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1 Introduction

Well-understood backgrounds in string theory are few and far between and those that are

understood often have a high degree of symmetry which enables the problem of finding the

worldsheet theory to be tractable. As such, Supergravity has long been a useful indirect

tool to gain insight into string theories in non-trivial backgrounds. Supergravity has also

served as a source of inspiration for non-conventional, or stringy, backgrounds that are

currently inaccessible to a full analysis at the worldsheet level.1

Although there have been a number applications of the worldline formalism to certain

problems [11], the overwhelming volume of work on supergravity has been from the per-

spective of the spacetime Einstein-Hilbert action or equations of motion. This is hardly

surprising, given its conceptual elegance and historic achievements; however, the language

in which the Einstein-Hilbert formulation is written can make it difficult to generalise

lessons from supergravity to the full string theory. For example, the conformal invariance

that plays such an important role in the worldsheet theory, though implicit, is not easy to

recognise in the target space formulation. And the worldline approach, though similar to

the worldsheet theory in some respects, does not have many of the features central to our

current understanding of string theory.

In this paper we take the first steps in developing an alternative approach to ten-

dimensional supergravity based on the ambitwistor worldsheet model of [12]. This am-

bitwistor string describes Type II supergravity in ten dimensions in terms of the chiral

embedding of a worldsheet Σ into ambitwistor space. The worldsheet action for the am-

bitwistor string is

S =

∫

Σ
Pµ∂̄X

µ +
1

2
eP 2 + . . . , (1.1)

where (Pµ, X
µ) take values in the cotangent bundle of spacetime, e is a Lagrange multiplier

imposing the constraint P 2 = 0, and the ellipsis denotes fermion and ghost contributions.

All fields are holomorphic on the worldsheet Σ.

1Examples include T-folds [1–3], Double Field Theory [4–6], U-duality [7], M-theory [8], flux compacti-

fications and G-structures [9, 10], to name but a few.
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The ambitwistor string theory (1.1) is thought, with good reason, to be equivalent to

a perturbative description of ten-dimensional Type II supergravity. Though written as a

chiral worldsheet theory, with superconformal invariance very similar to that found in the

conventional superstring, the spectrum of the ambitwistor theory is massless, it has the

correct S-matrix, and the supergravity equations of motion are reproduced as the condition

that an anomaly vanishes [13]. There are no higher derivative corrections. In this paper we

begin the systematic study of the ambitwistor string as a covariant string field theory. Our

ultimate hope is that this will provide a useful toy model that will eventually cast some

light on some of the outstanding problems in conventional string theory. We also hope to

better understand this interesting class of chiral string theories in their own right.

The origin of the ambitwistor string lies in recent progress on the study of scattering

amplitudes. In [14–16] Cachazo, He and Yuan (CHY) proposed remarkably compact ex-

pressions for tree-level scattering amplitudes of gravity and Yang-Mills, the key ingredient

of which are the scattering equations for n momentum eigenstates with null momenta ki

∑

j 6=i

ki · kj
zi − zj

= 0, (1.2)

first found by Fairlie and Roberts [17] and later, in a very different context, by Gross and

Mende [18]. The solutions of (1.2) determine n marked points zi on a sphere or, in more

suggestive language, they determine a point on the moduli space Mn,0 of a n-punctured,

genus zero, Riemann surface. Given this connection betweenMn,0 and tree-level scattering,

it would be odd if there was not some way of understanding these results in terms of a

worldsheet theory. Indeed one might ask whether there is a worldsheet formulation of the

theory that generates these compact expressions directly and naturally. The answer, to the

best of our knowledge today, is a qualified yes; the qualification being that it is only the ten-

dimensional Type II supergravity amplitudes that have been understood as critical string

theories thus far. However, some understanding of the origin of other CHY amplitudes has

been found. The ambitwistor string of [12] that describes type II supergravity has been

generalised to other situations, but these other theories [19–21] do not have the same status

as the original ambitwistor string as they either are not in the critical dimension or do not

have a sensible critical dimension. These other constructions are useful in understanding

the CHY amplitudes but will not be studied here.

The aim of this paper is to take the first steps in constructing a string field theory

for perturbative classical Type II supergravity on flat spacetime. The basic ingredient is

Type II ambitwistor string theory (1.1). Following the basic structure of covariant closed

bosonic string theory [22–24] and the proposed supersymmetric extension [25], we construct

a superstring field theory for supergravity based on the ambitwistor string theory. The

action will be of the form

S[Ψ] = 〈Ψ|c0Q|Ψ〉+
∑

n>2

1

n!
{Ψn}, (1.3)

where Q is the BRST operator of the worldsheet theory, c0 is a ghost zero mode, and {Ψn}

are n-point interaction terms for the string field Ψ.

– 2 –
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A necessary step in the construction of the theory is to clarify the oscillator mode

structure of the ambitwistor string theory and the constraints that must be imposed on

the string fields. We shall see that the oscillator decomposition is subtly different from that

of the conventional string. In particular, the Xµ and Pµ fields are independent in the gauge

we work in and are composed of independent, conjugate oscillators. The supersymmetric

theory is thought to be equivalent to Type II supergravity and so the superstring field

theory is expected to be equivalent to perturbative Type II supergravity. In support of

this we study the metric as a fluctuation hµν about a Minkowski background, we shall show

that the quadratic term gives the correct linearised action for the Type II supergravity

〈Ψ|c0Q|Ψ〉 =

∫
d10x

(
1

4
hµν✷h

µν +
1

2
(∂νhµν)

2 +
1

2
h∂µ∂νhµν −

1

4
h✷h

−4φ✷φ+ 2h✷φ− 2φ∂µ∂νhµν −
1

12
HµνλH

µνλ

)
,

We then argue that a proposed cubic interaction term is correct. Finally we consider the

complete abstract string field theory to all orders. As we will show, the on-shell correla-

tion functions implied by these interaction terms produce the correct on-shell scattering

amplitudes and, once a gauge is fixed, the quadratic term produces a reasonable spacetime

propagator. We comment on the application of this string field theory to curved back-

grounds towards the end of the paper. The question of how the string field theory (1.3)

might make contact with the Einstein-Hilbert action for a general spacetime, compactly

written in terms of the Ricci scalar, will be discussed elsewhere.

During the course of this paper we shall see many ways in which the ambitwsitor

string field theory mirrors the conventional string field theory superficially but differs in

important, and often elegant, ways when studied in detail. It should be stressed from

the outset that we are interested in a string field theory of classical supergravity. As

such, we do not consider loops. Though the theory is fully quantum mechanical on the

worldsheet, it is classical in spacetime. That is not to say that the question of loops is not

interesting [13, 26, 27], just that it is not one we consider here and it would be interesting

to see how the formalism presented here is extended to loops.

We have attempted to strike a balance between making the paper reasonably self-

contained and keeping it to a reasonable length. As such, we have tried to sketch key ideas

from ambitwistor string theory and string field theory that are necessary for our construc-

tion; however, we have omitted many of the technical details which may be followed up in

the references given. In the next section we give a brief overview of classical ambitwistor

string theory and present its quantisation in the operator formalism — the natural language

of string field theory - paying particular care to those aspects that will be of importance

for the construction of the string field theory. This section introduces most of the key

ingredients that are needed to construct the bosonic ambitwsitor string field theory which

is then presented in section 3. Section 4 introduces the formalism and quadratic action for

the supersymmetric ambitwistor theory and then, in section 5, we discuss the interaction

terms in the supersymmetric theory. We present in this paper the first steps in a formalism

that we feel has a rich structure and many potential directions of development. A number

of directions for future work are discussed in section 6.

– 3 –
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2 Ambitwistor string theory

Ambitwistor space A is the space of null geodesics [28–31]. This may be constructed

simply as a sub-bundle of the cotangent bundle T ∗M of the spacetime M , which will be

Minkowski spacetime for most of this paper. In most cases we shall be interested in the

complexification of M and T ∗M is the holomorphic tangent bundle. Natural coordinates

on T ∗M are xµ and pµ, where xµ are coordinates on M . The null cotangent bundle T ∗
NM

is then defined as

T ∗
NM = {(x, p) ∈ T ∗M |p2 = 0},

where p2 has been constructed using the metric on M . This is not quite the space of null

lines since, given a point xµ0 on a null line, the family of points xµ0 +αpµ all lie on the same

null line for any constant α. Shifts along the line are generated by the vector field

V = pµ
∂

∂xµ
, (2.1)

and so ambitwistor space A is given by the quotient of T ∗
NM by the action of V . The

projective ambitwistor space PA is given by a further quotient of A by the action of the

Euler vector field

Υ = pµ
∂

∂pµ
.

This quotients out by the scale of pµ, giving PA as the space of scaled null geodesics in M .

The ambitwistor string [12] is a sigma model describing the embedding of a worldsheet Σ

into ambitwistor space A. The map from Σ to T ∗M is realised by elevating the coordinates

xµ and pµ to (holomorphic) worldsheet fields Pµ(z) and Xµ(z). A simple Lagrangian on

T ∗M is given by the βγ system L = Pµ∂̄X
µ, which is simply the chiral pull-back of the

natural contact structure θ = pµ dx
µ on PA to Σ. At the level of the worldsheet, the

null constraint is imposed by introducing the Lagrange multiplier field e(z), a Beltrami

differential, giving the Lagrangian

L = Pµ∂̄X
µ +

1

2
eP 2.

The symmetry associated to this constraint is equivalent, at the level of the worldsheet, to

the quotient by the vector field V .

The only outstanding issue at the classical level is that of the worldsheet metric or,

equivalently, the worldsheet complex structure. This is not treated explicitly and is assumed

fixed by the usual Faddeev-Popov technique, resulting in the introduction of a holomorphic

(b, c) ghosts system.2 The bosonic ambitwistor string action is taken to be

S =

∫

Σ
Pµ∂̄X

µ +
1

2
eP 2 + b∂̄c. (2.2)

2One could argue that a half-twisting procedure along the lines discussed in [32, 33] allow for such a purely

holomorphic construction to arise from a chiral topological twisting of a theory with a more conventional

worldsheet gravity. Though interesting, this possibility will not be explored here and the action (2.2) will

be taken as the definition of the theory.

– 4 –
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Ideally, one would gauge fix e(z) = 0 globally but, as discussed in [12, 26] and reviewed in

section 2.1.1, this is not possible in general. The OPEs of the constituent fields are

Pµ(z)X
ν(ω) =

δνµ
z − ω

+ . . . , b(z)c(ω) =
1

z − ω
+ . . . , (2.3)

where the ellipsis denote terms that are non-singular in the z → ω limit, with all other

OPE’s being trivial in the sense that they have no singular terms.

2.1 Symmetries and quantization

Our ultimate goal is the construction of a covariant string field theory for the ambitwistor

string. The main ingredients of the construction will be the BRST charge of the first

quantised worldsheet theory and a translation of the first quantised theory into the language

of the operator formalism. The main features of the operator formalism will be discussed

in section 2.2. In this section we first review the BRST quantisation of [12, 26] and then

lay the foundations for recasting the theory in the operator formalism of section 2.2.

2.1.1 Symmetries

The ambitwistor string worldsheet fields transform under the (holomorphic) conformal

transformations z → z + v(z) for which the fields transform as

δ(v)Xµ = v∂Xµ, δ(v)Pµ = ∂(vPµ), δ(v)e = v∂e− e∂v. (2.4)

The conformal transformations are generated by the stress tensor T (z) = Pµ∂X
µ + Tgh,

where Tgh are ghost contributions that will be described in more detail later. For a given

vector field, v(z) the transformation is generated by

T (v) :=

∮
dz v(z)T (z),

so that the action on the field Φ(z) is δ(v)Φ(z) = [T (v, )Φ(z)], where Φ(z) is a generic field

of the worldsheet theory.

In addition to the conformal symmetry, a version of which exists for the conventional

string, there is an additional gauge symmetry on the worldsheet that ensures the theory

describes an embedding into ambitwistor space, rather than simply T ∗M . The quotient by

the vector field V in (2.20) is achieved in the string theory by the gauge symmetry [12]

δ̃(v)Xµ = vPµ, δ̃(v)Pµ = 0, δ̃(v)e = ∂̄v, (2.5)

where v(z) is a (1, 0) worldsheet vector field. As commented upon in [12], this symmetry has

no counterpart in the conventional bosonic string and is a central feature of the ambitwistor

string theory. This gauge symmetry is generated by H(v) where

H(v) :=

∮
dz v(z)H(z), H(z) =

1

2
P 2(z).

As we shall see, H(z) plays the role of a Hamiltonian in the ambitwistor theory. Indeed,

the spacetime propagator to be discussed in section 3.4.3 is effectively the inverse of the

zero mode of H(z).

– 5 –
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Combining these transformations gives the classical algebra

[T (v1), T (v2)] = −T
(
[v1, v2]

)
, [T (v1),H(v2)] = −H

(
[v1, v2]

)
,

[H(v1),H(v2)] = 0, (2.6)

where the commutator of the worldsheet vector fields takes the standard form [v1, v2] =

v1∂v2−v2∂v1. We may think of this algebra acting naturally on the space Y → Σ, a bundle

over the wordsheet. The abelian gauge symmetry generated by H(z) acts on the fibres of

Y and the conventional conformal symmetry generated by T (z) acts on the base Σ.

The (holomorphic) worldsheet diffeomorphisms have been gauge-fixed in the usual way

with the introduction of a (b, c) ghost system and the additional gauge transformations (2.5)

are fixed by the usual Faddeev-Popov method, introducing ghosts b̃ and c̃. The constraints

T (z) = 0 and H(z) = 0 are imposed in the standard way by introducing the BRST charge

Q =

∮
dz j(z), (2.7)

with current

j(z) = c(z)

(
T (z) + T̃gh(z) +

1

2
Tgh(z)

)
+ c̃(z)H(z)

where Tgh and T̃gh are stress tensors for the (b, c) ghosts and the (b̃, c̃) ghosts respectively.3

The origin of the ghost terms in the action will be of central importance later on so we

pause here to repeat the arguments of [26], which discuss the gauge-fixing of the action.

The presentation closely follows that of [26] where further details may be found.

The BRST operator acts within a given Dolbeault cohomology class and we cannot

set e(z) = 0 globally. The best we can do is to set

e(z) =
∑

a

saµa(z),

where {µa} is a basis of Beltrami differentials for Σ, where a = 1, 2, . . . , n−3. This is done

by introducing the gauge-fixing fermion F (e) and extending the action to

Ŝ =

∫

Σ
Pµ∂̄X

µ + b∂̄c+Qb̃F (e).

A useful choice is

F (e) = e−
n−3∑

a=1

saµ
a,

3For a standard βγ system with β of weight λ, the stress tensors take the conventional form Tλ =

(∂β)γ − λ∂(βγ). The stress tensor T (z) for the action (2.23) then has matter and ghost contributions

T (z) + Tgh(z) + T̃gh(z), where

T (z) = Pµ∂X
µ
, Tgh(z) = (∂b)c− 2∂(bc), T̃gh(z) = (∂b̃)c̃− 2∂(b̃c̃).

– 6 –
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where {µa} is a basis for H0,1(Σ, TΣ(−z1− . . .−zn)), the zi are points on Σ, and where the

gauge transformation generated by H(z) vanishes. The action of Q on the fields is Qb̃ = π,

Qe = ∂̄c̃, and Qsa = qa and so

Q

∫

Σ
b̃F (e) =

∫

Σ
πF (e) +

∫

Σ
b̃∂̄c̃−

n−3∑

a=1

qa

∫

Σ
b̃µa.

Integrating out the Lagrange multiplier π sets F (e) = 0 and so the action is

Ŝ = S −
1

2

n−3∑

a=1

sa

∫

Σ
µaP 2 −

n−3∑

a=1

∫

Σ
qab̃µ

a,

where

S =

∫

Σ

(
Pµ∂̄X

µ + b∂̄c+ b̃∂̄c̃
)
. (2.8)

Integrating out the auxiliary fields sa and qa leads to an insertion of

n−3∏

a=1

δ̄

(∫

Σ
µa(z)H(z)

)∫

Σ
µa(z)b̃(z)

∫

Σ
µa(z)b(z), (2.9)

into the path integral, where a indicates the modulus associated with the deformation of

the worldsheet moduli corresponding to a particular Beltrami differential. An alternative

perspective on the origin of these delta-function insertions will be reviewed in section 2.2.3.

It will turn out that this alternative viewpoint is more useful in studying the string field

theory.

2.1.2 Operator quantization

In this section we shall assume the gauge has been fixed as described above and Σ is a

genus zero Riemann surface with n punctures. Let us consider the case of a single puncture

to begin with. In the conventional string, with equations of motion ✷Xµ = Jµ, where Jµ is

some source, possibly due to a vertex operator inserted at a puncture, the natural oscillator

expansion includes the zero mode contributions Xµ = xµ+ pµ ln(t)+ . . ., where the ellipsis

denote oscillator modes and we can think of t as a local coordinate around the puncture.

The puncture may be thought of as residing in the infinite past in worldsheet time and

the relation between the operator inserted at t = 0 and the state is given by the usual

state-operator correspondence. The centre of mass momentum pµ appears as one of two

zero modes in the expansion for Xµ.

By contrast, in the ambitwistor string, we incorporate the momentum zero mode pµ
into a mode expansion for Pµ(z) and take the independent Xµ(z) mode expansion as

Xµ(z) = xµ −
∑

n 6=0

α̃µ
n

n
z−n,

where we define the zero mode as xµ ≡ α̃µ
0 . In contrast to the conventional string, Xµ is

a conformal field (of weight zero). As noted in [12], this fact restricts the allowed vertex

– 7 –
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operators to a massless sector. Note that the absence of a logarithmic term means that

∂Xµ(z) =
∑

n 6=0

α̃µ
nz

−n−1,

does not have a zero mode.4 The conjugate field Pµ(z) is a conformal field of weight one

and has the conventional expansion

Pµ(z) =
∑

n

αnµz
−n−1,

where pµ := α0µ is the momentum zero mode. We impose the commutation relations5

[Pµ(σ), X
ν(σ′)] = −iδνµδ(σ−σ′), [Pµ(σ), Pν(σ

′)] = 0, [Xµ(σ), Xν(σ′)] = 0, (2.10)

where z = eiσ and z′ = eiσ
′
. The commutation relations (2.10) are satisfied if the mode

operators satisfy the commutation relations

[αnµ, α̃
ν
m] = −inδνµδn+m,0, [αnµ, αmν ] = 0, [α̃µ

n, α̃
ν
m] = 0,

for n 6= 0 and

[α0µ, α̃
ν
0 ] = [pµ, x

ν ] = −iδνµ,

when n = 0. We quantise on the vacuum |0〉 defined by6

αn|0〉 = 0, n ≥ 0, and α̃n|0〉 = 0, n > 0.

Notice that we do not require that the Xµ zero mode annihilates the vacuum. It is not

hard to show that

〈Xµ(z)Pν(w)〉 =
δµν

z − w
,

as we would expect.

If we have more than one puncture it is natural to define local coordinates ti in a small

disc about each puncture and employ the same oscillator expansions as above in terms of

the local ti coordinate for each of the punctures. Conformal maps hi : ti → z may then

be used to describe the expressions in terms of a coordinate z on the complex plane, such

that the location of the punctures in the new coordinates is given by zi = hi(0) - the origin

of the local coordinate system. The oscillator expansions of the worldsheet fields will in

general take on a more complicated form when written in the z coordinates. For example,

a simplistic (and somewhat naive [35]) map would be ti = z − zi.

Let us consider this in more detail. We first consider the situation for the conventional

string. Following [35], we can require the worldsheet punctures at zi to coincide with

n asymptotic states at points in spacetime xi by inserting
∏n

i=1 δ
D(X(zi) − xi) into the

path integral. Taking the Fourier transform to momentum space results in the insertion

4The zero mode xµ does not appear in ∂Xµ(z).
5One might like to think of these as ‘equal z̄’ commutation relations. Note also that the commutator

does not depend on the spacetime metric.
6For a discussion of this and an alternative choice of vacuum see [34].

– 8 –
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of the distribution J =
∑n

i=1 kiδ
2(z − zi), familiar from calculations of Tachyon scattering

amplitudes. This gives a source for the classical fields which obey the equation of motion

✷Xµ
cl = Jµ.

Thus the field may be written as Xµ = Xµ
cl +Xµ

q , where Xµ
q is a quantum fluctuation and

Xµ
cl is the classical solution, at genus zero, given by

Xµ
cl(z) =

n∑

i=1

kµi ln |z − zi|
2.

It is then natural to write Xµ as a sum Xµ =
∑n

i=1X
µ
i , where Xi is written in terms of

the Hilbert space defined at the i’th puncture. For the ambitwistor string the punctures

amount to inserting the current J =
∑n

i=1 kiδ̄(z − zi) and the P (z) equation of motion

∂̄Pcl = J has classical solution [35]

Pcl(z) =
n∑

i=1

ki
z − zi

. (2.11)

It is then natural to expand P (z) as P =
∑n

i=1 Pi, where each Pi is written, by a con-

formal transformation, as an oscillator expansion using the i’th Hilbert space and local

coordinates ti at the i’th puncture. We see that the naive choice ti = z − zi gives rise to

the expression (2.27) for the zero modes contribution. This will be discussed at greater

length in section 2.2.2 and more details of the general construction may be found in [36]

for the ambitwistor string and [35, 37–39] for the conventional string. In the presence of

more than one puncture the commutator relations generalise in the obvious way

[α(i)
nµ, α̃

(j)ν
m ] = −inδijδνµδn+m,0, [α(i)

nµ, α
(j)
mν ] = 0, [α̃(i)µ

n , α̃(j)ν
m ] = 0,

for m,n 6= 0 and

[α
(i)
0µ, α̃

(j)ν
0 ] = [p(i)µ , x(j)ν ] = −iδijδνµ,

if m = n = 0. We note that the commutation relations do not depend on the background

spacetime metric.

The association of a Hilbert space with each puncture also provides a helpful way of

writing the ghost insertions (2.9). It is useful to define a disc Di about each puncture given,

in terms of the local coordinates ti, as the region |ti| < 1. The Beltrami differential encodes

changes in the moduli of the Riemann surface Σ which may be also understood in terms

of deforming the worldsheet in the region of a puncture. In the region |ti| < 1+ ǫ for some

small ǫ, let the coordinates be changed to t′i. On the region |ti| > 1 − ǫ there is a patch

with coordinate ti. On the overlap given by the annulus of width 2ǫ which contains the

boundary ∂Di, the coordinates are related by t′i = ti + vi(t). In this overlap the Beltrami

differentials may be written as µi = ∂̄vi, leading to an alternative description of the ghost

insertions. For example, associating the i’th puncture with an excised disc Di such that

∂Σ = ∪n
i=1∂Di, gives

∫

Σ
µa(z)b(z) =

n∑

i=1

∮

∂Di

dzi v
a
i (zi)b

(i)(z),

– 9 –
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where the b(i) are the ghost modes associated with the Hilbert space at the i’th puncture.

The ghost insertion term (2.9) may then be written as

n−3∏

a=1

δ̄
(
H(~νa)

)
b̃(~νa)b(~νa),

where

b(~νa) =

n∑

i=1

∮

∂Di

dz vai (z)b
(i)(z), b̃(~νa) =

n∑

i=1

∮

∂Di

dz vai (z)b̃
(i)(z),

H(~νa) =
n∑

i=1

∮

∂Di

dz vai (z)H
(i)(z). (2.12)

The integral is taken over a contour ∂Di surrounding the disc7 Di which has the point zi
at its centre. H(i)(z) and b̃(i)(z), like b(i)(z), are defined in the Hilbert space at the i’th

puncture. These are precisely the insertions we will see in the interaction terms of the

string field action. The notation ~νa indicates the n vector fields, located at each of the

punctures ~νa =
(
va1 , v

a
2 , . . . , v

a
n

)
.

2.1.3 The extended Virasoro algebra

The stress tensor T (z) = Pµ∂X
µ and the coefficients of its mode expansion are related by

T (z) =
∑

n

Lnz
−n−2, Ln =

∮
dzzn+1T (z).

Explicitly, the stress tensor components are

L0 =
1

2

∑

m>0

(α−m · α̃m + α̃−m · αm), Ln =
∑

m 6=n

α̃n−m · αm.

Note that the dot denotes a Lorentz index contraction α · α̃ := αµα̃
µ and so the generators

are independent of the background spacetime metric. Note that α̃0 does not appear in the

expressions for the Ln as it does not appear in the mode expansion of ∂Xµ. The additional

gauge symmetry generated by H(z) which we expand as

H(z) =
∑

n

L̃nz
−n−2.

The L̃n modes may be written in terms of the αµ modes as

L̃n =
1

2
ηµν

∑

m

αmµαn−mν ,

where all values of m are summed over and there is no normal ordering ambiguity since the

αn all commute with each other. This is the expansion of H(z) for flat backgrounds. For

7The discs are chosen so that they do not overlap and each disc contains only one puncture.
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curved backgrounds the appropriate metric must be used in place of ηµν . After straight-

forward computation we find

[Lm, Ln] = (m−n)Lm+n+δm+n,0
D

6
m(m2−1), [Lm, L̃n] = (m−n)L̃m+n, [L̃m, L̃n] = 0,

where D is the dimension of the spacetime; µ = 1, 2, . . . , D. This should be compared with

the δm+n,0
D
12m(m2 − 1) anomaly in the conventional bosonic string. The central charge

contribution to a free βγ system is

c = ∓3(2λ− 1)2 ± 1,

where the upper (lower) sign is taken for fermions (bosons) and λ is the conformal weight

of the highest weight field. The (b, c) and (b̃, c̃) ghost systems, each with λ = 2, each

contribute −26 to the central charge and so the critical dimension8 is D = 26. This is in

accordance with the central charge bookkeeping, given that a single (X,P ) system, where

the conformal weight of P is +1 contributes c = 2 to the central charge, thus the total

central charge is c = 2D − 26− 26 which vanishes in the critical dimension.

2.1.4 BRST quantisation

The constraints T (z) = 0 and H(z) = 0 are imposed in the standard way by introducing

the BRST charge (2.7). If we have n punctures, each with an associated Hilbert space, it

is helpful to consider a BRST charge Q(i) constructed using the fields of the i’th Hilbert

space. The total BRST charge is then Q =
∑n

i=1Q
(i). For now, we shall consider a single

Hilbert space. The ghosts appearing in Q have the standard expansions

c(z) =
∑

n

cnz
−n+1, b(z) =

∑

n

bnz
−n−2

and similarly for the b̃ and c̃ ghosts. In terms of these oscillator components, the BRST

charge may be written as

Q =
∑

n

c−n

(
L(m)
n + L(g)

n + L̃(g)
n

)
+
∑

n

c̃−nL̃
(m)
n

where, to avoid confusion, we have now denoted the matter contribution to the Virasoro

algebra discussed in section 2.1.3 above by L
(m)
n to distinguish them from the ghost modes

L(g)
n =

∑

m

(n−m) : bn+mc−m : −δn,0,

and similarly for L̃
(g)
n . The condition that the physical states of the string are massless

means that the higher oscillator modes do not play a direct role and we may concentrate

on the lower order modes. To leading order, the BRST operator terms give
∑

n

c−nL
(m)
n = c0(α−1 · α̃1 + α̃−1 · α1) + α0 · (c1α̃−1 + c−1α̃1) + . . .

8As in the conventional string, D arises in the computation of the algebra from the trace of the spacetime

metric ηµν . As such it computes the number of independent (P,X) systems that are introduced. In this

paper we take the spacetime to be complexified, so D counts the complex dimension and we only make use

of the holomorphic coordinates (the X̄µ play no role).
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and ∑

n

c̃−nL̃
(m)
n =

1

2
c̃0α

2
0 +

1

2
c̃0α−1 · α1 + α0 · (c̃−1α1 + c̃1α−1) + . . .

Notice that the expression involving H(z) depends on the background metric, whereas that

involving T (z) does not. This observation will be important when we come to study the

string field in section 3; the T (z) = 0 constraints are imposed as part of the definition of the

string field. Such a definition cannot be subject to perturbative changes in the background;

whereas, the H(z) = 0 condition is imposed at the level of the equations of motion which

must be modified by the interaction terms which encode the effect of the background fields.

The ghost contributions to the BRST charge take the conventional form. It will be

useful to isolate those terms in Q which carry a factor of c0 and to write Q as

Q = c0L0 +
1

2
c̃0α

2
0 +

1

2
c̃0α−1 · α1 + α0 · (c1α̃−1 + c−1α̃1 + c̃−1α1 + c̃1α−1)

−2b0c−1c1 + 2b̃0(c1c̃−1 + c̃1c−1) + c̃0(c−1b̃1 + c1b̃−1) + . . . (2.13)

where the terms multiplying c0 are given by

L0 = (α−1 · α̃1 + α̃−1 · α1) + (b−1c1 + c−1b1 − 1) + (b̃−1c̃1 + c̃−1b̃1 − 1) + . . . . (2.14)

and the ellipsis denote higher mode terms that, as we shall see later, do not play a role.

Note that, neglecting ghosts, this may be written as

L0 = L0 − 2 + . . .

This isolation of the c0L0 term in Q plays a central role in the construction of the am-

bitwistor string field action. We shall require that the string field |Ψ〉 satisfy the spacetime

metric-independent constraint L0|Ψ〉 = 0 as part of its definition. The remaining con-

straints encoded in Q are given by the action for the string field through the target space

equations of motion and gauge invariances. We shall discuss these issues in detail in sec-

tion 3.3. The BRST operator is the key ingredient in the quadratic string field action. In

order to be able to construct a complete non-linear action for the string field we need an op-

erator description of the ambitwistor string interactions. This is the subject of section 2.2.

2.2 The operator formalism for the first quantised ambitwistor string theory

The operator formalism for ambitwistor strings was investigated in [36]. Here we review

and extend those results. The central idea of the operator formalism [37, 38] is to express

the n-punctured genus g worldsheet in terms of a state 〈Σ|, called the surface state, which

may be thought of as a map from the n-fold product of Hilbert spaces ⊗n
i=1Hi to C such

that, if we associate each of the Hi with a puncture on the surface and contract with an

asymptotic state |Vi〉 ∈ Hi, the resulting function

〈Σ|B(~ν)|Vi〉 . . . |Vn〉, (2.15)

integrated over an appropriate space Γn is the scattering amplitude for these states, where

B(~ν) denotes appropriate ghost insertions described below. In the case of the conventional
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string the space Γn is the moduli space Mn,g of Riemann surfaces. An appropriate candi-

date for Γn for the ambitwistor string was discussed in [19] and will be considered in the

context of ambitwistor string field theory in section 3.4.2. For now, we shall formally take9

Γn to be Mn,0 in accordance with [12]. For the rest of this section we shall focus on the case

of ambitwistor string theory and, since our discussion will be limited to classical supergrav-

ity, we shall restrict attention to the g = 0 case. This means that, although the theory is

quantised at the level of the worldsheet, we are only considering classical spacetime physics.

For on-shell states, the connection with the vertex operators V (t) is simply

|V 〉 = lim
t→0

V (t)|0〉, (2.16)

where t is a local coordinate that vanishes at the puncture. For example, the massless

symmetric state with vertex operator10

V (z) = c(z)c̃(z)εµνPµ(z)Pν(z)e
ik·X(z) (2.17)

corresponds to the state

|V 〉 = c1c̃1εµνα
µ
−1α

ν
−1|k〉, (2.18)

where the zero mode momentum eigenstate is |k〉 = eik·x|0〉 and εµν is a polarisation tensor.

The n-point scattering amplitude is then

Mn =

∫

Mn

〈Σ|B(~ν)|V1〉 . . . |Vn〉.

Notice that all dependence on the location t of the operator insertion has been lost in the

limit in (2.16). In the operator formalism the location of the vertex insertion is no longer

encoded in the states |Vi〉. That information is described by the surface state 〈Σ|, which

we turn to next.

2.2.1 The surface state

The surface state 〈Σ| is the crucial ingredient in the operator description of conventional

string theory [37, 38]. It encodes the information of the conformal field theory (CFT) on

a genus g Riemann surface with n punctures. Recalling the discussion in section 2.1.2,

we introduce local coordinates ti around the i’th puncture, with respect to which, the

fields have the standard oscillator expansion (with the puncture located at ti = 0). It is

useful to define the conformal map hi from a neighbourhood of the i’th puncture to the

complex plane with coordinate z, given by z = hi(ti). The location of the puncture is then

zi = hi(0). In addition, 〈Σ| encodes a choice of the local coordinates ti around each of the

9In [19] it was argued that (2.15) should be thought of as a top holomorphic form on the 2(2n − 6)

dimensional space T ∗Mn. A Morse theory argument was used to select a 2n− 6 dimensional cycle Γn over

which to integrate (2.15). It was also shown that, via a localisation argument, this form could be simplified

and the amplitude could be formally written in terms of an integral over the 2n− 6 dimensional space Mn.
10We shall only consider unintegrated vertex operators in this paper as we want to be able to easily

extend the formalism to include Ramond states, for which no meaningful notion of an integrated vertex

operator exists.
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punctures. The data associated with string states at those punctures is encoded in states

|Ψi〉 in the i’th Hilbert space Hi which are then contracted with the surface state to give

a CFT correlation function. As such, the surface state may be thought of as a map from

⊗iHi to C. The extension to off-shell correlation functions is straightforward.

The surface state 〈Σ| for ambitwistor string theory was explored in [36]. We summarise

and extend the results here. The surface state may be written as

〈Σ| =

∫
dnp 〈~pn| δ

(∑
p(i)

)
eW Z, (2.19)

where the integral is over all external momenta11 and the delta function imposes overall

momentum conservation. The exponent is a sum of matter and ghost contributions W =

VX,P + Vgh, which may be written schematically as

VX,P (z1, . . . zn) =
∑

i,j

∮

0
dti

∮

0
dtj

X(ti) · P (tj)

hi(ti)− hj(tj)
,

Vgh(z1, . . . zn) =
∑

i,j

∮

0
dti

∮

0
dtj

b(ti)c(tj)

hi(ti)− hj(tj)
+
∑

i,j

∮

0
dti

∮

0
dtj

b̃(ti)c̃(tj)

hi(ti)− hj(tj)
, (2.20)

and 〈p(i); 3| is shorthand for the SL(2;C)-invariant vacuum 〈p(i); 3| ≡ 〈p(i)| ⊗ 〈3i| ⊗ 〈3̃i|.

The ghost vacua have the standard normalisation and are given by 〈3| = 〈0|c−1c0c1, with a

similar expression for 〈3̃| involving the c̃ ghosts and are normalised as 〈3|0〉 = 1 and similarly

for 〈3̃|. In (2.19) we have adopted the shorthand notation 〈~pn| := 〈p(1); 3| . . . 〈p(n); 3| . The

integrals are taken around the location of the puncture given in terms of local coordinates

ti around the i’th puncture (located at ti = 0). The expression for the surface state (2.19)

also includes the object Z, defined as

Z =
+1∏

r=−1

Zr

+1∏

r=−1

Z̃r,

where Zr is given by

Zr =
n∑

i=1

∞∑

m=−1

Mrm(zi) b
i
m. (2.21)

The coefficients Mnm(zi) are

Mnm(zi) =

∮

ti=0

dti
2πi

t−m−2
i

(
h′i(t)

)−1(
hi(t)

)n+1
.

There are similar expressions defining Z̃ with b(i) replaced by b̃(i). These expressions

may be derived from the path integral for the ghost zero modes. The net effect of these

contributions is to remove the c1c̃1 factors in three of the asymptotic string states, effectively

dividing out by an SL(2;R) factor for each of the products in Z. This is discussed in more

detail in [36].

11 dnp =
∏n

i=1 dp(i)
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It is often useful to write these expressions in terms of the oscillator modes

VX,P =
∑

m,n≥0

∑

i,j

Smn(zi, zj)α̃
(i)
m · α(j)

n , (2.22)

and for the ghosts

Vgh =
∑

i,j

∑

n≥2
m≥−1

Knm(zi, zj) c
(i)
n b(j)m +

∑

i,j

∑

n≥2
m≥−1

Knm(zi, zj) c̃
(i)
n b̃(j)m .

The functions S is given by

Smn(zi, zj) =

∮
dti
2πi

∮
dtj
2πi

h′i(ti)t
−m
i t−n−1

j

1

hi(ti)− hj(tj)
. (2.23)

The corresponding functions for the ghosts are given by

Knm(zi, zj) = −

∮
dti
2πi

∮
dtj
2πi

t−n+1
i t−m−2

j

(
h′i(ti)

)2(
h′j(tj)

)−1 1

hi(ti)− hj(tj)
.

Details of the derivations of these expressions may be found in [36] and a brief overview of

one approach, as applied to the more familiar case of the conventional string, is given in

appendix A

2.2.2 Scattering amplitudes and the scattering equations

Given the surface state 〈Σ|, and on-shell12 states |Ψi〉 ∈ Hi in the i’th Hilbert space, we can

construct a top form on the holomorphic cotangent bundle of the moduli space T ∗Mn as

Ω|~V 〉(~v) = 〈Σ|Bn−3(~v)|~V 〉, (2.24)

where

Bn−3(~v) =
n−3∏

a=1

b̃(~νa)
n−3∏

a=1

b(~νa)
n−3∏

a=1

δ̄
(
H(~νa)

)
, (2.25)

with b(~νa), b̃(~νa), andH(~νa) as defined in (2.21). |~V 〉 is short hand for the tensor product of

asymptotic states |V1〉⊗ . . .⊗|Vn〉. The forms (2.24) are motivated by similar constructions

in [19, 37]. We shall argue in section 3.4.2 that we may actually formally evaluate this

integral over moduli space Mn. Taking the |V 〉 to be on-shell states (2.18) corresponding,

via the state-operator correspondence, to vertex operators (2.17). The on-shell scattering

amplitude is given by integrating over the moduli space Mn

〈V (z1), . . . , V (zn)〉 =

∫

Mn

Ω|~V 〉(~v). (2.26)

One point of concern might be that, since 〈Σ| depends on a choice of local coordinates

zi = hi(0) centred on each puncture, it is not at all obvious that Ω|~V 〉(~v) is well-defined on

Mn. The natural framework to describe Ω|~V 〉(~v) is the bundle over Mn with fibres given

12I.e. BRST-invariant states.
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by an independent choice of local coordinates about each puncture. However, provided

that the external states |~V 〉 are on-shell, in other words that they are BRST-invariant, the

integrand is invariant under local reparametrisations and so the form Ω|~V 〉(~v) does descend

to a well-defined form on Mn. Put another way, it does not matter which section of the

bundle we choose to integrate over.

Let us consider the explicit example of the scattering of n on-shell states |Vi〉, each of

the form (2.18). It is straightforward to show (see appendix B) that

〈Σ|α
(i)
−1 =

∫
dnp 〈~pn| δ

(∑
p(j)

)
eW

∑

j 6=i

∑

n≥0

S1n(zi, zj)α
(j)
n Z,

where Smn(zi, zj) is given by (2.23). We also have that

∑

j 6=i

∑

n≥0

S1n(zi, zj)α
(j)
n |kj〉 =

∑

j 6=i

kj
zi − zj

|kj〉,

where we have used the fact that α
(i)
n |ki〉 = δn,0ki|ki〉 for n ≥ 0 and S10(zi, zj) = (zi−zj)

−1.

The α
(i)
n for n ≥ 0 commute with all operators to the right in the expression for the

amplitude until they hit the |ki〉 of the asymptotic states. Thus, in evaluating the scattering

amplitude the net effect is to make the replacement

α
(i)
−1 →

∑

j 6=i

kj
zi − zj

.

This is the operator statement of the path integral result

Pcl(z) =
∑

j

kj
z − zj

, (2.27)

which arises when the Xµ(z) path integral is done (see [12] for details).

Let us now focus on the ghost terms. The gauge-fixing of the worldsheet complex

structure and the gauge symmetry of the Beltrami differential e(z) give the ghost contri-

bution
n−3∏

a=1

δ̄
(
H(~νa)

)
b̃(~νa)b(~νa),

which we recognise as the Bn−3(~v) insertion in Ω|~Ψ〉(~v). The b and b̃ insertions are of the

standard type. The H(~νa) contribution requires more discussion.

A similar calculation to that above (which also may be found in appendix B) yields

〈Σ|α
(i)
−mα

(i)
−n =

∫
dnp 〈~pn| δ

(∑
p(j)

)
eW A

(i)
−mA

(i)
−n Z, (2.28)

where

A
(i)
−m ≡ α

(i)
−m +

∑

j 6=i

∑

n≥0

Smn(zi, zj)α
(j)
n .

The relationship of the worldsheet vector fields v(z) and the types deformations of the

moduli space may be described simply. Given a disc Di containing the i’th puncture, and
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the vector field vi(z) on the boundary of the disc we can ask if one may smoothly extend

vi(z) outside the disc. Those v that cannot be extended outwards provide interesting

deformations. If v(z) vanishes at the puncture it describes coordinate changes that do not

affect the location of the punctures. Since these do not have any effect on the moduli space

Mn, we ignore these in the on-shell theory; however, they do play a role in the off-shell

theory. Those v(z) that do not vanish at the puncture act to move the location of the

puncture and so do have an interesting action on Mn. At tree level, the locations of the

punctures are the only moduli, so it is this class of vector fields that are of interest to us.

For completeness we mention that those vector fields that cannot be extended to the full

interior of the disc encode changes in the moduli of the underlying, unmarked, Riemann

surface. This classification is nicely summarised in table 1 of [24]

Let us focus then on those vi that do not vanish at the point zi and can be extended

into the interior of the disc Di surrounding the point zi. These correspond to deformations

that can move the location of the punctures

zi → zi + vai δτa.

where τa are coordinates on the moduli space. Let us choose a basis for the vai (z) such

that three of the punctures are kept fixed while n − 3 are shifted by an amount given

directly by a particular modulus, so that vai (zi) = δai for i = 1, 2, . . . , n− 3 and vai = 0 for

i = n− 2, n− 1, n.

Using this v(z), we have

H(~νa) =
n∑

i=1

∮
dz H(i)(z)δai = L̃

(a)
−1.

Using the identity (2.28), we have

〈Σ|L̃
(a)
−1 =

∑

n≥0

〈Σ|α(a)
n · α

(a)
−n−1

=

∫
dnp 〈~pn| δ

(∑
p(j)

) ∑

n≥0

α(a)
n ·


∑

j 6=a

∑

m≥0

S1+n,m(za, zj)α
(j)
m


 eW Z,

It is then straightforward to show that

∑

n≥0

α(a)
n ·


∑

j 6=a

∑

m≥0

S1+n,m(za, zj)α
(j)
m


 |k1〉 . . . |kn〉 =

∑

j 6=a

ka · kj
za − zj

|k1〉 . . . |kn〉

= ka · Pcl(za)|k1〉 . . . |kn〉.

Putting this all together gives the result

∫
dnp δ

(∑
pj

)
〈p1| . . . 〈pn| e

VX,P

n−3∏

a=1

δ̄
(
L̃
(a)
−1

)
|k1〉 . . . |kn〉 = δ

(∑
ki

) n−3∏

a=1

(ka · Pcl(za)) ,

where VX,P is given by (2.22). This is the required scattering equation and momentum

conservation contributions to the amplitude. The final steps in the calculation of the
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scattering amplitude are straightforward and given in more detail in [36]. We present a

quick overview below. The on-shell asymptotic states are given by (2.18). Substituting

these into (2.26) gives the scattering amplitude

∫

Mn

Ω|~Ψ〉(~v) =

∫

Mn

〈Σ|
3∏

i=1

c
(i)
1 c̃

(i)
1 ǫµνi α

(i)
−1µα

(i)
−1ν

n∏

i=4

δ̄ (k · Pcl) ǫ
µν
i α

(i)
−1µα

(i)
−1ν |k1〉 . . . |kn〉,

where n − 3 factors of c(z)c̃(z) have been absorbed by the b(~νa)b̃(~νa) insertions.13 The

remaining c and c̃ ghosts are eliminated by the Z factor in 〈Σ|. It was shown above that

the α
(i)
−1 factors in the external states are converted into Pcl(zi) factors when inserted into

correlation functions involving 〈Σ|. The net result is the bosonic scattering amplitude [12]

MN = δD
(∑

ki

)∫

MN

dN−3zi
1

dω

N∏

i=1

ǫµνi Pcl µPcl ν

′∏

i

δ̄ (ki · Pcl (zi)) , (2.29)

where14
′∏

i

δ̄(ki · Pcl(zi)) =
1

dω

N∏

i=4

δ̄(ki · Pcl(zi)).

As commented upon in [12], this is not the correct tree amplitude for Einstein gravity;

however, Einstein supergravity is recovered from the N = 2 supersymmetric extension

of (2.2). The arguments above, including the emergence of the scattering equations, apply

also in the supersymmetric case.

As a final comment, we note that the fact that, the form Ω|~V 〉(~v) is invariant under

diffeomorphisms on the worldsheet and so it is well-defined on the moduli space will become

important when we consider correlation functions involving states which are not BRST-

invariant. When we consider the string field theory in the next section, we shall want to

generalise this discussion to off-shell quantities where the form Ω|~V 〉(~v) will not be invariant

under general diffeomorphisms and consequently will not be well-defined on the moduli

space Mn. In the off-shell case, a generalisation of the bundle over moduli space will be

the framework we will be forced to work with.

2.2.3 An alternative perspective

In [19] an alternative and, arguably, more fundamental perspective on the scattering equa-

tions and how they arise in the ambitwistor string was proposed. This perspective differs

significantly from that of conventional string theory and provides a useful framework in

which to discuss the string field interactions. We summarise the main ideas here and refer

the interested reader to [19]. In this approach the observation that the algebra (2.6) relates

13Taking va(zi) = δai for i=1,. . . ,n-3 and zero otherwise gives

b(~νa) =

∮
dzb(a)(z) = b

(a)
−1 ,

which removes the c
(a)
1 insertion on n− 3 of the external states.

14 dω =
dzi dzj dzk

(zi−zj)(zj−zk)(zk−zi)
.
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to T ∗M, rather than simply M, plays a central role. Following [19, 40] generalises the

BRST operator such that {Q,µ} = δµ and {Q, e} = δe where δµ and δe are anti-commuting

fields. Note that µ and δµ depend on the coordinates of the base of T ∗M but are inde-

pendent of the fibre directions, whereas e and δe vary as we move in the fibre and the

base. The action is not invariant under this extended BRST transformation; however, an

extension, which leads to an action invariant under this generalised BRST transformation

may be found. The invariant action may be written in the form

S0 + {Q,W},

where S0 =
∫
Pµ∂̄X

µ+b∂̄c+b̃∂̄c̃. In our languageW = b(u)+b̃(u, ũ), where the arguments

reflect the dependence of b and b̃ on the base and fibre directions of T ∗M. In [19], it is

S0 that is used to compute correlation functions and {Q,W} is treated as an operator

insertion. The scattering amplitudes are given by

Mn =

∫

Γ⊂T ∗M
Ω̃|~V 〉(u, ũ), (2.30)

where

Ω̃|~V 〉(u, ũ) =
〈
e−{Q,b(u)+b̃(u,ũ)} V1 . . . Vn

〉
S0

,

is a middle-dimensional form on T ∗M, Γ is a suitably chosen middle-dimensional cycle

in T ∗M and the Vi are vertex operators. The first hint that T ∗M, rather than M itself

plays the key role is the suggestive semi-direct product form of the worldsheet theory gauge

algebra (2.6), a point that will be taken up again in section 3.4.2. The question of how to

choose a suitable Γ ⊂ T ∗M was discussed in [19] and we shall present a brief review below.

The correlation function is evaluated using S0 as the classical action in the path integral.

The pair of vectors u and ũ formally generalise v and denote deformations along the base

and fibre directions of Γ ∩ T ∗M respectively.

The e−{Q,W} factor in the correlation function Ω̃|~V 〉 indicates that standard localisation

arguments may be applied to perform the integral. Indeed this is the case and furthermore,

only the critical points15 τ∗ ∈ T ∗M of an appropriate Morse function16 are required, not

the detailed form of Γ. The critical points satisfy two conditions: the first imposes the

scattering equations, the second selects a point in each of the fibres of T ∗M. Evaluating

Mn on the critical points τ∗ gives

Mn =
∑

τ∗

〈
n−3∏

a=1

b(va)
n−3∏

a=1

b̃(va)(detΦ)
−1 V1 . . . Vn

〉

S0

,

where the precise form of Φ is given in [19]. The key point is that formally, this expression

for the amplitude may be written as an integral over a copy17 of M in T ∗M with coor-

dinates τ where delta-functions are introduced to single out the required critical points

15At tree level, each critical point is associated to the location of n− 3 punctures which are solutions to

the scattering equarions.
16See [19] for further details.
17The simplest identification of the copy of M as the base of T ∗M does not do the job [19].
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τ∗. These delta functions have support precisely on the solutions to the scattering equa-

tions and so the amplitude may be equivalently written in the form (2.29). The advantage

of the expression (2.29) for the amplitude is that, written as an integral over M, the

similarities with conventional string theory are emphasised; however, we shall see that for-

mulation (2.30) has advantages when we consider interactions of the associated string field

theory. As such, it is useful to consider briefly how the discussion of [19] might proceed in

the operator formalism.

The operator formalism posits a surface state 〈Σ| such that

Mn =

∫

M
〈Σ|Bn−3|V1〉 . . . |Vn〉.

where Bn−3 is given by (2.25). We can separate off the delta-functions in Bn−3 and use them

to do the integral over M. The delta-functions have support on the scattering equations

which may be solved to give the collection of marked points on Σ, denoted by τ∗. The

expression of the amplitude becomes

Mn =
∑

τ∗

〈Σ∗|
n−3∏

a=1

b(v∗a)

n−3∏

a=1

b̃(v∗a) (detΦ)
−1|V1〉 . . . |Vn〉,

where 〈Σ∗| is the surface state evaluated τ∗ ∈ M. Φ denotes the Jacobian matrix that arises

from evaluating the integral on the delta-functions.18 One could then propose a reverse-

engineering of the amplitude to construct a surface state appropriate for the localisation

procedure described in [19]. Such a surface state 〈Σ̃| would satisfy

Mn =

∫

Γ⊂T ∗M
〈Σ̃||V1〉 . . . |Vn〉,

where 〈Σ̃| takes the same form as 〈Σ| but also incorporates the e−{Q,b}e−{Q,b̃} insertion

as part of its definition. The operator formalism tells us how to construct the appropriate

worldsheet correlation function and then a region over which it must be integrated must be

chosen. This integral is then performed as outlined in [19]. Given that localisation is such a

powerful tool, evaluating the operator expression 〈Σ̃||V1〉 . . . |Vn〉 directly is not particularly

efficient. It is far more useful to work in terms of the worldsheet correlation function〈
e{Q,W}V1 . . . Vn

〉
S0
. In any event, one could always choose to express the interaction

terms in terms of worldsheet correlation functions.

3 Bosonic ambitwistor string field theory

In this section we construct a string field theory for the bosonic ambitwistor string. Al-

though our main interest is in the supersymmetric ambitwistor theory, the basic ingredients

of the bosonic and supersymmetric constructions are similar and it is helpful to first study

the slightly simpler bosonic theory first. We shall find that much of the analysis presented

18The scattering equations are functions of the moduli, so there will be a Jacobian factor when evaluating

the integral against the delta functions. It is natural to absorb this Jacobian into the definition of 〈Σ∗|.
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for the bosonic string generalises straightforwardly to the superstring19 but there are some

important differences. We begin with a brief overview of the standard approach to conven-

tional covariant string field theory, before outlining the formal structure of the ambitwistor

string field theory in section 3.1. Section 3.1 is rather formal and so, starting in section 3.2

and continuing in sections 3.3 and 3.4 we provide explicit constructions of the string field

and the action.

3.1 Second quantization of closed string theories

The condition of BRST-invariance imposes the spacetime equations of motion and thus far

we have considered only ambitwistor fields which satisfy the on-shell condition Q|Ψ〉 = 0.

Starting in this section, we shall follow the well-trodden path to second quantisation given

by string field theory. We shall begin with more general, off-shell, string fields that are

not required to satisfy Q|Ψ〉 = 0. The condition of BRST invariance will only emerge as a

consequence of the classical equations of motion of the string field action S[Ψ].

To set the scene, we first review the covariant approach to the conventional string

field theory. We shall begin by considering the slightly simpler case of the conventional

covariant open string field [41]. In a conventional string theory a suitable background is

associated with a worldsheet CFT, which gives a BRST operator Q. The on-shell states

are solutions to Q|Ψ〉 = 0 which may be derived from the action S2[Ψ] = 1
2〈Ψ|Q|Ψ〉. The

story does not end here. The string theory is not a free theory and its interactions describe

perturbations of the original background and so such interactions must be included in the

string field action. For the classical open string a cubic term, which is constructed using

the three-punctured sphere surface state 〈Σ3| and is denoted by {Ψ3} = 〈Σ3||Ψ〉|Ψ〉|Ψ〉, is

sufficient to reconstruct the string perturbation theory at tree level.20 The equations of

motion now include a non-linear term which effectively corrects the original, background-

dependent, statement of BRST-invariance for the new, perturbed, background. The string

field action is

S[Ψ] = 〈Ψ|Q|Ψ〉+
g

3!
〈Σ3||Ψ〉|Ψ〉|Ψ〉 (3.1)

Perturbation theory proceeds by fixing the gauge, the Siegel gauge b0|Ψ〉 = 0 being a con-

venient choice. The quadratic term reduces to 〈Ψ|Q|Ψ〉 → 〈Ψ|c0L0|Ψ〉 and the propagator

may be written schematically as

b0
L0

= b0

∫ ∞

0
dτ e−τL0 , (3.2)

where τ becomes a real modulus that contributes to the moduli spaces of higher point

Riemann surfaces with boundary. One might have hoped that the chiral nature of the

ambitwistor string means that the corresponding string field theory is constructed along

the lines of the conventional open string field. This does not appear to be the case, rather

19With the exception of the issue of how to deal with picture changing operators, this is largely true

for the Neveu-Schwarz (NS) sector in the small Hilbert space approach. The Ramond sector however,

introduces new complications. This is briefly discussed in section 6.
20Of course, to go to loop level, a closed sector must also be included.
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the conventional closed string field theory seems to be the more natural cousin of the

ambitwistor string field theory.

The story for the conventional closed string has a number of additional subtleties.

Consideration of the ghost number means that an additional ghost must be inserted into

the quadratic part of the action which becomes S2[Ψ] = 〈Ψ|c−0 Q|Ψ〉, where c−0 = c0 − c̄0.

The problem then is that the equations of motion for S2[Ψ] require all but the c−0 parts

of the BRST operator to annihilate |Ψ〉. Those parts of the BRST charge that include c−0
dependence must be required to vanish as an additional, off-shell, constraint on the string

field |Ψ〉. Fortunately, the constraint is the reasonable condition21 of level matching that

one would expect the string field to satisfy. To complete the action, non-linear interactions

terms must be added. This is well-understood for the bosonic string and we shall not

discuss it further here as our main interest is in the ambitwistor string. Further details

on conventional string field theory may be found in [22–24] and also [39, 42–44]. Much

progress has been made recently on the conventional superstring field theory, details of

which may be found in [25, 45].

3.1.1 The action and spacetime gauge symmetries

We now turn to our main interest - the ambitwistor string field theory. We shall consider the

(problematic) bosonic theory in this section and discuss the better founded supersymmetric

theory in sections 4 and 5. Though the theory has some similarities with open string theory,

the perturbative structure seems to rely on closed string moduli space which suggests that

the covariant theory must be non-polynomial as we discuss below.

We begin the discussion at the linearised level. We look for an action for which

δ|Ψ〉 = Q|Λ〉 is a target space gauge symmetry and the net effect of the equation of

motion and other physical constraints imposes Q|Ψ〉 = 0, as in the conventional string

field theories. The strategy will be to impose Q|Ψ〉 = 0 on a string field in two stages; the

first will be to require the string field |Ψ〉 to obey the condition L0|Ψ〉 = 0, where L0 is

that part of Q which multiplies c0 (2.14). The remaining conditions from Q|Ψ〉 = 0 are

imposed by the linearised equations of motion. We shall see that L0|Ψ〉 = 0 is a background

independent constraint, much like the level-matching condition in conventional string field

theory. The background-dependent parts of the BRST condition are then imposed by

the equations of motion. This seems reasonable, as the background-dependent parts are

expected to receive corrections from the non-linear interaction terms in the action, whereas

the background-independent constraints do not depend on any interaction terms we may

subsequently add.22 The effect of including non-linear interaction terms will be to alter

the equations of motion Q|Ψ〉+ . . . = 0 and gauge transformations δ|Ψ〉 = Q|Λ〉+ . . . but

not the constraint L0|Ψ〉 = 0.

We take the string action to have the same general form as the closed bosonic string

field theory

S[Ψ] = 〈Ψ|c0Q|Ψ〉+
∑

n>2

1

n!
{Ψn}, (3.3)

21The condition is (L0 − L0)|Ψ〉 = 0, supplemented by (b0 − b̄0)|Ψ〉 = 0.
22It is a much more primitive condition that ensures things like the field having the correct level.
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where the interaction terms {Ψn} will be discussed further below. The quadratic part

includes the c0Q = c0(c0L0 + c̃0L̃0 + . . .) insertion. Since c0 is grassmann, the L0 term

drops out of the quadratic term. As stated above, we impose the condition L0|Ψ〉 = 0 as

part of the definition of an ambitwistor string field. We shall also impose the condition

b0|Ψ〉, which arises naturally given that {Q, b0} = L0.

Although it will not play a significant role in this paper we recall the string product

|[Ψ1, . . . ,Ψn]〉. Following [24] it can be useful to write the interaction terms {Ψn} in terms

of the string product |[Ψ1, . . . ,Ψn]〉 as {Ψn} = 〈Ψn|c0|[Ψ1, . . . ,Ψn−1]〉. The relationship

may be inverted by introducing a complete basis of states {|φr〉} so that

|[Ψ1, . . . ,Ψn]〉 =
∑

r

b
(r)
0 |φr〉{φr,Ψ1, . . . ,Ψn}.

In this way, the operation |[Ψ1, . . . ,Ψn]〉 may be thought of as a map from ⊗nH to H. The

product is useful in writing the equations of motion of the action (3.3)

Q|Ψ〉+
∑

n>2

1

n!
|[Ψ1, . . . ,Ψn]〉 = 0.

In the conventional bosonic [22–24] and supersymmetric [25] string field theories, the ob-

jects [·, . . . , ·] satisfy an important identity called the main identity, which may be written

at tree level as

Q[Ψ1, . . . ,Ψn] +
n∑

i=1

(−1)|Ψ1|+...+|Ψi−1|[Ψ1, . . . , QΨi, . . . ,Ψn]

+
∑

{iℓ,jk},l,k

σ(iℓ, jk)[Ψi1 , . . . ,Ψiℓ , [Ψj1 , . . . ,Ψjk ]] = 0, (3.4)

where the set of vertices has been partitioned into sets {i1, . . . , iℓ} and {j1, . . . , jk} and

σ(iℓ, jk) denotes an appropriate sign generated by moving the BRST operator onto Ψi.

The expression relates the failure of the product [·, . . . , ·] to satisfy a Jacobi identity with

the failure of the the BRST operator to act as a derivation on the product. At loop level,

an additional term enters and the notion of the interaction term {Ψn} must be generalised

for higher genus. A detailed discussion and explicit proof of the main identity may be

found in [24]. Whilst we have not checked carefully, we believe there is good evidence that

a similar identity holds for the ambitwistor superstring field theory and we hope to present

a proof of this elsewhere.

3.1.2 Target space gauge symmetries

Though we have not proven the main identity for the ambitwistor string field, there is

evidence that the action has (target space) gauge invariance

δ|Ψ〉 = Q|Λ〉+
∑

n

1

n!
|[Λ,Ψ1, . . . ,Ψn]〉,

where |Λ〉 is a gauge parameter field. The standard way to deal with this spacetime gauge

invariance is to employ the BV procedure [24] and we shall not consider this further here,

we shall study the linearised symmetries at length in section 3.2.
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We do not wish to quantise the target space theory as it describes classical supergravity

in ten-dimensions and so no sensible quantum theory is expected to exist; however, gauge-

fixing can be employed to simplify the theory and is a prerequisite for tree-level perturbation

theory. An analogue of Siegel gauge for the ambitwistor string field is

b̃0|Ψ〉 = 0.

In this gauge the kinetic term for the string field theory becomes

〈Ψ|c0Q|Ψ〉 = 〈Ψ|c0c̃0L̃0|Ψ〉,

where we have used the fact that {Q, b̃0} = L̃0 + . . ., where the ellipsis denote ghost terms

that vanish on |Ψ〉. The additional constraints on the string field are simply L0|Ψ〉 = 0,

where L0 is that part of the BRST current that multiplies c0, and b0|Ψ〉 = 0. In this gauge,

the propagator looks like
δ(L0)

L̃0

b̃0b0|RLR〉, (3.5)

where |RLR〉 is the reflector state that relates the string fields in two Hilbert spaces and their

conjugates23 as 〈ΨL|RLR〉 = |ΨR〉. The reflector state appears naturally in the propagator

as we may write the kinetic term as 〈ΨL|〈ΨR|c0Q|RLR〉. The form of the propagator is

what we might expect since L̃0 = 1
2k

2 + . . ., which is the conventional kinetic term. The

delta function simply imposes the required L0|Ψ〉 = 0 constraint. The way in which this

propagator may be written as an integral, reminiscent of (3.2), is discussed in section 3.4.3.

3.1.3 Feynman rules and fundamental vertices

In this section we briefly review the arguments for why the action (3.3) is required to be

non-polynomial. Readers familiar with these arguments may safely skip this section. A

superior discussion may be found in section 5 of [24].

As with the conventional bosonic string, finding the Feynman rules for the ambitwistor

string amounts to finding a minimal set of vertices that, when supplemented by the prop-

agator, may be used to construct a single cover of the moduli space of punctured Riemann

surfaces Mn. For example, we could start with the three-punctured sphere as a basic build-

ing block. The moduli space M3 is a point. One might then try to construct all possible

four-punctured Riemann surfaces, the space M4 (the Riemann sphere), from sewing two

three-point surfaces with a propagator, the two moduli coming from the propagator. As

demonstrated in [46–51], this fails. There is a fundamental “missing” region D4 ⊂ M4 that

cannot be constructed in this way24 and so must be added in as a fundamental 4-point

interaction [43]. Thus, it is not sufficient for the action of the closed theory to have just

a quadratic term and a cubic interaction {Ψ3} as in (3.1), we must also add in a quartic

interaction {Ψ4} which encodes the ‘missing’ region D4.

This result generalises to more punctures; a single cover of Mn cannot be constructed

from fundamental regionsDm withm < n and propagators alone, and so a new fundamental

23As will be discussed below, the notion of conjugate here is not the usual BPZ conjugate in the bosonic

case. However, in the supersymmetric the conventional BPZ conjugate may be used.
24More correctly, one cannot obtain a single cover of M4 in this way.
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vertex must be introduced at each n to fill in the missing region of moduli space. Thus, we

are required to introduce interaction terms {Ψn} (each encoding the missing region Dn)

for all n ≥ 3 and we see that the covariant action is non-polynomial. The converse of this

is that the boundary of each fundamental region is described by Riemann surfaces that are

built from vertices Dm with m < n glued together with up to n− 3 propagators.

The string vertex Vn is defined to be the set of Riemann surfaces in Dn with a choice

of coordinate, up to a phase, around each puncture [24]. As will be discussed in sec-

tion 3.4 below, when dealing with off-shell objects, the natural object that appears is a

generalisation of the moduli space Mn; the bundle P̂n, whose base is Mn and whose

(infinite-dimensional) fibres describe the choice of local coordinates around each puncture.

Thus Vn ⊂ P̂n. The ambitwistor string theory naturally defines forms Ω|~Ψ〉(~ν) on P̂n which

are introduced below. The interactions are then written as

{Ψn} =

∫

Vn

Ω|~Ψ〉(~ν).

For the first quantised ambitwistor string, the forms Ω|~Ψ〉(~ν) are those given in (2.24). In

general, the string states |Ψ〉 will be the off-shell string fields discussed in the following

section.

The fact that there are an infinite number of Vn that must be introduced gives rise

to the non-polynomial structure of closed string field theory.25 The forms Ω have been

constructed in [24, 37] for the bosonic string and progress has been made in the superstring

in [45]. We discuss the Ω forms for the ambitwistor string in section 3.4.2.

The boundary of any Vn is given by sets of Vm<n joined by propagators. This may be

expressed as a recursion relation (see the figure 5.1 in [24]). This factorisation property,

coupled with the fact that the BRST operator acts as a total derivative on the forms Ω

are the key ingredients in deriving the main identity (3.4). As mentioned previously, we

shall discuss the main identity in the context of the ambitwistor superstring field theory

elsewhere.

It should be stressed that the infinite number of fundamental vertices is characteristic

of the theory built on closed Riemann surfaces. The detail of the precise CFT under con-

sideration does not change the basic story. As such we shall appropriate this construction

to the ambitwistor string field theory.

3.2 The ambitwistor string field

Thus far our discussion of the ambitwistor string field theory has been somewhat abstract,

drawing heavily of the existing lore of string field theory. Beginning in this section, we

provide a more explicit construction of the theory. In doing so, we hope to highlight the

25There are a number of ways of providing concrete constructions of these regions. Originally this was

done using restricted polyhedra [43] which work well-enough at tree level. Later minimal area metrics and

the introduction of ‘stubs’ were used which provide a realisation that extended to loop level. Since we

shall only be interested in tree level, either realisation could be used here. It would be interesting if the

analysis of [19] could be applied in some way to provide an implicit construction using Morse theory. Such

a construction might be more natural from the perspective of the ambitwsitor string but, as yet, we have

no concrete way to realise this.
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many similarities and differences between the conventional and ambitwistor string theories.

It has been observed that, whilst the ambitwistor string shares many superficial similarities

with the conventional string, there are a large number of important differences that arise as

the detail of the theory has become better understood. We focus on the case of flat, empty

spacetime and look for a string field that describes small, perturbative, fluctuations on

that spacetime. The question of more general backgrounds and going beyond perturbation

theory will be discussed briefly in section 6.

The state operator correspondence gives the perturbative, momentum eigenstate,

‘graviton’26 with polarisation εµν as

|Ψ〉 = εµνα
µ
−1α

ν
−1c1c̃1|k〉,

where |k〉 = eik·x|0〉. A more general state is given by a linear superposition of such states,

weighted with a function hµν(k), thus we start with the minimal proposal for the string field

|Ψ〉 =

∫
dk

(
−
1

2
hµν(k) α

µ
−1α

ν
−1c1c̃1 + . . .

)
|k〉, (3.6)

where hµν is a function of the momentum k and + . . . denote terms to be determined by

the symmetries of the theory. This clearly generalises the graviton vertex operator. The

linearised gauge transformation is δ|Ψ〉 = Q|Λ〉 for some parameter field |Λ〉. In order

to have the linearised spacetime diffeomorphisms δhµν = ∂µλν + ∂νλµ as a symmetry, we

require at least the minimal gauge field

|Λ〉 = i

∫
dk λµ(k) α

µ
−1c1|k〉.

Under the linearised gauge transformation δ|Ψ〉 = Q|Λ〉 we have, using the BRST

charge (2.13),

Q|Λ〉 =

∫
dk

(
i

2
c̃0c1 α

2
0 λµ(k)α

µ
−1 + ic̃1c1 α0µλν(k)α

µ
−1α

ν
−1 + ic−1c1 α

µ
0λµ(k)

)
|k〉.

This gives the correct (momentum space) variation for hµν(k), which may be read off from

the αµ
−1α

ν
−1c1c̃1 coefficient. There are also terms proportional to c̃0c1 and c−1c1, which

have no origin in the first terms of (3.6) and so must correspond to the variation of terms

denoted by + . . . in (3.6). We introduce fields fµ(k) and e(k) to provide origins for these

terms.27 The simplest ansatz for the string field is then

|Ψ〉 =

∫
dk

(
−
1

2
hµν(k)α

µ
−1α

ν
−1c1c̃1 +

1

2
e(k) c−1c1 + ifµ(k)α

µ
−1c̃0c1

)
|k〉. (3.7)

26This theory does not describe conventional Einstein gravity, indeed there is evidence that it is not

spacetime diffeomorphism invariant, and so we hesitate to call this state a graviton. The supersymmetric

theory exhibits no such problems.
27The momentum space field e(k) has no relation to the worldsheet Beltrami differential e(z). Since these

fields arise in quite different contexts, we hope that no confusion will arise.
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We shall see that, in order to describe the graviton in the bosonic theory, no additional

terms are required. Identifying α0µ|k〉 = kµ|k〉 and Fourier transforming to configuration

space, the linearised gauge transformations may be read off as

δhµν(x) = ∂µλν(x) + ∂νλµ(x), δfµ(x) = −
1

2
✷λµ(x), δe(x) = 2∂µλµ(x). (3.8)

Note that tr(δhµν) = δe so we shall identify

e(x) = ηµνhµν(x). (3.9)

We shall see that is the correct identification when we compute the quadratic action.

In terms of worldsheet fields, the string field may be written as an off-shell CFT field

Ψ(z) =

∫
dk

(
−
1

2
hµν(k) P

µP νcc̃+
1

2
e(k) ∂2cc+ ifµ(k) P

µ∂c̃c

)
eik·X , (3.10)

where (3.7) and (3.10) are related by

|Ψ〉 = lim
z→0

Ψ(z)|0〉.

This is a minimal string field, in that it contains all that is needed for a study of the

quadratic action, which will be the topic of the next section. It is certainly plausible that

other terms play a role in the interacting theory. For the considerations we limit ourselves

to here, this string field will be adequate.

For the quadratic action, especially in the bosonic theory, the oscillator decomposi-

tion (3.7) is not too unwieldy; however, when we come to consider picture changing in the

supersymmetric theory, the oscillator description can be a little involved and worldsheet

field descriptions of the form (3.10) are more useful. The gauge transformation of the

worldsheet field is given by

δΨ(z) =

∮

C
dωj(ω)Ψ(z).

where the contour C surrounds the point ω = z. The result is best computed using

OPEs (2.3), where the b̃ and c̃ ghosts satisfy the same OPE as the b and c ghosts, and

reproduces the result (3.8) found above.

3.3 The action to quadratic order

A classic problem from conventional closed bosonic string theory is how to construct a

quadratic term with the correct ghost number: the naive choice 〈Ψ|Q|Ψ〉 does not have the

correct ghost number; however, the quadratic term 〈Ψ|c−0 Q|Ψ〉, where c±0 = c0 ± c̄0, does

have the correct ghost number. The condition L−
0 |Ψ〉 = 0, wich does not arise from the

equations of motion, must be imposed as an additional constraint on the string field and is

supplemented by the condition b−0 |Ψ〉 = 0. The L−
0 = 0 condition is simply level matching.

In the Siegel gauge b+0 |Ψ〉 = 0, the quadratic action is 〈Ψ|c−0 c
+
0 L

+
0 |Ψ〉 and the linearised

equation of motion gives L+
0 |Ψ〉 = 0.

As discussed in section 3.1.1 a similar story holds for the ambitwistor string; however,

the idea is modified in an important way. In the ambitwistor string field theory the role of
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c−0 and L−
0 in the conventional closed string field theory are played by c0 and L0 respectively,

where L0 is given by (2.14). In the ambitwistor string field theory the kinetic term thus

takes the form

S2[Ψ] = 〈Ψ|c0Q|Ψ〉 = 〈RLR|c0Q|ΨL〉|ΨR〉. (3.11)

and we require

L0|Ψ〉 = 0, b0|Ψ〉 = 0,

as part of the definition of the string field |Ψ〉. The equation of motion depends on the

spacetime metric through the H(z) dependence in Q and receives perturbative corrections

through non-linear interaction terms as one might expect.

3.3.1 The quadratic action

We shall see that the bosonic theory gives the standard Fierz-Pauli action of linearised

gravity at quadratic order. At higher order we do not expect the bosonic ambitwistor

string field theory to reproduce Einstein gravity as the on-shell scattering amplitudes,

from which the surface states 〈Σ| are constructed, are known not to be those of Einstein

gravity [12].

We take the quadratic action to be (3.11). An important point is that, for the bosonic

theory, we shall not take 〈Ψ| to be the usual BPZ conjugate of |Ψ〉. The standard BPZ

conjugate is given by

∫
dk〈-k|

(
−
1

2
hµν(k) α

µ
1α

ν
1c−1c̃−1 +

1

2
e(k) c1c−1 − ifµ(k) α

µ
1 c̃0c−1

)
.

Instead, we define 〈Ψ| as

〈Ψ| =

∫
dk〈-k|

(
−
1

2
hµν(k) α̃

µ
1 α̃

ν
1 c̃−1c−1 +

1

2
e(k) c̃1c̃−1 − ifµ(k) α̃

µ
1 c̃0c̃−1

)
.

The motivation for introducing such an operation is that the standard BPZ conjugate does

not give a non-trivial quadratic action. Notice that this is the only place in which 〈Ψ|

appears in the action. An explicit expression for the reflector state is easily deduced.28 It

must be stressed that this non-standard inner product is a feature of the bosonic theory

only. The supersymmetric theory discussed later utilises the standard BPZ conjugate.

The c0 term in the action ensures that the action has the correct ghost number for

a closed string field theory, but it also projects out the c0L0|Ψ〉 = 0 part of the BRST

constraint, hence the imposition of L0|Ψ〉 = 0 is imposed as a separate condition.

3.3.2 Recovering the Fierz-Pauli action

Substituting (3.7) into (3.11), using the commutation relations and imposing the normali-

sation

〈k′|c̃−1c̃0c̃1c−1c0c1|k〉 = δ(k − k′),

28One could relate these two conjugates by introducing an operator O which maps oscillator operators

as O : (α±1, c±1, c̃±1) → (α̃±1, c̃±1, c±1) and has no effect on the (α0, c0, c̃0).
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we find that

S2[Ψ] =

∫
dk

(
−

1

4
hµν(−k)k2hµν(k) + 2ihµν(−k)kµfν(k) +

1

8
e(−k)k2e(k)

−ie(−k)kµfµ(k)− 2fµ(−k)fµ(k)

)
. (3.12)

The fµ(k) have no kinetic term and so are auxiliary fields to be integrated out. In config-

uration space the linearised action is

S2[h, e] =

∫
dx

(
1

4
hµν✷h

µν + 2hµν∂
µfν −

1

8
e✷e− e∂µfµ − 2fµf

µ

)
, (3.13)

where all fields are functions of x. The fµ equation of motion is

fµ = −
1

2

(
∂νhµν −

1

2
∂µe

)
. (3.14)

Such a relationship could be inferred from the gauge transformation of the components of

the string field (3.8). In other words, given the gauge transformation of hµν and e, the

correct transformation for fµ could be inferred from this equation of motion. Substitut-

ing (3.14) back in for fµ in the action and integrating by parts where required gives

S2[h] =

∫
dx

(
1

4
hµν✷h

µν +
1

2
(∂νhµν)(∂λh

µλ) +
1

2
h∂µ∂νh

µν −
1

4
h✷h

)
, (3.15)

where we have imposed the identification (3.9) of e(x) with the trace of the metric fluctu-

ation h := ηµνhµν . The action (3.15) is precisely the Fierz-Pauli action [52] for linearised

gravity. Note that it is the background Minkowski metric ηµν and its inverse which is being

used to lower and raise indices. The naive imposition of a Siegel type gauge b̃0|Ψ〉 = 0,

imposes the condition fµ(k) = 0 which, noting (3.14), is precisely the harmonic (or de

Donder) gauge for linearised gravity.29 In this gauge the hµν equation on motion is simply

✷hµν = 0, which is consistent with the proposed propagator discussed above.

3.4 Interactions

In this section we illustrate how correlation functions, interpreted as forms Ω|~Ψ〉(~ν) in a

bundle over moduli space, give the basic ingredient in the interaction terms {Ψn}. Such

forms (2.24), constructed using on-shell asymptotic string states played a central role in

the study of the on-shell scattering amplitudes discussed in section 2.2.2. In this section

we are interested in generalising such objects to off-shell correlation functions as these are

one of the central ingredients in the constructing the {Ψn} terms. We start by giving the

briefest of overviews of how this works in the conventional bosonic string field theory [24]

before describing how this story must be modified for the bosonic ambitwistor string.

29[53, 54] contain nice reviews of linearised gravity.
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3.4.1 Interactions in conventional bosonic string field theory

Tangent vectors to the moduli space V a, where a = 1, 2, . . . , n − 3, provide a convenient

way to think geometrically about deformations of the worldsheet theory at the level of the

moduli space. Such deformations may also be considered at the level of the worldsheet by

the effect of the worldsheet vector fields vai (z), based around the i’th puncture on Σ, which

also change the moduli. As such we can think of the ~νa = (va1 , . . . , v
a
n) as functions of the

V a. Given a set of deformations ~νa corresponding to tangent vectors V a of the moduli

space Mn, we can define a correlation function Ω|~Ψ〉 by

Ω|~Ψ〉(~ν) = 〈Σ|b(~ν1) . . .b(~ν2n−6)|~Ψ〉, (3.16)

where |~Ψ〉 is shorthand for a product of n states |Ψi〉 and the ghost insertions are

b(~νa) =
n∑

i=1

(∮
dz b(i)(z)vai (z) +

∮
dz̄ b̄(i)(z̄)v̄ai (z̄)

)
.

From the perspective of the moduli space, Ω|~Ψ〉(~ν) is a multilinear function of 2n − 6

tangent vectors30 to Mn. It is therefore tempting to think of Ω|~Ψ〉(~ν) as a top form on the

moduli space. If the states in |~Ψ〉 are on-shell, then the form Ω|~Ψ〉(~ν) in (3.16) is indeed a

well-defined top form on the moduli space Mn and the integral of Ω|~Ψ〉(~ν) over Mn is a

well-defined object. This is the case in first quantised string theory and is a key ingredient

of the operator formalism for the conventional bosonic string [37]. A detailed discussion of

how the form (2.24) amounts to a measure on moduli space, in the case where the states are

on-shell, may also be found in [37]. This case closely parallels the discussion in section 2.2.2

for the on-shell ambitwistor string.

More pertinant is the situation when the states in |~Ψ〉 are not on-shell. In this case

Ω|~Ψ〉(~ν) depends on the local coordinates ti defined about the punctures where the states

|Ψi〉 are inserted. Ω|~Ψ〉 is then not well-defined on the moduli space; however, Ω|~Ψ〉 is

well defined on Pn, the bundle over moduli space with base Mn and (infinite-dimensional)

fibres given by the choice of local coordinate at each puncture. In fact, Ω|~Ψ〉 descends to

a well-defined form on the bundle P̂n over Mn with (infinite-dimensional) fibres T given

by a choice of local coordinate about each puncture up to a puncture-dependent phase

ti ∼ eiθiti.

T →֒ P̂n

↓

Mn

Details may be found in [24]. Since P̂n is infinite-dimensional, Ω|~Ψ〉(~ν) is no longer a top

form but it can be integrated over 2n− 6 dimensional regions of P̂n.

30In addition to the vai there are also the complex conjugate fields v̄ai . This is in contrast to the ambitwistor

string in which the v̄ai do not appear.
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3.4.2 Ambitwistor interactions as forms

We now address how this story changes in the ambitwistor case. The relevant starting

point is a form akin to (3.16) with the exception that we do not want to include an anti-

holomorphic sector as was the case for the conventional bosonic string. Instead it is clear

that, in order to recover the correct scattering amplitudes (2.29), we must include a string

of n − 3 b̃(~νa) ghost insertions. We also need to include the same number of δ̄(H(~νa))

insertions. This suggests the generalisation of (3.16) to

Ω|~Ψ〉(~ν) = 〈Σ|Bn−3(~ν)|~Ψ〉 (3.17)

where Bn−3(~ν) is given by (2.25). How should we think about this correlation function? For

on-shell momentum eigenstates |Ψ〉, this is simply the integrand of the on-shell scattering

amplitude (2.29), a form on T ∗Mn. It is useful to think of the additional b̃ insertions

as describing the moduli associated with the Beltrami differential e(z) in the worldsheet

theory. These additional directions would then describe a space Nn ⊂ T ∗Mn which is the

bundle over Mn

Nn
π
−→ Mn,

where the fibres of Nn are n− 3 dimensional and describe the moduli of e(z). One can see

hints of this bundle structure in the algebra (2.6) and a related construction has previously

been noted, from a different perspective, in [19]. For on-shell |Ψ〉, the form (3.17) is well-

defined on T ∗Mn. To determine the on-shell amplitude, we pick a section of Nn and

formally integrate over the base Mn

∫

Mn

Ω|~Ψ〉(~ν). (3.18)

We argue that the choice of section does not matter and so the integral above is well-

defined. We anticipate that a general infinitesimal displacement in T ∗Mn, parametrised

by the worldsheet vector v(z), alters the surface state as

δ~ν〈Σ| = 〈Σ|T (~ν) + 〈Σ|H(~ν),

which generalises the conventional bosonic string result [37]. T (~ν) generates a displacement

in the base Mn, whilst H(~ν) generates a displacement in the fibres of T ∗Mn. The δ
(
H(~ν)

)

insertions in Ω|~Ψ〉(~ν) kill the H(~ν) component in δ~ν〈Σ|, giving

δ~ν〈Σ|δ
(
H(~ν)

)
= 〈Σ|T (~ν)δ

(
H(~ν)

)
,

so that, for a general displacement in T ∗Mn, only the change in the base coordinate gives

rise to a change in Ω|~Ψ〉(~ν). It appears that deformations in the fibre directions preserve

Ω|~Ψ〉(~ν) and so we may formally integrate over the base31 and (3.18) is well-defined.32

31Of course there may be global issues that we have not considered here.
32It would be interesting to see how this relates to the Morse theory and localisation results in [19] which

show how the expression for the on-shell scattering amplitude as integral of a form over a half-dimensional

cycle Γn ⊂ T ∗Mn formally reduces to an integral over the moduli space.
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The generalisation to the off-shell case is now straightforward. We define an infinite

dimensional bundle An with base T ∗Mn and fibres given by a choice of local coordinate

about each puncture. As in the conventional bosonic string, imposing the identification

zi ∼ eiθizi reduces us from An to a bundle which we shall refer to as Ân.

T →֒ Ân

↓

T ∗Mn

For on-shell and off-shell states the form (3.17) is well-defined on both An and, more

importantly, Ân. In practice, we are interested in a 2n − 6 dimensional cycle in T ∗Mn

which we can formally identify as a copy of Mn in our expressions. As such, we might

formally use P̂n in place of Ân. The vertices would then be formally defined in a way

analogous to the conventional string field in terms of the vertices Vn ⊂ P̂n as

{Ψn} =

∫

Vn

Ω|~Ψ〉(~ν), (3.19)

where Vn ⊂ P̂n were discussed in 3.1.3 and the integrand is given by (3.17).

Whilst (3.19) provides a suitable formal generalisation of the vertex of the conventional

closed string to the ambitwistor case and avoids the complications of dealing with a middle-

dimensional cycle in T ∗M directly, it may not be the most convenient description of the

vertex for the calculation of perturbative amplitudes.

In section 2.2.3, we saw that the holomorphic delta-functions appearing in the inte-

grands of scattering amplitudes can be viewed as a formal device to capture the result

of the Morse Theory prescription of [19]. For the first quantised operator formalism, the

approach of [19] is not necessary and one can work entirely in terms of the moduli space

M, provided one is willing to accept the origin of these delta-functions in the surface states

from gauge-fixing the ghosts. By contrast, in the second quantised theory the gluing of

surface states via a propagator is important and additional holomorphic delta-functions

must appear associated with the moduli of this propagator. It is unclear how to incor-

porate holomorphic delta functions directly into the propagator (3.5) that appears in the

ambitwsitor string and so it seems necessary to work at the level of T ∗M as proposed

by [19]. The delta-functions then emerge, as in the first quantised case, as a formal device

to compactly write the result of a Morse Theory evaluation of the amplitude. As such it

is more useful to work with the generalised vertex where we integrate not over Vn ⊂ P̂n,

but rather over a middle-dimensional cycle Γn ⊂ Ân, fixed by arguments similar to those

of [19]. What is really required then is

{Ψn} =

∫

ΓVn

Ω̃|~Ψ〉(~ν), (3.20)

where Ω̃ involves the surface state 〈Σ̃| as discussed in section 2.2.3 and the holomorphic

delta-function insertions are omitted. To complete the description of the vertex we would

need a prescription to construct the ΓVn ⊂ T ∗Vn or, at the least, a way to determine the
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contribution of this term to the fixed points τ∗ of any observable to which this vertex

contributes. The naive choice of using the Morse function associated with Ω̃|~Ψ〉(~ν) and

considering only those critical points contained in T ∗Vn is appealing but requires further

investigation.

3.4.3 A brief sketch of perturbation theory

In this section we briefly outline the approach to perturbation theory in this formalism.

The key ingredients, already discussed, are the propagator and the interaction vertices. The

story closely follows that of the conventional bosonic string but, as many other authors

have found [13, 26, 27, 36, 55], the ambitwistor string differs in many important respects

from the conventional string. We shall only give a sketch of the perturbation theory, giving

a more complete treatment elsewhere. Although we focus on the bosonic fields, the general

discussion also applies to the bosonic sector of the supersymmetric theory. In fact there is

evidence that this construction will only work in the context of the supersymmetric theory.

As such, this section should be read with a view to later application to the superstring

field theory constructed in the following sections.

An important role is played by gluing lower point surfaces together. The picture we

have is of an n-punctured Riemann surface Σn constructed from a propagator connecting

two Riemann surfaces which we denote by ΣL and ΣR. These Riemann surfaces have nL

and nR punctures respectively, where n− 2 = nL +nR. The real dimensions of the moduli

spaces of these Riemann surfaces are dim(ML) = 2nL − 6 and dim(MR) = 2nR − 6 and

so for the moduli space of the n-punctured Riemann surface to be correct, the propagator

must carry one complex modulus. This modulus is denoted by q and appears in the gluing

of local coordinates zL and zR in the regions of the propagator on ΣL and ΣR respectively

as zLzR = q. As we have seen in the ambitwistor string, each modulus comes with a

holomorphic delta-function insertion. This raises the question of how the appropriate

holomorphic delta-function associated with the modulus carried by the propagator arises

from the propagator expression (3.5). A complete understanding of the ambitwistor string

propagator is still lacking, although some recent progress has been made [19, 56, 57]. Here,

we shall see that the perspective of [19] provides a more natural framework in which to

understand how the holomorphic delta-function associated with the propagator modulus

arises in perturbation theory.

The first step in any perturbation theory is to fix the spacetime gauge symmetries.

As discussed in sections 3.1.2 and 3.3.2, there is a simple analogue of the Siegel gauge

appropriate for the ambitwistor string; b̃0|Ψ〉 = 0. The kinetic term then becomes

S2[Ψ] = 〈RLR|c0c̃0L̃0|ΨL〉|ΨR〉,

where 〈RLR| and |RLR〉 are appropriate reflection states. In the calculation of the quadratic

action we used string fields that satisfied the constraint L0 = 0 or, focussing on the matter
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sector for simplicity, L0 = 2. This suggests the propagator33

b̃0b0
δ(L0 − 2)

L̃0

|RL,R〉,

where δ(L0 − 2) projects onto states for which L0 = 2 and the subscripts L,R denote

the Hilbert spaces to the left and right of the propagator. Given that we worked with

string fields |Ψ〉 such that L0 = 2, it is possible that a more general function of L0 could

also appear in the propagator, to which the analysis presented in section 3.2 would only

record the appropriate factors of 2. As mentioned briefly in section 2.2.3, we may appeal

to a possibly more elegant way to understand the scattering amplitudes of the ambitwsitor

string is in terms of localisation and Morse theory [19]. A study of factorisation limits

in [19] suggests a propagator of the form

∫
ds ds̃ b0b̃0 e

−{Q,sb0+s̃b̃0}|RL,R〉, (3.21)

which may be written as
b̃0b0

L̃0L0

|RL,R〉.

When considering the quadratic action we imposed L0 = 2 as a condition on the string

field and so, on the support of the projection δ(L0 − 2) this propagator is, up to an overall

factor, equivalent to
b̃0b0

L̃0

|RL,R〉.

Thus, the quadratic action explored in section 3.3 is consistent with the propagator (3.21).

We shall find that it is the form of the propagator given by (3.21) that is most useful

in understanding perturbation theory in the context of the perspective of the scattering

amplitudes derived using localisation in [19].

It is tempting to interpret (3.21), supplemented with a projection onto L0 = 2 states,

as a closed string propagator for the bundle Y. The projection onto the base Σ is of

the form (3.2) in which all of the anti-holomorphic dependence has been suppressed and

q = e−s. The procedure outlined in [19] requires a choice of cycle Γ ⊂ T ∗M which

excludes the anti-holomorphic contributions from consideration. The additional s̃{Q, b̃0}

contribution deals with propagation of the fibres of Y. As already mentioned, the question

of how to correctly understand the ambitwistor string propagator is an open one we shall

not offer a significantly new perspective to the discussion here.

We now outline the contributions to the scattering amplitude. There will be contribu-

tions from integrating over the fundamental ‘missing’ regions Dn of moduli space and those

contributions coming from regions of the moduli space constructed from m < n point ver-

tices joined by propagators. Alternatively, we can consider these contributions as coming

33An analysis of degenerating Riemann surfaces in the ambitwistor string in [19] gave a result which also

included contributions for sectors of other conformal weights which gave rise to spurious singularities in the

bososnic theory. In the treatment presented here, the constraint L0|Ψ〉 = 0 projects out such sectors and

so such terms do not appear in our Siegel gauge propagator.

– 34 –



J
H
E
P
0
9
(
2
0
1
7
)
1
0
3

from a middle-dimensional region ΓDn ⊂ T ∗Dn. The contributions from the fundamental

regions are simply

M
ΓDn
n =

∫

Dn

n−3∏

a=1

dτa〈Σn|
n−3∏

a=1

b̃(~νa)b(~νa)δ̄
(
H(~νa)

)
|~Ψn〉

=

∫

ΓDn⊂T ∗Dn

〈
e−{Q,b}e−{Q,b̃}~Ψn

〉
S0

, (3.22)

which gives the standard scattering amplitude integrand but integrated only over the region

Dn ⊂ Mn rather than the full moduli space, where the τa are (holomorphic) coordinates

on Mn. The other contributions to the scattering amplitude come from terms constructed

using lower interaction terms glued together by propagators.

We consider next the contribution given by gluing pairs of lower point vertices by a

single propagator. Working on T ∗M, we shall write the propagator in the form (3.21).

Such terms take the form

MR1
n =

∑

σ,{nL,nR}

∫

ΓL∈T ∗ML

∫

ΓR∈T ∗MR

∫
ds ds̃〈Σ̃L|〈Σ̃R| e

−{Q,sb0+s̃b̃0}|RL,R〉|~ΨL〉|~ΨR〉,

where the sum denotes a double sum over all {nL, nR} such that nL + nR − 2 = n and

nL, nR ≥ 3, and σ denotes a sum over all permutations of external states. |~ΨL〉 =

|Ψ1〉|Ψ2〉 . . . |ΨnL−1〉 is a product of asymptotic states located at each of the punctures

of ΣL not connected to the propagator and similarly for |~ΨR〉. Inserting a complete set of

states ΦL,R and using 〈Σ̃||Ψ1〉 . . . |Ψn〉 = 〈e−{Q,W}Ψ1 . . .Ψn〉S0 , we may write this in terms

of correlation functions on the component Riemann surfaces

MR1
n =

∑

σ,{nL,nR}

∫

ΓR1

∑

ΦL,ΦR

〈
e−{Q,b(uL)}e−{Q,b̃(uL,ũL)}~ΨLΦL

〉
S0

×〈ΦL| e
−{Q,sb0+s̃b̃0}|ΦR〉

〈
e−{Q,b(uR)}e−{Q,b̃(uR,ũR)}ΦR

~ΨR

〉
S0

,

where the union of the integration regions has been written as ΓR1 for simplicity. Follow-

ing [19], this may be written as the correlation function on the n = nL+nR − 2 punctured

Riemann surface Σn as

MR1
n =

∑

σ,{nL,nR}

∫

ΓR1

〈
e−{Q,b(u)}e−{Q,b̃(u,ũ)}~Ψ,n

〉
S0

(3.23)

where (uL, ũL), (uR, ũR), and (s, s̃) have been combined into (u, ũ) for simplicity of nota-

tion. The ΓR1 is a half-dimensional cycle in T ∗ML × T ∗MR × C, fixed by Morse theory.

This result seems to imply that the surface states obey an analogue of the generalised glue-

ing and re-smoothing theorem 〈Σ̃n| = 〈Σ̃nL
|〈Σ̃nR

|e−{Q,sb0+s̃b̃0}|RLR〉, adapted to glue the
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fibres of the bundle Y as well as the base Σ,34 [39, 42]. This relationship seems reasonable,

at least in the supersymmetric theory, but has not yet been proven directly in the oper-

ator formalism. The integrands in expressions (3.22) and (3.23) have the same form and

we take the final answer to be this integrand, integrated over the union of the regions of

moduli space described by the separate components. In general there will be contributions

from terms ARm
n built from a number of Riemann surface sub-units glued together using a

number of propagators, with associated integration regions ΓRm , leading to

M
ΓDn
n +MR1

n +MR2
n + . . . =

∫

Γn

〈
e−{Q,b(u)}e−{Q,b̃(u,ũ)}~Ψn

〉
S0

where Γn = ΓDn ∪ ΓR1 ∪ ΓR2 + . . . ⊂ T ∗M. The idea is that this final integral is then

done using Morse Theory as outlined in [19] and may formally be written as a integration

over the full moduli space Mn, giving the amplitude in the more familiar form in terms of

the scattering equations. The decomposition into a ‘missing’ region and terms constructed

using propagators and lower point vertices is most simply seen in the n = 4 case, where

the only contributions comes from the fundamental vertex {Ψ4} and two cubic terms {Ψ3}

glued together by a propagator.

4 The supersymmetric theory

It was argued in [12] that the bosonic ambitwistor string does not to describe conventional

Einstein gravity; however, a supersymmetric extension does describe Einstein supergravity.

Many extensions and generalisations of the ambitwistor string have been explored [20, 21],

here we consider the simplest generalisation of extending the bosonic theory to an N = 2

(chiral) supersymmetric theory.35 The theory has the symmetry (2.5) under which the

fermions transform trivially and also a natural extension of the bosonic conformal sym-

metry (2.4) to a superconformal symmetry. After gauge fixing the worldsheet complex

structure and the Beltrami differential e(z), the N = 2 ambitwistor superstring has action

S =

∫

Σ
Pµ∂̄X

µ + b∂̄c+ b̃∂̄c̃+ ηµνψ
µ∂̄ψν + ηµνψ̃

µ∂̄ψ̃ν + χPµψ
µ + χ̃Pµψ̃

µ,

where χ and χ̃ are the worldsheet gravitini and ψµ and ψ̃µ are holomorphic worldsheet

spinors. We shall restrict to the case where the worldsheet spinors are Neveu-Schwarz (NS).

The Ramond case is discussed briefly in section 6.

34There is a question here of what the correct form of the reflector state |RLR〉 is. The observation that

the conventional BPZ conjugation does not lead to a non-trivial quadratic action in the bosonic theory

suggests a non-conventional reflector state, involving α̃ but not α modes, must be used. It is not clear

that such a reflector state will give the identity suggested; however, in the supersymmetric case which is

discussed in the following sections, prospects are much better. Indeed, the supersymmetric theory does

require the conventional BPZ conjugate be used, giving rise to a reflector state of the conventional form

(involving α and α̃ modes). We hope to report on these issues elsewhere.
35The critical dimension on the ambitwistor string extended in this way is a positive integer only for

N = 2 and N = 4, where the critical dimension is 10 and 2 respectively. As far as we know there has not,

as yet, been a systematic study of the N = 4 case. It is also possible that the dimension counting for the

N = 4 is not straightforward (cf. the conventional N = 2 string mentioned in section 4.1.2).
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As in the conventional string, the two gravitini χ and χ̃ may be gauge-fixed to vanish

everywhere except at n−2 points, where we insert picture changing operators (PCOs). The

usual Faddeev-Popov procedure results in the introduction of (β, γ) and (β̃, γ̃) superghost

systems to gauge fix the χ and χ̃ respectively. The gauge-fixed action is then

S =

∫

Σ
Pµ∂̄X

µ + ηµνψ
µ∂̄ψν + ηµνψ̃

µ∂̄ψ̃ν + b∂̄c+ b̃∂̄c̃+ β∂̄γ + β̃∂̄γ̃. (4.1)

The non-trivial OPEs for the new fields are

ψµ(z)ψν(ω) =
ηµν

z − ω
+ . . . , β(z)γ(ω) =

1

z − ω
+ . . . ,

and similarly for the (β̃, γ̃) and ψ̃µ fields. The OPEs for the fields that were present already

in the bosonic theory are unchanged.

4.1 Symmetries

The gravitini act as Lagrange multipliers which impose the vanishing of the fermionic cur-

rents G = Pµψ
µ and G̃ = Pµψ̃

µ, which in turn generate the two worldsheet supersymme-

tries. As in the bosonic case, the stress tensor T (z) generates the conformal transformations

with the additional transformations of the worldsheet fermions

δvX
µ = v∂Xµ, δvPµ = ∂(vPµ), δvψ

µ =
1

2
(∂v)ψµ + v∂ψµ δvψ̃

µ =
1

2
(∂v)ψ̃µ + v∂ψ̃µ.

The worldsheet spinors are invariant under the worldsheet gauge transformations generated

by H(z), which enforce the null condition P 2(z) = 0 which acts on Xµ as δ̃vX
µ = vPµ. The

new ingredient is the N = 2 worldsheet supersymmetry. The G(z) supercurrent generates

the transformations

δǫX
µ = ǫψµ, δǫψ

µ = ǫPµ, δǫψ̃
µ = 0, δǫPµ = 0,

and the G̃(z) supercurrent generates the transformations

δ̃ǫX
µ = ǫψ̃µ, δ̃ǫψ

µ = 0, δ̃ǫψ̃
µ = ǫPµ, δ̃ǫPµ = 0.

Following on from T (ν) and H(ν) in the bosonic theory, it is useful to introduce the

generators

G(ε) =

∮
dz ε(z)G(z),

and similarly for G̃(ε), where ε is a spin-valued worldsheet vector. The superalgebra is then

easily deduced

[T (v1), T (v2)] = −T ([v1, v2]), [T (v1),H(v2)] = −H([v1, v2]),

[T (v),G(ε)] = −G([v, ε]), [T (v), G̃(ε)] = −G̃([v, ε]),

[G(ε1),G(ε2)] = −H([ε1, ε2]), [G̃(ε1), G̃(ε2)] = −H([ε1, ε2]),

with all other commutators vanishing. Note here that, in the [G,G] commutator, H is

playing the role of a worldsheet Hamiltonian.

– 37 –



J
H
E
P
0
9
(
2
0
1
7
)
1
0
3

4.1.1 The superVirasoro algebra

With the exception of a brief discussion in section 6, we shall restrict our attention to the

Neveu-Schwarz sector. In terms of modes, the fermionic fields are written as

ψµ(z) =
∑

r∈Z+ 1
2

ψµ
r z

−r− 1
2 , G(z) =

∑

r∈Z+ 1
2

Grz
−r− 3

2 ,

and similarly for ψ̃µ(z) and G̃(z). The modes of the fermionic currents are given by

Gr =
∑

n∈Z

αnµ ψµ
r−n, G̃r =

∑

n∈Z

αnµ ψ̃µ
r−n.

The superalgebra is given in terms of these modes by

[Lm, Ln] =(m−n)Lm+n + δm+n,0
D

6
m(m2−1), [Lm, L̃n] = (m−n)L̃m+n, [L̃m, L̃n] = 0,

[Lm, Gr] =
(m− 2r)

2
Gm+r, [Lm, G̃r] =

(m− 2r)

2
G̃m+r,

{Gr, Gs} = 2 L̃r+s, {Gr, G̃s} = 0, {G̃r, G̃s} = 2L̃r+s.

The matter stress tensor T (z) includes contributions from the fermions ψµ and ψ̃µ as well

as the (Xµ, Pµ) system; whereas, H(z) is identical to that in the bosonic theory. It is a

simple exercise in central charge bookkeeping [12] to show that the critical dimension of

the supersymmetric theory is 10.

4.1.2 The N = 2 string

We note in passing that a number of useful comparisons [12, 34] have been made between

the ambitwistor string and the holomorphic sector of the conventional type II string but in

many ways there are also similarities with the less frequently discussedN = 2 string [58–60].

Upon gauge-fixing, this theory has action

S = −
1

2π

∫
d2z∂αX

µ∂αXµ − iψ̄ρα∂αψ,

where the target space is complexified Xµ = Xµ
1 + iXµ

2 and the fermions naturally ap-

pear in complex pairs ψµ = ψµ
1 + iψν

2 . The critical dimension is two complex (four real)

dimensions.36 The oscillator algebra obeys

[αµ
m, ᾱν

n] = mδm+nη
µν , [αµ

m, αν
n] = 0, [ᾱµ

m, ᾱν
n] = 0,

which can be compared with the algebra of the modes of the Xµ(z) and Pµ(z) fields

in the ambitwistor string. Also the super-Virasoro algebra has many similarities to the

ambitwistor string. However, the target space theory of the N = 2 string contains self-

dual gravity rather than Einstein gravity and so a detailed comparison may not prove

fruitful.
36The history of the dimension counting of this theory is a little convoluted, as recounted in [60]. The

target space has (4,0) or (2,2) signature.
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4.2 BRST operator

As with the bosonic string field theory, the crucial ingredients in the construction of the

supersymmetric ambitwistor string field theory are; the string field |Ψ〉, the surface state 〈Σ|

(which contains information about interactions), and the BRST charge Q (which provides

the propagator of the theory). We shall consider the surface state 〈Σ| in later sections,

here we focus on the BRST charge Q and how it may be used to constrain the form of the

string field. The BRST charge may be written in terms of the current j(z) where

Q =

∮
dz j(z).

For the N = 2 ambitwistor string under consideration, the BRST current is given by

j(z) = c
(
Tm + Tβγ + T̃βγ

)
+ γG+ γ̃G̃+ bc∂c+ b̃c̃∂c̃+

1

2
γ2b̃+

1

2
γ̃2b̃+ c̃H,

where Tβγ and T̃βγ are superghost stress tensors and the matter stress tensor now includes

contributions from the worldsheet fermions Tm(z) = Pµ∂X
µ + ψµ∂ψµ + ψ̃µ∂ψ̃µ. The

currents G(z) and G̃(z) where given in the previous section. In terms of oscillator modes

the relevant terms in the BRST charge are

Q = c0L0 +
1

2
c̃0α

2
0 +

1

2
c̃0α−1 · α1 + α0 · (c1α̃−1 + c−1α̃1 + c̃−1α1 + c̃1α−1)

−2b0c−1c1 + 2b̃0(c1c̃−1 + c̃−1c−1) + c̃0(c−1b̃1 + c1b̃−1)

+γ− 1
2
α0 · ψ 1

2
+ γ 1

2
α0 · ψ− 1

2
+ γ̃− 1

2
α0 · ψ̃ 1

2
+ γ̃ 1

2
α0 · ψ̃− 1

2

−2b̃0(γ− 1
2
γ 1

2
+ γ̃− 1

2
γ̃ 1

2
) + . . . (4.2)

where the + . . . denotes terms that depend on oscillator modes that commute with all

oscillators that will appear in the string field. As in the bosonic case, the BRST charge

appears in the quadratic part of the string field action multiplied by the ghost zero mode

c0. This means that all terms in Q involving c0 are projected out of the quadratic part of

the action and we must therefore deal with these terms separately. In the above oscillator

expansion of Q those terms that multiply a c0 factor have been isolated and written as37

L0. Since that part of the constraint given by L0 cannot be imposed on-shell by the string

field equations of motion, since it is projected out of the quadratic action, this constraint

must be imposed on the string field directly and may be seen, as in the bosonic case, as part

of the definition of the string field |Ψ〉. Thus we would like a superstring field such that

L0|Ψ〉 = 0, b0|Ψ〉 = 0.

To show that these conditions are naturally satisfied by a reasonable |Ψ〉 we need an explicit

expression for the superstring field. Finding such an explicit expression will be the task of

the next section. The L0 operator which is required to annihilate the string field is given by

L0 = (α−1 · α̃1 + α̃−1 · α1) +
1

2
(ψ− 1

2
· ψ 1

2
+ ψ̃− 1

2
· ψ̃ 1

2
) + (b−1c1 + c−1b1) + (b̃−1c̃1 + c̃−1b̃1)

−
1

2
(γ− 1

2
β 1

2
− β− 1

2
γ 1

2
)−

1

2
(γ̃− 1

2
β̃ 1

2
− β̃− 1

2
γ̃ 1

2
)− 1. (4.3)

37We used L0 to denote the corresponding object in the bosonic string field. From this point on L0 refers

to (4.3).
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4.3 Gauge transformations and the superstring field

In this section we shall derive the picture (−1,−1) ambitwistor superstring field. When

dealing with picture changing later on it will be simpler to work with the ‘bosonised’

superghosts

β = ∂ξe−φ, γ = ηeφ, β̃ = ∂ξ̃e−φ̃, γ̃ = η̃eφ̃.

In this form, the superghost stress tensor contribution is Tβγ = 1
2∂φ∂φ − ∂2φ − η∂ξ,

and similarly for Tβ̃γ̃ . The two sets of superghosts are independent of each other and

as such we label the vacuum with two independent picture numbers (q, q̃). Though the

notation is similar, this should not be confused with the independent holomorphic and

anti-holomorphic picture labels (q, q̄) in the conventional string; the ambitwistor string is

purely holomorphic and (q, q̃) labels a product of holomorphic superghost vacua. We shall

be working in the small Hilbert space description of the theory, where the zero modes of

the fields ξ and ξ̃ are excluded.38 This will be realised by the additional constraint on the

string field η0|Ψ〉 = η̃0|Ψ〉 = 0 and so the list of constraints that the string field is required

to satisfy is

L0|Ψ〉 = 0, b0|Ψ〉 = 0, η0|Ψ〉 = 0, η̃0|Ψ〉 = 0.

We take these constraints as part of the definition of |Ψ〉. We follow the same procedure

used to find the bosonic string field in section 3.2. That is, we propose the linearised

transformation δ|Ψ〉 = Q|Λ〉 corresponding to linearised gauge transformations in space-

time. Taking inspiration from the the vertex operators39 a natural ansatz for the picture

(−1,−1) string field is

Ψ(z) =

∫
dk

(
Eµν(k) ψ

µ ψ̃ν e−φ−φ̃cc̃+ . . .
)

eik·X , (4.4)

where Eµν(k) is a momentum space field which is a sum of parts symmetric and anti-

symmetric in the µ and ν indices. Knowing in advance that we want to recover, at the

very least, the linearised target space diffeomorphisms from Q|Λ〉, we shall take the gauge

parameter field to be

Λ(z)=−

∫
dk

(
iλµ(k)ψ

µ ∂ξ̃ e−2φ̃−φ− iλ̃µ(k) ψ̃
µ ∂ξ e−2φ−φ̃+Ω(k) ∂c̃ ∂ξ ∂ξ̃ e−2φ−2φ̃

)
cc̃ eik·X ,

where λ, λ̃ and Ω are momentum-dependent parameters. The gauge transformation of the

string field Ψ(z) to linear order is given by

δΨ(z) =

∮

z

dω j(ω) Λ(z),

where j(ω) is the BRST current. Using the OPEs given in (2.3) and

ξ(z)η(ω) =
1

z − ω
+ . . . , eℓ1φ(z)eℓ2φ(ω) = (z − ω)−ℓ1ℓ2e(ℓ1+ℓ2)φ(ω) + . . . , (4.5)

38Note that only derivatives of ξ and ξ̃ enter into the definition of the superghosts.
39We know that the on-shell correlation functions involving the string fields must reduce to the integrand

of the on-shell scattering amplitude.
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with similar expressions for the fields (φ̃, η̃, ξ̃) the transformation given by
∮
z
dω j(ω) Λ(z)

may be computed directly. The result QΛ(z) contains terms that cannot be interpreted

as target space transformations of Eµν(k) in the limited ansatz (4.4) above. It is therefore

necessary to generalise the ansatz (4.4) to include additional terms. The procedure is

analogous to that described for the bosonic string field so we shall not present the details.

The resulting minimal ansatz for the superstring field is

Ψ(z) =

∫
dk

(
Eµν(k) ψ

µ ψ̃ν e−φ−φ̃ + 2e(k) η ∂ξ̃ e−2φ̃ + 2ẽ(k) η̃ ∂ξ e−2φ

+ifµ(k) ψ
µ ∂ξ̃ e−2φ̃−φ ∂c̃+ if̃µ(k) ψ̃

µ ∂ξ e−2φ−φ̃ ∂c̃
)
cc̃ eik·X . (4.6)

The argument may also be understood from the perspective of the mode decomposition

and is presented in appendix C where further details may be found. The linearised trans-

formations of the momentum space component fields are then

δEµν(k) = ikµλ̃ν(k) + ikνλµ(k) δe(k) =−
i

2
kµλµ(k) + Ω(k), δẽ(k) =

i

2
kµλ̃µ(k) + Ω(k)

δfµ(k) =
1

2
k2λµ(k) + ikµΩ(k), δf̃µ(k) =−

1

2
k2λ̃µ(k) + ikµΩ(k),

where k2 = ηµνkµkν . Fourier transforming, the linearised transformations become in con-

figuration space40

δEµν(x) = ∂µλ̃ν(x) + ∂νλµ(x) δe(x) =−
1

2
∂µλµ(x) + Ω(x), δẽ(x)=

1

2
∂µλ̃µ(x)+Ω(x)

δfµ(x) =−
1

2
✷λµ(x) + ∂µΩ(x), δf̃µ(x) =

1

2
✷λ̃µ(x) + ∂µΩ(x),

where ✷ = ηµν∂µ∂ν . Note that

δf̃µ(x) =
1

2
∂ν

(
δEνµ(x)

)
+ ∂µ

(
δe(x)

)
, δfµ(x) = −

1

2
∂ν

(
δEµν(x)

)
+ ∂µ

(
δẽ(x)

)
,

suggesting that the associated fields should be identified. We shall see in the next section

that this is indeed the case and the fµ(x) and f̃µ(x) are auxiliary fields which may be

written in terms of the other spacetime fields Eµν(x), e(x), and ẽ(x). As with the bosonic

string field, this superstring field is complete with regards to the linearised theory. We

cannot rule out other terms playing a role when we consider the interaction terms.

4.4 The quadratic action

Using the picture (−1,−1) string field constructed in the previous section, we may now

give a concrete proposal for the quadratic ambitwistor superstring action. When we come

to consider interaction terms and picture changing operators in section 3.4, the string

field (4.6) given in terms of the bosonised superghosts will be most useful. For the quadratic

action, which does not involve any picture changing operators if we use (−1,−1) picture

string fields, the corresponding state |Ψ〉, written in terms of the superghosts (β, γ) is

40We have kept the arguments of the fields explicit in the hope that a momentum space field Eµν(k) will

not be confused with the corresponding, Fourier-transformed, configuration space field Eµν(x).
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more conveneint. In terms of mode oscillators the picture (−1,−1) superstring field is (see

appendix C for the derivation of this form of the superstring field)

|Ψ〉 =

∫
dk

(
Eµν(k) ψ

µ

− 1
2

ψ̃ν
− 1

2

+ 2e(k) γ− 1
2
β̃− 1

2
+ 2ẽ(k) γ̃− 1

2
β− 1

2

+ifµ(k) ψ
µ

− 1
2

β̃− 1
2
c̃0 + if̃µ(k) ψ̃

µ

− 1
2

β− 1
2
c̃0

)
c1c̃1 |-1,-1, k〉. (4.7)

We take the conjugate string field to be

〈Ψ| =

∫
dk 〈-1,-1, -k| c−1c̃−1

(
Eµν(k) ψ

µ
1
2

ψ̃ν
1
2

+ 2e(k) γ 1
2
β̃ 1

2
+ 2ẽ(k) γ̃ 1

2
β− 1

2

+ifµ(k) ψ
µ
1
2

β̃ 1
2
c̃0 + if̃µ(k) ψ̃

µ
1
2

β 1
2
c̃0

)
. (4.8)

Note that, in contrast with the bosonic case, the conjugation is the standard BPZ conju-

gation41 and the reflector state that appears in the propagator will be closer in spirit to

that which appears in the conventional superstring. The arguments leading to the con-

struction of the quadratic action for the bosonic ambitwistor string field also apply to the

supersymmetric case. The quadratic action is therefore

S2[Ψ] =
1

2
〈Ψ|c0Q|Ψ〉. (4.9)

Substituting the string fields (4.7), (4.8) and BRST operator (4.2) into the quadratic ac-

tion (4.9) gives an expression of the form

S2[Ψ] =

∫
dk dk′〈-1,-1, -k′| c−1c̃−1c0c1c̃1 F |-1,-1, k〉,

where F = F(c̃0, b̃0, α0, ψ± 1
2
, γ± 1

2
, β± 1

2
) is a function that is not annihilated by the c±1,

c̃±1 or c0 ghosts. The vacuum is normalised to

〈-1,-1, -k′|c−1c̃−1c0c̃0c1c̃1|-1,-1, k〉 = δ(k + k′),

and so the only contributions that come from the F function are those proportional to c̃0.

After some straightforward algeba, we find

S2[Ψ] =

∫
dk

(
−
1

4
Eµν(-k) k

2Eµν(k)− 2ẽ(-k) p2 e(k)− ifµ(-k) kνEµν(k) + if̃ν(-k) kµEµν(k)

+2ifµ(-k) kµ ẽ(k) + 2if̃µ(-k) kµ e(k)− fµ(-k) f
µ(k)− f̃µ(-k) f̃µ(k)

)
.

We Fourier transform to bring this action to a form written in terms of configuration

space fields

S2[Ψ] =

∫
dx

(
1

4
Eµν(x)✷E

µν(x) + 2ẽ(x)✷e(x)− fµ(x)f
µ(x)− f̃µ(x)f̃µ(x)

−fµ(x)
[
∂νEµν(x)− 2∂µẽ(x)

]
+ f̃ν(x)

[
∂µEµν(x) + ∂νe(x)

])
. (4.10)

41The αnµ and α̃µ
n mode operators do not appear in (4.6).
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As anticipated, there are no kinetic terms for the f(x) and f̃(x) fields, so they are auxiliary

fields which should be integrated out. The equations of motion for these auxiliary fields are

fµ(x) = −
1

2

(
∂νEµν(x)− 2∂µẽ(x)

)
, f̃µ(x) =

1

2

(
∂νEνµ(x) + 2∂µe(x)

)
. (4.11)

And these expressions for f(x) and f̃(x) are substituted back into the action to give42

S2[E, e, ẽ] =

∫
dx

(
1

4
Eµν(x)✷E

µν(x) + 2ẽ(x)✷e(x) + fµ(x)f
µ(x) + f̃µ(x)f̃µ(x)

)
, (4.12)

where the fields fµ(x) and f̃µ(x) are now understood as shorthand for the expressions

in (4.11). A crucial point to notice is that Eµν(x) does not have definite symmetry so there

is more than simply the graviton in the spectrum of the theory. This is what we expect

from the massless NS sector of Type II supergravity, yet to see the connection with the

linearisation of the standard Type II supergravity action we must do a little more work.

4.4.1 Field redefinitions

The quadratic action (4.12) does not yet bear an obvious relationship to Type II supergrav-

ity; however, a similar construction emerges from conventional bosonic string field theory

on toroidal backgrounds in the derivation of Double field theory [4], which describes the

physics of the massless NS sector of the bosonic string.43 In what follows we closely mirror

the extraction of the familiar massless NS sector from an action of the form (4.12) to show

that the ambitwistor string field does give rise to the correct supergravity limit. Note that,

since we shall only be discussing configuration space fields in this section, we shall not

explicitly include the x-dependence. Following [4], it is useful to define

ϑ± =
1

2

(
e± ẽ

)
.

Notice that ϑ+ and ϑ− transform as

δϑ+ =
1

2
∂µǫµ +Ω, δϑ− = −

1

2
∂µζµ,

where we have defined

ζµ =
1

2
(λµ + λ̃µ), ǫµ = −

1

2
(λµ − λ̃µ).

We see that ϑ+ is a Stueckelberg field and we can fix the Ω transformation such that

ϑ+ = 0. In this case e = −ẽ and the action becomes, after some integrations by parts

S2 =

∫
dx

(
1

4
Eµν✷E

µν − 4ϑ−
✷ϑ− +

1

4
(∂νEµν)

2 − 2ϑ−(∂µ∂νEµν) +
1

4
(∂νEνµ)

2

)
.

42Alternatively, if one were attepting to quantise, they may be integrated out in the configuration space

path integral.
43The novelty in [4] of course is that the zero mode contributions from winding strings are also included

so the argument goes beyond the usual supergravity approximation.
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The Eµν field may be split into symmetric and antisymmetric parts; hµν and bµν respec-

tively to give

S2 =

∫
dx

(
1

4
hµν✷h

µν+
1

2
(∂νhµν)

2−2ϑ−(∂µ∂νhµν)− 4ϑ−
✷ϑ−+

1

4
bµν✷b

µν+
1

2
(∂νbµν)

2

)
.

This is the linearised action for a metric, B-field and scalar field ϑ−. A more natural field

choice includes the dilaton φ defined by

φ = ϑ− +
1

4
h,

where h = ηµνhµν = ηµνEµν is the trace of the graviton. The motivation for the field

redefinition is that this dilaton is invariant under the linearised gauge transformations.

Integrating the bµν terms by parts, one can massage this action into the more familiar form

1

4
bµν✷b

µν +
1

2
(∂νbµν)

2 ≈ −
1

12
HµνλH

µνλ,

where ≈ denotes equality up to total derivatives and the Kalb-Ramond field strength takes

its usual form Hµνλ = ∂[µbνλ]. The linearised action is then

S2[h, b, φ] =

∫
dx

(
1

4
hµν✷h

µν +
1

2
(∂νhµν)

2 +
1

2
h∂µ∂νhµν −

1

4
h✷h

−4φ✷φ+ 2h✷φ− 2φ∂µ∂νhµν −
1

12
HµνλH

µνλ

)
. (4.13)

If we set bµν = 0 and φ = 0, we recover the Fierz-Pauli action (3.15) for the graviton hµν .

Noting that the linearised Ricci scalar is R = ∂µ∂νhµν − ✷h giving the standard dilaton

coupling, we see that the action (4.13) is simply the linearised action for the NS sector of

the Type II supergravity, the full non-linear action for which, up to Weyl rescaling, is

S =

∫
e−φ

(
R ∗ 1−

1

2
H(3) ∧ ∗H(3) + ∗ dφ ∧ dφ

)
.

To complete the discussion at the linearised level, we note that the gauge transformations

of the component fields are

δhµν = ∂µζν + ∂νζµ, δbµν = ∂µǫν − ∂νǫµ, δφ = 0.

These are the standard linearised gauge transformations of the graviton, Kalb-Ramond

field and dilaton.

The proposed quadratic term (4.9) does indeed produce the correct linearised the-

ory, transforming under the correct linearised gauge transformations (diffeomorphisms and

antisymmetric tensor transformations). We could go on to gauge fix and compute the

propagator for the theory. The Siegel gauge b̃0|Ψ〉 = 0 would be a good candidate for a

gauge choice, leading to the quadratic action

S2[Ψ] =
1

2
〈Ψ|c0c̃0L̃0|Ψ〉,
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as in the bosonic case, except that the string fields are those of the supersymmetric theory

and 〈Ψ| is related to |Ψ〉 by BPZ conjugation. The propagator then has the same form

as (3.5), the only differences being that the reflector state is that appropriate for the

supersymmetric theory and we must also insert a GSO projector to ensure that only GSO

projected states propagate. Note that we have only considered the NS sector. We shall

briefly discuss the Ramond sector in section 6.

5 Interaction terms

The ambitwistor superstring field theory has a non-polynomial action of the form (3.3)

with |Ψ〉 now given by the (−1,−1) picture NS superstring field (4.6) and the BRST

charge (4.2). Having introduced the superstring field and discussed the quadratic action

at length in sections 4.3 and 4.4, we turn now to the interaction terms {Ψn}. In this

section the interaction terms of the superstring field theory will be sketched. In many

ways the novel features are present already in the bosonic case and, with the bosonic case

understood, the application of the current state of the art of conventional superstring field

theory to the ambitwistor theory is expected to be straightforward.

The supersymmetric generalisation of the bosonic surface state discussed in sec-

tion 2.2.1 will be presented in section 5.2.1. The ghost insertions are the same as those

in the bosonic case; however gauge fixing the gravitini leads to superghost insertions that

are best understood in terms of picture changing operators [61, 62] in this framework. The

picture changing operators (or PCOs) are the main qualitative modification to structure

of the bosonic interaction terms (3.17). We consider the PCOs in the next section and

explicitly derive superstring fields in the (0, 0), (−1, 0) and (0,−1) pictures.

Of course, the whole issue of PCOs may be avoided by working explicitly in terms of

super-Riemann surfaces, where one hopes the story may ultimately prove simpler [40]. As

we are only interested in tree level44 we do not have to worry about obstructions to this

approach at higher genus [63].

5.1 Picture changing

In the first quantised ambitwitor string, one requires operators in different pictures to

compute scattering amplitudes. The BRST current may be written as

j(z) = c(z)T (z) + γ(z)S(z) + γ̃(z)S̃(z) + c̃(z)H(z),

where the supercurrents are S(z) and S̃(z). The gravitini may be set to zero everywhere

except at n−2 points. On a super Riemann surface of sufficiently low genus the integrating

out of the odd moduli results in the insertion of picture changing operators X (z) and X̃ (z)

at n−2 points, which may be written in terms of the supercurrents as X (z) = δ(β(z))S(z)

and X̃ (z) = δ(β̃(z))S̃(z), respectively.

44The Type II supergravity does not exist as a spacetime quantum theory; however, there have been a

number of interesting developments in relating the form of one-loop ambitwistor string amplitudes to results

obtained directly from supergravity [27, 55].
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These basic issues carry over to the insertion of picture changing operators in the

string field theory; however, various technical issues make the story here a little more

subtle. Ideally one would choose a picture number in which to represent the string field

and then incorporate PCO insertions at n−2 points into the definition of the forms Ω|~Ψ〉 [45].

The canonical choice would be to use superstring fields in the (−1,−1) picture as the basic

ingredient. Any correlation function we compute must have total picture number (−2,−2),

so using string fields of picture (−1,−1) we must insert n−2 X PCOs and n−2 X̃ PCOs to

compute a correlation function of n string fields. There are however, potential pitfalls with

this approach if PCOs are allowed to collide [64], possible solutions for which have been

proposed by various authors including [65, 66]. We shall not add anything substantive to

this discussion, as will be primarily concerned with how the current technology of string

field theory may be applied to the ambitwistor string.

5.1.1 Picture changing operators

Since the picture changing operators come from the supergeometry, which in this case45

is Σ2|2, we expect picture changing operators X and X̃ , one set coming from the gauge

fixing of each of the two gravitini χ and χ̃. Thus, in contrast to the conventional string,

the ambitwistor string has two sets of holomorphic picture changing operators

X (z) =

∮

z

dω j(ω)ξ(z), X̃ (z) =

∮

z

dω j(ω)ξ̃(z),

where j(z) is the BRST current. Using the OPEs given in (2.3) and (4.5), the expressions

are straightforwardly evaluated

X (z) = c∂ξ + eφPµψ
µ +

1

2
∂η e2φb̃+

1

2
∂
(
η e2φb̃

)
,

and

X̃ (z) = c∂ξ̃ + eφ̃Pµψ̃
µ +

1

2
∂η̃ e2φ̃b̃+

1

2
∂
(
η̃ e2φ̃b̃

)
.

We take the picture changing operator to be integrated around the relevant punctures so

that we have insertions

X0 =

∫

C

dz

z
X (z),

where C is a contour around the puncture where the picture-changed string field is inserted.

The picture (−1, 0) string field is then given by

Ψ(−1,0)(z) = X̃0Ψ
(−1,−1)(z) =

∮

z

dω

ω − z
X̃ (ω)Ψ(−1,−1)(z).

45As opposed to the action being given by integrating over a middle-dimensional cycle of Σ2|1 × Σ̃2|1 in

the conventional string [40].
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Explicitly,

Ψ(−1,0)(z) =

∫
dk

(
− e(k) η −

(
ẽ(k) ∂ξ̃∂2c c̃+ if̃µ(k) Π̃

µ ∂ξ ∂c̃ c̃
)
e−2φ

+2ẽ(k) (P · ψ̃ + ik · ∂ψ̃)η̃ ∂ξ c̃ eφ̃−2φ +

(
Eµν(k) Π̃

νψµc̃+
i

2
fµ(k) ψ

µ∂c̃

)
e−φ

+
1

2
Eµν(k) η̃ψ

µψ̃ν e−φ−φ̃ − ẽ(k)

(
2∂η̃b̃ c̃+

3

2
∂2η̃

)
η̃ ∂ξ e−2φ+2φ̃

+
i

2
f̃µ(k) ψ̃

µ(η̃∂c̃− 2∂̃ η̃)∂ξ e−2φ+φ̃
)
c eik·X (5.1)

The picture (0,−1) string field has a similar expression which may be found by inspection

of the above result (5.1). Finally, the picture (0, 0) string field is given by

Ψ(0,0)(z) = X0X̃0Ψ
(−1,−1)(z) :=

∮

z

dω

ω − z

∮

z

dω′

ω′ − z
X (ω)X (ω′)Ψ(−1,−1)(z).

Applying X0 to (5.1) above gives

Ψ(0,0)(z) =

∫
dk

(
Eµν(k) Π

µΠ̃ν c̃+
1

2
e(k) ∂2c+

1

2
ẽ(k) ∂2c+

i

2
fµ(k) Π

µ∂c̃+
i

2
f̃µ(k) Π̃

µ∂c̃

−

(
e(k) (P · ψ + ik · ∂ψ) η −

1

2
Eµν(k) ηΠ̃

νψµ +
i

2
fµ(k) ψ

µ∂η

)
eφ

−

(
ẽ(k)

(
P · ψ̃ + ik · ∂ψ̃

)
η −

1

2
Eµν(k) Π

µη̃ψ̃ν +
i

2
f̃µ(k) ψ̃

ν∂η̃

)
eφ̃

−e(k) ∂η b̃ η e2φ − ẽ(k) ∂η̃ b̃ η̃ e2φ̃
)
c eik·X , (5.2)

where we have defined

Πµ = Pµ + (k · ψ)ψµ, Π̃µ = Pµ + (k · ψ̃)ψ̃µ.

It is reassuring to see that the leading term is what we would expect from the picture (0, 0)

vertex operator V (z) = cc̃ εµν ΠµΠ̃νe
ik·X found in [12].

5.2 The surface superstate and interactions

In this section we discuss the interaction terms. We shall focus on the cubic interactions

to begin with as a number of technical complications enter beyond cubic order. Some of

those issues will be discussed in section 5.2.3. Much of the discussion in the bosonic case

carries over to the supersymmetric theory. The basic building block is the supersymmetric

generalisation of the surface state constructed in section 2.2.1. The surface state for the

supersymmetric theory was constructed in [36] and is required to give the correct scattering

amplitude when contracted with asymptotic states with the appropriate ghost and PCO

insertions.
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5.2.1 The surface superstate

The surface state for the supersymmetric ambitwistor theory [36] is simply an extension of

that found for the bosonic theory to include the fermionic sector and the superghosts. We

shall also refer to the supersymmetric surface state as 〈Σ|, hopefully without any confusion

arising. It may be written as

〈Σ| =

∫ n∏

i=1

dp(i) δ
(∑

p(i)

)
〈q1; p(1)| . . . 〈qn; p(n)| exp(Vm + Vgh + Ṽgh)Z,

where the matter contribution to V is given by

Vm =
∑

m,n

∑

i,j

(
Smn(zi, zj)α̃

(i)
m · α(j)

n +Krs(zi, zj)ψ
(i)
r · ψ(j)

s +Krs(zi, zj)ψ̃
(i)
r · ψ̃(j)

s

)
,

where Smn(zi, zj) is identical to that given in the bosonic theory. The function Krs(zi, zj)

is given by

Krs(zi, zj) =

∮

ti=0
dti

∮

tj=0
dtj t

−m− 1
2

i t
−n− 1

2
j

√
h′ih

′
j

1

hi(ti)− hj(tj)
.

The ghosts contribute the Vgh term, the explicit form of which is given in (2.20) but now

augmented by a similar expression involving the superghosts. The superghost term is

identical to that in the conventional superstring [67]. The role of the Z, as in the bosonic

theory, is to strip off the c(z) and c̃(z) ghosts respectively of three of the n string fields

that contract with 〈Σ|. The q in the 〈qi; p(i)| denote the picture number of the vaccuum

being used. We shall usually take this to be q = −1, where picture changing operators are

inserted to ensure that the overall picture number is −2 at tree level.

5.2.2 The action to cubic order

A proposal for the 3-point interaction term is

{Ψ3} = 〈Σ||Ψ(−1,−1)〉|Ψ(−1,−1)〉|Ψ(0,0)〉, (5.3)

where the picture (−1,−1) states are given by (4.7) and the picture (0, 0) state may in

principle be derived by substituting (5.2) into (2.16). Alternatively, the expression (5.3)

could be written in terms of three (−1,−1) picture string fields with a single pair of X and

X̃ PCOs inserted. In principle, one could substitute these expressions into the (5.3) and

derive a cubic correction to the linearised action (4.13). This would be a long process and

would require evaluating the state corresponding to (5.2) which, we expect, takes a rather

complicated form. A more useful approach is to use the string fields as written in (4.6)

and (5.2) and to evaluate (5.3) as an off-shell correlation function in the worldsheet CFT.

For a long time it was thought that there was no off-shell extension to on-shell amplitudes in

conformal field theory [68]; however, a clear approach was later set out for the bosonic [69]

and supersymmetric [70] string theories.

There are various subtleties that must be addressed when computing CFT correlation

functions off-shell. These issues have been explored in [69] and, for the most part, are
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due to the fact that the formalism is no longer conformally invariant and so many of the

tricks that are usefully employed in CFT no longer apply. A key feature is that conformal

invariance is lost off-shell and so the mapping from the Riemann surface that describes the

worldsheet to the complex plane C where we compute the Green’s function is non-trivial

(see appendix A for related issues). Conformal transformation factors must be taken into

account and, in general, the amplitude will not be independent of the location of the vertex

insertion points.

The off-shell amplitudes computed by conformal field theory methods are the same

as those computed by the string field theory and so provide an alternative method of

computation. It is simplest to deal instead with the string field interactions as off-shell

correlation functions in the conformal field theory, using the CFT description of the string

field (4.6) instead of (4.7). The cubic interaction term (5.3) may written as the off-shell

correlation function

{Ψ3} = 〈Ψ(−1,−1)(z1)Ψ
(−1,−1)(z2)Ψ

(0,0)(z3)〉. (5.4)

Though a lengthy calculation, some aspects have been checked in detail and are found to

be consistent with the expected action of type II supergravity to cubic order

S3 =

∫
dx

(
−

1

8
Eµν

(
− (∂λE

λν)(∂ρE
µρ)− (∂λE

λρ)(∂ρE
µν)− 2(∂µEλρ)(∂

νEλρ)

+2(∂µEλρ)(∂
ρEλν) + 2(∂λEµλ)(∂νEλρ)

)
+

1

2
Eµνf

µf̃ν −
1

2
fµfµẽ+

1

2
f̃µf̃µe

−
1

8
Eµν

(
(∂µ∂νe)ẽ− (∂µe)(∂ν ẽ)− (∂νe)(∂µẽ) + e∂µ∂ν ẽ

)

−
1

4
fµ

(
Eµν∂

ν ẽ+ ∂ν(Eµν ẽ)
)
+

1

4
fµ

(
(∂µe)ẽ− e∂µẽ)

)

−
1

4
f̃ν

(
Eµν∂

µe+ ∂µ(Eµνe)
)
+

1

4
f̃ν

(
(∂νe)ẽ− e∂ν ẽ)

))
. (5.5)

Adapting the steps given in [4], one may show that, once the auxiliary fields fµ and f̃µ are

eliminated, the correct cubic actions for the NS sector of the Type II string is recovered.

We expect (5.5) to be reproduced by the ambitwistor string field theory interac-

tion (5.4). In detail the computation is lengthy and we have not checked it in full. The

terms cubic in Eµν in (5.5) follow from the fact that the operator formalism must reproduce

the correct three-point on-shell scattering amplitude and so are very easy to check. The

string field Ψ was found to be suitable for the linearised theory; however, one outstanding

question is whether or not additional contributions to Ψ become necessary in the non-linear

theory. A more detailed study of the cubic action contribution will shed some light on this

issues and we hope to return to it in the future.

5.2.3 The action beyond cubic order

In this section we briefly outline a proposal for the higher order interaction terms. At cubic

order, picture changing must be considered. Beyond cubic order additional considerations

enter. In particular, regions of moduli space must be integrated over. More specifically,

because we are dealing with off-shell quantities, regions of a bundle over moduli space must
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be considered. Moreover, more picture changing operators must be inserted in order to

have a meaningful result. In the context of the NS sectors of the Type II and Heterotic

superstring field theories a proposal was given in [45], where {Ψn} was given by

{Ψn} =

∫

Vn

〈Σ|Bn−3(~ν)|~Ψ〉.

The object Bn−3(~ν) generalises the insertion of Bn−3(~ν) (3.16) in the bosonic theory to

include information on the picture changing operators. The supersymmetric generalisation

for the conventional string is given in [45] and we propose the following generalisation for

the ambitwistor string field theory

Bn−3 =
n−3∑

r=0

B
(r)
n−3 ∧Kn−3−r

n ∧ K̃n−3−r
n ,

where B
(r)
n−3 is a form on T ∗Mn given by B

(r)
n =

∏r
a=1 b̃(~νa)b(~νa)δ̄

(
H(~νa)

)
, so that Bn−3

is the top form, and K2n−6−r
n is a 2n − 6 − r form encoding the location of the picture

changing operators. The Kn are defined by two conditions [45]. Firstly, they must satisfy

a descent equation dK
(r)
n = {Q,Kr+1

n ], where the derivative is taken with respect to the

moduli τa. Secondly, at the boundary ∂Vn the K
(r)
n must decompose as

K(r)
n

∣∣∣
∂Vn

=
r∑

s=0

K(r−s)
nL

∧K(s)
nR

,

where nL + nR = n− 2. The lowest form K
(0)
n is given by

K(0)
n =

∑

α

A(α)(τ1, . . . , τ2n−6)X (w
(α)
1 (τ)) . . .X (w

(α)
n−2(τ)),

where X are picture changing operators and, for each α, w(α)(τ) denote a set of n − 2

coordinates. For a given α we can think of A(α)(τ1, . . . , τ2n−6) as an arbitrary function

of the moduli and w(α) an associated arbitrary location of a picture changing operator.

There is a tremendous potential ambiguity in the choices of the locations w(α)(τ) and in

the coefficients A(α); however, as argued in [45], these choices do not lead to physically

different results. It was advocated in [71] that a number of choices, each labelled by α, be

made which respect certain symmetry requirements and then the sum over α averages over

them.46 A simple choice is [71]

K(r) =

[
n−3∏

i=1

(
X (zi)− ∂ξ(zi) dzi

)]r

,

where the r superscript instructs us to pick the r-form from the expression. For this choice

Bn−3 =
∑n−3

r=0 B
(r)
n−3 ∧K(r) ∧ K̃(r).

Following [71, 72], we generalise the space Ân introduced in section 3.4.2 to the space

Ãn include the locations of the n− 2 X PCOs and the n− 2 X̃ PCOs in the fibre data. To

46It is required that
∑

α Aα = 1.
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integrate over this space one would need an analogue of the vertical integration described

in [71, 72] to avoid spurious singularities.

Note that, for n = 3, we only have B0 = K(0) ∧ K̃(0) and there are no ghost insertions

as all punctures are fixed and so B0 = X (ω1)X̃ (ω2), giving the insertion of a single PCO

of each kind at an arbitrary point. It is worth mentioning that another approach that

seeks to avoid potential spurious singularities associated with the location of the PCO was

presented by [65, 66], where the solution found was to smear the PCO’s along closed paths

around each vertex. This was done in a permutation invariant way to produce a generalised

notion of the string vertex. The approach proposed there would work equally well for the

string field theory considered in this article.

We stress that we have not worked out the details of dealing with PCOs in the am-

bitwistor string field theory. Our modest aim here is to suggest plausible ways in which

the current machinery of conventional superstring field theory may be adapted to the

ambitwistor case. It is possible that a more thorough analysis may yield subtleties that

require further consideration. As a final comment, one should ideally treat the discussion

in the section in terms of the cotangent bundle of the supermoduli space along the lines

suggested in [19].

6 Discussion

In this article, we have outlined how the ambitwistor string theory of [12] can be used to

give a string field theory description of Type II supergravity. Some details remain to be

worked out, particularly in the supersymmetric case and the details of the perturbation

theory; however, the general structure is clear.

An important outstanding issue is providing a clear understanding of the propagator.

This is an outstanding problem even in the first quantised ambitwistor string and, despite

some promising avenues [19, 56, 57], a satisfactory geometric understanding of the prop-

agator still remains just out of reach. What hints there are suggest that this is one of a

growing number of aspects in which our intuition for the conventional and the ambitwistor

string differ in important ways. It is our hope that a consideration of the string field theory

might shed some light on this important issue. Another important element we have not

provided is a proof of the main identity for the ambitwistor superstring field. This iden-

tity is key to understanding the algebraic structure of the string field theory and a proof

this identity, or an analogous one, in the context of the ambitwistor theory would provide

additional evidence of the self-consistency of the theory being proposed here.

In light of recent advances [27, 55] it would also be interesting to formally extend the

theory to loop level. Although the supergravity which this superstring field theory describes

does not exist as a quantum theory, the study of the loop integrands in such theories has

provided striking proposals for simplifying loop calculations which may be applicable to

other theories. It would be interesting if the operator formalism could shed light on some

of these developments.

A clear omission has been any discussion of the Ramond sector of the theory. Recently,

Sen demonstrated how a kinetic term for the Ramond sector may be introduced, giving a
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full BV master action for the type II and Heterotic string field theories [25]. We anticipate

that the construction may be extended fully to the ambitwistor theory considered here.

The proposed action is

S = −
1

2
〈Φ|c0QG |Φ〉+ 〈Φ|c0Q|Ψ〉+

∞∑

n=3

1

n!
{Ψn},

where |Ψ〉 is a string field, now including the Ramond sector, of picture number (q, q̃)

where q and q̃ are −1 for the NS sector and −1/2 for the Ramond sector. For example,

a contribution to |Ψ〉 from the RNS or RR sectors will be given by contributions in the

(−1/2,−1) or (−1/2,−1/2) pictures respectively. By contrast |Φ〉 is a string field of picture

number (q, q̃) where q and q̃ are again −1 for the NS sector, but −3/2 for the Ramond

sector. This is a natural ambitwistor modification of the action presented in [25].

The key to writing down a kinetic term for the Ramond sector was the introduction

of the operator G . We adapt this to the ambitwistor string in the obvious way so that

the action of G acts trivially on the Neveu-Schwarz sector and inserts a picture changing

operator if the string field is in the Ramond sector. As described in [25], the equations

of motion for the Φ gives rise to the condition |Ψ〉 = G |Φ〉.47 The equation of motion for

Ψ(z) is

Q|Φ〉+
∞∑

n=2

1

n!
[Ψn] = 0.

Writing |Ψ〉 = G |Φ〉, then gives a non-linear equation of motion for |Φ〉, which in turn

determines |Ψ〉.

It would be interesting to see whether a kinetic term for the self-dual RR five-form

in type IIB supergravity can be recovered directly by incorporating Sen’s construction

into the ambitwistor string field theory presented here. A proposal for such a Lorentz-

invariant construction was given in [73], inspired by the conventional string field theory.

The ambitwsitor theory described in this paper is only a theory of supergravity and as

such one might imagine that the derivation of such a kinetic term would proceed in a much

simpler way in this case.

Of particular interest are the similarities and differences with the conventional string

field theory. An important difference is, as noted in [12], that the X(z)X(ω) OPE is trivial

in the ambitwistor theory and so we can sensibly discuss functions of X, including met-

rics on curved spacetimes. Remarkably, the generalisation of the ambitwistor worldsheet

theory to general curved NS backgrounds is straightforward [13]. The worldsheet theory is

described by the action48 [13]

S =

∫

Σ
Πµ∂̄X

µ + iψ̄µ∂̄ψ
µ +

1

2
eP 2 (6.1)

47Since |Φ〉 does not appear in the interactions, this restriction may be imposed consistently on the full

quantum theory.
48The worldsheet fermions ψµ and ψ̄µ in (6.1) are linear combinations of the worldsheet fermions ap-

pearing in (4.1) and considered throughout this paper. The precise relationship between the two sets of

fermions is given in [13].
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where Πµ = Pµ + iΓλ
µνψ

νψ̄λ, and P 2 = gµν(X)PµPν . The conserved bosonic charges are

the stress tensor T (z) and the null condition H(z) = 1
2P

2(z). Treating the fields ψ̄µ and

ψµ as fundamental, the constraint T (z) does not depend on the background and so it

seems possible to impose a constraint analogous to L0|Ψ〉 = 0 on the string fields. The

null condition is then imposed perturbatively as before. A generalisation of the string field

theory considered in this paper to this more general sigma model is expected to lead to a

description of linearised supergravity in curved backgrounds, where the ambitwistor string

field describes fluctuations hµν about a fixed background metric ĝµν , i.e. gµν = ĝµν + hµν .

In particular, we expect the quadratic term to include the curved space version of the

Fierz-Pauli theory

〈Ψ|c0Q|Ψ〉 =

∫
dx

(
1

4
∇µhνλ∇

µhνλ −
1

2
∇µhνλ∇

νhµλ +
1

2
∇νh∇µh

µν −
1

4
∇µh∇

µh+ . . .

)
,

where ∇µ is constructed using the background metric ĝµν and the ellipsis denote terms

containing other massless fields. More ambitiously, one might hope to find a genuinely

background independent description of the classical supergravity as a string field theory.

It would be interesting to see how the standard ingredients of the Einstein-Hilbert action

arise from the superstring field theory.

Finally, we mention the possibility of constructing a string field theory explicitly in

ambitwistor space itself. Throughout this paper we have worked in cotangent bundle

variables Xµ and Pµ and as such have constructed a string field theory in terms of the zero

modes of these variables, i.e. on spacetime. It would be interesting to see if, by working

explicitly in terms of ambitwistor coordinates on PA, we can recast supergravity in terms

of the natural language of ambitwistors.
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A Conformal maps and surface states

In this appendix we give further details on the operator formalism. In particular, a method

for calculating the functions of the punctures is given for the case of the conventional string.

Further details may be found in [36, 37, 39]. A standard mode expansion of a primary field

of dimension d is

φ(t) =
∑

n

φn t
−n−d
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Under a conformal transformation t → z = h(t), the primary field transforms as

φ(t) → h[φ(t)] = (h′(t))d φ(h(t)). (A.1)

where h′ is the derivative of h with respect to t. Writing this new description of the field

in terms of the ‘old’ coordinates t, the mode expansion may be written as

h[φ(t)] =
∑

n

h[φn] t
−n−d. (A.2)

where the mode coefficients may be found in the standard way

h[φn] =

∮

t=0

dt

2πi
tn+d−1 h[φ(t)]

which may be written in terms of the transformed field φ(z) = φ(h(t)) using (A.2) as

h[φn] =

∮

t=0

dt

2πi
tn+d−1 (h′(t))d φ(h(t)) (A.3)

For example, the dimension one field ∂Xµ(z) =
∑

n α
µ
nz−n−1 gives

h[αµ
−n] =

∮

t=0

dt

2πi
tn+d−1 h′(t) ∂Xµ(h(t)).

One would like to write the Xµ contribution to the surface state in terms of the oscillator

expansion 〈Σ| = 〈0|eVX , where

VX =
n∑

i,j=1

∑

m,n>0

Nmn(zi, zj)α
(i)
n · α(j)

m .

It is a straightforward application of the commutation relations to show that, for m,n > 0,

Nmn(zi, zj) =
1

2n
〈0| exp


∑

k,l

∑

p,q>0

Npq(zi, zj)α
(k)
p · α(l)

q


 α

(i)
−m · α

(j)
−n|0〉

Since only the contributions where p and q equal −m or −n and only the i’th and the j’th

Fock spaces play a role, the above expression may be written compactly as 〈V2||Φi〉|Φj〉

and is determined by the two-point function 〈∂X(i)(z)∂X(j)(w)〉 as described in [39]. If we

take 〈∂X(z)∂X(w)〉 = −ηµν(z − w)−2 then we find, for m,n > 0,

〈hi[α
µ(i)
−n ]hj [α

ν(j)
−m ]〉 =

1

n

∮

0

dti
2πi

t−n h′i(ti)

∮

0

dtj
2πi

t−m h′j(tj)
−ηµν

(hi(ti)− hj(tj))
2 .

Vertex functions for other contractions may be found in a similar way. Using the ghost

contraction 〈b(z)c(w)〉 = (z − w)−1 and (A.3) it is not hard to show that

Knm(zi, zj) = −

∮
dti
2πi

∮
dtj
2πi

t−n+1
i t−m−2

j

(
h′i(ti)

)2 (
h′j(tj)

)−1 1

hi(ti)− hj(tj)
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and the contribution from the c zero modes is found straightforwardly from

∫

Σ
d2z∂̄bcl(c−1z

2 + c0z + c1) =
N∑

i=1

∮

zi

b
(i)
cl (c−1z

2 + c0z + c1)

Using the standard expansion b(i)(z) = (h′i(ti))
−2

∑
n b

(i)
n t−n−2

i and changing the integral

to local ti coordinates gives

∫

Σ
d2z ∂̄bcl(c−1z

2 + c0z + c1) =
∑

i

∑

n

Mnm(zi)b
(i)
m Cn

where n = −1, 0,+1, C = (c−1, c0, c1) and

Mnm(zi) =

∮

ti=0

dti
2πi

t−m−2
i (h′i(t))

−1(hi(t))
n+1

Similarly, for a fermionic system with fermions ψµ for which 〈ψµ(z)ψν(w)〉 = (z − w)−1

and (A.3) we have

Snm(zi, zj) = −

∮
dti
2πi

∮
dtj
2πi

t
−n− 1

2
i t

−m− 1
2

j

√
h′i(ti)h

′
j(tj)

1

hi(ti)− hj(tj)

B Further details on the derivation of the scattering equations

In this appendix we give further details on the derivation of the scattering amplitudes given

in section 2.2.2. We only consider the (X,P )-dependent parts and define

〈ΣX,P | = 〈p1| . . . 〈pn|e
VX,P ,

where VX,P is given by (2.22). Consider

〈ΣX,P |α
(i)
−p = 〈p1| . . . 〈pn|

(
α
(i)
−p + [VX,P , α

(i)
−p] +

1

2!
[VX,P , [VX,P , α

(i)
−p]] + . . .

)
eVX,P .

The first commutator is

[VX,P , α
(i)
−p] =

∑

j 6=i

∑

n≥0

Spn(zi, zj)α
(j)
n ,

Since Smn(zi, zj) = 0 for m ≥ 1 and n ≥ 0, this requires that this commutator is only

non-zero if p > 0. We note also that [VX,P , [VX,P , α
(i)
−p]] and all higher commutators vanish,

leaving

〈ΣX,P |α
(i)
−p =





〈p1| . . . 〈pn|
∑

j 6=i

∑
n≥0 Spn(zi, zj)α

(j)
n eVX,P , p > 0,

〈p1| . . . 〈pn|α
(i)
−p e

VX,P p ≤ 0.
(B.1)
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Since α
(i)
p commutes with VX,P for p > 0, we then have

〈Σ|α
(i)
−p = 〈Σ|

∑

j 6=i

∑

n≥0

Spn(zi, zj)α
(j)
n , p > 0.

where we have replaced 〈ΣX,P | with the full surface state 〈Σ|. It is useful to note that, if

we contract with a momentum eigenstate |kj〉

〈kj |e
VX,Pα

(i)
−p|kj〉 =

∑

j 6=i

Sp0(zi, zj)kj

for p > 0 and zero otherwise. Thus we find the result

〈kj |e
VX,Pα

(i)
−1|kj〉 =

∑

j 6=i

kj
zi − zj

,

which is simply the classical momentum Pcl(z). A computation similar to this is used to

show that the α−1 insertions in the on-shell states of the scattering amplitude give rise to

Pcl(z) in the final expression for the amplitude (2.29).

A second, related identity may be proven along the same lines:

〈ΣX,P |α
(i)
−p · α

(i)
−q = 〈p1| . . . 〈pn|

(
α
(i)
−p · α

(i)
−q + α

(i)
−q · S

(i)
p + α

(i)
−p · S

(i)
q + S(i)

p · S(i)
q

)
eVX,P (B.2)

where

S(i)
p :=

∑

j 6=i

∑

n≥0

Spn(zi, zj)α
(j)
n

C Alternative derivation of the superstring field

The procedure used to find the NS string field is the same as that used in the bosonic case.

We begin with the NS vertex operator for massless fields in the (−1,−1) picture

V = cc̃Eµνψ
µψ̃νeip·X .

This suggests a string field given by a weighted sum over all possible momenta

|Ψ〉 =

∫
dp

(
Eµνψ

µ

− 1
2

ψ̃ν
− 1

2
+ . . .

)
c1c̃1|-1,-1, p〉,

where + . . . denote possible auxiliary fields and

|-1,-1, p〉 ≡ e−φ(0)−φ̃(0)|p〉.

To determine these auxiliary fields we consider the gauge parameter

|Λ〉 = −

∫
dp

(
iλµ ψµ

− 1
2

β̃− 1
2
− iλ̃µ ψ̃µ

− 1
2

β− 1
2
+Ω c̃0 β− 1

2
β̃− 1

2

)
c1c̃1|-1,-1, p〉.
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The gauge transformation, at linear order, is given by

δ|Ψ〉 = Q|Λ〉,

where Q is the BRST operator. Substituting in the expression for the BRST operator in

the NS sector

Q|Λ〉 = −

∫
dp

(
1

2
c̃0α

2
0 + γ− 1

2
α0 · ψ 1

2
+ γ 1

2
α0 · ψ− 1

2
+ γ̃− 1

2
α0 · ψ̃ 1

2
+ γ̃ 1

2
α0 · ψ̃− 1

2

−2b̃0(γ− 1
2
γ 1

2
+ γ̃− 1

2
γ̃ 1

2
) + . . .

)

×

(
iλµ(p)ψ

µ

− 1
2

β̃− 1
2
− iλ̃µ(p)ψ̃

µ

− 1
2

β− 1
2
+Ω(p)c̃0β− 1

2
β̃− 1

2

)
c1c̃1|-1,-1, p〉

Using the standard commutation relations gives

Q|Λ〉 =

∫
dp

((
ipµλ̃ν + ipνλµ

)
ψµ

− 1
2

ψ̃ν
− 1

2

+2

(
−
i

2
p · λ+Ω

)
γ− 1

2
β̃− 1

2
+ 2

(
i

2
p · λ̃+Ω

)
γ̃− 1

2
β− 1

2

+

(
i

2
p2λµ − pµΩ

)
ψµ

− 1
2

β̃− 1
2
c̃0 +

(
−
i

2
p2λ̃µ − pµΩ

)
ψ̃µ

− 1
2

β− 1
2
c̃0

)
c1c̃1|-1,-1, p〉

This suggests the string field must have the form

|Ψ〉 =

∫
dp

(
Eµν(p) ψ

µ

− 1
2

ψ̃ν
− 1

2

+ 2e(p) γ− 1
2
β̃− 1

2
+ 2ẽ(p) γ̃− 1

2
β− 1

2

+ifµ(p) ψ
µ

− 1
2

β̃− 1
2
c̃0 + if̃µ(p) ψ̃

µ

− 1
2

β− 1
2
c̃0

)
c1c̃1|-1,-1, p〉.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149]

[INSPIRE].

[2] C.M. Hull and R.A. Reid-Edwards, Flux compactifications of string theory on twisted tori,

Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [INSPIRE].

[3] C.M. Hull and R.A. Reid-Edwards, Flux compactifications of M-theory on twisted Tori,

JHEP 10 (2006) 086 [hep-th/0603094] [INSPIRE].

[4] C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664]

[INSPIRE].

[5] W. Siegel, Two vierbein formalism for string inspired axionic gravity,

Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

[6] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826

[hep-th/9305073] [INSPIRE].

– 57 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2007/07/080
https://arxiv.org/abs/hep-th/0605149
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605149
https://doi.org/10.1002/prop.200900076
https://arxiv.org/abs/hep-th/0503114
https://inspirehep.net/search?p=find+EPRINT+hep-th/0503114
https://doi.org/10.1088/1126-6708/2006/10/086
https://arxiv.org/abs/hep-th/0603094
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603094
https://doi.org/10.1088/1126-6708/2009/09/099
https://arxiv.org/abs/0904.4664
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4664
https://doi.org/10.1103/PhysRevD.47.5453
https://arxiv.org/abs/hep-th/9302036
https://inspirehep.net/search?p=find+EPRINT+hep-th/9302036
https://doi.org/10.1103/PhysRevD.48.2826
https://arxiv.org/abs/hep-th/9305073
https://inspirehep.net/search?p=find+EPRINT+hep-th/9305073


J
H
E
P
0
9
(
2
0
1
7
)
1
0
3

[7] C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109

[hep-th/9410167] [INSPIRE].

[8] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85

[hep-th/9503124] [INSPIRE].

[9] J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G structures and wrapped NS5-branes,

Commun. Math. Phys. 247 (2004) 421 [hep-th/0205050] [INSPIRE].

[10] M. Graña, Flux compactifications in string theory: A Comprehensive review,

Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

[11] F. Bastianelli and P. van Nieuwenhuizen, Path Integrals and Anomalies in Curved Space,

Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge

U.K. (2006).

[12] L. Mason and D. Skinner, Ambitwistor strings and the scattering equations,

JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].

[13] T. Adamo, E. Casali and D. Skinner, A Worldsheet Theory for Supergravity,

JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].

[14] F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From

Scattering Equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].

[15] F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and

Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

[16] F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions,

Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

[17] D.B. Fairlie and D.E. Roberts, Dual Models without Tachyons — A New Approach,

unpublished Durham preprint PRINT-72-2440 (1972).

[18] D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale,

Nucl. Phys. B 303 (1988) 407 [INSPIRE].

[19] K. Ohmori, Worldsheet Geometries of Ambitwistor String, JHEP 06 (2015) 075

[arXiv:1504.02675] [INSPIRE].

[20] E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New Ambitwistor String

Theories, JHEP 11 (2015) 038 [arXiv:1506.08771] [INSPIRE].

[21] Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions,

Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].

[22] T. Kugo, H. Kunitomo and K. Suehiro, Nonpolynomial Closed String Field Theory,

Phys. Lett. B 226 (1989) 48 [INSPIRE].

[23] T. Kugo and K. Suehiro, Nonpolynomial Closed String Field Theory: Action and Its Gauge

Invariance, Nucl. Phys. B 337 (1990) 434 [INSPIRE].

[24] B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation,

Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].

[25] A. Sen, BV Master Action for Heterotic and Type II String Field Theories,

JHEP 02 (2016) 087 [arXiv:1508.05387] [INSPIRE].

[26] T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one

loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].

– 58 –

https://doi.org/10.1016/0550-3213(94)00559-W
https://arxiv.org/abs/hep-th/9410167
https://inspirehep.net/search?p=find+EPRINT+hep-th/9410167
https://doi.org/10.1016/0550-3213(95)00158-O
https://arxiv.org/abs/hep-th/9503124
https://inspirehep.net/search?p=find+EPRINT+hep-th/9503124
https://doi.org/10.1007/s00220-004-1066-y
https://arxiv.org/abs/hep-th/0205050
https://inspirehep.net/search?p=find+EPRINT+hep-th/0205050
https://doi.org/10.1016/j.physrep.2005.10.008
https://arxiv.org/abs/hep-th/0509003
https://inspirehep.net/search?p=find+EPRINT+hep-th/0509003
https://doi.org/10.1007/JHEP07(2014)048
https://arxiv.org/abs/1311.2564
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2564
https://doi.org/10.1007/JHEP02(2015)116
https://arxiv.org/abs/1409.5656
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5656
https://doi.org/10.1007/JHEP01(2015)121
https://arxiv.org/abs/1409.8256
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8256
https://doi.org/10.1007/JHEP07(2014)033
https://arxiv.org/abs/1309.0885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0885
https://doi.org/10.1103/PhysRevLett.113.171601
https://arxiv.org/abs/1307.2199
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2199
https://doi.org/10.1016/0550-3213(88)90390-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B303,407%22
https://doi.org/10.1007/JHEP06(2015)075
https://arxiv.org/abs/1504.02675
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02675
https://doi.org/10.1007/JHEP11(2015)038
https://arxiv.org/abs/1506.08771
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08771
https://doi.org/10.1103/PhysRevLett.113.081602
https://arxiv.org/abs/1404.6219
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.6219
https://doi.org/10.1016/0370-2693(89)90287-6
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B226,48%22
https://doi.org/10.1016/0550-3213(90)90277-K
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B337,434%22
https://doi.org/10.1016/0550-3213(93)90388-6
https://arxiv.org/abs/hep-th/9206084
https://inspirehep.net/search?p=find+EPRINT+hep-th/9206084
https://doi.org/10.1007/JHEP02(2016)087
https://arxiv.org/abs/1508.05387
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.05387
https://doi.org/10.1007/JHEP04(2014)104
https://arxiv.org/abs/1312.3828
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3828


J
H
E
P
0
9
(
2
0
1
7
)
1
0
3

[27] Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann

sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].

[28] C. LeBrun, Spaces of Complex Null Geodesics in Complex-Riemannian Geometry,

Trans. Am. Math. Soc. 278 (1983) 209.

[29] J. Isenberg, P.B. Yasskin and P.S. Green, Nonselfdual Gauge Fields,

Phys. Lett. 78B (1978) 462 [INSPIRE].

[30] R.J. Baston and L.J. Mason, Conformal Gravity, the Einstein Equations and Spaces of

Complex Null Geodesics, Class. Quant. Grav. 4 (1987) 815 [INSPIRE].

[31] C. LeBrun, Thickenings and conformal gravity, Commun. Math. Phys. 139 (1991) 1

[INSPIRE].

[32] L.J. Mason and D. Skinner, Heterotic twistor-string theory, Nucl. Phys. B 795 (2008) 105

[arXiv:0708.2276] [INSPIRE].

[33] R.A. Reid-Edwards, On Closed Twistor String Theory, arXiv:1212.6047 [INSPIRE].

[34] E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP 11 (2016) 036

[arXiv:1606.05636] [INSPIRE].

[35] P. Di Vecchia, R. Nakayama, J.L. Petersen, J.R. Sidenius and S. Sciuto, Covariant N string

amplitude, Nucl. Phys. B 287 (1987) 621 [INSPIRE].

[36] R.A. Reid-Edwards, Ambitwistor String Theory in the Operator Formalism,

JHEP 06 (2016) 084 [arXiv:1511.08406] [INSPIRE].
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