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Abstract—In this paper we describe an architecture and
implementation of the ACTOR model of concurrent computation
which exploits the multi-core processors of modern day computer
architectures. A novel aspect of our approach, and where it
differs from many other implementations, is that it is hosted in an
existing programming language as native constructs; we employ
Swift which is rapidly rising in popularity but in its standard
distribution lacks the facilities for true concurrent programming.
We describe an extension to the language which enables access
to concurrent features and provides an API for supporting
such interactions. We consider the various architectural issues,
competing approaches, and discuss early findings from our
prototype implementation.

I. INTRODUCTION

As we have come nearer to the limitations of current
processor technology there has been a growing movement
towards the use of processors with several cores. The aim
of these processor architectures is to improve the through-
put, efficiency, and processing power of the computer but
these benefits do not come without their own problems and
challenges. One major hurdle with this approach is building
software that can leverage these facilities while still being
a tractable programming model. This can lead to quite low-
level constructs which utilise shared resources, to enable the
promised processing power with multi-core computing.

In the Section II, we will outline the differences between
concurrency and parallelism; there is often confusion between
these terms so we need to clarify these. In Section III we
outline the rationale for our work and describe the back-
ground work and related systems that underpin this work. This
includes descriptions of alternative concurrency models and
other aspects relevant to our work. In Section IV of this paper
we describe our architecture for our Actor implementation that
addresses some of the problems with concurrency, namely
non-determinism, deadlocking, and divergence, which leads
to a more general problem of shared data in a concurrent
environment. We also briefly describe our implementation and
our message passing strategy. We conclude the paper with a
discussion of future work.
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II. CONCURRENCY AND PARALLELISM

To provide a context to the sections that follow, a distinc-
tion needs to be made between concurrency and parallelism.
Concurrent programs are best described as an interleaving
of sequential programmes[l]. A concurrent program has
multiple logical threads of control. These threads may or may
not run in parallel [2]. Tony Hoare expresses this concept of
concurrency as follows:

a(P || Q) =aPUaQ (1)

Assuming that P is a process that involves writing logs to
a given file from a given input. Q is a process that also
involves reading that given file and displaying its contents to
a given output. a(P || Q) is therefore all the behaviours that
are involved with writing logs to a file, reading logs from a
file, and displaying those logs to some output. If our given
environment allows for it, any these behaviours can occur
at any time, in any sequence. The above equation describes
a coming together of these processes where any of these
behaviours can be called upon with no contingency.

”A process is defined by describing the whole range of its
potential behaviour.”“ [3]. In other words, to define a process
completely one has to enumerate all the potential behaviours
or properties of that process. These can be referred to as in
CSP alphabets. In CSP alphabets are usually denoted by «
can be described as all the set of names, behaviours, and/or
actions that are considered relevant for a particular description
of an object or in this case a process.

Given the events in the alphabets of processes aP and aQ
respectively, which requires simultaneous execution, P can
participate in any or all of its alphabets without affecting
or concerning Q and vice-versa, and as such all events are
logically possible for this system — a union of all alphabets
[3].

It is also important to stress that there is an order element to
the definition of concurrency. In that tasks can be performed
in any order, and this allows for parallelism as the tasks can
then be shared between several processes if the order that they
are performed does not matter.
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Parallelism may be seen as an latent benefit of concurrently
written programs. A parallel program is one whose tasks can
be distributed across more that one process. This does not
imply that the program is working on different tasks at once.
It simply implies that the program is written in such a way
so that different parts of it, or its computations can be run
or can be performed on different processors simultaneously.
Using the illustration above, writing the logs to the file could
be executed on one processor, while reading the file could be
done on another. In all cases, this is possible because processes
P and Q can run independently of each other.

IIT. RATIONALE, BACKGROUND, AND RELATED WORK

When more than one process requires access to a shared re-
source one has to make certain decisions about the granularity
of access, where the coarser the access the less concurrency
that is available (in general). The accepted wisdom in this
area is to either incorporate features into the programming
language, e.g., threads in Java, or leverage a roolkit or library.
These low level constructs can lead to extremely complex in-
teractions between the various processes leading to contention,
with the possibility of deadlock, race-conditions, etc. Some
programming languages have focussed on these problems, e.g.,
Erlang, but they haven’t transitioned to the mainstream. Other
programming languages have also taken these issues on, e.g.,
Pony [4], Go [5], Scala [6] , and Clojure [7], with varying
levels of success.

We adopted the ACTOR model of concurrency [8] to address
these problems. We considered making this available as a
library or toolkit but decided the Java approach, of building
constructs into the base language, to be a better approach. We
didn’t want to fall into the trap of making the constructs too
low level, or to make them, and the model, difficult for the
programmer to comprehend and use. We decided to enhance
the Swift programming language as:

it is open-source,

o it is efficient,

e it isn’t yet another programming language which hardly

anyone will use,

e it is compiled,

o it is available on several platforms (outside of the Apple

world),

e itis an object-oriented language with functional program-

ming paradigm features, and

e it is growing rapidly in popularity.

By adopting a mainstream language with less baggage than
existing languages we get the best of multiple worlds; a
potentially large user community, and a reliable and efficient
programming language. The success of ACTOR frameworks
such as Akka for Scala and Java suggested a way forward for
Swift that would add to the functionality of the language while
addressing concurrent processing issues.

A. Related Work

As stated previously our work builds upon the ACTOR
model but we also owe some concepts and motivation to a

number of other technologies and programming languages. For
the remainder of this section we describe these features.

B. The Akka Library

Earlier versions of Scala had natively implemented actors
as part of the Scala library and could be defined without
any additional libraries. Newer versions (2.9 and above) have
removed the built in Acfor and now there is the Akka Library.

Akka is developed and maintained by TYPESAFE [9] and
when included in an application, concurrency can be achieved.
Actors are defined as classes that include or extend the Actor
trait. This feature enforces the definition of at least a receive
function. Receive is defined as a partial function, taking
another function and returning a Unit (void value).

The function it expects is the behaviour that the developer
needs to program into the actor. This is a essentially defined
as a pattern matching sequence of actions to be taken when a
message is received that matches a given pattern.

import akka.actor.Actor
class MyActor extends Actor ({
def receive = {
case Messagel =>
//some action
case Message2 (x:Int)
// another action use

=>
// x as 1n 1int

case MessageN =>
//Other actions

At the heart of the Akka Actor implementation is the Java
concurrency library java.util.concurrent [10]. This
library provides the (multi)threading that Akka Actors use for
concurrency. Users of the library do not need to worry about
scheduling, forking and/or joining. This is dealt with by the
library’s interaction with the executor service and context.

The Akka Library offers options to select which executor
service to use. It currently defaults to the ForkJoinPool, which
is usually sufficient for most tasks. This is referred to as the
Dispatcher [9][11] and is equipped with the functionality to
determine the execution strategy for a given program, such as
which thread to use, how many to make available in a pool
for actors to run on, etc.

All these options are exposed in a malleable configuration
factory. Developers are able to fine tune the actor system’s
behaviour which relative ease.

C. Kotlin coroutines

Kotlin, a language developed by JetBrains, has a feature
which implements the known technique of coroutines; these
can best be described as operations that can be suspended and
resumed at a later time, potentially using a different thread of
execution.



D. Concurrent ML

Concurrent ML is described as a functional concurrent
language [12] designed for high performance. Standard ML,
a statically typed programming language with an extensible
type system, which supports both imperative and functional
programming paradigms, was extended to incorporate concur-
rent formalisms, most notably, synchronous message passing,
and is similar to CSP with the messages being passed over
typed channels [13].

It extends Standard ML with

val spawn :(unit — unit) — thread id
type / a chan

val channel : thread id — / a chan

val recv : / a chan — / a

val send : (/ a chan * / a) — thread id

A CML program runs by spawning processes called threads
that pass messages over typed channels. So that only a certain
data type can be passed over that channel to another process
with a channel that accepts that same data type. This extension
provides primitives for implementing concurrency directly in
ML. They are referred to as threads here to make a clear
distinction between operating system processes and those
spawned in CML; threads in CML are lightweight.

As per the listing above, a CML program begins by spawn-
ing a single thread which is often the control thread — the
parent thread, which can in turn spawn other threads. The
spawn function takes another function as an argument and
creates a thread for it by using call by value. Execution is
delayed until that value is required, with the thread created at
the time its needed. This new thread referred to as the child,
will be terminated once the execution of that function for
which it was spawned is completed. CML keeps the parent
and child threads discrete and as such a terminating parent
thread does not cascade to its children. A thread may also be
terminated by calling an exit function.

val exit : unit — la )

This can be equated to an exception thrown in other program-
ming languages where its result type is ‘a as it never returns.
Also a thread may terminate if the executing process, raises
an exception with no handler defined for it. By default this
exception will not reach its parent although there are means
of reporting this upstream.

The CML runtime also multiplexes the processors for the
threads produced by a CML program. Given that the number of
potential threads spawned is unbound[1], this step is necessary
in managing the processor resources. Threads can be used
liberally in CML because they are represented by SML values
making them very lightweight in terms of space overhead, and
can also be garbage collected. Concurrent ML provides mech-
anisms for communication between these multiple threads.
Message passing can be either synchronous or asynchronous
over typed channels.

type la chan 3)

Is a type constructor used to generate typed channels. Two
operations are natively provided for communicating on this
type to a generated channel.

val recv : la chan — la

“4)

val send : (ta * la) — unit

Channels can be viewed as meeting or rendezvous points
where processes simply communicate. Channels do not specify
direction of target a particular process, they are just points
where messages are sent and received.

selective communication — a key mechanism in message-
passing concurrent languages [1] allows threads to block on
non-deterministic choice of several blocking communications.
Using the select keyword, we are able to choose between
two or more events that are simultaneously enabled non-
deterministically. “Select is syntactic sugar for the composition
of the sync operator and the choose event combinator[1]”
The sync operator forces a synchronisation on an event value
and the “choose combinator provides a generalised selective
communication mechanism”[12]. It takes a list of events and
returns an event that represents the non-deterministic choice
of events[1].

E. Occam 2

Occam is an imperative procedural language, implemented
as the native programming language for the Occam model.
This model also formed the bases for the hardware chip - the
INMOS transputer microprocessor [14]. It is one of several
parallel programming language developed based on Hoare’s
CSP[3]. Although the language is a high level one, it can
be viewed as an assembly language for the transputer [14].
The transputer was built with four serial bi-directional links
to other transputers providing message passing capabilities
among the transputers. Concurrency in Occam is achieved by
message passing along point-to-point channels, that is, the
source and destination of a channel must be on the same
concurrent process.

VARIABLE := EXPRESSION
CHANNEL VARIABLE
CHANNEL m VARIABLE

This notation takes its exact meaning from Hoare’s CSP [3].
The “?” is requesting an input from the channel to be stored
in the VARIABLE whereas “!” is sending a message over the
channel and the message is the value stored in VARIABLE.
Occam is A strongly typed language and as such the channels
over which messages are passed need to be type safe. The
type can be ANY meaning that the channel can allow any type
of data to be transmitted over it. An inherent limitation in
Occam’s data structures are that the only complex data type
available is the ARRAY.

The language enables several processes be executed in
parallel using the PAR construct.

PAR
INT x:

chanl X



INT y:

chan2 %
Any number of processes can be put into the PAR construct
and it only terminates when all the component processes have
terminated, either successfully or not.

Also worth mentioning is the ALT construct which imple-
ments Dijkstra’s guards on processes. When an ALT guard is
used, execution will wait until at least one of the branches are
satisfied. Satisfaction could include boolean results, channels
being ready, or timers.

There are other constructs available to Occam programmers
but the above are the simple ones that are specific to concur-
rency in Occam and in the spirit of Occam’s razor, form a
large part of the programming language’s philosophy.

F. Erlang

The Erlang Virtual Machine provides concurrency for the
language, in a portable manner and as such it does not
rely to any extent on threading provided by the operating
system nor any external libraries. The self contained nature of
the virtual machine ensures that any concurrent programmes
written in Erlang run consistently across all operating systems
and environments.

The simplest unit in the language is a lightweight virtual
machine called a process [15]. Processes communicate with
each other through message passing. A simple process written
to communicate between processes could be:

start ()
loop ()
receive
pattern —-> expression;
pattern —-> expression;
pattern...n —-> expression;
end
loop () .

-> spawn (module_name,
->

[Parameters])

start () spawns the process for the current module with any
parameters that are required. A loop is then defined which
contains directives to execute when it receives messages of
the enumerated patterns that follow — loop () is then called
so that the process can, once again, wait to receive another
message for processing.

The above will code fragment will exhibit the behaviour
pattern below:

S+E— A S (5)

Therefore, given a state S with an occurrence of an event
E, some action(s) A should be performed that transitions our
process to a new state S/. In this case expression is the
representation of the transition of the program from one state
to the other.

a) Erlang/OTP: Erlang in itself provides several con-
structs for writing concurrent programmes in ways that allows
for runtime optimisation and fault tolerance. Capabilities such
as hot code swapping, links, monitors, supervisors, timeouts
and so on are all built in capabilities available to an Erlang
programmer. These have to be coordinated manually to achieve

the expected result. The OTP framework provides a library
for grouping these error-prone manual processes into well
tested and coordinated best practises and standards. OTP
does most of the heavy lifting for the developer interested
in concurrency and also providing minimalistic boilerplate
code for required behaviours of generic applications. The OTP
library is distributed with all modern versions of the language
environment and as such can be considered as part of the
Erlang standard distribution. Behaviours, or inferfaces, are
defined, but it is up to the developer to provide the business
logic within the applications that use any generic behaviours.
The OTP library also provides best practices for structuring
Erlang code.

G. Pony

Pony is an object-oriented, actor-model, capabilities-secure
programming language [4]. In object oriented fashion, an actor
designated with the keyword actor is similar to a class except
that it has what it defines as behaviours. Behaviours are
defined as asynchronous methods defined in a class. Using
the be keyword, a behaviour is defined to be executed at an
indeterminate time in the future[4].

actor AnActor
be (x: U64)

X * X

=>

Pony runs its own scheduler using all the cores present on
the host computer for threads, and several behaviours can

-be executed at the same time on any of the threads/cores

at any given time, giving it concurrent capabilities. It can
also be viewed within a sequential context also as the actors
themselves are sequential. Each actor executes one behaviour
at a given time.

IV. ARCHITECTURE

Our architecture is based upon the fundamental constructs
of the Actor model; its axioms. All actor based models need
to exhibit the following properties:

1) Encapsulation,

2) Internal State,

3) Messaging,

4) Indeterminacy, and

5) Mobility.
Encapsulation is well understood and therefore we won’t
elaborate upon it further. Internal State follows on from encap-
sulation but really enforces the access firewall around the item;
only the actor itself can access its internal state. Messaging
encompasses asynchronous and synchronous message passing
mechanisms. This also ties up with the final point, Mobility,
as the actor should exhibit location transparency, an essential
characteristic of a fully modular and versatile computational
environment. The remaining point, Indeterminacy, means that
there is no order to the messages received, or at least that this
is not guaranteed. Messages may arrive in any order and it is
the responsibility of the actor to process those messages in a
consistent manner.



The following figure illustrates actors interacting with each
other — each of which autonomously runs in it’s own process
signified by the circular arrow. Each actor has there own
attached mailbox, to which each of the actors can send
messages.
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Therefore each individual actor has:

o An internal state, which is only mutable by itself.

o A mailbox into which it receives messages.

« An internally accessible method for interacting with those

messages.
« An implementation of a protocol that allows it to com-
municate with other actors.

There are several components to our architectural model which
we will now (briefly) describe together with their implemen-
tation.

A restriction is that an actor can only be created within
a context to ensure that the actor has all the necessary
properties to communicate with other actors (within the current
context). As this work is embedded in the Swift programming
language, the Grand Central Dispatch library [16] is utilised
for the MacOS implementation. We also have an alternative
implementation for the open source version of the language
which runs on other platforms; this implementation is not as
advanced in its development. Therefore we concentrate on the
MacOS implementation for the description included in this
paper.
A. The Actor Context

This is the logical domain for the creating and running of
actors. The context defines a namespace for actors, allowing
actors within that same context to communicate with each
other. The context is also responsible for creating the actors
as they cannot be and should not be instantiated in isolation.

An extract from the interface is shown below.
protocol ActorContextProtocol ({

var contextName: String {get set}

var childActors:
{get set}
var orphanedMailboxes:
{get set}
mailboxes () —-> [MailBox]
children() —-> [String: MailBox]
addChild (actor: ActorProtocol,
actorMailbox: MailBox)
removeChild(actor: ActorProtocol)

[String: MailBox]
[MailBox]

func
func
func

func
}
As can be deduced from the protocol defined above the context
is responsible for keeping track of all actors created within it,
and it also keeps track of the mailboxes assigned to actors.
Once actors have been removed from that context the orphaned
mailboxes can be reassigned to actors that are created to
replace them.

B. The Actor

This is the main unit of computation. The actor defines
the means to process messages it receives and any other
business logic associated with the work that it does. The actor
is attached to but does not own a mailbox from which it
receives its messages. It is to be noted that it is within the
actor that the a different thread is spawned for the work to
take place. It also worthy of note that the process of spawning
new threads should be independent of the actor and as such
interchangeable. The actor implementation within swift will be
done in a fype safe manner so that message types are defined.
This has the added advantage of predictable message handling
on the side of the Actor.
protocol ActorProtocol ({

var shuttingDown: Bool {get set}

var actorContext: ActorContext {get set}

var identifier: String {get set}

init (name: String, context: ActorContext)

func tell (msg: NSObject,

sender: ActorProtocol?)

func processor (msg: (message: NSObject,

sender: ActorProtocol?)) -> Void
}
The actor has methods for “telling”, or sending messages to
other actors. The processor method takes a message and
returns nothing. This is the component of the actor that does
the work. The processor is invoked on a separate thread using
the Dispatch Framework [16]. The actor will continuously poll
the mailbox attached to it to ascertain whether it has messages
or not. If it does it invokes the defined processor on a separate
thread with the message it has just received from its mailbox.

C. Mailbox

The Mailbox may also be referred to as a message queue
attached to at least a single actor. This is where messages are
sent to. So that the actors never directly receive messages. The
Actor Context is responsible for routing messages to the given
actors mailbox and the actor then picks up the message from
its attached mailbox. This is to ensure that should an actor stop



working for any reason such as entering into an exceptional
state and receiving a termination message from its supervisor,
messages that are sent to that actor while it is shutting down
are not lost and as such buffered in the mailbox, waiting for
the next actor to take control.

This component is implemented as a simple typed queue.
A collection that accepts and provides an API for storing and
retrieving homogeneous messages.

struct MailBox: Hashable {
var items = [ (msg: NSObject,
sender: ActorProtocol?)] ()
mutating func push(_ item: NSObject,

sender: ActorProtocol?)
mutating func pop() -> (NSObject,
ActorProtocol?)
func isEmpty () -> Bool
var hashValue: Int
static func ==(lhs: MailBox,
rhs: MailBox) —> Bool

V. CONCLUSIONS AND FUTURE WORK

In this paper we have briefly outlined the rationale for an
Actor based model of computation to enable better utilisation
of current processor architectures (namely, multi-core). We
then briefly described the architecture and implementation
of our prototype system which has been embedded into the
popular Swift programming language. Our prototype has the
functionality to enable a programmer to write actor based
programs, without the complexity of low-level concurrent
features, and is per-formant with hand-crafted concurrent code.

We plan to continue developing the functionality of the
model and we are working on the model and implementation to
improve its performance in terms of memory utilisation and
ease-of-use. We are extending the architecture to allow the
interoperability of discrete actor systems, enabling our actor
model to function efficiently in cloud-based environments. All
of this will enhance the flexibility and performance of our
actors.

At present the model is difficult to extend across machines
because we do not have a common message bus so we also
plan to add an event bus which will add further scheduling
facilities, logging mechanisms, and further monitoring capa-
bilities, which will be able to monitor the various actor systems
and their interactions. We will extend the model with further
testing, examples, and various benchmarking measures.

The current implementation is limited to OSX but as Swift
is available in open-source, and cross-platform, we are actively
porting our model to additional platforms. To further show the
extensibility and flexibility of our model we are also consider-
ing hosting its functionality in another programming language,
e.g., Kotlin, which is JVM based and native, providing us
with experience of our implementation outside of LLVM based
systems[17].
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