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Abstract

Aggregations of different-looking animals are frequently seen in nature, despite well-
documented selection pressures on individuals to maintain phenotypically homogenous
groups. Two well-known theories, the ‘confusion effect’ (reduced ability of a predator to
accurately target an individual in a group) and the ‘oddity effect’ (preferential targeting of
phenotypically distinct, ‘odd’, individuals) act together to predict the evolution of
behaviours in prey that lead to groups of animals that are homogeneous in appearance. In
contrast, a recently-proposed mechanism suggests that mixed groups could be maintained if
one species in a mixed group is more conspicuous against the habitat than the other, as
confusion effects generated by the conspicuous species impede predator targeting of the
cryptic species; thus, cryptic species benefit from association with conspicuous ones. We
test these contrasting predictions from the perspective of both predators and prey, and
show that cryptic individual Daphnia are at reduced risk of predation from three-spine
sticklebacks Gasterosteus aculeatus when in mixed phenotype groups, a risk that is reduced
further as the number of conspicuous individuals increases, supporting the hypothesis for
the evolution of mixed groups. In contrast, while the preference for associating with colour-
matched conspecifics by mollies (Poecilia sphenops) was reduced when they were cryptic,
we found no evidence for active association with conspicuous conspecifics. We conclude
that prey animals must balance the relative risks of oddity and conspicuousness in their
social decisions, and that this could potentially lead to the evolution of mixed phenotype

grouping as a response to predation risk alone.
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Introduction

Predators play a key role in ecological communities with well-established direct and indirect
effects on prey abundance and behaviour (Sih et al. 1985; Lima and Dill 1990; Schmitz et al.
2004). Theoretical understanding of predator-prey interactions is generally based on the
assumption of homogeneous, randomly distributed prey. For example, although functional
response models (predicting predation success in response to prey density) have been
developed that account for handling and digesting time of predators, such models assume
spatial and phenotypic homogeneity in prey (Jeschke et al. 2002). Other theoretical
approaches in ecology that include these assumptions include population dynamics
(Tenhumberg et al. 2009), group formation (Morrell et al. 2011) and biological self-
organisation (Couzin et al. 2005). The assumptions of prey homogeneity can be violated in
two important ways: 1) a violation of the assumption of spatial homogeneity via prey
aggregation and 2) a violation of the assumption of phenotypic homogeneity where prey
differ in appearance or behaviour. Including these factors into models of predator-prey
interactions can have significant effects on their predictions (Fryxell et al. 2007; Pettorelli et

al 2011).

Aggregation is a widespread phenomenon across the animal kingdom carrying with it
numerous benefits for individuals living in groups (Krause & Ruxton 2002). Perhaps the most
well recognised benefits relate to a reduction in predation risk through several mechanisms
including the dilution (Foster and Treherne 1981), encounter-dilution (Turner and Pitcher
1986), selfish herd (Hamilton 1971) and confusion (Miller 1922; Krakauer 1995) effects. The
confusion effect describes the inability of a predator to accurately target individual prey

items within a group of moving individuals, resulting in a reduced attack-to-kill ratio and
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benefiting all individuals in the group (Krakauer 1995; Krause & Ruxton 2002). This effect is
predicted to be enhanced by increased synchrony of movement, larger group size, increased
density and phenotypic uniformity within a group. Where there is variation in phenotypes
in a group, predators can increase their success rate if they select prey that are
phenotypically distinct from the rest of the group. This is known as the oddity effect, and
results in preferential predation on ‘odd’-looking individuals (Milinski 1977; Ohguchi 1978;
Krause & Ruxton 2002). Predator confusion and the oddity effect are complementary
mechanisms that select for behaviours in prey that should result in the formation of
phenotypically-assorted (homogeneous) groups. In systems where the predator hunts
visually prey groups should consist of individuals that are all very similar in appearance, and
evidence suggests that this is often the case. Shoaling fish have been well-studied in this
regard where assortment by species (Ward et al. 2002), body size (Krause et al. 1996),
kinship (Fitzgerald and Morrissette 1992), parasite load (Barber et al. 1998) and colour

(Rodgers et al. 2011) are observed.

However, there are many cases where there is considerable variation in phenotype within a
group. This is particularly clear in communities where mixed-species grouping occurs.
Mixed-species associations are frequently observed in birds (Moynihan 1968), mammals
(Smith et al. 2004), and fish (Barlow 1974). Although mixed-species grouping has been the
subject of scientific investigation for over 100 years (Morse 1977) we do not fully
understand the evolutionary causes and the mechanisms by which it is maintained in the
face of selection for phenotypic assortment in groups (via the confusion and oddity effects;
Tosh et al. 2007). A number of possible benefits of associating with individuals that are not

reliant on phenotype-matching (i.e. not linked to avoiding oddity) have been described
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which may explain the occurrence of mixed-species and mixed-phenotype groups, including
increased foraging efficiency and predator detection for all group members (Stensland et al.
2003). Alternatively, the benefits of mixed species grouping may be asymmetric.
Experimental evidence suggests that a solitary individual may benefit from joining a group
of dissimilar con- or heterospecifics rather than remaining alone (Landeau and Terborgh
1986), may preferentially associate with more vulnerable individuals (Mathis and Chivers
2003) or with ones better able to detect predators (Diamond 1981; Krause and Ruxton
2002). This active choice by some group members means that the costs of oddity may be
greater for some individuals in a group than for others (Mathis and Chivers 2003; Rodgers et

al. 2011).

Using neural network models Tosh et al. (2007) proposed a predation-based mechanism to
explain mixed-species grouping. They introduce the idea that the interaction between
crypsis, confusion and oddity can lead to the evolution of mixed species grouping. Here
crypsis (or conspicuousness) refers to the animal’s colouration relative to the habitat,
contrasting with oddity, which refers to colouration relative to the rest of the group. Tosh et
al. (2007) demonstrate theoretically that when groups consist of both cryptic and
conspicuous individuals, confusion effects generated by the conspicuous group members
are of particular benefit to cryptic individuals. They suggest that the anti-predator benefits
of crypsis (Ruxton et al. 2004; Caro 2005) may be enhanced by association with conspicuous
species as this worsens predator targeting of the cryptic individuals beyond that predicted
by either their crypsis alone or by the confusion effect, but there is no experimental

evidence to confirm this.
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Both the mechanism presented in Tosh et al. (2007) and the standard confusion/oddity
framework described above predict asymmetric (phenotype dependent) predation risk on
prey, but these predictions differ dependent upon whether the prey animals are
conspicuous or cryptic relative to the habitat. Table 1 outlines the contrasting predictions
for the two possible mechanisms, which can be summarised as follows: Tosh et al. (2007)
predict that phenotypically distinct (odd) individuals should only be targeted if they are
conspicuous, and that individuals that are both cryptic against the habitat and odd relative
to the group are targeted less often than expected by chance. In contrast the
confusion/oddity framework predicts that odd individuals should always be targeted,
regardless of their crypsis against the habitat (table 1a). From the perspective of the prey
(table 1b), the confusion/oddity framework predicts that individuals should preferentially
associate with colour-matched group-mates (leading to the evolution of homogeneous
groups), while Tosh et al (2007) predict that this should only be true for individuals that are
conspicuous against the habitat; cryptic individuals should choose to associate with
conspicuous (and therefore phenotypically different from themselves) rather than colour-

matched group-mates (table 1b), potentially leading to the evolution of mixed grouping.

We examine these hypotheses from the perspective of both predators (three-spined
sticklebacks Gasterosteus aculeatus attacking individuals in groups of colour dyed Daphnia)
and prey (black and white morphs of the molly Poecilia sphenops choosing to shoal with
matched or dissimilarly coloured shoal mates). By exploring both the predator and prey
perspectives our work will more fully explore the various pressures that shape predator-
prey interactions and lead to the evolution of the mixed-phenotype groups of prey animals

we see in nature. Our aim is to explore patterns that apply broadly to groups of prey
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animals by using two different model systems to address the prey and predator angles of
this phenomenon. Each system was selected to be the most suitable available to us for
those particular experiments. This integrated approach allows a greater understanding of
the mechanisms involved in the evolution and maintenance of mixed-phenotype

aggregations.

Materials and methods

Experiment 1: Prey targeting by sticklebacks

Approximately 150 three-spine sticklebacks (Gasterosteus aculeatus) were collected from
Saltfleet, Lincolnshire in October 2009 and housed in large opaque containers at a
temperature of 15°C under a 12:12hr light:dark cycle. Fish were fed daily on frozen
bloodworm. Live Daphnia magna were obtained from a local pet shop. To obtain cryptic and
conspicuous prey, live Dapnia were dyed red or blue by placing large numbers of individuals
in 1000ml of water containing 5ml of either red or blue food dye (Dr. Oetker brand) for a
period of 7-10 days. Red and blue were chosen as both colours are present in stickleback
breeding colouration and there is evidence that these fish rank shades of these colours in a
similar way to humans (Rowe et al. 2006). Blue food colouring contained: water, colour
(brilliant blue), acidity regulator (citric acid) and preservative (potassium sorbate). Red food
colouring contained: colours (beetroot red, paprika extract), mylose syrup, emulsifier
(polysorbate 80), glycerine, water, antioxidants (disodium EDTA, sodium ascorbate) and

preservative (potassium sorbate).

Prey targeting experiments were carried out in a small aquarium (20x20x50cm). The tank

was divided into two sections: a horizontal wire positioned on the base of the tank marked
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out the third of the tank furthest from the prey (the predator zone). At the opposite end of
the tank, a removable grid of 1cm transparent cubes positioned on the external wall of the
tank held the Daphnia. Twelve cubes were arranged in a 3x4 grid and placed centrally on the
outside of the tank end. Each cube contained coloured water (red or blue at 3ml/litre) and a
single Daphnia. The concentration of food dye in the cubes was slightly lower than that used
to dye the Daphnia to ensure that individual Daphnia were visible to the observer, while
enhancing crypsis where water and Daphnia were the same colour. The grid design ensured
that the 12 Daphnia prey were unable to aggregate, as predators are known to target
denser areas of groups (loannou et al. 2009). Inside the tank, flush with the wall containing
the prey, we positioned a removable opaque barrier to conceal the prey from the predator
during an acclimatisation period. The tank was surrounded by opaque screens to minimise
disturbance to the fish. Trials were recorded using a digital video camera (Panasonic NV-
GS280) placed behind the grid containing the prey, such that the predator was viewed

through the prey grid and the prey item targeted could be easily identified.

Each section of the grid contained dyed water and a single Daphnia. We considered 4
primary treatments:
1) Control: 12 undyed Daphnia in either red or blue water, to test for any innate
preference for red or blue (20 trials)
2) 6:6 treatment (even treatment): equal numbers of red and blue dyed Daphnia (40
trials)
3) 1:11 treatment (cryptic minority): a single cryptic individual and 11 conspicuous

individuals (40 trials)
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4) 11:1 treatment (cryptic majority): 11 cryptic individuals and a single conspicuous
individual (40 trials)

The specific predictions for each experiment in relation to our hypotheses (table 1a) can be
found in table 2a. For treatment 1 (control), 6 cells contained red-dyed water and 6 cells
contained blue-dyed water arranged such that the immediate neighbours of any cell were of
the opposite colour. Treatments 2-4 had a single colour background (i.e. all cells contained
red or blue water) and were repeated with both red and blue backgrounds (N=20 for each
colour background). Cryptic individuals were those that were the same colour as the
background, conspicuous ones were those that were the opposite colour. In treatment 2,
individual Daphnia were positioned so that the direct neighbours of each individual was of
the opposite colour to avoid any clustering of particular phenotypes. In treatments 3 and 4
the position of the odd individual was changed systematically between trials to control for
any centre or edge preferences in the attacking predator. Once filled, the prey grid was
positioned externally on the tank. Daphnia were taken from pools of similarly coloured
individuals to which they were returned between trials. Pools contained approximately 50

Daphnia of 3mm +/- 0.25mm.

An individual stickleback was placed into the predator zone in the test tank and given 2
minutes to acclimatise. After the acclimatisation period we raised the opaque barrier
concealing the prey, using a pulley to reduce disturbance to the fish. If the stickleback was
not in the predator zone, the barrier was raised once the fish returned there. We recorded
the colour and crypsis of the first prey individual attacked by the fish, using the video
recordings. Fish that did not enter the predator zone within 10 minutes were removed. Fish

that did not attack the prey within 15 minutes of the barrier being removed were excluded
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from the analysis. Final sample sizes were N = 16 (control; 4 fish did not attack), N = 40
(even treatment; all fish attacked), N = 38 (cryptic minority; 2 fish did not attack) and N = 38
(cryptic majority; 2 fish did not attack)). Fish were not reused and the water in the test tank

was changed between trials.

Experiment 2: Shoal choice in mollies

Mollies (Poecilia sphenops) occur in two distinct colour morphs (black and white) but are
phenotypically similar in other aspects of morphology. 70 black and 70 white individuals
were obtained from Neil Hardy Aquatica in December 2009 and maintained in small aquaria
(200x200x500mm) with a gravel substrate, small filter and artificial plant, at a salinity of
1.004ppt at 26°C and on a 12:12hr light:dark cycle. Each tank contained 10-12 individuals,
with equal numbers of each morph. On arrival in the laboratory, fish were randomly
assigned to be either test fish (approximately 60 individuals of each colour) or in the initial
pool of stimulus fish (10 individuals of each colour; see also below). Test and stimulus fish
were held separately, and within a category (test/stimulus) individuals were moved
between tanks twice a week for the duration of the experiment to reduce any confounding
effects of familiarity (Griffiths 1997; Griffiths and Magurran 1997a). Fish were housed in
these conditions for approximately 6 weeks until commencement of the trials, and were fed

commercial fish food twice daily.

Shoal choice experiments were carried out in 2 test aquaria. Each tank (200x500x170mm)
was divided into 3 sections using transparent glass to ensure visual but not olfactory
communication to reduce confounding effects of habitat similarity (Webster et al. 2007).

The two end compartments (stimulus compartments) measured 150x200mm and contained

10
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the stimulus fish. Three of the external surfaces of each tank were covered with opaque
adhesive film, leaving only the side facing the observer transparent. One tank was covered
with white film, the other with black film. A 20mm layer of white or black gravel respectively
was also added. By performing the trial in either a black tank or a white one, each of the fish
morphs could be made cryptic or conspicuous against the background. Preference zones
were marked on the observer side of the central compartment at a distance of 82mm (twice
the mean body length of 20 fish) from the stimulus compartments. A test fish was
considered to be shoaling with a stimulus shoal when more than 50% of its body was in the

preference zone, giving a conservative estimate of shoaling tendency.

Only fish with a standard body length of between 38 and 46mm were used in the
experiment, and there was no significant difference in body size between black and white
fish (F1,106 = 1.845, p = 0.177). 4 black individuals were taken from the pool of stimulus fish
and placed in one stimulus compartment and 4 white individuals were placed in the other
stimulus compartment. A test fish was placed in the central compartment and allowed 10
minutes to acclimatise before preferences were recorded. We recorded the cumulative time
(in seconds) that the fish spent in each of the preference zones over the course of a 10-
minute trial. All 4 combinations of test fish colour and crypsis (background colour) were
investigated. The specific predictions for each combination in relation to our hypotheses are
outlined in table 2b. The stimulus compartment containing the black fish was alternated
between experiments to control for side bias. Once fish had been used as test fish they were
added to the pool of stimulus fish, but stimulus fish were never used as test fish. 30 trials

were conducted where the test fish was white and cryptic (i.e. a white fish on a white

11
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background), 30 on white conspicuous fish, 28 on black cryptic fish and 26 on black

conspicuous.

Statistical analysis

Binomial tests were used to investigate the prey selection preference of sticklebacks.
Expected proportions are given in the relevant section below. For the shoaling experiment
we used a generalised linear model with quasi-binomial error distribution (to account for
overdispersion in the data) and a logistic link function to investigate the proportion of time
spent shoaling with the colour-matched shoal as a function of test fish colour and test fish
crypsis. The interaction between test fish colour and test fish crypsis was not significant and
so was removed to give the minimum adequate model. To investigate whether the shoaling
preference exhibited by each colour/crypsis combination differed significantly from a
random preference, we tested (preference for matched shoal)-(preference for unmatched
shoal) against a null expectation of zero using one-sample t-tests. Data were arcsin square
root transformed to meet the assumptions of normality. Correction for multiple tests was
carried out using False Discovery Rate control (Benjamini & Hochberg 1995). Both original

and adjusted (in italics) p-values are shown.

Results

Experiment 1: Prey targeting in sticklebacks

There was no colour preference for undyed Daphnia on red or blue backgrounds (binomial
test, P =1.00 (P=1.00)) and no difference between colour treatments (i.e. whether the trials

were performed on a red or blue background) for any of the ratios tested (binomial tests

12
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1:11 P =1.00 (P=1.00); 6:6, P = 0.44 (P=0.572); 11:1, P = 0.45 (P=0.532)). Therefore all data

have been pooled and analysed on the basis of cryptic/conspicuous alone.

The number of times the cryptic individual was targeted by the predator was significantly
lower than random expectation in the 6:6 (cryptic individual targeted in 7/40 trials, against a
random expectation of 0.5, P<0.001 (P<0.001)) and 11:1 experiments (cryptic individual
targeted in 26/38 trials, against an expectation of 0.9167 (11/12), P<0.001 (P<0.001)), but
not in the 1:11 experiment (cryptic individual targeted in 1/38 trials, against a random
expectation of 0.0833 (1/12), P = 0.370 (p=0.535), figure 1a). Thus, cryptic individuals are
targeted less often than expected by chance when grouped with a lower or equal number of
conspicuous individuals. When a single cryptic individual is in a group with predominantly
conspicuous individuals, it is attacked at a rate consistent with random attack. Table 2a
summarises these results in relation to the specific predictions of both the Tosh and oddity

mechanisms.

We next investigated the per capita predation risk for cryptic and conspicuous individuals
for each of the group compositions tested (figure 1b). In a group consisting entirely of one
type or the other (N = 12 in figure 1b), the per capita risk for each individual is 0.0833
(=1/12). We calculated the per capita risk for each composition as the proportion of trials in
which an individual of the type under consideration was targeted divided by the number of
individuals of that type in that trial. Thus, for the 1:11 treatment, per capita risk for cryptic
individuals was calculated as (1/38)/1 (one cryptic target in 38 trials, with 1 cryptic individual
in the trial) and risk for conspicuous individuals as (37/38)/11 (37 conspicuous targets in 38

trials divided by the 11 cryptic individuals in each trial). Per capita risk for cryptic individuals
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in greatest when in a uniform group and decreases as the number of conspicuous
individuals in the group increases. In contrast, per capital risk for conspicuous individuals is

lowest in a uniform group and increases with the number of cryptic group-mates (figure 1b)

Experiment 2: Shoal choice in mollies

Fish colour and fish crypsis had significant independent effects on the proportion of time
spent shoaling with the colour-matched shoal (quasi-binomial GLM, colour: t = 2.861, df =
106, P = 0.0038 (P = 0.0083), crypsis: t =-2.320, df = 105, P = 0.0197 (P = 0.0366), non-
significant interaction between crypsis and colour removed from the model). Conspicuous
fish showed a stronger preference for the colour-matched shoal than cryptic fish and white
fish showed a stronger preference than black fish (figure 2). Preference for the colour
matched shoal differed significantly from random choice for white conspicuous fish (t =
7.4733, df =28, P < 0.001 (P < 0.001)), black conspicuous fish (t =4.3172, df = 25, P < 0.001
(P <0.001)), and white cryptic fish (t = 6.3823, df. = 26, P < 0.001 (P < 0.001)) but not for
black cryptic fish (t = 1.2425, df = 25, P = 0.2256 (P=0.3666)). Table 2b summarises these
results. There was no difference in overall shoaling tendency between cryptic and

conspicuous test fish (t-test, t = 0.201, P = 0.841).

Discussion

The two theoretical frameworks for the evolution of mixed phenotype groups that we have
investigated predict different suites of predator targeting of prey, prey risk and prey group
choice behaviour. The confusion/oddity framework (preferential predation on
phenotypically distinct, odd individuals in a group) selects against the evolution of mixed

grouping, but mixed aggregations are selected for by the mechanism proposed in Tosh et al
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(2007). Here, grouping is driven primarily by one partner in a species/phenotype pair, as the
confusion effect generated by a species that is conspicuous against the habitat impedes
predator targeting of a more cryptic one. Our results (summarised in table 2) lend support
to both mechanisms and suggest that animals may face conflicting selection pressures
within the context of phenotypic similarity in group assortment. We show that individuals
that are cryptic against the habitat are at reduced risk of predation when in mixed
phenotype groups and this risk is reduced further as the number of individuals that are
conspicuous against the habitat increases, providing support for Tosh’s model. In contrast,
and in support of the confusion/oddity framework, we did not find any evidence that cryptic
fish preferentially chose to associate with conspicuous ones. Instead, in the majority of our
tests, fish associated with phenotypically similar individuals, avoiding being odd in the

group, but this preference was reduced when individuals were cryptic against the habitat.

We provide evidence for asymmetric costs to individuals in mixed groups: in our prey
targeting experiment, cryptic individuals benefitted by association with conspicuous ones
while conspicuous ones were put at increased risk by the presence of cryptic individuals
(figure 1b). As Tosh et al (2007) suggest, mixed grouping could therefore be maintained by
the association preferences of cryptic individuals (or those that are simply at lower risk of
predation). There are many examples of associations in mixed species groups being
maintained by one party: associations between fathead minnows (Pimephales promelas)
and brook sticklebacks (Culaea inconstans) are maintained by the less vulnerable
sticklebacks (Mathis and Chivers 2003), and cowtail stingrays (Pastinachus sephen) maintain
the association with whiprays (Himantura uarnak) because of the whiprays faster

antipredator response (Semeniuk and Dill 2006). Similar patterns are seen within species: in
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European minnows (Phoxinus phoxinus), good foraging competitors choose to actively
associate with poor competitors but not vice versa (Metcalfe and Thomson 1995). The
results of our shoal choice experiment, however, do not support the idea that cryptic
individuals preferentially associate with conspicuous ones; instead suggesting that crypsis

allows more flexibility in shoaling decisions.

The context and visual background in which prey animals are being observed is important
when considering crypsis (Endler 1990). When a predator is at some distance from prey,
crypsis against the background (e.g. vegetation or substrate) is likely to be of primary
importance in concealing a prey group. As predators must identify and then select a group
to attack, this would select for all group members to match their background (Ruxton et al.
2004) producing phenotypically uniform groups. At closer range, once the group has been
detected, predator focus switches to identifying and targeting an individual within a group.
Relative risks within the group become important and behaviours that reduce an individual’s
risk relative to his group mates are selected for (Morrell et al. 2011). Our findings from the
shoal choice experiments may represent a trade-off between reducing risk pre- and post-

detection.

Conflicting selection pressures in social decision-making are not uncommon. The decision to
join one group over another depends on many more factors than phenotypic appearance
alone. Group size (Krakauer 1995), nutritional state (Krause 1993a; Morrell et al. 2007),
parasitism (Barber and Huntingford 1995), predation risk (Hoare et al. 2004), familiarity
(Griffiths and Magurran 1997b) and recent experience (Webster et al. 2007) all interact to

shape shoaling decisions. Membership of a larger group, for example, may benefit
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individuals through the dilution effect (Foster and Treherne 1981; Turner and Pitcher 1986),
but this must be traded off against the relative ease of detection of larger groups by
predators (loannou and Krause 2008; Morrell and James 2008) and the importance of
familiarity in shoal choice decisions decreases as group size increases (Griffiths and

Magurran 1997b).

There may be other pressures selecting for phenotypic uniformity in groups, including
activity synchrony (Conradt and Roper 2000) and foraging efficiency (Ranta et al. 1994).
Conradt and Roper (2001) propose that uniformity is maintained by the higher cost of
performing synchronous activities for mixed groups, while Ranta et al. (1994) suggest that
foraging success should be higher in uniform groups, particularly for small individuals. In
addition, there may be social pressure to maintain uniform groups. One can imagine that
high-risk (here, conspicuous) individuals would benefit by ‘evicting’ low-risk (cryptic) ones
from their group. There is little evidence that individuals can control group membership in
‘free entry’ groups such as fish shoals (Krause and Ruxton 2002), but where groups are
stable and social hierarchies exist, entry to a group may be restricted (Stephens et al. 2005;
Jordan et al 2010). Even in free entry groups, less favoured group members may be
restricted to the periphery (Krause and Godin 1994; Barber et al. 2000) where predation risk
is higher (Hamilton 1971; Krause 1993b). Alternatively, high-risk individuals made vulnerable
by new low-risk members could choose to leave the shoal when the risks associated with

leaving are outweighed by the risks imposed by non-uniformity of the group.

It is possible that the animals used in our experiments did not perceive colour differences in

the same way as the human observers. However, sticklebacks are known to rank red and
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blue in a similar way to humans (Rowe et al. 2006) and so individuals that appeared cryptic
and conspicuous to us are likely to appear similarly to the fish. Little is known about colour
perception in mollies, but previous work suggests a perception of black and white that is
consistent with ours (Bradner and McRobert 2001). We found that black fish generally
showed a weaker preference for the colour-matched shoal, but this reflects previous
findings (McRobert and Bradner 1998) and may result from a reduced perception of risk by
black fish (perhaps due to an increased perception of crypsis or safety) or selected

differences in shoaling preferences resulting from domestication.

We acknowledge the limitations of using captive-bred, domestic animals in some of our
experiments. Captive-bred animals have not been subject to the selection pressures which
their wild counterparts experience, and in the case of the mollies, the captive breeding and
selection regimes necessary to produce distinct black and white morphs likely means that
black fish are more closely related to other black fish than to white fish and vice-versa. This
potentially confounds any effect of colour with that of kinship, by which fish are also known
to assort (Krause and Ruxton 2002; Ward & Hart 2003). However, while our finding that fish
preferentially associate with similarly coloured individuals could be explained as a
preference for associating with more closely related individuals, the key finding is that
preferences change according to the conspicuousness of the potential shoal-mates. This
suggests that there are other colour-associated factors at play in determining shoal choice in
mollies. We suggest that our results demonstrate association patterns based on colour,
oddity and crypsis that go beyond the confounding effects of relatedness resulting from

domestication.
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We chose to use black and white mollies because of their very similar morphologies,
distinctly different colours, their history of use in similar experiments and their documented
ability to discriminate between different colour morphs and associate on the basis of colour,
with variation in preference strength depending on the characteristics of the shoal and
environment (McRobert and Bradner 1998, Bradner and McRobert 20013, b). These studies
are often cited as the classic examples showing that fish assort by colour and their authors
have suggested that shoal-choice abilities and preferences for particular phenotypes in
shoal-mates is so important to group living fishes it is likely to be highly conserved and still
present even in domestic morphs (Bradner and McRobert 2001a). Domestic morphs of
group-living fishes have been successfully used to demonstrate and explain patterns of
association and social learning seen in wild animals (Laland and Williams 1998; Reader and
Laland 2000; Engeszer et al. 2004; Morrell et al. 2007; Gomez-Laplaza 2009). Examples of
the colour assortment seen here in domestic fish reflect those seen in wild fishes (Crook

1999; Rodgers et al. 2010).

The oddity effect is predicted to operate most strongly in small, highly asymmetric groups
(Krause and Ruxton 2002), the conditions tested here. We also investigate oddity in two
very different taxonomic groups on which different selection pressures may operate,
resulting in different patterns. Further work is needed to elucidate the conditions under
which oddity effects shape animal aggregations in nature, and the effects of interactions
between oddity and other selection pressures (including crypsis) across species. The
majority of work investigating the oddity effect in relation to colour has used either
domesticated morphs (McRobert and Bradner 1998; Bradner and McRobert 2001; Gomez-

Laplaza 2009) or artificially dyed prey (Ohguchi 1978; Landeau and Terborgh 1986; Thomas
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et al. 2010) and future work should also consider natural variation in prey colouration, on

which predators must base their choice of target and prey base their social decisions.

When confusion effects associated with aggregation are incorporated into functional
response models, they significantly alter predicted rates of consumption relative to prey
density (Jeschke and Tollrian 2005). Similarly, considering groups as a functional unit in
models of predator-prey dynamics fundamentally alters predicted food intake rates and
stabilises interactions (Fryxell et al. 2007). Thus, the processes and patterns involved in the
formation and maintenance of animal groups are a key component in predator-prey
interactions and the structure of animal communities. Variation between individuals is also
thought to influence predator-prey dynamics (Pettorelli et al. 2001): understanding how
predators select from among available prey types may have implications for concepts
ranging from the evolution of aggregation (Couzin et al. 2005; Morrell et al. 2011) and
aposematic colouration (Ruxton et al. 2004) to understanding species diversity (for example,
if predators preferentially consume rare prey species resulting in local extinctions; Almany
et al. 2007). Here we show that prey animals must balance the relative risks of oddity and
conspicuousness in their group choices and suggest that the complex selection pressures
enforced by predation can lead to the evolution of mixed-phenotype grouping through

response to these risks alone.
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Tables
Table 1: Contrasting predictions of the confusion/oddity framework and the mechanism
proposed by Tosh et al. (2007), for situations where a) predators are selecting from among
available prey types, which may be phenotypically distinct from the majority of the group
(‘odd/rare’ in the table) and may also be cryptic or conspicuous against the habitat; and b)
when prey are selecting group-mates with whom to associate.

Prey phenotype Tosh et al. (2007) predict:  Confusion/oddity

framework predicts:

a) Predators selecting from among available prey types

A prey animal which is: Should be targeted:
Odd/rare relative to When conspicuous Always targeted

the rest of the group  against the habitat

Cryptic against the Less often than expected  When odd/rare
habitat by chance when grouped

with conspicuous

individuals
Conspicuous against ~ Always targeted When odd/rare

the habitat

b) Association preferences of prey

An individual which is: Should associate with a group which is:
Cryptic against the Conspicuous (and Cryptic (phenotypically
habitat therefore of a different matched to the choosing
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phenotype) individual)

Conspicuous against ~ Conspicuous (matched) Conspicuous (matched)
the habitat

683

684

685

686 Table 2: A summary of our hypotheses relating to the predictions of the Tosh et al. (2007)
687 model and the confusion/oddity framework, together with the qualitative results of the

688 prey targeting (a) and shoal choice (b) experiments, indicating the model supported.

a) Prey targeting experiment

Cryptic: Prediction for cryptic Conflict Result Support
conspicuous individuals between for:
ratio Tosh et al. Confusion/  predictions?
(2007) oddity
1:11 Attacked Attacked Yes Attacked at -
less than more than random
random random
6:6 Attacked Attacked at  Yes Attacked Tosh
less than random less than
random random
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689

690

11:1 Attacked Attacked No Attacked Both
less than less than less than
random random random
b) Shoal choice experiment
Focal fish Shoaling preference Conflict Result Support
prediction between for:
Tosh et al. Confusion/  predictions?
(2007) oddity
White, Black White Yes No -
cryptic preference
White, White White No Prefer Both
conspicuous white
Black, White Black Yes Prefer Oddity
cryptic black
Black, Black Black No Prefer Both
conspicuous black
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Figure legends

Fig. 1 a) The proportion of attacks on cryptic Daphnia by three-spine sticklebacks in the
three different prey ratio treatments (ratio of cryptic:conspicuous individuals for each
treatment are as follows: 1:11 Cryptic minority, 6:6 Even, 11:1 Cryptic majority). Dotted
lines indicate the expected proportion of attacks targeting a cryptic Daphnia, based on
random expectation. Stars indicate significant differences between observed and expected
proportions in binomial tests for 1:11 (P = 0.535, N = 38), 6:6 (P < 0.001, N = 40) and 11:1 (P
<0.001, N = 38). b) Per capita predation risk for cryptic (open circles, dashed line) and
conspicuous (filled circles, solid line) individuals as the number of individuals of each type in

the group increases

Fig. 2 The proportion of time spent by black and white colour morph mollies (test fish) with
colour-matched shoals for conspicuous (grey bars) and cryptic individuals (open bars), mean
+ 2 SE. Significant effect of fish colour (GLM, t = 2.861, df = 106, P = 0.0083) and fish crypsis
(t=-2.320, df = 105, P = 0.0366) on the proportion of time spent with the colour-matched
shoal was found. The horizontal dashed line indicates a random expectation of equal time
spent with each shoal. Asterisks indicate significant (P < 0.05) deviation from this
expectation based on one-sample t-tests (black-conspicuous: df = 25, P <0.001; black-
cryptic: df = 25, P = 0.367; white-conspicuous: df = 28, P < 0.001; white-cryptic: df = 26, P <

0.001)
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Table of key terms

The table below summarises the key terms that we use in the manuscript.

Term

Description

Confusion effect

A benefit of group living, whereby the attack-to-kill ratio of
a predator (success rate) is reduced when individual prey
animals aggregate (Miller 1922; Krakauer 1995; Krause &
Ruxton 2002).

Oddity effect

A mechanism where predators attack individuals within a
group that are phenotypically distinct from the majority of
the group (“odd”; Milinski 1977; Ohguchi 1978; Krause &
Ruxton 2002). The confusion effect and oddity effect
operate together select for behaviours in prey leading to
the evolution of phenotype-assorted groups (e.g.
preference for associating with phenotypically matched
group-mates).

Phenotype-assorted
group

A group of individuals that are visually very similar. The
terms “uniform group” and “homogeneous group” are
equivalent (Krause & Ruxton 2002)
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Mixed-phenotype A group of individuals that differ in appearance from one
group another (Tosh et al. 2007). This might include variation in
appearance within the same species, or groups of two or
more species (mixed-species group).

Visual background The background against which a prey animal would be
viewed by a predator (Endler 1990; Ruxton et al. 2004). We
distinguish here between two components of the visual
background: the habitat (substrate/tank wall), and the
other individuals in the group (for schooling fish, this may
be an equally or more important component of the visual
background than the habitat; Endler 1990). We use
different terminology when discussing an animal’s
appearance relative to these different components of the
visual background.

Conspicuous An animal that stands out (visually) against the visual
background (Ruxton et al. 2004). Here, we use
‘conspicuous’ or ‘cryptic’ to refer to the contrast/similarity
between the animal’s body colouration and the colour of
the habitat or substrate, and ‘odd’ or ‘phenotypically-
matched’ to refer to the contrast/similarity between the
animal’s colouration and the other members of the group.

Cryptic An animal that closely matches (visually) the
characteristics of the habitat (Ruxton et al 2004).

Odd An individual which is phenotypically distinct (visually)
from the other members of the group (Milinski 1977;
Ohguchi 1978; Krause & Ruxton 2002)

Phenotypically An individual which is of the same visual phenotype as the
matched other members of the group
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