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Abstract 

Density functional theory with Grimme’s empirical correction, DFT-D3, has been used to examine 

the adsorption of a carbon dioxide molecule by different sets of zeolitic imidazolate framework materials 

(ZIF-1 to -4, -6 to -10, and -zni). We have calculated the interaction energy, the dipole moment variation, 

and the charge density difference for the different CO2@ZIF structures. Our study shows a strong 

relationship between the CO2 adsorption energy and the volume of the cavities of the ZIFs: the capture of 

carbon dioxide depends on the shape and size of the ZIFs pore in which CO2 has been inserted. The 

physisorption phenomena that govern the adsorption of CO2 molecule require both π-stacking interactions 

and hydrogen-like bonding. We have found that adsorption does not change the geometry of CO2, but it 

induces a significant structural change in some ZIF structures. 

1. Introduction 

 The increasing concentration of CO2 gas in the atmosphere is one of the major concerns of the 

scientific community today. Numerous studies have begun to explore this topic and propose solutions to 

reduce the high concentration of this greenhouse gas. 

 Using copolymerization of either Zn(II) or Co(II) ions with imidazolate-type linkers (Im), Yaghi and 

his co-workers have pioneered the synthesis of new materials which possess both a high porosity and an 

excellent chemical stability: the zeolitic imidazolate frameworks (ZIFs) 1. These new classes of porous 

crystals are named so due to their structural proximity to zeolites. The equilibrium value of the angle M-Im-

M in ZIFs (where M stands for Zn or Co cations and Im stands for the imidazolate linker) is 145 ° which is 

equal to the Si-O-Si angle in zeolites 2. The development and recent progress of different synthesis strategies 

to generate ZIF materials have been analyzed and summarized by Chen et al 3.  
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Zeolitic imidazolate frameworks have an exceptional ability to capture and separate CO2 from a gas 

mixture. A series of ZIFs have been recently examined for their potential to separate CO2 from CH4, CO, O2 

and N2 gases 4,5. The nature of the interaction between CO2 and ZIFs has been the subject of numerous 

theoretical studies 6–9. Understanding the physical phenomena governing this interaction is of academic as 

well as industrial importance. Different studies have approached this issue by investigating the interaction of 

CO2 with ZIF organic units. The interactions between imidazole and CO2 molecules are mainly dominated 

by Van der Waals forces, including induction, dispersion and electrostatic effects 10. Moreover, the proposed 

CO2@[Znq+Im] (where q = 0,1, 2; Im = imidazole) models of the interactions of CO2 with these subunits of 

zeolitic imidazolate frameworks show that CO2 molecules can be adsorbed through π-stacking as well as σ-

type hydrogen-bonding interactions 11. The aim of the present work is to study the physisorption properties 

of CO2 with a set of ZIF materials. We have limited this work to compounds with chemical composition 

Zn(Im)2. 

This paper is structured as follows: Section 2 describes the details of the computational approach used to 

generate our results. In section 3, we present the optimized set of ZIFs structures (section 3.1) which are 

used as a starting point to trapping a single CO2 molecule. In section 3.2 we report our DFT and DFT-D3 

calculations for adsorbed CO2 molecules in the cavities of the ZIF. The analysis of the charge density 

transformation in CO2@ZIFs complexes are reported in subsection 3.3. The last section is reserved to our 

conclusions. 

2. Computational methods 

 In this study, we have adopted periodical calculations using the QUICKSTEP module 12 built in the 

CP2K program 13 which allows DFT calculations 14,15. This module uses the GPW method 16 allowing a 

better treatment of the electrostatic interactions. The GGA functional PBE 17 has been used to describe 

exchange-correlation effects.  

 We consider ZIF structures that have been synthesized as crystals by copolymerization of Zn(II) with 

imidazolate-type linkers by Yaghi and his co-workers 1: ZIF-1, -2, -3, -4, -6 and 10, and the one (zni) 

synthesized by Lehnert and Seel 18. Moreover, we also investigate the theoretical imidazolate Zn(Im)2 

models, ZIF-7, ZIF-8 and ZIF-9 obtained by Lewis et al. 19 by the removal of substituents from the 

imidazolate rings (-CH3, -C6H4). The ZIF details have been extracted from the crystallographic data base 

CCDC 20, eliminating extra-framework species and the imidazolate substituents when required. 

To improve the description of the long-range dispersion interactions, we have used the DFT-D3 

method where DFT is corrected using an empirical Van der Waals correction suggested by Grimme et al. 21. 

For each atom we have used the TZV2P MOLOPT-GTH basis set 22 except for Zn atoms for which we have 

used a DZVP MOLOPT-GTH basis22. The GTH pseudopotentials in our calculations have been generated 

from fully relativistic all-electrons calculations for each atom23–25. 
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Furthermore, to minimize the total ground state energy, we have used the orbital transformation 

method (OT) 26, where all calculations have been performed at the Γ–point of the Brillouin zone. Periodic 

boundary conditions have been applied in xyz directions. The BFGS optimization method has been used for 

all the calculations using default convergence criteria and default energy SCF convergence criterion of 10-5 

Hartree. 

3. Results and discussion 

1. Geometry optimization of ZIF structures 

 In the first stage, we have performed a geometry optimization to determine the equilibrium structures 

for the different ZIFs (ZIF-1 to -4, -6 to 10, and zni). The total energy has been calculated using both 

DFT/PBE and PBE-D3 methods, the latter leading to an improvement of the long-range dispersion 

interactions. Table 1 summarizes the calculations results along with volume and framework density. 

ZIFs Composition CCDC Code  
Number of 

Zn atoms per 
unit 

Volume in Å3 

Framework 
density  

(Zn/Volume) 
in nm–3 

E ZIFs in eV/Zn 

DFT/PBE DFT/PBE-D3 

1 Zn(Im)2 VEJYEP 8 2310.2 a  3.46 a –3757.010 –3757.660 

        2195.8 b  3.64 b     

2 Zn(Im)2 VEJYIT 16 5691.6 a  2.81 a –3756.990 –3757.561 

        5706.6 b 2.80 b     

3 Zn(Im)2 VEJYOZ 16 6031.4 a  2.65 a –3757.009 –3757.579 

        6024.1 b  2.66 b     

4 Zn(Im)2 VEJYUF 16 4380.5 a  3.65 a –3757.014 –3757.680 

        4344.9 b  3.68 b     

6 Zn(Im)2 EQOCOC 8 3594.3 a  2.22 a –3757.019 –3757.560 

        3470.0 b  2.31 b     

7* Zn(Im)2 – 6 2427.1 a  2.47 a –3756.973 –3757.530 

        2404.8 b  2.50 b     

8* Zn(Im)2 – 6 2474.7 a  2.42 a –3757.021 –3757.589 

        2452.6 b  2.47 b     

9* Zn(Im)2 – 18 7223.9 a  2.49 a –3756.973 –3757.533 

        7178.9 b  2.51 b     

10 Zn(Im)2 VEJZIU 16 7312.7 a  2.19 a –3757.024 –3757.572 

        7105.4 b  2.25 b     

zni Zn(Im)2 IMIDZB 16 3611.7 a  4.43 a –3757.034 –3757.822 

        3440.7 b  4.66 b     

Table 1: Optimized geometry and experimentally determined parameters (b) of ZIFs 

(PhIm = benzimidazolate, mIm = methylimidazole); simulated with the Zn(Im)2 composition. (*) and (a) 

refer to the model structures proposed by Lewis et al. 19. The table shows the chemical composition, the 
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CCDC codes, the number of Zn atom per unit, the unit volume, the framework density (expressed as the 

number of Zn atoms per volume unit) and the total energies of different ZIF structures. 

 In Figure 1 we have plotted the calculated total energies of our ZIF structures as a function of their 

framework densities. The total energy of the most stable structure, zni, is taken as a reference point for the 

other energies. 

 

Figure 1: Variation of total energy of the ZIF using DFT method versus their framework density. zni energy 
taken as reference. (♦) Energy calculated by Lewis et al. 19. The red triangles and the blue circles are our 
calculated PBE and PBE-D3 energy respectively. 

 It should be emphasized that the trend of the variation of our ZIFs energy calculated in terms of their 

framework densities is in excellent agreement with the one obtained by Lewis et al. 19. We note that the 

synthesized ZIFs (ZIF-1 to ZIF-6, ZIF-10 and zni) present the most stable structures. For this set of 

materials, it is noticed that as the density increases, the ZIFs structures show generally more stability. The 

modified ZIF-7 and ZIF-9 are the less stable structures, probably due to the fact that there are no substituents 

in the imidazolate rings that can increase the number of possible hydrogen bonds and consolidate the ZIF. 

We observe that pure PBE systematically under-estimates the relative ZIF energy, compared to the results of 

Lewis et al. 19, but that conversely PBE-D3 tends to over-estimate the same relative energies. This highlights 

both the influence and subtle balance of dispersion interactions in ZIF structures.  

2. Carbon dioxide adsorption 

 We have trapped one CO2 molecule in the center of the cavity of each optimized ZIF structures 

obtained earlier in order to study their ability to adsorb one CO2 molecule. The shape of the cavity and the 

pore size can differ from one ZIF to the other (i. e. the cavity of ZIF-8 contains 8 Zn atoms and 4 Zn atoms 

in ZIF-1). We will see later how this influences the interaction energy of CO2 in the different ZIF structures. 
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  We have performed a full geometry optimization with fixed cell parameters for each CO2@ZIF 

complex. The complexes obtained are shown in Figure 2. 

 

   

CO2@ZIF-1 CO2@ZIF-2 CO2@ZIF-3 

   

CO2@ZIF-4 CO2@ZIF-6 CO2@ZIF-7 

 
 

 

CO2@ZIF-8 CO2@ZIF-9 CO2@ZIF-10 

 

 

 

 CO2@zni  

Figure 2: Optimized geometries of the different CO2@ZIFs complexes where the CO2 molecule is trapped in 

the cavity center of each ZIF structures.  

 We noticed that no geometrical distortion of the carbon dioxide molecule occurs, in the cavity center 

of the ZIF structures. The CO2 molecule stays linear with equal CO bond lengths. The bond length of CO2 is 

found to be 1.17 Å in all different sets of ZIF which it is in good agreement with the experimental value 

(1.16 Å) for the isolated molecule 27. However, the trapped CO2 molecule induces a structural distortion on 

most of the ZIF molecules; the imidazolate rings reorient itself towards the CO2 molecule. Moreover, in 
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most of the CO2@ZIF complexes, we observe a small variation of the Zn–Zn distances (0.01 Å) with respect 

to the starting values. 

 We also characterize the interactions between CO2 and ZIF materials by means of the variation of the 

dipole moments before and after complexation (see Table 2). In most cases, ZIF-1, -2, -4, -6, -7, -9 and -10, 

the ZIF structures are initially apolar, the dipole moment calculated is nearly zero. ZIF-3 and -8 are weakly 

polar and the most stable structure, zni shows the largest dipole moment (1.73 Debye). After the 

complexation, the dipole moments vary slightly as reported in Table 2.  

ZIFs 
 Number of Zn atoms in 

ZIFs cavity 

Dipole moments in Debye 

Clean structure Complexed structure 

1 8 0.00 0.02 

2 4 0.00 0.30 

3 16 0.23 0.21 

4 8 0.00 0.07 

6 4 0.00 0.09 

7* 6 0.00 0.01 

8* 6 0.11 0.43 

9* 4 0.00 0.02 

10 4 0.01 0.35 

Zni 4 1.73 1.71 

Table 2: Calculated dipole moments for the different ZIF structures before and after the complexation with 

the CO2 molecule. 

 Using the DFT-D3/PBE method, we have calculated the interaction energy between the CO2 

molecule and the ZIF (Eint(CO2@ZIF)) according to the following formula: 

Eint(CO2@ZIF) = Eopt(CO2@ZIF) – [Eopt(ZIF) + Eopt(CO2)]  

where Eopt(CO2@ZIF), Eopt(CO2) and Eopt(ZIF) are the total energies of the optimized geometries of the 

complex CO2@ZIF, the isolated CO2, and the isolated ZIF respectively. Our results are shown in Table 3, 

along with computed atomic charges and charge transfer estimation using Mulliken population analysis28. 
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ZIF 
Net atomic charge (e) of CO2 Charge transfer (e) between 

CO2 and different ZIFs 
Eint (CO2@ZIFs) 

in kJ mol–1 C O O 

1 0.29011 –0.13910 –0.14468 0.00632 –17.31 

 0.30781 –0.15393 –0.15389   

2 0.29556 –0.12740 –0.17541 0.00726 –10.14 

 0.31022 –0.15511 –0.15511   

3 0.30343 –0.15161 –0.15292 –0.00110 –6.71 

 0.31154 –0.15572 –0.15582   

4 0.33953 –0.17462 –0.17070 –0.00579 –25.00 

 0.31030 –0.15515 –0.15515   

6 0.29375 –0.15030 –0.15535 –0.01190 2.31 

 0.31020 –0.15510 –0.15510   

7 0.31138 –0.15438 –0.15683 0.00017 –3.28 

 0.31041 –0.15517 –0.15524   

8 0.33529 –0.16983 –0.17137 –0.00593 –19.70 

 0.31133 –0.15566 –0.15567   

9 0.30744 –0.16094 –0.15521 –0.00871 –16.13 

 0.31020 –0.15509 –0.15511   

10 0.29409 –0.12418 –0.17825 –0.00834 –17.82 

 0.31007 –0.15502 –0.15505   

zni 0.29421 –0.14824 –0.13758 0.00839 –27.71 

 0.31011 –0.15509 –0.15502   

Table 3: Calculated energies and charge transfer (∆ρ) between CO2 and the different ZIFs materials calculated as: 

∆q = q(CO2)ZIF – q(CO2)free where q(CO2)ZIF  is the CO2 charge molecule in ZIF material (in bold letters) and 

q(CO2)free is the charge of CO2 free molecule (normal letters). 

 All the results show a weak charge transfer between CO2 and ZIFs indicating that we have a 

physisorption process. The data in the Table 3 shows that the interaction energy between CO2 and the ZIFs 

in the cavity center is mainly dominated by Van der Waals forces. In general, we can conclude that as the 

ZIF cavity diameter decreases, the number of imidazolates linkers surrounding the CO2 molecule increases 

and the interaction energy of CO2@ZIFs increases. This is the case for CO2 in a zni cavity. However, for 

ZIF-6 with a small central cavity, the CO2@ZIF-6 complex has a positive value of the interaction energy. 

This shows the absence of a tendency to fix CO2 despite a favorable charge transfer. For ZIF-3 and ZIF-7 

the interaction energy is weak since these two materials have the largest cavity compared to the others (dZIF-

3 = 8.02 Å, dZIF-7 = 4.31 Å; d is the diameter of the largest sphere that will fit into the framework 1). Also, the 

insertion of CO2 in these two cavities does not affect their geometries, this is confirmed by the low variation 

of their dipole moment (~0.01Debye). 
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To quantify the correlation between structural parameters and the interaction energy, we plotted the 

variation of the interaction energy of CO2@ZIF complexes as a function of the ZIF framework densities 

expressed as the number of Zn sites per ZIF unit volumes (Figure 3). 

 

Figure 3: variation of CO2@ZIF interaction energy as a function of ZIF framework densities expressed as 
the number of Zn sites per ZIF unit volumes. In the upper panel is and the charge transfer between CO2 and 
ZIF as a function of CO2@ZIF interaction energy. 

It appears that two distinct groups can be identified among the known CO2@ZIF complexes 

structures: a first group consisting of CO2@ZIF-1, -2, -3, -6, -7, and zni where the CO2@ZIF interaction 

energy and the ZIFs density framework varied concomitantly, and second group consisting of CO2@ZIF-4, -

8, -9, and -10, the most interacting complexes. For this last group, we looked to the variation of charge 

transfer between CO2 and the ZIF structures as a function of interacting CO2@ZIFs energy. We find that the 

charge transfers increase as the CO2@ZIFs interaction energy increases. 

 Indeed, in ZIFs structures, the organic frameworks are linked to metal ions through nitrogen atoms 

which are the most active sites of the imidazolate ligands. In the presence of CO2, the attachment occurs 

through NNCH––OCO or CH–CH––OCO hydrogen-like bonds or through π-staking interactions depending 

on the orientation of the imidazolate linkers in the ZIF cavity. More details are provided in the next section. 

3. The charge transfer analysis 

 The process of CO2 adsorption by zeolitical imidazolate frameworks occurs through a physisorption 

interaction. In order to understand the nature of the binding process, we have calculated the charge density 

difference ∆ρ for the different CO2@ZIF complexes using the following formula: 
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∆ρ = ρ(CO2@ZIFs) – ρ(CO2) – ρ(ZIF) 

where ρ(CO2@ZIFs) is the charge density of the CO2@ZIF complex; ρ(CO2) and ρ(ZIF) are the charge 

densities of the non-interacting CO2 and ZIF molecules respectively at the geometry of the complex. 

 Our computed charge densities differences are plotted in Figure 3 to allow for a better understanding 

of the CO2@ZIF interactions and explain the variations of the interaction energies calculated for the 

different CO2@ZIF complexes. Two interaction cases occur: low charge density transfer for CO2@ZIF-3 

and CO2@ZIF-7 and strong interaction for the rest of the CO2@ZIFs complexes.  
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CO2@ZIF-1: Isosurface values = ± 0.02 e Å–3
 CO2@ZIF-2: Isosurface values = ± 0.07 e Å–3

 

  

CO2@ZIF-3: Isosurface values = ± 0.0007 e Å–3
 CO2@ZIF-4: Isosurface values = ± 0.07 e Å–3

 

  

CO2@ZIF-6: Isosurface values = ± 0.07 e Å–3
 CO2@ZIF-7: Isosurface values = ± 0.0007 e Å–3

 

 

 

CO2@ZIF-8: Isosurface values = ± 0.07 e Å–3 CO2@ZIF-9: Isosurface values = ± 0.07 e Å–3
 

  

CO2@ZIF-10: Isosurface values = ± 0.07 e Å–3
 CO2@Zni: Isosurface values = ± 0.07 e Å–3

 

Figure 4: Charge density calculated for different CO2@ZIF complexes. Regions of accumulation/depletion 

are marked in blue/red, respectively.  

 In figure 4 we used different iso-charge surfaces to better display the computed charge density 

transfer. The classification of the interaction energies is shown in Table 3. Interestingly, the charge density 
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transfer between CO2 and ZIF-9 shows that CO2 is fixed trough π-staking interactions with the two close 

imidazolates. For CO2@ZIF-10 the interaction originates from the formation of two hydrogen bonds. 

4. Conclusion 

 In the present work, we carried out a comparative study of the adsorption of a CO2 molecule by 

different zeolitic imidazolate framework materials. This study examines two types of structures: the 

synthesized one (ZIF-1 to -4, -6, -10 1 and zni 18) and the proposed models by Lewis (ZIF-7 to -9 19). The 

common point is that they have all the same chemical composition Zn(Im)2. Using DFT/PBE and DFT-

D3/PBE calculations, we have shown that the capture of the carbon dioxide depends on the nature of the 

dimension of the cavity in which it is inserted; as it increases, the interaction energy of CO2@ZIF decreases. 

We have also validated the two proposed ZIF structures ZIF-8 and ZIF-9 for CO2 capture. 

 The capture of CO2 is due to physisorption phenomena. To understand the nature of the interactions 

of CO2 in the ZIFs cavity, we have calculated the charge density which recalls the formation of two type of 

CO2 attachment: π-stacking and hydrogen-like bond. 

 We have shown that the insertion of a CO2 molecule in the different ZIF cavities induces a 

rearrangement of the imidazolate linkers and a slight variation of the dipole moments for the different ZIF 

structures is observed. The capture of CO2 occurs without any structural distortion for the guest molecule. 

This allows us to start thinking about how to make this molecule more active.  

The simple model proposed in this work using single CO2 molecule in the center of the ZIF cavities 

to describe CO2 capture by zeolitic imidazolate frameworks may not be sufficient to describe all CO2–ZIF 

interactions. In addition, the presence of several CO2 molecules requires to also consider the CO2–CO2 

interactions29, this could be the subject of a future work in this field.  
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