCNMF

assumes that features of each data points are independently distribution, which

fails to take full advantage of the sequential nature embedded in the sequential

data such as motion captures. To fully exploits this nature as prior information

to guide for more accurate learning, an ordered NMF is proposed in chapter 4.

A L2,1-norm based neighbour penalty term is proposed and incorporated to stan-

dard NMF to enforce the similarity of neighbouring data presentations, so that

ORNMF has achieved more discriminative and explicit data representations. In

fact, both MCNMF and ORNMF are single-view approaches which can deal with

one type of feature of data only, such as pixels of images. Given that real-world

datasets are often comprised of multiple features or views which describe data

from various perspectives, it is important to exploit diversity from multiple views

for comprehensive and accurate data representations. Hence, in chapter 5, we

have proposed a diverse multi-view NMF(DiNMF) to exploit diverse information

among multiple views of data. Through enhancing each view’s independence and

co-regularizing different corresponding representations, the mutually redundancy

are reduced and diverse information are guaranteed by DiNMF. DiNMF is also

computationally linear thus has good scalability to large-scale datasets. Since

DiNMF fails to discover intrinsic geometrical structure of the data in each view,

we have further proposed a Locality Preserved DiNMF (LP-DiNMF) to ensure

diversity from multiple views while preserving the local geometry structure of

data in each view, which lead to a more accurate clustering results.
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Essentially, all the three approaches, i.e., MCNMF, ORNMF and DiNMF,

could be regarded as unsupervised approaches. They are not able to utilize pri-

ors, such as label information, to guide learning process when the information are

available, although some literatures have shown that utilizing a small amount of

labeled data can produce considerable improvements in learning accuracy [2, 119].

Therefore, in chapter 6, we have proposed a novel semi-supervised multi-view

NMF approach, called Adaptive Multi-view NMF (AMVNMF) to explore the

effectiveness by incorporating label information. With a constructed constraint

label matrix, AMVNMF ensures data are of the same label to have the same new

representation regardless whether or not they come from the same view, which

enhances the discriminability of representations. Moreover, considering that dif-

ferent views may have different contributions to the performance, AMVNMF uses

a single parameter adjusts weight factor of each view automatically which saves

the cost for parameter tuning.

To validate the effectiveness of the proposed approaches, we have conducted

experiments on several benchmark datasets in comparison with existing NMF-

based approaches. Experiment results have well demonstrated that the proposed

approaches not only have achieved higher clustering accuracies than state-of-the-

art approaches, but also converge fast. Besides, their performance are robust to

parameters tuning, which allows wide applications in reality.

7.2 Future Work

Although the proposed approaches have shown better performance in comparison

with state-of-the-arts, there are still some rooms for improvement that provide

us research directions for future work. Specifically, they mainly include:

• Online NMF for streaming data

All the NMF approaches introduced in this thesis are designed for static data.

This requires the input data matrix to reside in the memory during processing,

which could be problematic when the datasets are huge(e.g., they may not even

fit in the memory). Moreover, in modern applications, the data often arrive in

a streaming fashion and may not be stored on disk [118]. For example, in the

news mining problem domain, the news articles on a certain event appear one
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after another, reflecting the development of an event. In the future, we tend to

research on online NMF learning to process steaming data one by one (or chunk

by chunk), as well as learn the representation matrix and update the basis matrix

simultaneously.

• Improvements on robustness for complex noise

In reality, data are often contaminated by different noises or outliers. Under

different assumptions of the noise and outliers distribution, the loss functions are

in various forms. Generally, the loss function used in both Chapter 2 and Chapter

3 is L2-norm, which is only optimal for Gaussian noise. L2,1-norm adopted in

Chapter 4 is only for data that are corrupted in columns. However, real data are

often corrupted by noise with an unknown distribution. Then any specific form

of loss function for one specific kind of noise often fails to tackle such real data

with complex noise. Therefore, how to improve the robustness of NMF to adapt

more complex noise will be another research direction.

• Multi-view learning with incomplete views

With the advance of technology, real data are often with multiple modalities or

coming from multiple sources which are called multi-view data. The proposed

approaches in chapter 2 and 3 deal with multi-view data are based on the as-

sumption that all of the views of data are complete, i.e., each instance appears

in all views. However, in real-world applications, due to the nature of the data

or the cost of data collection, some views may suffer from the incompleteness of

data. For example, one news story may be reported by different news sources

(views), but not all the news stories are covered by all the news sources, i.e., each

news source cannot cover all the news stories. Thus, all the views are incom-

plete. Dealing with multi-view data with incomplete views could be a potential

direction in near future.
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