
An Aspect-Oriented Framework for F#
Nitesh Chacowry

Department of Computer Science and
Information Systems

Birkbeck, University of London
London, WC1E 7HX, UK

Keith Leonard Mannock
Department of Computer Science and

Information Systems
Birkbeck, University of London

London, WC1E 7HX, UK
Email: keith@dcs.bbk.ac.uk

(Contact Author)

Full/Regular Research Paper — (CSCI-ISSE)
Keywords—Aspect Oriented Software Engineering, Software

Architectures, Agile Software Engineering and Development,
Software Testing, Evaluation and Analysis Technologies, Com-
ponent Based Software Engineering

Abstract—This paper presents the research, design and devel-
opment of an aspect-oriented framework for F#, a functional
programming language developed by Microsoft on the .NET
platform[3]. Our framework allows one to insert advice before,
after, or around the call to a particular function. We provide two
distinct approaches to weaving the advice to the source code:
using a monad-based weaver, and using a weaver built on meta-
programming technologies.

I. INTRODUCTION

This paper presents the research, design and development
of an aspect-oriented [1][2] framework for Microsoft’s im-
plementation of a functional language: F#[3]. Aspect-oriented
programming (AOP) is a programming paradigm where func-
tionalities which apply across different modules are cleanly
encapsulated into separate components. F# allows the de-
velopment of programs which are free of side effects, and
AOP opposes this notion as it precisely applies side effects
to existing programs. There are, however, many use cases for
AOP, such as instrumentation, transaction management and
caching. By carefully crafting a framework which guarantees
that the original computations are unaltered, we obtain a clean
separation of concerns, and it remains possible to develop
side effect free programs, which can then be extended by
transparently weaving in advices.

AOP is usually implemented via a dedicated framework.
Such frameworks exist for object-oriented languages. Exam-
ples include AspectJ [4] for Java and Policy Injection Appli-
cation Block [5][6], or Spring.Net [7] for .NET languages.

In Section II we we present a brief overview of aspect-
oriented programming (AOP). In Section III, we detail the
requirements for the AOP framework we implemented. Sec-
tion IV details the design choice and presents a technical
presentation of our framework. In Section V, we present
metrics that contrasts the performance of a regular program
with the one in which we have weaved some additional
functionality. Finally, Section VI presents some concluding
remarks and suggests future work.

Fig. 1: Horizontal and vertical (cross-cutting) layers in an application

II. BACKGROUND

The concept of separation of concerns (SoC) is an important
concept in program design[11]. A common design pattern to
achieve separation of concerns in large programs is to encap-
sulate the concerns into their own distinct layers, where each
layer performs a specific functionality [5][12]. For example,
an application might be split in three layers: a first layer
which handles persistence to a database, a second layer to
handle business objects, and a third layer to display data to
the user and handle user input. In Figure 1 this functionality
is represented by horizontal layers.

However, there maybe additional requirements for including
concerns which affect all layers of an application. Such
concerns include security, error handling, performance mon-
itoring, thread synchronisation, and transactions[12]. These
features are formally referred to as cross-cutting concerns
[5][13]. In Figure 1 we have modelled the security concern
as a vertical layer which affects all other layers. Cross-cutting
concerns have the undesirable property that they cause clutter
and noise on program code.

AOP is a programming paradigm which allows the encapsu-
lation of these cross-cutting concerns and provides constructs
to weave transparently these cross-cutting concerns into work-
ing code. A language-neutral definition of AOP is[14]:

AOP is . . . the desire to make programming state-
ments of the form:

“In program P, whenever condition C arises,
perform action A”

AOP consists of the following different components:
Join points

A multitude of events can arise during a programs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Birkbeck Institutional Research Online

https://core.ac.uk/display/151163217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

execution, such as method calls and exceptions. Join
points are the set of events which can arise during
the execution of a program[10][13].

Pointcuts
Pointcuts are used to define the subset of join
points on which a specific action should be
taken[10][15][16].

Advices
Advices define the actions that should be taken when
a particular join point has been reached during the
execution of a program. Referring to the earlier
definition, the advice is the action A to be performed.

Aspects
Aspects encapsulate crosscutting concerns [10][15].
Within any AOP framework, aspects store the point-
cut and the advice information.

In addition, an advice can be set to execute:
• Before the target function runs. We refer to these as before

advices.
• After the target function runs. We refer to these as after

advices.
• Before the target function runs, and also after the function

runs. We refer to these as around advices.
Referring back to the earlier definition, a program P should
have no knowledge of the action A. Clearly, there must be a
mechanism to combine the source code of program P with
the code defined in advice A. This mechanism is known as
weaving [1][2][5][10][12] and is illustrated in Figure 2. In the
figure there are two aspects, Aspect A and Aspect B, which
are weaved to a source program:

Weaving, the merging of source code with aspects, can be
done statically, or dynamically:
• Static weaving occurs at compile time. In this case

the weaver modifies the source code by identifying the
selected join points and injecting the advices.

• Conversely, dynamic weaving is a strategy where the
weaver inspects running code (or code that is about to
be loaded at runtime) and applies advices as specified in
the pointcut [10][17].

III. REQUIREMENTS

The basic requirements we set ourselves for our implemen-
tation were:
• The framework was to be developed in F# and advise

other programs written in F#.
• Join point: Our join point model would be the execution

of functions.
• Pointcut: The framework would provide the ability to

select join points by allowing the user to specify the
target function. Our framework would allow named and
anonymous pointcuts.

• Advices: the framework would allow the user to specify
the additional modules to inject into a target. This re-
quires the implementation of the ability to insert advices:
Before, After, and Around.

Fig. 2: Weaving aspects to source code

• Our framework has to implement a weaver to inject the
advices into the target program. An important design
consideration was that the weaver satisfied the concept
of obliviousness; being (effectively) invisible to the target
language.

• Our framework shall allow aspects to be defined such that
pointcuts and advices can be grouped.

Figure 3 illustrates the different components of the framework
and how they process some user source code (leftmost box
“User source code (F#)”).

IV. FRAMEWORK DESIGN AND IMPLEMENTATION

The framework was developed using F# [3][8], and utilised
a test driven approach[21] using xUnit[22].

A relatively large amount of design and development effort
was focused on developing an efficient weaver as it was a
central component of the application. Two weaving strategies
were investigated and developed:

1) A monad-based weaver, where we shall see that the
advice is encapsulated in what is termed a monadic
type[18]. Monads provide constructs to weave these
advices into a program.

2) A weaver based on meta-programming technologies,
where advices are implemented as regular F# functions.
Special language functionalities are provided to weave
the advice function into the source program.

Fig. 3: Framework components

A. Monad-based weavers

The use of monads as a weaving strategy was suggested
in [23]. An introduction to monads is given in [24], and [25]
provides more information on these programming constructs.
Within this section we provide a short introduction to monads,
monads in F# and recap the suitability of it as a weaving
strategy.

Monads originate from the branch of mathematics known
as group theory [26]. In functional languages, a program is
usually written such that for a known set of input(s), the
program gives one output. This is a fundamental description
of functional languages and allows one to reason about a pro-
gram. However, there are often valid use cases which require a
program to apply a side effect, for example printing to screen.
Monads are often used in functional programming languages
to encapsulate these side effects [27], without affecting the
original computation or logic of the program.

The core of the monad is the monadic type[18]. The
purpose of the monadic type is to augment or enhance the
current program, e.g., by applying some relevant side effect. A
common notation for the monadic type is M <′ a > [18][26]
where ′a is a generic type representing the original type of
the computation, and the monadic type M <′ a > represents
the functionalities/behaviours added by the monad.

Monads further require the use of two operators, known
within the literature as the return and bind operators [18][23]:

• return is a first order function which lifts the original type
′a to the monadic type M <′ a >, and therefore has the
signature (′a→M <′ a >). This function is also known
as unit[23].

• bind is a higher-order function which allows the compo-
sition of monadic types together. We define the function
signature of bind as:

M <′ a >→ (′a→M <′ b >)→M <′ b >)

Combined together, these operators allow functions to be
chained together into a computation. To illustrate, consider
the forward pipe operator |> (with signature ′a → (′a →′
b)→′ b)[28]. We can construct the following computation, if
f(x) has a signature (int -> int) then

5 |> f

In this example, we are passing in the integer value 5 into
the function f(x). We expect the result to be of type int,
given that f(x) accepts an integer and returns another integer.
We assume now that there exists a requirement to augment
the value 5 (of type integer) to another type M < int >.
Clearly, we cannot reuse the forward pipe operator, as the
function f(x) accepts an integer, not a value of the type M <
int >. However, the solution is to create another function
which has the same signature as the bind function, and making
the changes to the function f(x):
• Let f(x) have the signature (int -> M<int>)
• Let bind be represented with the notation >>=

Then we can reconstruct the original computation chain as
follows:

return(5) >>= f

From [23][27] and the discussion above, monads can be seen
as suitable as a weaving strategy as we can use the monadic
type M <′ a > to encapsulate our advices and use the bind
operator to recreate the original computation of the unadvised
program. We should also note at this point that within F#, a
construct known as computation expression (CE)1, provides
syntactic support for monads.

Our implementation uses three single case discriminated
unions[29] to represent before, after, and around advices.
These discriminated unions are concrete implementations of
the monadic type ‘M < a >. An F# discriminated union can
be compared to the object-oriented construct of an abstract
base class with a single level of inheritance[18]. A single case
discriminated union is therefore analogous to an abstract base
class with only one child. The following listing shows the
definition of advice types.

type BeforeAspect<’T> =
| Before of ’T

type AfterAspect<’T> =
| After of ’T

type AroundAspect<’TBefore, ’TAfter> =
| Around of ’TBefore * ’TAfter

Single case discriminated unions are used as they have
some advantages when performing pattern matching and re-
sult decomposition[18]. The discriminated unions are of a
generic type ′T , which we can use to encapsulate a lambda

1Computation expressions are also known as workflows[9]. In this paper,
we use the term computation expression when describing an implementation
in F# and the term monad to describe the general concept.

function representing the function to execute. Note that the
AroundAspect is different in that it requires two types:
′TBefore and ′TAfter. In the example below, the advice is
a lambda function which takes any input and returns unit[20]
(unit is equivalent to void in C# or C++).

let beforeaspect =
Before(fun _ ->

printfn "running advice.")

The BeforeBuilder is represented as:

type BeforeBuilder() =

member this.Bind(Before(aspectfunc), func) =
aspectfunc() // execute the advice
func()

member this.Return(value) = Before(value)

The parameters of the Bind function are:
• A monadic type which is constrained to the Before case.
• A function with the signature
(unit -> BeforeAspect<’b>).

We demonstrate the use of the before computation ex-
pression builder by showing how a message is printed to
screen before a target function targetFunction() exe-
cutes. The function targetFunction() has the signature
(unit -> bool):

[caption=Sample target function]
let targetFunction() =

printfn "executing target function."
true

In this case targetFunction() does not do anything
very interesting, except for printing a message to screen and
constantly returning true.

A computation expression which uses the computation
expression builder is shown below:

let before = BeforeBuilder()

let beforeTestRunner(targetfunc) =
before {

let! res = beforeaspect
return targetfunc()

}

// below is the code to run the CE
beforeTestRunner(targetFunction) |> ignore

The computation expression bound to the
beforeTestRunner identifier (line 3) and accepts a
function of signature (unit -> ’a), which matches our
concrete implementation targetFunction() — which
has the more constrained type (unit -> bool).

After running the computation expression, the following
output is printed to screen:

running advice.

executing target function.

A similar approach is used for the AfterBuilder compu-
tation expression builder.

The around aspect must accommodate the before and after
advices being different. The around aspect discriminated union
is shown below:

type AroundAspect<’TBefore, ’TAfter> =
| Around of ’TBefore * ’TAfter

The single case discriminated union requires a tuple[9], where
’TBefore is a lambda function representing the before
advice, and the ’TAfter is a lambda function representing
the after advice. The computation expression builder is shown
in the Listing below:

type AroundBuilder() =

member x.Bind(
Around(beforeFunc, afterFunc), func) =
beforeFunc() // call the before aspect

// call the target function
// and store the result
let res = func()

afterFunc() // call the after aspect
res // return the result

member x.Return(value) = Around(value)

The Bind method performs sequential calls [30] to the before
advice (line 5), the target function (line 8) and finally the after
advice (line 10). The result of calling the target function is
stored in a temporary variable res which is returned at the
end of the computation. A sample usage is shown below:

// Create the advice to execute and
// the aspect

let beforeF = fun _ ->
printfn "running before advice."

let afterF = fun _ ->
printfn "running after advice."

let aroundeaspect = Around(beforeF, afterF)

let aroundTestRunner(targetfunc) =
around {

let! res = aroundeaspect
return (targetfunc(), None)

}

// Running the computation expression.
aroundTestRunner(targetFunction) |> ignore

In the Listing shown above, we begin by specifying two

lambda functions which represent the before and after func-
tions. We then create the around aspect which is bound to
an identifier called aroundaspect. When the computation
expression is run, the following expected results are printed to
screen:

running before advice.
executing target function.
running after advice.

From the implementation provided, we note the following
advantages when using a monad-based weaver:

• Monads provide clean access to function boundaries.
• Weaving is trivial – the Bind method does most of

the required weaving without changes to the original
computation order.

• Monads allow the encapsulation of any advices — the
monadic type M <′ a > can encapsulate a wide range
of advices.

• Monads are well documented.

We note the following disadvantages when using a monad-
based weaving:

• Constructing a pointcut selection language is complex
and not intuitive.

• A monad-based approach lacks granularity. To illustrate,
consider the following computation which achieves the
business requirements of committing some data into a
database:

let save() = preptxn()
let transactionResult = executetxn()
transactionResult

Using the monadic constructs shown previously, it is
trivial to attach before, after or around advices to the
top level function save(). However, we cannot trivially
attach an advice to the inner functions called by save().
As such, we cannot address a requirement to inject an
advice to, say the executetxn() function without
substantially re-engineering the save() function.

We will now (briefly) consider our alternative implementa-
tion approach.

B. A Meta-programming based weaver

Meta-programming is a term which refers to a computer
program which transforms a source program into another
program. This is achieved by treating the source program
as input data. Compilers are classical examples of programs
that carry out such transformations[19][31]. Conceptually, a
weaver performs the same transformation – namely the weaver
takes a source, un-advised program, and manipulates it to
inject the relevant advices; this behaviour is similar to imple-
mentation approaches for Java. In this paper we concentrate
on the Monad approach as this proved to be more robust. The
meta-programming approach will be described fully in a later
publication.

V. USAGE AND INSTRUMENTATION

Amongst many examples used to analyse and test the
framework, we implemented a version of Machin’s forumula
for estimating π[37]:

1

4
π = 4arctan

1

5
− arctan

1

239

We implemented this function in F# and produced two advised
versions of the code to judge the performance of our AOP
framework: 1) a version using Monads, and 2) a version with
the advised code added to the code base manually. For each
version we added before, after, and around advices. We then
instrumented the code to compare the relative performances
and ran the code for k iterations. The results are shown
graphically in Figure 4. From the figure we can see that for

Fig. 4: Manually advised program vs. weaved program

a small number of iterations, it appears that there is almost
constant difference between running the manually advised
program and the weaved program. This difference also remains
constant for larger values of k.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how we implemented the
components of an AOP framework with the following charac-
teristics:

1) Join points are restricted to function calls.
2) Pointcuts are objects which allow the user to specify

which function to advise.
3) Advices are functions to execute either before, after or

around the target function.
4) Aspects are an encapsulation of advices and pointcuts.

A key component of our architecture is the weaver. We consid-
ered two different designs for our weaver: one using monads
and other using meta-programming technologies, namely code
quotations. The monad-based weaver is constructed using
computation expressions which are unique to F# and provides
syntactic support for monad constructs. After experimenting
with monads, we decided that this weaver had the better
performance and functionality.

We demonstrated the use of our framework to advise a CPU
bound program. Some measurements were taken to contrast
the time taken to execute a manually advised program with
an advised program. This has shown the viability of our
approach and the (minor) performance penalty is more than
compensated by the clean code.

Our future work will include the extension of our pointcut
types. We have only provided kinded pointcuts which allows
one to specify the function name and signature to be advised.
AspectJ also provides non-kinded pointcuts[10] which inject
advices based on the current program flow, lexical context, or
execution. The code weaver can be extended to accommodate
non-kinded pointcuts as we can reason about the program (e.g.,
its flow). This may be especially relevant for the abstract syn-
tax tree weaver, as we can readily traverse the tree representing
the source program.

REFERENCES

[1] G. Kiczales, J. Lamping, and A. Mendhekar, “Aspect-oriented program-
ming”, Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), 1997.

[2] G. Kiczales, “Aspect-oriented programming”, ACM Computing Surveys,
vol. 1241, Dec. 1997, pp. 220-242.

[3] “F# — Microsoft Research”, http://research.microsoft.com/en-
us/um/cambridge/projects/fsharp/.

[4] “The AspectJ Project”, http://www.eclipse.org/aspectj/.
[5] D. Esposito and A. Saltarello, Microsoft .Net: Architecting Applications

for the Enterprise, Microsoft Press, 2015.
[6] “Microsoft Developer Network — Policy Injection Application Block”,

http://msdn.microsoft.com/en-us/library/ff650672.aspx.
[7] “Spring.NET — Application Framework”,

http://www.springframework.net/.

[8] “The F# Language Specification”, Microsoft Corporation, 2015.
[9] C. Smith, Programming F#, OReilly Media, Inc., Sebastopol CA, 2009.

[10] R. Laddad, AspectJ in action, Manning Publications Co. Greenwich, CT,
USA, 2010.

[11] E.W. Dijkstra, “On the Role of Scientific Thought”, Selected Writings
on Computing: A Personal Perspective, 1982.

[12] K. Baley and D. Belcham, Brownfield Application Development in .Net,
Manning Publications Co. Greenwich, CT, USA, 2010.

[13] M. Marin, A.V. Deursen, and L. Moonen, “A Classification of Crosscut-
ting Concerns”, Proceedings of the 21st IEEE International Conference
on Software Maintenance, 2005

[14] R.E. Filman and D.P. Friedman, “Aspect-oriented programming is
quantification and obliviousness”, Workshop on Advanced Separation
of Concerns, 2000.

[15] D.B. Tucker and S. Krishnamurthi, “Pointcuts and advice in higher-order
languages”, Proceedings of the 2nd international conference on Aspect-
oriented software development — AOSD 03, 2003, pp. 158-167.

[16] “Aspect Oriented Programming with Spring”,
http://static.springsource.org/spring/docs/2.5.0/reference/aop.html.

[17] “PostSharp — AOP on .Net - Run Time Weaving”,
http://www.sharpcrafters.com/aop.net/runtime-weaving.

[18] T. Petricek and J. Skeet, Real World Functional Programming, Manning
Publications Co. Greenwich, CT, USA, 2010.

[19] K. Hazzard and J. Bock, Metaprogramming in .NET, MEAP Edition
Manning, Manning Publications Co. Greenwich, CT, USA, 2012.

[20] R. Pickering, Beginning F#, Apress, 2014.
[21] R. Osherove, The Art of Unit Testing, Manning Publications Co.

Greenwich, CT, USA, 2009.
[22] “xUnit — Unit testing framework for C# and .Net (a successor to

NUnit)”, http://xunit.codeplex.com/.
[23] W.D. Meuter, “Monads as a theoretical foundation for AOP”, Technol-

ogy, 1997, pp. 1-6.
[24] P. Wadler, “The essence of functional programming”, Proceedings of the

19th ACM SIGPLANSIGACT symposium on Principles of program-
ming languages, ACM Press, 1992, pp. 1-14.

[25] “Haskell Glossary — Monads”, http://www.haskell.org/haskellwiki/.
[26] B. Beckman, “Channel9 : Dont fear the Monad”,

http://channel9.msdn.com/Shows/Going+Deep/Brian-Beckman-Dont-
fear-the-Monads.

[27] S. Jones, “Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell”, Engineering
theories of software construction, 2001, pp. 47-96.

[28] “Microsoft Developer Network - Symbol and Operator Reference (F#)”,
http://msdn.microsoft.com/en-us/library/dd233228.aspx.

[29] “Microsoft Developer Network — Discriminated Unions (F#)”,
http://msdn.microsoft.com/en-us/library/dd233226.aspx.

[30] “Microsoft Developer Network — Expr.Sequential Method (F#)”,
http://msdn.microsoft.com/en-us/library/ee353459.aspx.

[31] “Meta Programming — Online definition from Cunningham & Cun-
ningham”, http://c2.com/cgi/wiki?MetaProgramming.

[32] J. Baker and W. Hsieh, “Runtime aspect weaving through meta-
programming”, Proceedings of the 1st international conference on
Aspect-oriented software development, ACM, 2002, p. 8695.

[33] . Tanter, R. Toledo, G. Pothier, and J. Noy, “Flexible meta-programming
and AOP in Java”, Science of Computer Programming, vol. 72, Jun.
2008, pp. 22-30.

[34] G. Kiczales, J. des Rivieres, and D. Bobrow, The Art of the MetaObject
Protocol, MIT Press, 1991.

[35] “Microsoft Developer Network — System.Reflection Namespace”,
http://msdn.microsoft.com/en-us/library/system.reflection.aspx.

[36] J. Liberty, Programming C#, OReilly Media, Inc., Sebastopol CA, 2014.
[37] E.W. Weisstein, “Machins Formula — from Wolfram MathWorld”,

http://mathworld.wolfram.com/MachinsFormula.html.

