
LAMPAOA fERN5

THE UNIVERSITY OF HULL

Cartographic Information Systems Research Group
C.I.S.R.G.

Hon. Co-ordinator:

Dr. M. Visvalingam
Department of Computer Science
The University
	

Tel. (0482) 4652951465951
HULL I-4U6 7RX
	

Telex 592530

Discussion Paper Series Editors: Dr. M. Visvalingam
Dr. M.E. Turner

C.I.S.R.G. DISCUSSION PAPER 1

From Line Geometry To Area Topology

by

P. Wade, M. Visvalingam and G.H. Kirby

Not to be quoted without the authors' permission.

1986 Wade, Visvalingam and Kirby 	 July 1986
University of Hull

ABSTRACT

Area objects are represented on a computer by geometric or locational informa-

tion (which describe the course of their boundaries), topological information

(which describe the areal units to which boundaries belong), and geographic or

other information (which describe the objects which map onto these areal units).

Most available systems for spatial data processing require from the outset

object-related information, in the form of left/right or on-line references or

area-seeds, for extracting the area topology.

This paper introduces the Disassociative Area Model (DAM) and contrasts it with

other existing descriptions of areal entities. The primitive region forms the

basic spatial unit for object modelling and acts as the link between the

geometric and geographic components. The derivation of spatial topology focuses

on the boundary, which describes one extent of a primitive region. Geographic

information may be input in a variety of ways and at any convenient stage using

pragmatic models derived from DAM.

CONTENTS

1. INTRODUCTION 	 1

2. BACKGROUND 	 3

3. DISASSOCIATIVE AREA MODEL (DAM) 	 11

3.1 Geometry 	 11

3.2 Geography 	 17

3.3 Comparison of DAM with predecessors 	 20

4. DERIVING THE TOPOLOGY 	 24

4.1 Extracting the Boundaries 	 24

4.2 Forming the Containment Hierarchy 	 30

5. AN APPLICATION OF DAM 	 35

5.1 Background to the OS 1:625,000 Data 	 35

5.2 Extraction of the Geometric Topology 	 37

5.3 Identification of Area Objects 	 37

5.4 Summary of the Project 	 42

6. CONCLUSION 	 44

ACKNOWLEDGEMENTS 	 46

REFERENCES 	 47

FIGURES

1. Representation of the geometry of area objects 	 12

2. The implications of including a map frame 	 16

3. Relating area objects to the primitive regions 	 18

4. Implications of storing the hierarchy of primitive regions rather
than of boundaries 	 23

5. Data structure used for holding the geometry and topology of the
linework of area boundaries 	 25

6. The naming of primitive regions 	 39

1

1. INTRODUCTION

One of the more challenging tasks in the development of Geographic Information

Systems (GIS) is the derivation of an appropriate conceptual model for

describing area entities. This paper introduces the Disassociative Area Model

(DAM) and contrasts it with other existing descriptions of areal entities. Most

available systems for spatial data processing require from the outset object-

related information, in the form of left/right or on-line references or area-

seeds, for extracting the area topology.

Conceptually, it is preferable to break down the vector encoding of polygonal

areal covers into three distinct stages:

1) the geometry of the linework of the area boundaries is encoded;

2) the topology (or spatial relationships) is determined; and

3) the geography of the areal entities is encoded.

There are several advantages in separating these stages. Firstly, there can be

flexibility in the order and the method by which data is supplied to the system

if the geometry and the geography are considered separately. Secondly, it is

possible to derive the topology by an automatic process, thus minimising the

information which has to be input by the user and reducing the possibility of

error. Thirdly, the separation of the geometry from the geography enables a

data structure to be used which can represent complex relationships between

areas (such as overlaps, hierarchies, holes and islands), and also allows

several sets of areas to be held in the same database. Fourthly, if the

topological description of the geometry is also held within the data structure,

it is possible to use this knowledge to perform efficiently spatial operations

on areas and data associated with areas; for example, the disaggregation and

2

reassignment of attribute data from one set of areas to another. Finally, and

importantly, it is possible to use the computed topology to check for

completeness and consistency in the data supplied, and ensure that any rules

that exist about how areas are related (such as in a hierarchy) are obeyed in

the data.

This paper presents a new model for representing the spatial relationships

between polygons. It disassociates the geometric and geographic components of

areas for separate academic consideration. Additionally, an automatic method is

given for progressing from a node-matched set of vectors, which describe the

linework of area boundaries, to a complete topological description of the uncut

spatial units which can be built from the boundaries. Following a discussion of

some existing techniques for representing geographic areas in the next section,

Section 3 describes the new model for representing the spatial relationships

between polygons, which we have called the Disassociative Area Model (DAM}. In

Section 4 an algorithm for generating the uncut spatial units and their topology

from a set of vectors is described. A description of a supporting data

structure is also given. Section 5 will illustrate the utility of the methods

developed in this paper by describing how they were applied in a project which

was undertaken on behalf of the Ordnance Survey.

3

2. BACKGROUND

This section describes briefly some of the concepts and techniques used for

representing polygonal areas.

The simplest approach is to encode each area object as a separate entity,

without any regard for overlaps and adjacencies between areas. This leads to

two immediate problems. Firstly, boundaries between adjacent areas are encoded

twice, once for the area on each side, thus causing redundant information to be

stored and possible 'sliver' lines to appear when plotting more than one object.

Secondly, the lack of information about the spatial relationships limits the

ability to manipulate areas and any associated substantive data.

One of the first systems to incorporate an explicit topological structure was

the Dual Independent Map Encoding (DIME) system of the U.S. Bureau of the Census

(Cooke and Maxfield, 1967). It was designed to represent a single non-

overlapping set of area objects. The basic element is the straight line,

uncrossed by any other, called a segment. The segment is identified by its

start and end points, called nodes, and the attribute codes for the areas on

either side of it.

The DIME philosophy was extended in POLYVRT (Laboratory for Computer Graphics

and Spatial Analysis, 1974). In this model the chain replaced the segment as

the basic element. Like a DIME segment, a chain has nodes at its two end

points, it separates two areas, and is assumed to be uncrossed. It may,

however, consist of many points, and it represents the whole of a continuous

section of boundary between two areas. In this structure the number of points

required to describe a boundary between two areas has become unimportant; it is

4

always represented by a single chain. Thus the chain plays an important

topological role, as well as forming the interface between the geometry and the

area objects. POLYVRT also keeps a list of the chains which form the polygonal

boundary of each area. POLYVRT first introduced the cartographic data

structures which have continued to form the backbone of a variety of internal

data structures used for representing segments/chains today.

A consequence of the role that chains play in the POLYVRT structure is a

restriction in the types of area it can represent. For example, it is only able

to record explicitly the topological relationships and boundaries of a single

non-overlapping set of areas. In an attempt at greater flexibility, Peucker and

Chrisman (1975) introduced GEOGRAF, which uses the Least Common Geographic Unit

(LCGU) as the controlling unit of the data structure in place of the chain. The

LCGU is defined as that part of the plane surface uncut by further partitioning,

and its boundary is constructed as a POLYVRT polygon directly from chains. The

chain now becomes the boundary between two LCGUs, and thus assumes a purely

geometric role, rather than being the boundary between two area objects. Also,

the uncut spatial units (LCGUs) created by the chains no longer represent the

area objects directly; instead they are each given a unique identity and are

used as a building block in forming the area objects.

GEOGRAF is able to model multiple sets of area objects. Thus if an

administrative hierarchy of districts, counties, and countries was represented,

GEOGRAF could conceive of the three levels as separate sets of areas rather than

as a single set of areas (with hierarchic area codes). Each LCGU would record

the attribute codes of the area it belongs to at each level. GEOGRAF can

similarly represent multiple non-hierarchical data sets, such as county and

parliamentary areas. The boundary between two objects of a set, for example

between two counties, is described by a chain group, which is an ordered set of

chains. The polygonal boundaries of these objects, in turn, consist of chain

groups and will from now on be called GEOGRAF polygons.

The GIMMS segment format is an extension of POLYVRT. It allows composite area

codes to be supplied for POLYVRT type chains, and from these it is able to

extract GEOGRAF polygons. However, GIMMS is based on the chain (POLYVRT) rather

than the LCGU, and is thus unable to combine the geometric and geographic

descriptions for areas in a flexible manner.

References to objects to the left and right of segments/chains/chain groups

allow the above models to cope with detached parts and holes (one or more area

objects completely within another area object) without having explicit knowledge

of their existence. Edwards et al (1977) proposed a hierarchical data structure

(HDS) for representing areal data which has holes, holes in holes, and so on.

From POLYVRT type chains which refer to area objects on either side, they form a

set of directed polygonal boundaries, each of which has anti-clockwise closure

and a common area code on the left or right side. Each directed polygonal

boundary is then used to define an interior or exterior region. An interior

region is the entire area within a boundary which has a common left area code,

and an exterior region the entire area outside a boundary with a common right

area code. The interior and exterior regions do not contain holes.

Area objects with holes are defined in terms of the interior and exterior

regions. Each interior region corresponds to the outer extent of one disjoint

part of an area object, and each exterior region corresponds to a hole in an

area object. The hierarchical data structure is used to model the nesting (or

containment) that exists between the interior and exterior regions. This

6

containment hierarchy is computed automatically based on the knowledge of which

area object a region includes or excludes, and also by performing spatial

calculations. Once the hierarchy is formed, each disjoint part of an area

object can then be defined by taking the intersection of an interior region

together with all the exterior regions which are immediately below it in the

hierarchy.

The advance of HDS over POLYVRT is that it uses chains to define boundaries of

regions (which enclose and exclude area objects) rather than to define the area

objects themselves. Modelling the hierarchy of these regions allows for the

explicit representation of holes and the spatial relationships that result. The

Chain remains the boundary between two area objects, however, and a consequence

of linking the geometric and geographic information in this manner is that the

system cannot represent a set of areas which contain overlaps, or several sets

of areas simultaneously. Since HDS is similar to our model further discussion

of HDS is postponed until Section 3.3.

All the above systems require the linework of boundaries to be input together

with left/right codes for the area objects on either side of the boundaries (or,

for the LCGUs in the case of GEOGRAF). Although this expedites computer

processing, it presents a poor human—computer interface and places an

unnecessary burden on users. Input to the GIRAS system (Mitchell et al, 1977)

consists of arcs and polygon labels. Arcs, unlike chains, do not carry

left/right tags at input time. Along with the line data, one polygon label for

each polygon of the map is entered in the system. A polygon label is an

arbitrary point within each polygon with which is associated a not necessarily

unique integer attribute to describe the polygon in which it is placed. The

arcs are then connected by software to form polygons, and the arcs and polygons

are internally cross-referenced and the attributes of the polygon labels

assigned to both. The GIRAS structure is described (Mitchell et al, 1977, p 5)

as topologically similar to that introduced by Peucker and Chrisman (1975).

However, the attributes of the polygon labels need not be unique, which suggests

that GIRAS does not use the GEOGRAF model as such, but that the polygons

correspond directly to the detached parts of area objects as in POLYVRT.

GIRAS also explicitly recognises islands (the GIRAS term for holes) and compound

islands (islands which are subdivided) by defining the extent of each polygonal

area by the arcs of its outer perimeter in a clockwise direction and the arcs of

any interior islands in an anti-clockwise direction. The outer and inner

extents of a complex polygonal area are fixed using the position of the polygon

label (see Mitchell et al, 1977, p 11). Thus GIRAS, like HDS, uses directed

polygonal boundaries, although the various boundaries which define a polygonal

area do not each have a separate identity in GIRAS. The geometric hierarchy of

holes within holes remains implicit in GIRAS. However, it is possible to encode

a geographic hierarchy between area objects (such as that between administrative

areas) by associating a composite feature code with the polygon label. LIRAS

therefore uses a number of ad hoc procedures to circumvent problems in spatial

data processing without seeking to accommodate them within an underlying

conceptual model of areal entities.

The Level 3 Digital Line Graph (DLG-3) format (Allder and Elassal, 1984), as the

name implies, uses a link and node structure to encode the area, line, and point

features of a map together with their spatial relationships. The attributes of

lines and points are associated with the links and nodes, and the links also

contain explicit information about the topological relationships. When areas

are represented, each closed part of the plane surface created by the linework

8

of the boundaries is given a unique identity, in a similar way to the LCGUs in

GEOGRAF. The links encode the adjacency relationships between LCGUs by

referring to the LCGU on either side. The attributes of each LCGU, that is the

area objects to which they belong, are associated with a digitised point (which

need not be contained within the LCGU). Attributes are not encoded if they can

be derived from relationships to adjacent elements. For example, a link is

known to be a boundary between two area objects if the attribute codes for the

LCGUs on either side of the link are different for that class of area object.

The links which form the polygonal boundaries of LCGUs and area objects are not

explicitly stored in the structure — further processing is required to derive

this information.

ARC/INFO is a modular geographic information system with facilities for input,

analysis, data management, and output of geographic data. Two data models are

used within ARC/INFO. Cartographic data (locational and topological) are

represented using a topological data model said to be based on DLG (ESRI, 1985,

p 2.9). Thematic data (or attribute data) are represented using a relational

model. In the name ARC/INFO, ARC and INFO refer to these two structures

respectively, and ARC/INFO refers to the composite data model and the commands

provided to manage and manipulate data held in these structures.

The input of polygonal data to ARC/INFO is similar to GIRAS in that it consists

of arcs, without left/right tags, and polygon labels. Moreover, ARC/INFO allows

even greater freedom in how they are digitised. Arcs can be digitised as

'spaghetti' without the user having to identify intersections (nodes), as the

system can identify intersections automatically prior to polygon building.

Also, the entry of polygon labels is optional, as the system does not use them

to fix the outer and inner extents of complex polygons when automatically

9

deriving the topology. A not necessarily unique Attribute code is supplied by

the user for each arc and polygon label at the time of digitising. The system

also assigns to each a unique internal sequence number.

When the polygon topology is generated, each polygonal area formed is also

assigned a unique internal sequence number by the system, together with the

attribute code supplied by the user for the polygon label contained within the

polygon (or zero if there is no label within the polygon). The system also

creates a polygon attribute table and an arc attribute table which can be

accessed by the user through the INFO relational database system. These tables

contain one record for each polygon or arc, and initially hold the system number

and user attribute code, and the area and perimeter of polygons and the topology

and length of arcs (E5R1, 1985, pp 2.12 - 2.16). The user may store additional

attributes in these tables, or in additional attribute tables which can be

associated with these tables using relational operations.

The data structures and the commands provided by ARC/INFO give the user

considerable flexibility in how area objects are represented. For example, the

user could assign a unique code to each polygon label (and thus each polygon),

and regard the polygons as being similar to LOGUs (as in GEOGRAF and DLG-3).

Several overlapping sets of area objects could then be represented in the same

data set by holding a list of area codes for each polygon in the polygon

attribute table. The attributes of each set of area objects could be held in

separate attribute tables.

An alternative approach would be to use a separate data set for each set of non-

overlapping areas, and assign their area codes to the polygon labels. The

polygons would then correspond directly to the detached parts of area objects

10

(as in POLYVRT and GIRAS), and the attributes of the area objects could he held

in the polygon attribute table and/or in additional attribute tables. ARC/INFO

functions for spatial manipulation support either approach, although the

organisation of the file system encourages the use of coverages (separate data

sets) for each kind of area object. With this latter approach, an individual

object within a coverage is represented by its corresponding polygon instead of

being unduly fragmented.

ARC/INFO automatically establishes the existence of holes when deriving the

polygon topology, and defines the spatial extent of each polygon by the arcs of

its outer perimeter followed by the arcs of any interior holes as in GIRAS.

However, this information is held within the ARC structure, and is not

accessible by the user. It is possible to discover that holes exist in an area

object from the topological information about the polygons and arcs held in the

INFO structure, but it is not always possible to discover which are the outer

and inner extents of the polygon. Thus it may not be possible to answer

questions about the containment relationships between area objects, such as

whether one area object totally surrounds another.

The Working Group on Terms and Definitions of the American National Committee

for Digital Cartographic Data Standards held that 'holes in cartographic objects

constitute a gap in our knowledge' (Moellering, 1984, p 24). HDS and GIRAS

addressed this problem but both rely on the input of object-related information

for extracting the relationships between boundaries. ARC/INFO and DLG-3 also

recognise the existence of holes. However, only HDS makes explicit the

hierarchy of geometric polygons.

11

3. DISASSOC1ATIVE AREA MODEL (DAM)

This model disassociates the geometric and geographic components of areas with

holes for separate academic consideration. This section briefly outlines the

essential features of this model and then compares it with its predecessors.

3.1 Geometry

Using only the geometry of the bounding lines, the areal map can be dissected

into a set of non-overlapping parts, which we call primitive regions. For

example, the linework of Figure la results in eight primitive regions (A - H),

including one (A) which surrounds all the other primitive regions. The

primitive region is similar to the LCGUs of GEOGRAF.

At this stage, primitive regions exist only in concept. The representation of

the topology hinges on the boundary. Figure lb shows the set of boundaries

required to describe the primitive regions of Figure la. Each boundary is a

closed loop, with direction, which defines one extent of a primitive region. A

boundary can be sub-classified as being either an enclosing boundary or a hole.

The outer boundary of a primitive region is known as an enclosing boundary, and

any inner boundaries are known as holes. Thus each boundary forms an extent of

one, and only one, primitive region and each primitive region is bounded by one

enclosing boundary and zero or more holes. There is one exception to this - the

outermost primitive region has no enclosing boundary but just one or more holes

(in Figure lb the outermost primitive region is described by holes 1 and 5).

This primitive region forms the complement of the union of all the other

primitive regions on the plane surface.

1

2

3

4

outermost enclosing
boundary

5

2 	3 	4

enclosing

hole

enclosing

hole

enclosing

12

FIGURE 1

Representation of the geometry of area objects

A

E

F

key

links

primitive
regions

A - H

G

H

a) The primitive regions formed by the linework of a map.

..................

— key

links

holes
.-2- 	enclosing

boundaries
(with their internal
system numbers and
direction)

—k

b) The set of boundaries which describe the above primitive regions.

level 	 type of

in tree 	boundary

c) The rooted tree representing the containment hierarchy of the boundaries.

13

Each boundary has a separate existence within our intermediate data structure.

Boundaries are equivalent to a closed loop in geometry, but they also have an

associated direction to distinguish enclosing boundaries from holes. Where one

primitive region completely surrounds another primitive region, the hole in the

outer primitive region and the enclosing boundary of the inner primitive region

are identical in shape. The two boundaries, however, remain unique since they

have opposite direction (for example see boundaries 7 and 8 in Figure lb). The

direction of a boundary thus relates it to one specific primitive region.

Boundaries are composed of links which are similar to arcs. DAM is unconcerned

as to how the link geometry is represented. It does, however, assume that the

links do not cross and that they are node-matched in order to extract the

boundaries. It would therefore be necessary to pre-process spaghetti digitising

into a link and node structure. An algorithm for forming the boundaries from a

set of links is given in Section 4.1.

When primitive regions all occur at the same level, that is, when there are no

nested holes, there is a one-to-one correspondence between boundaries and

primitive regions. For example, if the outermost primitive region, A, is

excluded from consideration, there is a one-to-one correspondence between B, C,

D and 2, 3, 4 respectively. Thus each primitive region may also he assigned the

identity of its enclosing boundary. Links provide the adjacency relationships

between boundaries and their corresponding primitive regions as in GEOGRAF.

When primitive regions (and therefore holes) are nested, there is a many-to-one

correspondence between boundaries and those primitive regions containing holes.

The links continue to provide the adjacency relationships between boundaries,

and also between clusters of adjacent primitive regions. The problem is that

14

the identity of primitive regions containing holes remains unknown. What

exists, instead, is the distinct references to separate boundaries at the outer

and inner extent of such primitive regions, and no single reference to the

primitive regions themselves. For example, boundaries 6, 7, and 9 remain as

separate references and there is no knowledge at this stage that they all belong

to E.

The containment relationships between a complete set of boundaries can be viewed

as forming a hierarchy which can be represented by a rooted tree. The root of

the tree consists of a nominal reference to the enclosing boundary of the

outermost primitive region, that is, the part of the plane surface which

surrounds all the other boundaries. Each boundary is enclosed spatially by

every boundary which precedes it in the tree but no other. When two boundaries

are identical in shape, the one which is a hole is considered as surrounding the

one which is an enclosing boundary. Thus the level of each boundary in the tree

is equal to the number of other boundaries which surround it. Also, boundaries

at even levels of the tree will be enclosing boundaries and those at odd levels

will be holes. Figure lc illustrates the general case of the rooted tree. Note

that the tree is not an ordered rooted tree as there is no set order to the

edges leaving each vertex of the tree.

This hierarchical system can be applied to any set of boundaries irrespective of

their complexity. For example, currently the area within hole number 7 is uncut

and forms a single primitive region. It could feasibly be cut into a number of

primitive regions, as is the area within hole number 9. Some of these primitive

regions may in turn contain further holes. However, this would all be

represented by suitable branches starting from boundary 7 in place of the one

shown.

15

It is also possible that the map frame will be digitised around all the

boundaries (see Figure 2a). This would have the effect of creating additional

boundaries and primitive regions. If the map frame does not touch any of the

other boundaries (as in the figure), then the hole and enclosing boundary

created by the map frame would be at levels 1 and 2 respectively in the tree,

and all the other boundaries would be moved down by two levels. Figure 2b shows

the revised tree.

The derivation of such a tree fully resolves the containment relationships

between the boundaries - and thus also the spatial extent of the primitive

regions - since the holes within each primitive region immediately follow the

enclosing boundary for that primitive region in the tree. The set of holes at

level I of the tree describe the holes in the outermost primitive region, whose

enclosing boundary is undefined. The tree also makes the nesting of primitive

regions within holes in other primitive regions explicit. The derivation of

this tree for a set of boundaries is a one-off process requiring an exhaustive

spatial search. Forerunners to DAM were constrained by the inability in

practice to resolve fully the relationships between the boundaries. An

algorithm which attempts to minimise the computation required is given in

Section 4.2.

Once a primitive region assumes an identity, it becomes the basic building block

for area modelling and forms the pivot between the geometry and the geography as

in GEOCRAF and its derivatives.

-- 12 -•

16

FIGURE 2

The implications of including a map frame

a) Boundaries 12 and 13 are the hole and enclosing boundary formed by a map
frame which does not touch any of the other boundaries.

outermost enclosing
boundary

12

•

....

• • •

level
in tree

0

1

13 • • • • ,

I 5 3
/ I N I
2 	3 	4

/

6

\

. . . . 4

7! /(9\

. • • • 5

8 10 	11 • • • • 6

b) The revised tree of boundaries;

17

3.2 Geography

Area objects are specific instances of different types of geographic phenomena.

Some applications require only simple objects, such as a description of the

administrative areas at a specified level. Others require complex objects, such

as a hierarchy of administrative areas. Each application may define its own set

of types of simple and complex objects.

The spatial descriptions and other attributes of area objects may be provided in

different formats by various sources; and applications may require access to

some or all of these descriptions. DAM provides an application independent

model of geometric entities and a framework for integrating the geographic and

geometric descriptions where necessary. At the bottom-most level, there may be

a one-to-one mapping between objects and primitive regions in the simplest case

(Figure 3a). Where there are disjoint parts, there is a one-to-many

relationship between objects and primitive regions (Figure 3b). DAM allows a

variable number of objects to be associated with each primitive region, that

a many-to-one mapping (Figure 3c). Thus it copes with both hierarchic objects

(administrative hierarchies) as well as objects which overlap at any one level

(broadcasting areas). Most other models cannot cope with the latter case.

DAM is not a universal model of topographic, let alone geographic, phenomena.

It does, however, provide a framework for the flexible input of geographic area

information in a variety of formats. For example the data about area objects

might be associated with the links, or with digitised points which lie within

the objects, or both. Alternatively, the user could point to the primitive

regions which belong to each area object once the digitising of the links has

been completed. In addition, information may be available from other sources,

18

FIGURE 3

Relating area objects to the primitive regions

A

a b c

B C 0

key

A - D 	primitive regions

a - c 	area objects

a) Simple area objects have a one-to-one relationship to primitive regions.

A

a b a

B C I)

b) Area objects with disjoint parts have a one-to-many relationship to primitive
regions.

A

a a & b b

B c D

c) Overlapping area objects have a many-to-one relationship to primitive
regions.

19

such as a table which defines how a single level of objects form a hierarchy.

Since phenomena under consideration and the input format are both variable,

further development of DAM requires an interface to a rule-processing facility.

Ad hoc processes, based on a given rule-set, must otherwise be provided for

integrating the geography with the geometry and for data validation and

automatic editing.

DAM adopts a 'human' view of the geometry of area entities in that, given the

links, it is possible to extract a unique identity for each primitive region, to

establish adjacency relationships and also to extract the information about the

nesting of primitive regions. Since the geometric and geographic relationships

are each processed separately and then related via the primitive region, DAM

also provides a capability for cross-checking the geometric and geographic

information (this is illustrated in Section 5 below).

Once the object data has been assigned to the primitive regions, the boundaries

of geographic objects can be computed. This is done by forming the union of the

primitive regions belonging to each object and discarding any internal lines.

Each geographic object comprises one or more disjoint parts, and each disjoint

part can be described by one outer boundary and zero or more inner boundaries in

a similar way to the geometric primitive regions. The boundaries are stored as

an ordered list of links. Through the links, the adjacent primitive regions,

and thus adjacent areas, to this area can be found. In addition, if a list of

the constituent primitive regions is kept for each object and a list of objects

is kept for each primitive region, spatial relationships between areas can

easily be determined.

20

3.3 Comparison of DAM with predecessors

Most modern data structures which represent areas in vector form use a POLYVRT

type chain and node structure for holding the geometrical extent of area

objects. However, whilst the chain and the polygonal boundary are also used in

POLYVRT as a direct interface to the topology and the spatial extent of area

objects respectively, successors to POLYVRT have introduced intermediary

constructs in an attempt at greater flexibility.

GEOGRAF uses the LCGU as a building block for forming area objects. The chain

now assumes a geometric role, and holds the topology of the LCGUs. The topology

of the area objects is represented by the chain group. However, the LCCU

(unlike DAMs primitive region) is assumed to be simply connected, and so there

is a one-to-one correspondence between the boundary and the LCCU. This prevents

the explicit representation of holes.

In HDS and GIRAS the chain once again has the topological role of separating two

area objects (as in POLYVRT). The role of the polygonal boundary is altered,

however. Instead of assuming that there is a one-to-one correspondence between

polygonal boundaries and area objects, these structures define the spatial

extent of an area object by one or more directed polygonal boundaries, thus

allowing the representation of objects with holes. Both systems automatically

establish the connection between the polygonal boundaries at the outer and inner

extents of an area object; HDS goes further and makes explicit the full

containment hierarchy between the enclosing boundaries and holes in a similar

way to DAM, although Edwards et al (1977) conceived of them as interior and

exterior regions respectively. Importantly, the areas formed by intersecting

interior with the appropriate exterior regions in HDS may in some circumstances

21

consist of more than one primitive region. This is due to the method used for

boundary formation, which could result in a non-unique set of boundaries.

Consequently, the interior and exterior regions may not form a hierarchy, let

alone a unique one.

GIRAS differs from DAM in that, as in HDS, the directed polygonal boundaries are

the boundaries of geographic objects, rather than geometric primitive regions.

Both utilise information about the area objects when computing the containment

between polygonal boundaries, instead of resolving it from the locational (or

geometric) information alone - some reasons for considering the geometric and

geographic information in isolation and only connecting it once the topology is

formed were given in Section 1.

ARC/INFO, with its data structures and commands, allows geometric and geographic

information to be considered separately and the topological relationships to be

computed from only the geometric details. However, whilst it discovers the

existence of holes, it defines the topology of the polygons formed only in terms

of their adjacencies and does not record the containment relationships. Within

ARC, the spatial extent of each polygonal area is described by a list of the

arcs needed to create its boundaries; the arcs of the enclosing boundary being

the first in the list. However, neither this list nor the coordinates of the

arcs are accessible through INFO. It is difficult therefore, and sometimes

impossible, to answer questions about the containment relationships between area

objects. For example, a user would find it difficult to establish whether A

contains B or B contains A, or to determine the areas contained by A.

The GIRAS model included some explicit information on containment. Fegeas et al

(1983, p 13) described one reason for this, namely that this would make it easy

22

for small polygonal areas to be eliminated or combined with larger surrounding

areas, for example for cartographic and information generalisation. We also

anticipate that the hierarchic structure of DAM, taken in conjunction with other

properties, could be of value for the automatic recognition of area objects.

The inclusion of containment relationships in the polygon attribute table of

ARC/INFO would greatly extend its usefulness at least for the semi-automatic

verification of attribute data. Alternatively, the topological information in

ARC could be represented in a relational form and made (read-only) accessible to

users through INFO. Others (van Roessel and Fosnight, 1985, and Kirby et al,

1986) have established that the topological information can be held and

manipulated in relational form.

ARC/INFO and GIRAS do not maintain a separate identity for each boundary, but

instead just give an ordered list of arcs which describe the outer and inner

extents of each polygon. Thus if these systems were to make explicit the

containment hierarchy in a similar way to HDS and DAM, it would be a hierarchy

of polygons (that is, primitive regions) rather than a hierarchy of boundaries.

Whilst it would give the containment of polygons within other polygons, it would

not indicate the clusters of polygons which lie within each hole of another

polygon. Thus some of the information concerning nesting is lost (see

Figure 4).

DAM provides a synthesis of its predecessors and identifies the essential

functions of the unit line, unit boundary, unit of space, and unit object of

given area types. Within a specific pragmatic model, the functions of these

various parts may be replicated or transferred to other units for efficient

computer handling or for improving the user interface.

23

It is possible to deduce and use any pragmatic model, which is consistent with

DAM, to specify data formats for various tasks, for example for data input,

output, or transfer. As a corollary, DAM can be used to evaluate whether a

complete and coherent description of area objects can be derived from a proposed

pragmatic model. DAM was in fact constructed precisely for that purpose as

described in Section 5.

FIGURE 4

Implications of storing the hierarchy of primitive regions rather than of
boundaries

A

\
F 	G 	H

The rooted tree representing the containment hierarchy of the primitive regions
in Figure la. There is no information about the clusters of adjacent primitive
regions within each hole in a surrounding primitive region (cf. Figure lc).

24

4. DERIVING THE TOPOLOGY

This section describes algorithms for deriving the topology of a set of

primitive regions from the geometry of a set of node-matched links. This

operation has two distinct stages: first, a set of boundaries are extracted from

the links; then the containment hierarchy between the boundaries is computed.

The data structure used during these operations is also given.

4.1 Extracting the Boundaries

This process connects together a set of links to form a set of closed

boundaries. The process assumes that the links have been topologically

structured into a link and node structure; if necessary, the data must be pre-

processed to convert it to this form.

The links are encoded using the link, node, and coordinate records shown in

Figure 5. These records are similar to the structure used by the POLYVRT

system. One link record is used for holding the details of each link. The

coordinates of the two end points of the link are stored in node records, whose

record numbers are kept in the link record. The internal points of the link (if

any) are stored separately in a contiguous block of records in the coordinates

file. The record numbers of the first and last coordinates are again kept in

the links record. There need be no restriction on the number of internal points

in a link, although it may be desirable to set an upper limit for implementation

purposes, in which case long links can be split into two or more. The envelope

(that is enclosing rectangle) and area underneath a link are calculated and held

in the link record, as these values are each required several times later. The

area is obtained by summing the area of the trapezium underneath each

internal
coordinates

end
*---node

direction in
which stored

FIGURE 5

Data structure used for holding the geometry and topology of the linework of
area boundaries

25

boundaries

boundary
level

surrounding
boundary

envelope
area

enclosed
list 	of
links

bounding links

link
next

J
 (+1-)

links

start
node

end
node

first
coordinate

last
coordinate

envelope
1

area
underneath

left
boundary

right
boundary

nodes

easting northing
list of
links

connected links

next
link
(+/-)

bearing

coordinates

easting] northing

Example of a link 	 Calculation of area underneath a link

A
northing

k,,,start node

xiYi

0 1 0

x2Y2

x y

X
1 x5'5

•

easting

4

	

7 	1

	

area underneath = L 	-(x -
x.1+11)(y. + y.) +1

i=1

....4,4.

U [Men" I,

.1117.:•-;. 71
U

F.--'1 	..1-

26

consecutive pair of points in the link using a standard formula (see Figure 5) -

this yields a negative area for some links, which is used to advantage later.

For example, this formula would yield a negative area for the example link in

Figure 5; however, if the link was stored in the opposite direction (that is

x
5
y
5
is x

1
y
1
and so on) then the area obtained would have the same magnitude but

be positive.

There is one node record for each location where one or more links start and

end. With each node is kept a list of the record numbers of the links which

meet there. The record number is signed to indicate whether the link starts

(positive) or ends (negative) at the node. The bearing at which each link

leaves or enters the node is also held, and the lists are sorted on this field

before the boundaries are formed so that the links are referred to in a

clockwise order around the node.

Once all the links have been added to a database, the process of boundary

formation can take place. One boundary record is used to hold the details of

each boundary. An ordered list of the links which describe each boundary is

formed, and the envelope and area enclosed are calculated. The algorithm used

to form each boundary works by initially selecting one link, and then taking a

succession of leftmost links radiating from the previously selected link until

the beginning of the first link is reached again. This is now the preferred

method used by several systems, as it only uses the geometric information about

the links. Many earlier systems (such as POLYVRT and HDS) used information

about the area objects on the left and right of the links when chaining the

boundaries. Such a method is not suitable for systems which have moved away

from the input of links together with left/right area codes (as in GIROS and

ARC/INFO).

27

The method for forming the boundaries is given by the following pseudo-code.

The names of variables are given in upper case, and references to the database

have the form 'RECORD NAME [RECORD NUMBER].FIELD NAME', for example

'LINKS II1.START NODE' refers to the value held in the 'start node' field of the

ith ,
links' record. Comments to explain the logic are enclosed by curly

brackets.

Algoritbn to form the set of boundaries of a set of links

let BOUND --- 0 {a counter for the number of boundaries formed}

for each LINK

if LINKS [LINK].LEFT_BOUNDARY is still unknown

then {form the boundary on the left of this link}

let BOUND = BOUND + I

call FORM BOUNDARY (BOUND, LINK)

end if

if LINKS [LINI].RIGHT BOUNDARY is still unknown

then {form the boundary on the right of this link}

let BOUND = BOUND + I

call FORM BOUNDARY (BOUND, -LINK)

end if

end for

[BOUND now holds the number of boundaries formed]

Procedure to form the boundary on one side of a specified link

procedure FORM BOUNDARY (BOUND, START LINK)

let LINK = START LINK

let BOUNDARIES [BOUND].ENVELOPE = LINKS [abs (LINK)].ENVELOPE

let BOUNDARIES [BOUND).AREAENCLOSED = 0.0

repeat {chain round the links which describe this boundary)

if LINK > 0

then {the boundary on the left of the link is being formed, so traverse
the link in its stored direction, that is from its start node to
its end node}

let LINKS [LINKI.LEFT BOUNDARY = BOUND

let BOUNDARIES [BOUND].AREA_ENCLOSED =
BOUNDARIES [BOUND].AREA ENCLOSED 	LINKS [LINK).AREAUNDERNEATH

let BEST NODE = LINKS [LINK].END NODE

else the boundary on the right of the link is being formed, so
traverse the link in reverse direction, that is from its end node
to its start node)

let LINKS [-LINK).RIGHTBOUNDARY = BOUND

let BOUNDARIES [BOUND].AREA ENCLOSED =
BOUNDARIES [BOUND].AREAENCLOSED - LINKS [-LINK].AREA UNDERNEATH

let DEST NODE = LINKS [-LINK].START NODE

end if

let BOUNDARIES [BOUND].ENVELOPE = the maximum extents of the union of
BOUNDARIES IBOUND).ENVELOPE and
LINKS [abs (LINK)].ENVELOPE

append LINK to the list of links of BOUND

{find the entry in the list of links of DEST NODE for LINK entering the
node {or leaving it if LINK is being followed in reverse direction))

let POINTER = NODES [DEST NODE).LIST OF LINKS

while CONNECTED LINKS (POINTER].LINK 0 -LINK

let POINTER = CONNECTED LINKS [POINTER].NEXT

end while

Ifs

L7

{assign the next link in the list of links of DEST NODE to LINK. This
is the next link to leave or enter DEST NODE when moving round the
node in a clockwise direction, and will be the next link followed to
continue the formation of the boundary)

if CONNECTED LINKS [POINTER].NEXT = nil

then the entry for -LINK is the last in the list of links of
BEST NODE, so loop round to the first entry in the list)

let LINK = CONNECTED LINKS [NODES [REST NODE).LIST OF LINKS].LINK

else

let LINK = CONNECTED LINKS [CONNECTED LINKS [POINTER].NEXT].LINK

end if

until LINK = START LINK

end procedure

At the end of this process each link is part of two boundaries, where the

boundary on its left has the same direction as the link, and the boundary on its

right has the reverse direction. As a result of the method used for chaining

the boundaries, it is automatic that enclosing boundaries have an anti-clockwise

direction and holes have a clockwise direction. A further consequence is that

enclosing boundaries have a positive area and holes have a negative area. This

is the area enclosed by the boundary, and not that of the corresponding

primitive region. The boundary does not have a separate identity in the

ARC/INFO and LIRAS data structures, and so they only record the area of the

primitive region. Note that the area of a primitive region can be derived by

summing the areas of all its boundaries in DAM, whereas the converse (obtaining

the area enclosed by a boundary) is not possible in ARC/INFO and LIRAS.

Each boundary has a separate existence within our data structure. The

adjacencies between boundaries are given by the link records. However, where a

primitive region contains holes, there is as yet no connection between the

30

enclosing boundary of the primitive region and the boundaries which describe its

holes. For example, there would be no connection between enclosing boundary 6

and holes 7 and 9 in Figure lb. The set of holes belonging to the outermost

primitive region have also not been identified. These relationships need to be

resolved, and an algorithm for computing this will be described next.

4.2 Forming the Containment Hierarchy

As mentioned in Section 3.1, forming the containment hierarchy of a set of

boundaries fully resolves the relationships between the boundaries, and thus the

topology of the primitive regions. This hierarchy can be represented by a

rooted tree, and the derivation of this tree for a set of boundaries is a one-

off process. Edwards et al (1977, pp 20 - 22) describe the algorithm used in

their HDS system; it utilises information about the area objects, and lacks the

efficiency of the method given below. Information about area objects (the

position of the polygon label) is also used in the GIRAS system in order to

determine the outer and inner extents of a primitive region (Mitchell et al,

1977, p 11). However, the description of the algorithm used is not sufficiently

detailed to allow comments on its efficiency. In ARC/INFO, no geographic

information is used in resolving the primitive regions, as the supply of polygon

labels by the user is optional. The ARC/INFO Users Manual (ESRI, 1985),

however, does not explain the methods used.

A novel algorithm for forming the containment hierarchy between a set of

boundaries follows. It does not require any geographical information, and it

attempts to minimise the computation required. During the process, the first

two fields of the boundary records are completed (Figure 5); that is the level

of each boundary in the tree and also which boundary immediately precedes each

31

boundary in the tree are ascertained. This information gives a complete

description of the rooted tree.

The first part of this process is to find the immediate descendants of each hole

in the tree:

Algorithm to discover the enclosing boundaries which immediately follow each

hole

for each HOLE {that is, those boundaries with a negative area}

push HOLE onto an empty stack

repeat

pop an item off the stack into BOUND

{loop for each link in the list of links of BOUND}

let POINTER = BOUNDARIES [BOUND].LIST2FLINKS

while POINTER 0 nil

let LINK = BOUNDING LINKS [POINTER).LINK

if LINK > 0

then {BOUND is on the left side of LINK}

let ADJACENT BOUND = LINKS [LINK].RICHTBOUNDARY

else {BOUND is on the right side of LINK)

let ADJACENT BOUND = LINKS [-LINR].LEFT BOUNDARY

end if

if ADJACENT BOUND 0 HOLE and
BOUNDARIES [ADJACENT_BOUND].SURROUNDINGBOUNDARY is still unknown

then

push ADJACENT BOUND onto the stack

let BOUNDARIES [ADJACENT BOUNN.SURROUNDING BOUNDARY = HOLE

end if

32

let POINTER = BOUNDING LINKS [POINTER).NEXT

end while

until the stack is empty

end for

Applying this to Figure lb, when following the links of hole 1, enclosing

boundaries 2 and 3 will be identified as being surrounded by hole 1, and they

will be pushed onto the stack. When following the links of the next boundary

taken from the stack (either 2 or 3), enclosing boundary 4 will also be

identified as being surrounded by hole 1, and it too will be pushed onto the

stack. The stack will then be emptied by the next iterations as there are no

further immediate descendants of hole 1. Note that the algorithm identifies all

immediate descendants of a hole, even if they do not share any common links with

it (for example enclosing boundary 4 was correctly identified as following

hole 1).

The same process would take place for holes 5 and 7, thus identifying the

surrounding hole for enclosing boundaries b and 8 respectively. Hole 9 would

also be found to surround enclosing boundaries 10 and 11.

The second part in the process is to find the immediate descendants of each

enclosing boundary in the tree:

Algorithm to discover the holes which immediately follow each enclosing

boundary

for each HOLE

initialise an empty list for the possible surrounding boundaries of HOLE

33

for each ENCLOSING BOUNDary

{perform an envelope and area test}

if BOUNDARIES [HOLE].ENVELOPE is properly contained in
BOUNDARIES [ENCLOS1NG_BOUND].ENVELOPE and

-(BOUNDARIES [HOLE].AREA ENCLOSED) <
BOUNDARIES [ENCLOSING BOUND].AREA ENCLOSED

then

add ENCLOSING BOUND to the list of possible surrounding boundaries
of HOLE

end if

end for

let FOUND = false

obtain the coordinates of an arbitrary point on the polygon of HOLE

while the list is not empty and not FOUND

remove the ENCLOSING BOUNDary with the smallest area from the list

if the point from the polygon of HOLE is enclosed by the polygon of
ENCLOSING BOUND {perform a point-in-polygon test}

then {HOLE is an immediate descendant of ENCLOSING BOUND in the tree}

let FOUND = true

let BOUNDARIES [HOLE].SURROUNDING BOUNDARY = ENCLOSING BOUND

end if

end while

if not FOUND

then {there is no boundary which surrounds HOLE, and thus the hole is
at level 1 of the tree}

let BOUNDARIES [HOLE].SURROUNDING BOUNDARY = 0 {a rogue value}

let BOUNDARIES [HOLE].BOUNDARYLEVEL = 1

end if

end for

34

Returning to Figure lb, no enclosing boundaries will be found which surround

holes I and 5, so a surrounding boundary of 0 is recorded. In addition, their

level will be recorded as 1. The envelope and area test will suggest that hole

7 immediately follows enclosing boundary 6 in the tree, and this will be

confirmed by the point-in-polygon test. Similarly hole 9 will be connected to

enclosing boundary 6.

The final part of the process is to determine the level of each boundary. This

is straightforward - the holes at level 1 are known, and so the enclosing

boundaries which are surrounded by these holes are found and recorded as being

at level 2. The holes surrounded by these enclosing boundaries can then be

found and recorded as being at level 3, and so on, and this continues down the

hierarchy. This completes the formation of the tree.

35

5. AN APPLICATION OF DAM

This section briefly describes how DAM was used in a project we undertook to

derive hierarchic area objects from an Ordnance Survey (OS) database of feature

coded vectors.

5.1 Background to the OS 1:625,000 Data

The 1:625,000 database was established by the Ordnance Survey for purposes of

experimentation by themselves and others. The aim was to provide positive

evidence towards the design of the 1:50,000 database (Haywood, 1984). The

structure of the database was recognised as a crucial factor influencing not

only the usefulness of a small—scale database but also its feasibility. The

structure has implications for the cost of initial data capture and subsequent

maintenance of the database.

It should be emphasised that the data we received was transferred from a

database that the OS did not regard as final in terms of design nor complete as

far as the data content was concerned. A systematic search for errors and

omissions had not been carried out; these were known to exist, but their extent

was completely unknown.

The OS database design considered the cost effective capture of data from maps

to be one of the most important influences. We undertook to evaluate whether

the OS design for representing the hierarchy of administrative areas (districts,

counties, and countries) was adequate in concept, structure, and content for

other purposes. The OS database does not provide an explicit description of the

boundaries of the areas, nor does it give the hierarchical and spatial

36

relationships between them (for example which districts belong to a county, or

which counties are adjacent to one another). Instead, it just holds the

essential topographic details of area objects using 'links' and 'area-seeds'.

Each link is a line (described by an ordered list of Cartesian coordinates) with

an associated feature code which indicates the type of administrative boundary

it represents. Only one link exists for each part of a boundary, and the

feature code corresponds to the highest level of administrative area to which

the boundary belongs. Since the administrative units form a hierarchy, it could

be inferred that the boundaries of high-level objects also form a boundary of

objects below them in the hierarchy and that the coastline could form all other

boundaries.

Each detached part of an administrative unit is indicated by an area-seed, a

representative point within the polygon enclosing that part of the object. This

polygon is similar to a GEOGRAF polygon. The area-seeds carry the name of the

area, and also have an associated feature code to identify the type of area to

which they relate. For the administrative areas there are codes for national,

county, metropolitan county, and district, and also a further set of codes for

the seaward extensions of the administrative areas.

This pragmatic data model is extremely convenient and cost-effective for data

capture since it records once, and only once, each explicitly recorded map

detail. However, a consequence is that the extraction of area objects is quite

complex.

37

5.2 Extraction of the Geometric Topology

Our first task was to extract the links and area-seeds relating to the

administrative areas from the remainder of the OS data. The links were stored

in a POLYVRT type structure - this conversion was straightforward, as the links

for the administrative boundaries do not cross one another and only meet at

their end points. This stage was only concerned with the geometry, or course,

of the links; however, the link feature codes and the area-seeds were also

stored for later use.

The OS data is divided into units of 100 x 100 km. squares, based upon the

National Grid. These units are referred to as 100 km. libraries. We were

supplied with four such libraries which together made a 200 km. square whose

south-west corner had the grid reference SN 000000. The four libraries were

amalgamated into a single data base to ease subsequent processing. However,

areas along the edge of the 200 km. square remained cut and their links remained

as dangling lines. Extra links which corresponded to the edge of the 200 km.

square were therefore inserted into the database so that the boundaries of the

incomple to areas became closed.

The last part of the geometric processing was to form the boundaries of the

primitive regions and calculate their containment hierarchy, as described in

Sections 4.1 and 4.2 respectively.

5.3 Identification of Area Objects

In the OS scheme, the construction of an area object begins with the retrieval

of all its area-seeds. From each area-seed a spatial search takes place

38

according to a set of rules to find a node, that is, a link end point, which

lies on the outer boundary of that area. Links are then chained from this

starting node, according to further rules, to form a complete polygon. This

process identifies the outer boundary of each disjoint part of the area object.

Further checks and processing are required to establish whether there are any

holes within the area, and if so to determine their boundaries.

In our scheme, the aim is to classify each unit of space (that is, primitive

region), rather than identify the linework of the area boundaries. This

involves finding the name and type of district, county, and country of each

primitive region. By focusing on the primitive region it is possible to provide

a more coherent representation of area objects. For example, the representation

of the containment relationships between primitive regions makes it unnecessary

for repeated spatial searches to establish whether area objects contain holes.

Also, the knowledge of the spatial relationships between the primitive regions

enables checks to be carried out to ensure that the relationships between area

objects are consistent.

Figure 6 illustrates the techniques that were used to name the primitive

regions. The various line styles indicate the feature codes that were supplied

with the links. Firstly, each area-seed was allocated to a primitive region by

using a point-in-polygon test to find the primitive region containing it, and

its associated attributes (the type of the area-seed and the name of the

administrative unit) were assigned to the primitive region. Figure 6a has the

area-seeds marked upon it.

The next process was to search outwards and inwards from these named primitive

regions to find neighbouring primitive regions which belong to the same object,

39

key

di

ni
1 d 4

CI

n1
cl,c2
dl—d7

FIGURE 6

The naming of primitive regions

dE
1- ---

t2 	f

coast links
county links
district links
links corresponding
to the map frame
added by our software

national area—seed
county area—seeds
district area—seeds

cr

a) The attributes of the area—seeds are assigned to the primitive regions
containing them.

ni 	. 	..,.. . . ; , 	• 1 7. 	odi II
E 	. .;.....i_i 	1

1-2 f-I
i

Oc

b) The attributes of named primitive regions are assigned to unnamed neighbours
which belong to the same administrative unit.

._.c1

ri4 I

. 	. 	. 	. 	— . 	. 	.

c) Names are deduced where area—seeds are intentionally omitted in the OS data,
and the sea is identified.

40

that is, a named administrative unit. The knowledge of the spatial

relationships between the primitive regions made this a thorough and efficient

process. Each search started from a seeded primitive region. If the feature

code of a link which bounds the primitive region was below the level of the

seed, the name was also given to the adjoining primitive region if it was still

unnamed. The extent of this search was limited by a link at an equal or higher

level than the seed. Figure 6b illustrates this process.

Following this there were still some primitive regions which were not named at

all levels. This arises because:

1) The area-seeds for some area objects, which were cut by the map edge,

occurred outside the map edge and were thus missing from the subset we

received. This type of omission could not be overcome and so these areas

could not be named. The existence of these unnamed objects was established

however.

2) Some omissions in the OS data were intentional. Islands do not contain

national area-seeds, and seaward extensions do not contain national and

sometimes county area-seeds. It was possible to deduce the names in such

cases from other information. For an island, its nationality was taken from

a land counterpart which had the same district or county name. If missing,

the nationality and county of a seaward extension was similarly taken from a

land counterpart with the same district name.

There was one further set of unnamed primitive regions which arose from the

system of identifying each unit of space: those which represent the sea. It was

possible to name these primitive regions as such by starting from any one

41

primitive region whose land/sea status was known and expanding outwards and

inwards. The land/sea state changes of course every time a link with the

coastline feature code is crossed.

Figure 6c shows the naming of the primitive regions after all the above

processing. There is one primitive region whose county is unknown and three

whose district is unknown due to these areas being truncated by the map edge.

There is also one on the left edge of the map whose nationality has not been

supplied and cannot be deduced. It is known to be land, however, due to the

wider context made explicit by the processing.

It was then possible to build the hierarchy of administrative areas within the

restrictions caused by the lack of data. This involved:

1) the allocation of districts to counties, and counties to countries; and

2) the extraction of the boundaries of the areas by aggregating their primitive

regions and eliminating internal boundaries.

The area objects do not yet exist as such within the system; instead, they are

held as attributes of the primitive regions. However, there is the knowledge

within the system for the extraction of the entire hierarchy of area objects in

a variety of forms, including the formats required for transfer to other systems

(such as G1MMS and DLG-3).

The use of an intermediate data structure, based on DAM, which focussed on the

geometric topology of the primitive regions rather than on the topology of the

links, made it possible to validate partially the OS data, for example:

1) that the disjoint parts of area objects at each level of the administrative

hierarchy each contain just one area-seed for that level;

42

2) that each area object is completely bounded by links with the appropriate

feature codes;

3) that the administrative areas form a proper hierarchy;

4) that the type of each area is appropriate to its status as land or sea; and

5) that all areas are named, except those on the edge of the map.

We found just one coding error; the links which form the northern seaward

extension of the England/Wales boundary had been feature coded as a county

seaward extension. This violated the rule that the feature code of a boundary

should correspond to its highest level in the administrative hierarchy.

5.4 Summary of the Project

The project confirmed that it is possible to derive transformations of the OS

1:625,000 experimental data for manipulating hierarchically related objects and

their polygonal descriptions. The object hierarchy had to be inferred from

fragments of information, using the scattered clues and the nesting rules for

the hierarchic link and area-seed feature codes. The concept of the primitive

region, and the knowledge of the geometric topology, provided a convenient

framework for solving the puzzle. Further details of this project can be found

in Visvalingam et al (1985).

A Geographic Information System should be capable of deriving a complete

description of hierarchically related and/or overlapping area objects from

feature-coded map details, that is, fragments of information. In theory,

ARC/INFO appears to be capable of this. However, the verification of the

resulting information base would involve the re-formulation of relatively simple

rules in terms of possibly complex relational operators. Moreover, in some

cases such verification may be impossible if the user does not have access to

all information, especially information supplied by the user (for example,

multiple polygon labels within one polygon).

43

44

6. CONCLUSION

This paper has made a number of contributions and raised several issues. These

can be summarised as follows:

1) The paper presented a critical review of the major academic ideas on

cartographic data structures to date. The functions of the unit line, unit

boundary and unit of space were articulated in POLYVRT, HDS and GEOGRAF

respectively. In ARC/INFO the geometric and geographic descriptions of area

objects were divorced and connected through the unit of space.

2) We then described the Disassociative Area Model (DAM), which provides a

synthesis of the above concepts. DAM is a conceptual description of the

geometric components of polygonal area covers. The model identifies the

essential functions of the unit line, unit boundary, unit of space and unit

object of given data types. The unit of space (primitive region) continues

to connect the geometric and geographic descriptions as in ARC/INFO.

However, we believe that all descriptions can and should be made accessible

by users through use of a single data model in ARC/INFO.

DAM's description of area topology utilises the concept of a tree of

boundaries as proposed in HDS. This tree describes the containment

relationships between the boundaries, and identifies the boundaries which

define each primitive region. Boundaries in Eurn are composed of links (that

is, node matched lines). However, unlike in HDS, LIRAS and ARC/INFO, the

links refer to the boundaries on either side and not to the objects or

primitive regions directly. The boundary thus becomes the connection between

the unit line and unit of space.

45

3) The paper also outlined some data structures and algorithms for the automatic

extraction of boundaries, the tree of boundaries, and thus the primitive

regions, using only the geometric information. The algorithms and data

structures could be adapted to suit specific requirements. For example,

static and variable data sets would require slightly different

representations.

4) DAM provides a convenient framework for the flexible input of geographic area

information in a variety of formats and allows a partial verification of

geometric and geographic components against each other. This

was demonstrated by a case study in which we extracted a complete and

coherent description, compatible with the DAM model, of hierarchically

organised administrative areas from feature coded map details, that is, from

fragments of information.

This was effected through ad hoc processes for integrating the geography with

the geometry and for data validation. However, we believe that this should

be (since it could be) effected through a general purpose GIS. In state-of-

the-art GIS, which tend to be based on the relational model, rule-processing

would be effected with relational operators. This may be an acceptable

solution in the short term, but we believe that the relational model neither

provides a natural user interface for rule-processing, nor an ideal data

model for cartographic phenomena.

We therefore believe that while existing GIS serve a useful role, their

availability should not stifle the quest for fresh ideas.

46

ACKNOWLEDGEMENTS

We are grateful to a number of organisations and individuals. The Science and

Engineering Research Council granted the CASE studentship held by P. Wade, with

the Market Analysis Division of CACI as the collaborating body. The Ordnance

Survey provided a small grant and access to their data and internal

documentation. The University of Hull provided the research base.

We are also grateful to John Griffiths of the C.I.S.R.G. and David Jordan of the

Department of Pure Mathematics, University of Hull, for discussions on

containment tests and terminology in area topology respectively.

47

REFERENCES

Allder, W.R. and Elassal, A.A. (1984) USGS Digital Cartographic Data Standards.

Digital Line Graphs from 1:24,000-scale Maps. U.S. Geological Survey Circular

895-C.

Cooke, D.F. and Maxfield, W.H. (1967) The Development of a Geographic Base File

and its Uses for Mapping. Papers from the Fifth Annual Conference of the

Urban and Regional Information Systems Association, 207 - 219.

Edwards, R.G., Durfee, R.C. and Coleman, P.R. (1977) Definition of a

Hierarchical Polygonal Data Structure and the Associated Conversion of a

Geographic Base File from Boundary Segment Format. An Advanced Study

Symposium on Topological Data Structures for Geographic Information Systems,

Harvard University, Cambridge, Massachusetts.

ESRI (1985) ARC/INFO Users Manual - Version 3. Environmental Systems Research

Institute, Redlands, California.

Fegeas, R.G., Claire, R.W., Guptill, S.C., Anderson, K.E. and Hallam, C.A.

(1983) USGS Digital Cartographic Data Standards. Land Use and Land Cover

Digital Data. U.S. Geological Survey Circular 895-E.

Haywood, P.E. (1984) The Ordnance Survey 1:625,000 Database: General Principles

and Data Structure. Ordnance Survey Internal Report.

Kirby, G.H., Wade, P. and Visvalingam, M. (1986) Storage and Retrieval of

Topographic Data using a Relational Database Management System. Stage 2

48

Report, Ordnance Survey (OS) contract on Computer Handling of OS 1:625,000

Digital Maps.

Laboratory for Computer Graphics and Spatial Analysis (1974) POLYVRT Manual.

Harvard University, Cambridge, Massachusetts.

Mitchell, W.B., Guptill, S.C., Anderson, K.E., Fegeas, R.G. and Hallam, C.A.

(1977) GIRAS: A Geographic Information Retrieval and Analysis System for

Handling Land Use and Land Cover Data. U.S. Geological Survey Professional

Paper 1059.

Moellering, H. (1984) A Working Bibliography for Digital Cartographic Data

Standards. Issues in Digital Cartographic Data Standards, Report No. 5,

National Committee for Digital Cartographic Data Standards, Columbus, Ohio.

Peucker, T.K. and Chrisman, N. (1975) Cartographic Data Structures. The American

Cartographer, 2(1), 55 - 69.

van Roessel, J.W. and Fosnight, E.A. (1985) A Relational Approach to Vector Data

Structure Conversion. Auto-Carto 7 Proceedings (American Society of

Photogrammetry and American Congress on Surveying and Mapping, Washington

D.C.), 541 - 551.

Visvalingam, M., Kirby, G.B. and Wade, P. (1985) Extraction of a Complete

Description of Hierarchically Related Area Objects from Feature-coded Map

Details. Stage 1 Report, Ordnance Survey (OS) contract on Computer Handling

of OS 1:625,000 Digital Maps. (This document is available as an OS Technical

Paper).

