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Abstract 14 

Bacterial conjugation, a mechanism of horizontal gene transfer, is the major means 15 

by which antibiotic resistance spreads among bacteria (1,2). Conjugative plasmids 16 

are transferred from one bacterium to another through a type IV secretion system 17 

(T4SS) in a form of single-stranded DNA covalently attached to a protein called 18 

relaxase. The relaxase is fully functional both in a donor cell (prior to conjugation) 19 

and recipient cell (after conjugation). Here we demonstrate that the protein substrate 20 

has to unfold for efficient translocation through the conjugative T4SS. Furthermore, 21 

we present various relaxase modifications that preserve the function of the relaxase 22 

but block substrate translocation. This study brings us a step closer to deciphering 23 

the complete mechanism of T4SS substrate translocation, vital for development of 24 

new therapies against multidrug-resistant pathogenic bacteria. 25 

 26 

 27 

Importance 28 

Conjugation is the principal means by which antibiotic resistance genes spread from 29 

one bacterium to another (1,2). During conjugation, a covalent complex of single-30 

stranded DNA and a protein termed relaxase is transported by a type IV secretion 31 

system. To date, it is not known whether the relaxase requires unfolding prior to 32 

transport. In this report, we use functional assays to monitor the transport of relaxase 33 

wild-type and variants containing unfolding-resistant domains and show that these 34 

domains reduce conjugation and protein transport dramatically. Mutations that lower 35 

the free energy of unfolding in these domains do not block translocation and can 36 

even promote it. We thus conclude that the unfolding of the protein substrate is 37 

required during transport.  38 
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Introduction 39 

Bacteria have evolved a diversity of specialized secretion systems that allows 40 

them to translocate macromolecules across the cell envelope (3). Among them, the 41 

type IV secretion system (T4SS) is the most versatile (4). T4SSs mediate the transfer 42 

of DNA and protein substrates across the cell envelopes. The largest and most 43 

widely distributed of the T4SS subfamilies are conjugation systems (5).   44 

Conjugation is a major mechanism of horizontal gene transfer (6,7). It is a 45 

process by which one bacterium, the donor, transfers genetic material to another 46 

bacterium, the recipient, in a contact-dependent manner (8). Thus, conjugation is the 47 

major means by which antibiotic resistance genes spread among bacterial 48 

populations (1,2). Conjugation is widely distributed among Gram-negative bacteria, 49 

Gram-positive bacteria, and even some archaea (9).  50 

Many plasmids and integrative and conjugative elements (ICEs), so-called 51 

“mobile elements”, undergo conjugation (10). Many of these mobile genetic elements 52 

are self-transmissible: they encode the entire machinery necessary for their transfer 53 

into recipient cells. Proteins necessary for conjugation assemble into two complexes: 54 

a DNA-processing complex called the relaxosome and a complex responsible for 55 

transfer, the T4SS. The relaxosome is an assembly of a protein called relaxase and 56 

a few accessory proteins that bind a specific DNA sequence called oriT (origin of 57 

transfer) to form a nucleo-protein complex (11). The T4SS is a large (3-4 58 

MegaDalton) protein complex consisting of a transport apparatus that spans the 59 

bacterial cell envelope (12), a pilus that extends from the cell surface (13) and 60 

mediates contact between cells (14), and a type IV coupling protein (T4CP) (15,16) 61 

that recruits the relaxosome to the secretion channel.  62 

The general mechanism of conjugation is still poorly understood but some 63 

steps are known (11,17). The relaxase encoded by a number of plasmids (but not all) 64 

is an enzyme that often carries two activities, a transesterase/nicking activity and a 65 

helicase activity. The transesterase nicks the plasmid DNA strand destined for 66 
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transfer (T-strand) at a specific position within oriT, called nic, and remains covalently 67 

attached through a catalytic tyrosine to the 5′ phosphate end of the cleaved strand. 68 

The relaxase and accessory proteins carry translocation signals for recruitment of the 69 

transfer intermediate to T4SS via T4CP. Upon contact with a recipient cell, the 70 

substrate - the relaxase covalently attached to the T-strand – is transported into the 71 

recipient cell in an ATPase-dependent manner. During the translocation process, the 72 

T-strand is unwound from its complementary strand by a second copy of the 73 

relaxase, the helicase activity of which motors the T-strand through the T4SS, 74 

presumably assisted by some of the T4SS ATPases (18). In the recipient cell, the 75 

relaxase molecule that has passed through the system may recircularize the T-76 

strand, and the complementary strand is synthesized (17).  77 

R388 is one of the best-studied conjugative plasmids that belong to a broad-78 

host-range group of plasmids (19,20). Proteins essential for conjugation are encoded 79 

within two separate gene clusters. One cluster contains oriT and genes encoding the 80 

accessory protein TrwA, the T4CP protein TrwB, and the relaxase TrwC, whereas 81 

the other cluster encodes eleven T4SS proteins, TrwN-TrwD, homologs of the VirB1-82 

VirB11 proteins of the prototypical T4SS from Agrobacterium tumefaciens, the 83 

VirB/D4 system (21,22). 84 

The TrwC relaxase is a 107 kDa protein composed of two domains: an N-85 

terminal transesterase (also termed “relaxase”) domain (approx. 1-300 residues) and 86 

a C-terminal helicase domain (approx. 300-966 residues). High-resolution crystal 87 

structures of TrwC relaxase domain in complex with oligonucleotides containing 88 

TrwC binding and/or nicking sites revealed details of DNA binding site recognition 89 

and nicking mechanism by TrwC (23,24). Nucleophilic attack of the nic site by the 90 

catalytic tyrosine, Tyr18 (25), generates a phosphotyrosine bond between the 91 

cleaved T-strand 5’ phosphate and the Tyr residue in the relaxase. The C-terminus of 92 

TrwC (residues 796-802) contains a translocation signal for recruitment by the T4SS 93 

machinery (26). The helicase domain contains a 5′–3′ helicase activity (27). Once in 94 
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the recipient cell, the helicase domain is thought to track 5′–3′ along the T-strand in 95 

order to position it correctly for the termination rejoining step (28). It is also thought to 96 

be responsible for the unwinding of the T-strand during conjugation. In this case, the 97 

T-strand unwinding TrwC molecule would have to be distinct from the translocated 98 

one (18).  99 

 The fact that the relaxase has to pass through the T4SS raises the question 100 

whether the relaxase is transported in a folded or unfolded state through the T4SS 101 

channel. Among other types of bacterial secretion systems, some are known to 102 

transport folded substrates (such as type 2 secretion systems (29) and chaperone-103 

usher pathway (30,31)), whereas some can translocate only unfolded substrates 104 

(e.g. type 1 secretion systems (32) and type 3 secretion systems (33,34)). The 105 

negative stain-electron microscopy structure of the TrwM/VirB3-TrwE/VirB10 106 

complex from R388 T4SS has recently revealed the T4SS architecture (12). 107 

However, the internal channel, the dimensions of which might give a clue on the 108 

folding state of the substrate during transport, has not been identified yet. In this 109 

report, we have studied the requirements for the substrate translocation by the R388 110 

conjugative T4SS. We show that the T4SS substrates have to be unfolded in order to 111 

be translocated into recipient cells.   112 

 113 

Results 114 

The overall aim of this study is to investigate whether transport of the relaxase 115 

requires unfolding of the protein.  In order to answer this question, our strategy was 116 

to fuse unfolding-resistant proteins or protein modules of various sizes to TrwC and 117 

test if they can be transported into recipient cells. We first sought to test this by 118 

directly monitoring the transport of the protein itself during conjugation using the 119 

previously described Cre recombinase reporter assay for translocation (CRAfT 120 

(35,36)). 121 

 122 
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Establishing a translocation assay of the TrwC relaxase based on the CRAfT assay    123 

Briefly, the recipient strain contains a chloramphenicol resistance gene 124 

interrupted by a tetracyclin resistance cassette flanked by loxP sites. Therefore, the 125 

strain is tetracyclin resistant, but upon Cre recombination becomes tetracyclin 126 

sensitive and chloramphenicol resistant. The transfer of Cre recombinase-substrate 127 

fusion can be measured by measuring the change in antibiotic resistance of recipient 128 

cells upon conjugation. We used a two-plasmid system composed of a plasmid 129 

containing R388 oriT, termed pRSF-oriT, and a plasmid encoding relaxosome 130 

components (TrwA, TrwB, and TrwC) and T4SS, termed pBAD-ABC-T4SS. This two-131 

plasmid system typically resulted in 60-80% recipients acquiring the oriT plasmid 132 

(transconjugants) in our conjugation assay. 133 

We first fused the Cre recombinase at different locations within the TrwC 134 

substrate and tested which construct retains functionality (both in plasmid 135 

conjugation and Cre recombination). Cre recombinase was fused to the TrwC N-136 

terminus (termed Cre-TrwC), TrwC C-terminus (termed TrwC-Cre) and in between 137 

the relaxase and helicase domains (termed R-Cre-H) (Fig. 1A). Given the fact that 138 

the first methionine (Met1) of the N-terminal relaxase domain is located at the center 139 

of the relaxase structure and participates in DNA binding, together with Leu2, His4, 140 

Met5, and Val6 (24), there was a possibility that the N-terminal fusion might abolish 141 

oriT binding and/or nicking, and therefore conjugation. Nevertheless, TrwC transfer 142 

without DNA transfer has previously been observed (37) and, thus, we proceeded 143 

with making and testing all three Cre fusions of TrwC, even the N-terminal one.  144 

Cre recombinase retained functionality in all three fusions (Fig. 1B). 145 

Surprisingly, conjugation level of all three fusions was high, even for the N-terminal 146 

fusion; however, protein transfer was detected only in the case of Cre-TrwC and R-147 

Cre-H (Fig. 1C). Since TrwC-Cre is not transported into the recipient cells at 148 

detectable levels, the high conjugation efficiency observed with this construct is most 149 
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likely due to a fraction of TrwC lacking the C-terminal Cre fusion - a result of 150 

proteolytic degradation within the cell. 151 

Cre-TrwC displays a high level of conjugation, indicating that N-terminal 152 

fusions of TrwC might be active in DNA transport after all. We therefore tested 153 

purified TrwC with and without N-terminal fusions in an oriT nicking assay. As shown 154 

in Fig. 2, whereas TrwC-His6 formed a covalent linkage with pUC-oriT plasmid, we 155 

did not detect any mGFP-TrwC, or even GA-TrwC (TrwC with an additional N-156 

terminal glycine and alanine residue) covalently bound to oriT. Since even only two 157 

additional N-terminal residues can abolish TrwC activity, the source of TrwC protein 158 

that is functional in conjugation is most likely wild type TrwC co-expressed starting 159 

from the original start codon. The linker sequence between Cre and TrwC that lies 160 

just upstream of the TrwC start codon is rich in GG nucleotides, possibly acting as a 161 

ribosome-binding site. In conclusion, both N-terminal and C-terminal fusions abolish 162 

TrwC transport and/or activity.  163 

Unlike the N-terminal and C-terminal Cre fusions, which can both apparently 164 

yield a Cre-less, wild-type version of the protein (see above), the internal Cre fusion 165 

construct cannot undergo modifications yielding wild-type TrwC. Indeed, separated 166 

relaxase and helicase domains that could arise by proteolytic degradation are not 167 

functional (27,38). Therefore, the measured conjugation efficiency of R-Cre-H 168 

reflects the activity of the full-length protein. R-Cre-H also showed almost two orders 169 

of magnitude higher level of protein translocation in the CRAfT experiment in 170 

comparison to Cre-TrwC (Fig. 1C). Since Cre-TrwC is not functional in oriT nicking, 171 

the protein is in this case transported without being attached to the T-strand as 172 

described in Draper et al. 2005 (37). In order to test if oriT binding is the reason for 173 

higher protein translocation of R-Cre-H, we repeated the CRAfT assay but this time 174 

excluding the pRSF-oriT plasmid. Surprisingly, we detected higher protein transport 175 

in the absence of oriT plasmid than in its presence (Fig. 1D). This indicates that the 176 

Cre recombination in recipient cells might be affected by the presence of the T-177 
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strand, possibly due to a competition with the TrwC helicase activity along the T-178 

strand.  179 

 180 

Substrate unfolding is a pre-requirement for translocation through T4SS  181 

Next, we chose the N-terminal fusions to test the extent of substrate unfolding 182 

required for its transport through T4SS. We fused a set of unfoldable (this word is 183 

used here to mean “that can be unfolded”) and unfolding-resistant (that cannot be 184 

unfolded) proteins between Cre and TrwC (Fig. 3A) and tested if they can be 185 

transported into recipient cells. With Cre recombinase positioned at the very N-186 

terminus and TrwC translocation signal at the very C-terminus, these constructs 187 

allow us to detect the transport of only full-length proteins. Ubiquitin (Ub; 8 kDa) and 188 

GFP (27 kDa) have been reported to be resistant to unfolding, whereas the ubiquitin 189 

mutant UbI3G,I13G (Ub3,13) served as the unfoldable protein control (34,39). We first 190 

tested the Cre recombinase activity of these constructs. Cre recombinase was 191 

functional in all fusions tested (Fig. 3B).  192 

When tested in the CRAfT assay, the protein construct containing the 193 

unfoldable fusion, the ubiquitin mutant (Ub3,13), was transported into recipient cells at 194 

very high levels (~10% recipient cells underwent recombination; Fig. 3C). In 195 

comparison, its wild-type ubiquitin counterpart was transported at about five orders of 196 

magnitude lower level, similar to the construct containing mGFP. These data clearly 197 

demonstrate that the conjugative T4SS substrate, the relaxase protein, has to be 198 

unfolded in order to pass through the T4SS channel.  199 

 200 

Relaxase constructs that block substrate translocation in the native plasmid 201 

Experiments above were conducted using an artificial two-plasmid system 202 

reporting on protein transport to the recipient cell. We sought next to monitor the 203 

nucleoprotein substrate transport through conjugative T4SS using the native R388 204 

plasmid. We also sought to expand the range of fusion proteins probed. For this 205 
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purpose, it was necessary to generate a modified protein substrate that is fully 206 

functional. We therefore generated three different sets of relaxase constructs and 207 

tested their functionality. For these experiments, we directly modified TrwC in the 208 

wild-type R388 plasmid. Since N-terminal fusions abolish oriT nicking activity, we 209 

tested if duplicating the relaxase domain in front of the N-terminal fusion can recover 210 

relaxase activity (Fig. 4A left). In order to avoid expression of the wild-type TrwC from 211 

its original start codon, the first methionine in the second relaxase domain was 212 

deleted. Indeed, the addition of the relaxase domain in front of the unfoldable 213 

ubiquitin fusion resulted in wild-type levels of relaxase activity (Fig. 4A right). The 214 

high conjugation efficiency of this construct is not the result of proteolysis of mutant 215 

ubiquitin (Fig. S1). Replacing an unfoldable fusion with an unfolding-resistant one 216 

efficiently blocks the substrate transport, resulting in more than two orders of 217 

magnitude lower conjugation efficiency (Fig. 4A right).  218 

Equivalently, an attempt was made to recover the activity of C-terminal 219 

fusions by adding another helicase domain (H) to the C-terminus of a TrwC-fusion 220 

(Fig. 4B left). In this case, the duplication of the helicase domain did not completely 221 

restore the wild-type level of relaxase activity (Fig. 4B right), potentially due to the 222 

suboptimal position of the translocation signal (e.g. too large a distance between the 223 

relaxase and the functional translocation signal). The difference in the conjugation 224 

efficiency between the unfolding-resistant and unfoldable ubiquitin construct is lower 225 

than for the constructs with the duplicated relaxase. The observed conjugation 226 

efficiency of TrwC-Ub/mGFP-H constructs might be a result of either co-expression 227 

of the wild-type TrwC (as a result of either degradation and/or premature translation 228 

termination) or suboptimal folding of ubiquitin and mGFP at the TrwC C-terminus. 229 

  Finally, we tested the activity of TrwC containing internal fusions between its 230 

relaxase and helicase domain (Fig. 4C left). Internal fusion with Ub3,13 retains wild-231 

type level of activity (Fig. 4C right). Unfolding-resistant (Ub or mGFP) fusions 232 
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efficiently blocked substrate transport, with conjugation efficiencies of more than 233 

three orders of magnitude lower than its unfoldable counterpart. 234 

 We note that in all unfolding-resistant variants tested, a very low residual level 235 

of translocation/transfer is observed, likely due to a small fraction of these proteins 236 

being less resistant to unfolding, due to defects in their folded state. 237 

 238 

Conclusion 239 

Secretion in bacteria is a critical process in pathogenesis and inter-bacterial 240 

competition in many bacterial pathogens. Bacteria have evolved a diversity of 241 

specialized secretion systems to export a wide range of substrates, including small 242 

molecules, proteins and DNA, across the cell envelope (3). Some secretion systems, 243 

such as T2SS (29) and chaperone-usher pathway (30,31), transport fully folded 244 

protein substrates, whereas some can transport only unfolded substrates (e.g. T1SS 245 

(32) and T3SS (33,34)). In this report we demonstrate that conjugative T4SS 246 

substrates, relaxases, have to undergo unfolding in order to be transported through 247 

the T4SS channel. Comparison of translocation frequencies of unfolding-resistant 248 

TrwC fusions and their unfoldable counterparts clearly demonstrated that both TrwC 249 

alone and TrwC covalently attached to the T-strand are transported into recipient 250 

cells in an unfolded state. In that respect, conjugative T4SSs works in a similar 251 

manner as effector only-transporting T4SSs such as that of the bacterial pathogen 252 

Legionella pneumophila (46). 253 

T1SS substrates fold upon binding of calcium, which is low in the bacterial 254 

cytosol, but high in the extracellular space, therefore it is generally assumed that 255 

T1SS substrates adopt their folded conformation only after secretion into the 256 

extracellular space. Conjugative relaxases are clearly folded prior to their 257 

translocation, as they are fully functional when expressed in a bacterial cell. Which 258 

enzyme/unfoldase is responsible for T4SS substrate unfolding remains unclear. In 259 

case of T3SS, a dedicated hexameric ATPase has a critical function in substrate 260 
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recognition and unfolding in an ATP-dependent manner (33). T4SS, on the other 261 

hand, is energized by three distinct hexameric ATPases: VirB4, VirB11 and T4CP. 262 

T4CP is an integral membrane protein that interacts with the relaxase and accessory 263 

proteins and recruits the transfer intermediate to the T4SS translocation machinery. 264 

T4CP ATPase activity is not required for the recruitment (41). However, ATPase 265 

activity of all three ATPases is essential for nucleoprotein transport (41). VirB4 is an 266 

integral part of the T4SS inner-membrane complex (IMC) and is located mainly in the 267 

cytoplasm. VirB11 is a cytoplasmic ATPase that interacts with T4CP and VirB4. 268 

Apart from being essential for substrate transport, VirB4 and VirB11 are required for 269 

T4SS pilus assembly. Due to their several roles that are essential for the T4SS 270 

function, it is difficult to predict which ATPase is responsible for substrate unfolding.  271 

 The CRAfT experiments performed here also revealed that an N-terminal 272 

fusion might abolish a relaxase function (Fig. 1). TrwC oriT nicking activity was 273 

sensitive to addition of only two amino acids at its N-terminus (Fig. 2). The crystal 274 

structure of TrwC relaxase domain in complex with its cognate DNA at oriT showed 275 

that first five TrwC residues participate in binding DNA (24). The N-terminal 276 

methionine alone forms multiple interactions with DNA. Its side chain is trapped in a 277 

hydrophobic cage formed by a sharp U-turn of the T-strand DNA, whereas its amino 278 

group forms a hydrogen bond with the DNA. Therefore, addition of any amino acids 279 

to the relaxase N-terminus might perturb the oriT binding and result in an inactive 280 

protein.   281 

Finally, we showed here that although the terminal fusions abolish the 282 

relaxase activity, it is possible to modify the relaxase in different ways in order to 283 

preserve the functionality of its domains. Placing a fusion internally or duplicating a 284 

domain can recover a relaxase activity, and unfolding-resistant fusions can be used 285 

to efficiently block the substrate transport. This will be particularly important for 286 

deciphering the complete mechanism of T4SS substrate translocation. T4SS 287 

substrates modified with unfolding-resistant fusions at appropriate locations could be 288 
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used as a tool to efficiently trap the substrate during translocation. Structural studies 289 

of the T4SS in complex with the substrate trapped within will allow defining the 290 

substrate translocation path and T4SS conformational changes necessary for 291 

translocation. Deciphering the details of T4SS translocation mechanism will be vital 292 

to facilitate development of new therapies against multidrug-resistant pathogenic 293 

bacteria. 294 

 295 

Methods 296 

Molecular biology 297 

oriT and expression plasmids used in this study are described in Table S1. 298 

Primer sequences are shown in Table S2. DNA fragments used for cloning were 299 

amplified using Phusion High-Fidelity DNA Polymerase (NEB) following 300 

manufacturer’s instructions. Restriction enzymes were obtained from NEB. Unless 301 

otherwise stated, antibiotic concentrations used were: kanamycin (Km) 30 μg/ml, 302 

ampicillin (Amp) 100 μg/ml, tetracycline (Tc) 10 μg/ml, chloramphenicol (Cm) 10 303 

μg/ml, streptomycin (Sm) 25 μg/ml, and trimethoprim (Tmp) 10 μg/ml.  304 

pRSF-oriT was generated by ligation (Rapid DNA ligation Kit, Roche) of 305 

amplified oriT and pRSFDuet-1 vector digested with BssHII restriction enzyme. pUC-306 

oriT was generated by ligation of amplified oriT and pUC18 vector digested with 307 

HindIII-HF and SacI-HF restriction enzymes.  308 

Unless otherwise stated, all plasmids used in this study were generated by 309 

seamless cloning using In-Fusion HD Cloning Kit (Clontech). In most cases, the 310 

constructs were generated by fusing two PCR fragments. In some cases (described 311 

below), the constructs were generated by fusing a PCR fragment and a linearized 312 

vector. pBAD-trwN/virB1-trwE/virB10Strep-trwD/virB11 was cloned by amplifying 313 

trwD/virB11 and inserting it into pBAD-trwN/virB1-trwE/virB10Strep plasmid (12) which 314 

was linearized using BstBI restriction enzyme. pBAD-ABC-T4SS was cloned by 315 

amplifying trwABCHis and inserting it into pBAD-trwN/virB1-trwE/virB10Strep-316 
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trwD/virB11 plasmid which was linearized using NcoI restriction enzyme. All pBAD-317 

ABC-T4SS constructs encoding modified TrwC were cloned in the same way (by 318 

amplifying ABC and inserting into linearized pBAD-trwN/virB1-trwE/virB10Strep-319 

trwD/virB11 plasmid).   320 

TrwC internal fusions were inserted into an unstructured region between the 321 

relaxase and helicase domains (between residue 312 and 313). The TrwC secondary 322 

structure was predicted using PSIPRED v3.3 (http://bioinf.cs.ucl.ac.uk/psipred/).  323 

Ubiquitin mutant was generated using QuikChange Lightning Multi Site-324 

Directed Mutagenesis Kit (Agilent Technologies) following manufacturer’s 325 

instructions. Cre active site mutant was generated using QuikChange Lightning Site-326 

Directed Mutagenesis Kit (Agilent Technologies) following manufacturer’s 327 

instructions. 328 

 329 

Modification of the wild-type R388 plasmid 330 

Modified R388 plasmids used in this study are described in table S3. The 331 

R388 plasmid was modified using recombineering method following the multicopy 332 

plasmid modification protocol (42,43). The two-step seamless method using the cm-333 

sacB selection cassette was used to create precise genetic changes without 334 

otherwise altering the plasmid. The cm-sacB cassette is used for positive/negative 335 

selection; it can be selected either for (by chloramphenicol resistance) or against 336 

(sucrose sensitivity). In the first recombineering step, the sequence to be modified is 337 

replaced with the cm-sacB cassette; the cassette is then replaced with the desired 338 

alteration in the second recombineering event.  339 

The bacterial strain containing the defective λ prophage, SW102 (44), and the 340 

plasmid containing cm-sacB cassette, pEL04, were obtained from NCI-Frederick. 341 

PCR products used for homologous recombination contained at each end on 342 

average about 200 base pairs of flanking homology to the desired region on the 343 

plasmid. For this purpose, PCR templates were first generated using In-Fusion HD 344 
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Cloning Kit. We first made the templates for the second recombineering step by 345 

modifying TrwC encoded on the pBAD-ABC vector (see tables S1 and S2). The 346 

templates for the first recombineering step were then prepared by replacing a desired 347 

TrwC modification on a relevant pBAD-ABC vector (encoding relevant modified 348 

TrwC) with the cm-sacB cassette. PCR products were amplified from linearized 349 

templates using Phusion High-Fidelity DNA Polymerase (NEB), digested with DpnI, 350 

and purified using MinElute Gel Extraction Kit (Qiagen). The details of the templates 351 

and PCR products are given below.  352 

To generate R388 plasmid encoding TrwC with a fusion protein in between 353 

the relaxase (R) and helicase domains (H), R388_R-Ub/Ub3,13/mGFP-H, the template 354 

for the first recombineering step was generated by replacing the relaxase and the 355 

first part of helicase domain in pBAD-ABCHis plasmid with cm-sacB cassette, 356 

generating pBAD-AB_Cm-SacB-H plasmid. In the first recombineering step, the PCR 357 

fragment containing B_Cm-SacB-H was amplified from pBAD-AB_Cm-SacB-H 358 

plasmid and used to modify the wild-type R388. In the second recombineering step, 359 

the PCR fragment containing B_R-Ub/Ub3,13/mGFP-H was amplified from pBAD-360 

AB_R-Ub/Ub3,13/mGFP-H plasmid and used to modify R388_B_Cm-SacB-H.  361 

To generate wild-type R388 plasmid encoding TrwC with duplicated domains, 362 

four recombineering steps were necessary. The two-step approach, using a PCR 363 

product with duplicated domain sequences in the second step, generated R388 364 

plasmid encoding wild-type TrwC. This is because the recombineering occurs 365 

through a fully ssDNA intermediate of the PCR fragment (45), most likely resulting in 366 

recombination of the duplicated domains, generating the wild-type protein.  367 

To generate R388 plasmid encoding TrwC with duplicated relaxase domains 368 

(R) and a fusion protein in between, R388_R-Ub/Ub3,13/mGFP-TrwC, following PCR 369 

fragments were generated. For the first recombineering step, the PCR fragment 370 

encoding B_Cm-SacB-H was amplified from pBAD-AB_Cm-SacB-H plasmid. For the 371 

second step, the PCR fragment encoding B_R-His6-Ub/Ub3,13/mGFP-H was amplified 372 
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from pBAD-AB_R-His6-Ub/Ub3,13/mGFP-H plasmid. For the third step, the PCR 373 

fragment encoding Ub/Ub3,13/mGFP-Cm-SacB-H was amplified from pBAD-AB_R-374 

His6-Ub/Ub3,13/mGFP-Cm-SacB-H plasmid. For the fourth step, the PCR fragment 375 

encoding Ub/Ub3,13/mGFP-TrwC was amplified from pBAD-AB_R-His6-376 

Ub/Ub3,13/mGFP-TrwC plasmid. 377 

To generate R388 plasmid encoding TrwC with duplicated helicase domains 378 

(H) and a fusion protein in between, R388_TrwC-Ub/Ub3,13/mGFP-H, following PCR 379 

fragments were generated. For the first step, the PCR fragment encoding H-Cm-380 

SacB-B11 was amplified from pBAD-ABC-Cam-SacB-trwD/virB11 plasmid. 381 

TrwD/VirB11 is the protein encoded downstream of TrwC in the wild-type R388 382 

plasmid. For the second step, the PCR fragment encoding H-Ub/Ub3,13/mGFP-His6-383 

B11 was amplified from pBAD-ABC-Ub/Ub3,13/mGFP-His6-trwD/virB11 plasmid. For 384 

the third step, the PCR fragment encoding Ub/Ub3,13/mGFP-Cm-SacB-trwD/virB11 385 

was amplified from pBAD-ABC-Ub/Ub3,13/mGFP-Cm-SacB-trwD/virB11 plasmid. For 386 

the fourth step, the PCR fragment encoding Ub/Ub3,13/mGFP-H-His6-trwD/virB11 was 387 

amplified from pBAD-AB_R-Ub/Ub3,13/mGFP-H-His6-trwD/virB11 plasmid. 388 

Electrocompetent SW102 cells were prepared in the following way. 1.5 ml of 389 

SW102 cells grown overnight at 30°C were diluted in 75 ml LB medium and grown 390 

shaking at 32°C until reaching OD600 of 0.5. The λ recombination genes were 391 

induced by placing the flask into a 42°C shaking water bath for 15 min. The flask was 392 

then cooled in the ice-water slurry and the electrocompetent cells were prepared by 393 

washing the cells twice with 40 ml ice-cold distilled water and resuspending in 200 μl 394 

distilled water. 50 μl cells were electroporated with 60 ng plasmid and 100-150 ng 395 

purified PCR fragment and shaken for 2 hours at 30°C in 1 ml LB. After 2h, 9 ml of 396 

LB medium containing 12.5 μg/ml chloramphenicol (in the case of first 397 

recombineering step) or 10 μg/ml trimethoprim (in the case of second 398 

recombineering step) was added and the culture was grown overnight shaking at 399 

30°C. The following morning, the plasmid was isolated from the culture using 400 
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QIAprep Spin Miniprep Kit (Qiagen), transformed into electrocompetent TOP10 cells, 401 

and recombined plasmid was selected on LB agar plates containing chloramphenicol 402 

(in the case of first recombineering step) or trimethoprim and 6% sucrose and lacking 403 

NaCl (in the case of second recombineering step). Several Cm-resistant and 404 

sucrose-sensitive colonies (in the case of first recombineering step) or Cm-sensitive 405 

and sucrose- and Tmp-resistant colonies (in the case of second recombineering 406 

step) were grown and recombinant plasmids isolated and sequenced.  407 

 408 

Cre recombination test  409 

Prior to the CRAfT experiments described below, Cre recombinase activity for each 410 

Cre fusion construct was tested. CSH26Cm::LTL cells (TcR; Lang et al. 2010) 411 

carrying pBAD-ABC (AmpR) with or without modified TrwC (as indicated in Results) 412 

were grown overnight in LB medium containing tetracycline, ampicillin, and 0.4% 413 

glucose. 125 μl of the overnight culture were pelleted and resuspended in 5 ml LB 414 

medium containing ampicillin. The culture was grown at 37°C until reaching OD600 of 415 

0.6. The cells were then put on ice. Recombinants were selected by plating serial 416 

dilutions on LB agar plates containing chloramphenicol, and total cell counts were 417 

determined as the sum of cells growing on tetracycline plates and cells growing on 418 

chloramphenicol plates. There were no cells growing on tetracycline and 419 

chloramphenicol plates. The recombination frequencies are calculated as 420 

recombinants per total amount of cells.  421 

 422 

Cre recombinase reporter assay for translocation (CRAfT) 423 

The Cre fusion reporter assay was adapted from Lang et al. 2010. An overnight 424 

culture of TOP10 donor cells carrying pRSF-oriT (KmR) and/or pBAD-ABC-T4SS 425 

(AmpR) with or without modified TrwC (as indicated in Results) was diluted 20x in LB 426 

medium containing appropriate antibiotics and grown at 37°C until reaching OD600 of 427 

0.6. The cultures were then induced with 0.08% (vol/vol) arabinose for 1 hour. In 428 
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parallel, an overnight culture of CSH26Cm::LTL recipient cells (TcR) was diluted 40x 429 

in LB medium and grown at 37°C. Donors corresponding to OD of 1 and recipients 430 

corresponding to OD of 0.1 were spun and resuspended in 50 μl LB. The mixture 431 

was pipetted onto a filter paper (MF-Millipore Membrane, mixed cellulose esters, 432 

0.45 μm) lying on top of an LB plate that was beforehand well dried. The filter was 433 

incubated at 37°C for 2.5 hours and then recovered into an Eppendorf tube. The cells 434 

were washed off the filter by adding LB medium and gently vortexing the tube. 435 

Recombinants were selected by plating serial dilutions on LB agar plates containing 436 

chloramphenicol, and when pRSF-oriT was present transconjugants were selected 437 

on LB agar plates containing kanamycin and tetracycline. Recipient cell counts were 438 

determined as the sum of cells growing on tetracycline plates and cells growing on 439 

chloramphenicol plates. No cells grew on tetracycline and chloramphenicol plates. 440 

The conjugation and protein translocation frequencies are calculated as 441 

transconjugants or recombinants per recipient respectively.  442 

 443 

TrwC purification 444 

A culture of E. coli TOP10 cells carrying pBAD-ABCHis (AmpR) was grown at 445 

37°C from a single colony until reaching OD600 of 0.6. Protein expression was 446 

induced with 0.08% (vol/vol) arabinose, and the culture was incubated overnight at 447 

18°C shaking at 200 rpm. Cells were harvested and resuspended in ice-cold 448 

resuspension buffer [50 mM HEPES, 15 mM imidazole, pH 7.8 at 4°C] supplemented 449 

with 0.5 mg/ml lysozyme and protease inhibitors (Complete EDTA-free; Roche). After 450 

resuspension, the lysate was supplemented with 5 mM MgCl2 and 25 U/ml 451 

benzonase (Merck Millipore) and incubated for 15 min on ice. The lysate was then 452 

supplemented with 250 mM NaCl and passed through a high-pressure homogenizer 453 

(Emulsiflex-C5; Avestin). The cell lysate was clarified by centrifugation at 100,000 g 454 

for 30 min at 4 °C and applied to a 5-mL HiTrap Chelating HP column (GE 455 

Healthcare) loaded with cobalt ions and equilibrated with wash buffer [50 mM 456 
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HEPES, 250 mM NaCl, 20 mM imidazole, pH 7.8 at 4°C]. The column was then 457 

washed extensively first with wash buffer followed by high-salt buffer A [50 mM 458 

HEPES, 500 mM NaCl, pH 7.8 at 4°C] and finally re-equilibrated with wash buffer. 459 

The protein was eluted with 10 column volumes of linear imidazole gradient [A: wash 460 

buffer; B: 50 mM HEPES, 200 mM NaCl, 500 mM imidazole, pH 8.0 at 4°C]. The 461 

eluted protein was applied to a 5-mL HiTrap SP HP column (GE Healthcare) 462 

equilibrated with low-salt buffer [50 mM HEPES, 250 mM NaCl, pH 7.8 at 4°C]. The 463 

protein was eluted with 10 column volumes of linear salt gradient [A: low-salt buffer; 464 

B: 50 mM HEPES, 1 M NaCl, pH 7.8 at 4°C]. The eluted protein was further purified 465 

by gel filtration using a Superdex 200 10/300 GL column equilibrated in gel-filtration 466 

buffer [50 mM HEPES, 500 mM NaCl, pH 7.8 at 4°C]. The protein concentration was 467 

determined by measuring the absorbance at 280 nm and using a molar extinction 468 

coefficient calculated from its primary sequence (Expasy; 469 

http://expasy.org/tools/protparam.html). Proteins were supplemented with glycerol to 470 

a final concentration of 20% (vol/vol), flash-frozen, and stored at -80°C. 471 

mGFP-TrwC and GA-TrwC (TrwC with additional two residues, glycine and 472 

alanine, at its N-terminus) were purified as described above for TrwC-His6 with 473 

following modifications. pETZt-mGFP-trwC and pETZt-trwC (KnR) were used to 474 

transform E. coli BL21 Star (DE3) cells. Protein expression was induced with 0.1 mM 475 

isopropylthio-β-galactoside (IPTG). In the case of GA-TrwC, following the ion-476 

exchange step, the N-terminal His6-Z tag was cleaved off during an overnight 477 

incubation at 4°C with His6–tagged TEV protease (1 mg of protease per 30 mg of 478 

substrate). The mixture was simultaneously dialyzed into wash buffer B [50 mM 479 

HEPES, 500 mM NaCl, 20 mM imidazole, pH 7.8 at 4°C]. Cleaved His6-Z tag and the 480 

protease were removed by rebinding to a cobalt-charged HiTrap chelating HP 481 

column equilibrated with wash buffer B. The flow-through (containing cleaved 482 

proteins) was concentrated and further purified by gel filtration as described above.   483 

 484 
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oriT nicking assay 485 

To test DNA nicking by different TrwC constructs, pUC-oriT was mixed with 486 

either TrwC-His6, GA-TrwC, or mGFP-TrwC and incubated for 30 min at 37°C. The 487 

final mixture contained 40 nM pUC-oriT and 40, 80 or 160 nM TrwC, and the final 488 

binding buffer contained 30 mM HEPES pH 7.6 at 25°C, 100 mM NaCl, and 5 mM 489 

MgCl. After incubation, reaction mixtures were supplemented with NuPAGE LDS 490 

Sample Buffer (ThermoFisher Scientific) and EDTA at the final concentration of 1x 491 

and 5 mM, respectively. The samples were heated at 95°C for 5 min and loaded onto 492 

a NuPAGE Novex 4-12% Bis-Tris gel (ThermoFisher Scientific). Following SDS-493 

PAGE, the gel was stained with SYPRORuby Protein Gel Stain (ThermoFisher 494 

Scientific) following manufacturer’s instructions. TrwC constructs were visualized 495 

using a FLA-3000 fluorescent imaging scanner (FujiFilm).   496 

To test its specificity of DNA nicking, TrwC-His6 was mixed with either pUC-497 

oriT or pUC18 plasmid and incubated for 30 min at 37°C. The final mixture contained 498 

50 or 100 nM TrwC-His6 and 20 nM plasmid, and the final binding buffer contained 499 

30 mM HEPES pH 7.6 at 25°C, 100 mM NaCl, 5 mM MgCl2, and 4% glycerol. 500 

After incubation, the samples were further processed as described above.  501 

 502 

R388 conjugation assay 503 

An overnight culture of TOP10 donor cells (SmR) carrying R388 plasmid (TmpR) with 504 

wild-type or modified TrwC (as indicated in Results) was diluted 20x in LB medium 505 

and grown at 37°C until reaching OD of 0.6. In parallel, an overnight culture of 506 

CSH26Cm::LTL recipient cells (TcR) was diluted 30x in LB medium and grown at 507 

37°C. Donors corresponding to OD of 0.3 and recipients corresponding to OD of 0.6 508 

were spun and resuspended in 50 μl LB. This OD ratio corresponded to 3:1 509 

recipients per donor. The mixture was pipetted onto a filter paper as described for the 510 

CRAfT experiments and incubated at 37°C for 1.5 hours. The filter was then placed 511 

into an Eppendorf tube and cells were washed off by addition of LB medium and 512 
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gentle vortexing. Transconjugants were selected on LB agar plates containing 513 

tetracycline and trimethoprim. Donor cell counts were determined with streptomycin 514 

and trimethoprim, and recipient cell counts were determined with tetracycline. The 515 

conjugation frequencies are calculated as transconjugants per donor.  516 

 517 

Data availability 518 

All relevant data are available from the authors upon request. 519 

 520 

Figure legends 521 

 522 

Figure 1. Establishing Cre recombinase reporter assay for translocation of R388 523 

T4SS substrates.  524 

(A) Scheme of TrwC constructs with Cre recombinase fusion at different positions.  525 

(B) Recombination efficiency of Cre recombinase fused to the TrwC N-terminus (Cre-526 

TrwC), TrwC C-terminus (TrwC-Cre) and in between the relaxase and helicase 527 

domains (R-Cre-H) when expressed in recipient cells. Values represent the mean ± 528 

SEM of four experiments. Unpaired t-test showed no significant difference between 529 

recombination efficiencies of Cre-TrwC, R-Cre-H, and TrwC-Cre (P > 0.05). 530 

(C) Conjugation and protein translocation efficiency of cells carrying pRSF-oriT and 531 

pBAD-ABC-T4SS plasmid encoding modified TrwC as indicated. The efficiencies are 532 

expressed as a fraction of recipient cells that acquired pRSF-oriT plasmid 533 

(transconjugants) and TrwC fusion protein (recombinants), respectively. Values 534 

represent the mean ± SEM of three experiments. Statistically significant differences 535 

(unpaired t test) between wild-type and Cre fusion construct conjugation frequencies 536 

are indicated. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 537 

(D) The comparison of TrwC translocation in the presence (red bars) or absence 538 

(grey bars) of pRSF-oriT plasmid. The protein translocation efficiencies are 539 

expressed as a fraction of recipient cells that acquired indicated TrwC fusion protein. 540 
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Values represent the mean ± SEM of four experiments. Statistically significant 541 

differences (unpaired t test) between translocation frequencies in the presence or 542 

absence of oriT are indicated. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 543 

 544 

Figure 2. N-terminal fusions abolish TrwC nicking of oriT.  545 

(A) SYPRORuby-stained SDS gel showing purified TrwC-His6, GA-TrwC (glycine-546 

alanine-TrwC), and mGFP-TrwC free or covalently bound to pUC-oriT. 40, 80, or 160 547 

nM TrwC constructs were incubated at 37°C for 30 min with 40 nM pUC-oriT before 548 

the nicking reaction was stopped by adding SDS sample buffer and EDTA and 549 

heating at 95°C.  550 

(B) TrwC-His6 nicks oriT specifically. 50 nM (lane 1,3) or 100 nM (lane 2,4) TrwC-His6 551 

was incubated with either pUC-oriT or pUC18 plasmid (20 nM) as indicated at 37°C 552 

for 30 min before the reaction was stopped by adding SDS sample buffer and EDTA 553 

and heating at 95°C. 554 

 555 

Figure 3. TrwC unfolding is necessary for its translocation through T4SS.  556 

(A) Scheme of TrwC constructs with N-terminal Cre recombinase followed by an 557 

unfoldable (Ub3,13) or unfolding-resistant (Ub, mGFP) fusion.  558 

(B) Recombination efficiency of Cre recombinase fused to the N-terminus of the 559 

indicated protein followed by TrwC when expressed in recipient cells. Values 560 

represent the mean ± SEM of three experiments. Statistically significant differences 561 

(unpaired t test) between recombination efficiencies of Cre-TrwC and constructs with 562 

an additional fusion are indicated. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 563 

(C) Protein translocation efficiency of cells carrying pBAD-ABC-T4SS plasmid 564 

encoding modified TrwC as indicated. Values represent the mean ± SEM of four 565 

experiments. Statistically significant differences (unpaired t test) between protein 566 
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translocation efficiencies of Cre-TrwC and constructs with an additional fusion are 567 

indicated. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 568 

 569 

Figure 4. Conjugation of TrwC fusions in native R388 plasmid. 570 

(A) Duplicated relaxase domain recovers oriT nicking activity of TrwC with N-terminal 571 

fusion. (Left) Scheme of TrwC constructs with duplicated relaxase domain and 572 

indicated fusion protein (termed R-X-TrwC, where X represents Ub3,13, Ub, or 573 

mGFP). (Right) Conjugation efficiency of cells carrying R388 plasmid encoding 574 

modified TrwC as indicated. Values represent the mean ± SEM of three experiments. 575 

Statistically significant differences (unpaired t test) between wild-type and fusion 576 

construct conjugation frequencies are indicated. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 577 

0.001. 578 

 579 

(B) Conjugation efficiency of TrwC-fusion-helicase constructs. (Left) Scheme of TrwC 580 

constructs with indicated fusion protein and duplicated helicase domain (termed 581 

TrwC-X-H, where X represents Ub3,13, Ub, or mGFP). (Right) Conjugation efficiency 582 

of cells carrying R388 plasmid encoding modified TrwC as indicated. Values 583 

represent the mean ± SEM of three experiments. Statistically significant differences 584 

(unpaired t test) between conjugation frequencies of indicated pairs of constructs are 585 

shown. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001.  586 

 587 

(C) TrwC relaxase and helicase domains retain their functionality after being 588 

separated by an internal fusion. (Left) Scheme of TrwC constructs with indicated 589 

internal fusion (termed R-X-H, where X represents Ub3,13, Ub, or mGFP). (Right) 590 

Conjugation efficiency of cells carrying R388 plasmid encoding modified TrwC as 591 

indicated. Values represent the mean ± SEM of three experiments. Statistically 592 

significant differences (unpaired t test) between wild-type and fusion construct 593 

conjugation frequencies are indicated. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. 594 
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Figure 4
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