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Abstract

Since coarse(ned) data naturally induce set-valued estimators, analysts often
assume coarsening at random (CAR) to force them to be single-valued. Focusing
on a coarse categorical response variable and a precisely observed categorical
covariate, we first re-illustrate the impossibility to test CAR and then contrast
it to another type of coarsening called subgroup independence (SI). It turns out
that – depending on the number of subgroups and categories of the response
variable – SI can be point-identifying as CAR, but testable unlike CAR. A
main goal of this paper is the construction of the likelihood-ratio test for SI.
All issues are similarly investigated for the here proposed generalized versions,
gCAR and gSI, thus allowing a more flexible application of this hypothesis test.
The results are illustrated by the data of the German Panel Study “Labour
Market and Social Security” (PASS).

Keywords: coarse data, missing data, coarsening at random (CAR),
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1. Introduction: The problem of testing coarsening assumptions

Traditional statistical methods dealing with missing data (e.g. EM algorithm
or imputation techniques) require identifiability of parameters, which frequently
tempts analysts to make the missing at random (MAR) assumption (cf. e.g. [17])
simply for pragmatic reasons without justifications in substance (cf. e.g. [15]).
Since MAR is not testable without strong additional assumptions (e.g. [18]) and
wrongly including MAR may induce a substantial bias, this way to proceed is
especially alarming.

Beside missing data, there are further kinds of deficient data, such as data
affected by measurement errors/misclassification (cf. e.g. [11]) or coarse(ned)
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data (cf. e.g. [12]) where only subsets of the complete data sample space are
observed, known to include the unobserved, precise value.1 Throughout the
paper, we consider coarse data, including missing data as special case, thus ad-
dressing partially observed values, explicitly excluding the erroneous observation
of a variable, disregarding measurement errors/misclassification. For instance,
coarse data may arise in data sets were coarsening is deliberately applied as
anonymization technique or matched data sets with not completely identical
categories. In the context of coarse data, the coarsening at random (CAR) (cf.
[12]) assumption is the analogue of MAR. Although the impossibility of testing
CAR is already known from literature (cf. e.g. [14]), providing an intuitive in-
sight into this point will be a first goal of our paper. Apart from CAR, we focus
on another, in a sense dual, assumption that we called subgroup independence
(SI) in [22] and elaborate the substantial difference between CAR and SI with
regard to testability.

Our argumentation is based on the maximum likelihood estimators obtained
under the specific assumptions in focus. There is already a variety of maximum
likelihood approaches for incomplete data. While some rely on optimization
strategies, as for instance maximax or maximin, to force a single-valued result
(cf. e.g. [10], [13]), others end up with set-valued results (cf. e.g. [3], [16],
[22]). A general view is given by Couso and Dubois [6], distinguishing between
different types of likelihoods, the visible, the latent and the total likelihood.
Here, we use the cautious approach developed in [22], which refers to the latent
likelihood and is – just as e.g. [19, 8] (in the context of misclassification) and
[28] – strongly influenced by the methodology of partial identification (cf. [18]).
Thus, according to the spirit of partial identification, instead of being forced
to make often untenable, strict assumptions, as CAR or SI, to give an answer
to the research question at all, we can explicitly make use of in practice more
realistic partial knowledge about the incompleteness, which would have to be
left out of considerations if traditional approaches were used. For this purpose,
we use an observation model as a powerful medium to include the available
knowledge into the estimation problem. By considering generalized versions of
the strict assumptions in focus, which we call gCAR and gSI, we can express
this knowledge in a flexible and careful way. This means that we are no longer
restricted to formalize the very specific types of coarsening assumptions, but
can incorporate (even partial) knowledge about arbitrary dependencies of the
coarsening on the values of some variables, which turns out to be also beneficial
in the context of testing.

Throughout the paper, we refer to the case of a coarse categorical response
variable Y and a precisely observed categorical covariate X, but the results may
be easily formulated in terms of cases with more than one categorical covariate.
For sake of conciseness, the example refers to the case of a binary Y , where

1When dealing with coarse data, it is important to distinguish epistemic data imprecision
considered here, i.e. incomplete observations due to an imperfect measurement process, from
ontic data imprecision (cf. [5]).
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coarsening corresponds to missingness, but the framework is also applicable in
the general categorical setting.

For this categorical setting, we characterize cases where SI makes parame-
ters not only identifiable, but is also testable. Besides the investigation of the
testability of SI, a main contribution of this paper is the construction of the
likelihood-ratio test for this assumption. For this purpose, we give the hypothe-
ses, illustrate the sensitivity of the test statistic with regard to the deviation from
the null hypothesis and study the asymptotic distribution of the test statistic to
obtain a decision rule in dependence of the significance level. Straightforwardly,
a test for a specific pattern of gSI is constructed.

Our paper is structured as follows: In Section 2 we introduce the techni-
cal framework and the running example based on the German Panel Study
“‘Labour Market and Social Security” (PASS), which we also use for the il-
lustration of both assumptions, CAR and SI, as well as gCAR and gSI, in
Section 3. After sketching the crucial argument of identifiability issues and our
estimation method as well as showing how the generally set-valued estimators
may be refined by assuming CAR/gCAR or SI/gSI in Section 4, the obtained
estimators are used to discuss the testability of both assumptions in Section 5.
The likelihood-ratio test for SI is developed and then illustrated for the running
example in Section 6, where the generalized view on subgroup independence is
used to extend this hypothesis test to a more flexible version, including a test
on partial information, in Section 7. All results of this paper are given for a
general categorical setting, but the running example refers to the illustrative
case of binary data. To emphasize the general applicability of our approach,
we briefly discuss further examples in Section 8, also addressing potential lim-
itations. Finally, Section 9 concludes with a summary and some additional
remarks.

2. Coarse data: The basic viewpoint

Before we discuss the running example, let us explicitly formulate the techni-
cal framework in which our discussion of the coarsening assumptions, the estima-
tion of parameters and the construction of the likelihood-ratio test is embedded.
We approach the problem of coarse data in our categorical setting by distin-
guishing between a latent and an observed world: Let (x1, y1), . . . , (xn, yn) be
a sample of n independent realizations of a pair (X,Y ) of categorical random
variables with sample space ΩX × ΩY . Our basic goal consists of estimating
the probabilities πxy = P (Y = y|X = x), where Y is regarded as response
variable and X as covariate. Since the values of Y unfavorably can be ob-
served partially, i.e. subsets of ΩY instead of single elements may be observed,
this variable is part of the latent world. Instead, we only observe a sample
(x1, y1), . . . , (xn, yn) of n independent realizations of the pair (X,Y), where
the random object Y with sample space ΩY = P(ΩY ) \ {∅} constitutes the
observed world. A connection between both worlds, and thus between the prob-
abilities πxy and pxy = P (Y = y|X = x), is established via an observation
model, governed by the coarsening parameters qy|xy = P (Y = y|X = x, Y = y)
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with y ∈ ΩY , x ∈ ΩX and y ∈ ΩY . Throughout the paper, we not only assume
that the coarsening depends on the individual i (i = 1, . . . , n) via the values
x and y exclusively, but also require distinct parameters in the sense of Rubin
(cf. e.g.[17]) as well as error-freeness2, i.e. y 3 y, explicitly excluding the case of
misclassification.

An essential part of our argumentation is based on comparing the dimensions
of the parameter space of the latent world Θlat and the parameter space of the
observed world Θobs. While θlat ∈ Θlat describes the latent variable distribution
πxy and the coarsening parameters qy|xy, y ∈ ΩY , x ∈ ΩX , y ∈ ΩY , the
parameter θobs ∈ Θobs represents the observed variable distribution pxy. We
choose one of the minimal possible parametrizations, in order to be clear about
the dimension of the parameter spaces, generally obtained as

dim(Θlat) =

latent variable distr.︷ ︸︸ ︷
k · (m− 1) +

coarsening param.︷ ︸︸ ︷
k ·m · (2m−1 − 1),

dim(Θobs) =

observed variable distr.︷ ︸︸ ︷
k · (2m − 2),

(1)

with k = |ΩX | an m = |ΩY |. Due to the restriction that probabilities sum
up to one, we refrain from the incorporation of qy|xy with y = {y}, x ∈ ΩX ,
y ∈ ΩY , thus starting from index z = 2 in the calculation of the number of
coarsening parameters in one subgroup3:

∑m
z=2 z ·

(
m
z

)
= m · (2m−1 − 1). For

the same reason, for each subgroup x, only (m − 1) and (2m − 2) parameters
πxy and pxy determine the latent variable distribution and the observed variable
distribution, respectively, where |ΩY | = 2m − 1.

As the number of the coarsening parameters increases considerably with
k and m, for reasons of conciseness, we start by mainly confining ourselves
to the discussion of a running example4 considering binary variables. While
we denote the different categories of X by numbers, letters are used to refer
to the categories of Y . In this way, the example addresses a situation with
ΩX = {0, 1}, ΩY = {a, b}, and thus ΩY = {{a}, {b}, {a, b}}, where “{a, b}”
denotes the only coarse observation, which corresponds to a missing one in this
case. Consequently, defining

θlat = (π0a, q{a,b}|0a, q{a,b}|0b, π1a, q{a,b}|1a, q{a,b}|1b)
T and

θobs = (p0{a}, p0{b}, p1{a}, p1{b})
T ,

(2)

we obtain dim(Θlat) = 6 and dim(Θobs) = 4 as dimensions of the respective
parameter spaces. The example is introduced in the following box:

2This implies that Y is a selector of Y (in the sense of e.g. [20, p. 43]).
3The binomial coefficient

(m
z

)
gives the number of z-element subsets of ΩY , where for each

z-element subset exactly z coarsening parameters are needed.
4Another application of the cautious likelihood approach used here is studied in [26] in the

context of small area estimation, relying on the data of the German General Social Survey.
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Table 1: Data of the PASS example

UBII (X) Income (Y) observed counts total counts
0 {a} n0{a} = 38 n0 = 518

{b} n0{b} = 385
{a, b} n0{a,b} = 95

1 {a} n1{a} = 36 n1 = 87
{b} n1{b} = 42
{a, b} n1{a,b} = 9

Running example:
The German Panel Study “Labour Market and Social Security” (PASS, [31],
wave 5, 2011) deals with the expected low response to the income question by
follow-up questions for non-respondents, starting from providing rather large
income classes that are then narrowed step by step. In this way, answers with
different levels of coarseness are received by simultaneously respecting privacy.
For convenience, we consider only that income question where respondents are
required to report if their income is < 1000e (category a) or ≥ 1000e (category
b) (y ∈ {a, b} = ΩY ). Some respondents gave no suitable answer, such that only
values of Y are observable (y ∈ {{a}, {b}, {a, b}} = ΩY). The receipt of
the so-called Unemployment Benefit II (UBII) is used as covariate with x ∈
{0 (no), 1 (yes)}. A summary of the data is given in Table 1.

Although we repeatedly make use of this binary example, all results are
applicable for the general categorical case with k subgroups and m categories
of variable Y . Thus, the example is only used to simplify the understanding of
the basic points, while the main contributions of this paper, i.e. considerations
regarding identifiability and testability as well as the proposed hypothesis test,
refer to the general categorical setting. To stress the generality, we later briefly
illustrate a case not automatically reducing to the missing data situation in the
end, also discussing the complexities inherent to the applications with arbitrary
finite sample spaces (cf. Section 8).

3. Coarsening models

Considering our categorical setting, we look at two ways of assuming the
coarsening process to be uninformative in the sense that certain variables do not
play any role: The coarsening can be independent of the value of the response
variable or of the covariate(s), thus ending up in CAR (cf. Section 3.1) or SI
(cf. Section 3.2), respectively.

3.1. Coarsening at random and its generalized version

Heitjan and Rubin ([12]) consider maximum likelihood estimation in coarse
data situations by deriving assumptions simplifying the likelihood. These as-
sumptions – CAR and distinct parameters – make the coarsening ignorable (e.g.
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[17]). The CAR assumption requires constant coarsening parameters qy|xy,
regardless which true value y is underlying, subject to the condition that it
matches with the fixed observed value y. In this way, the coarsening mechanism
is “uninformative” about the true underlying value of Y . Referring to the case
where the information of a covariate is available, we consider a naturally adapted
notion of the CAR assumption by additionally conditioning on the value of the
covariate. Since this covariate might generally have an influence on the coars-
ening process, we assume CAR for each subgroup. A geometric representation
and an appealing way to model CAR, also in case of a large |ΩY |, is given in [9].

The strong limitation of the CAR assumption is also evident in the running
example. Under CAR, which coincides here with MAR, the probability of giving
no suitable answer is taken to be independent of the true income category in
both subgroups split by the receipt of UBII, i.e.

q{a,b}|0a = q{a,b}|0b and q{a,b}|1a = q{a,b}|1b.

Generally, CAR could be quite problematic in this context, as practical experi-
ences show that reporting missing or coarsened answers is notably common in
specific income groups (cf. e.g. [30]).

A generalization (extending Nordheim’s [21] proposals for MAR to CAR) of
the CAR assumption, allows a more flexible incorporation of coarsening assump-
tions. We refer to this generalization as generalized CAR (gCAR): it consists in
assuming the values of the ratios of coarsening parameters for given subgroups
and coarse observations, i.e.

Rx,y,y′y =
qy|xy

qy|xy′
, (3)

defined for all subgroups x ∈ ΩX and all compatible y, y′ ∈ ΩY and y ∈ ΩY ,
where y and y′ are directly successive5 (cf. [24]). In the missing data situation
of our running example, we assume the values of the ratios

R0,a,b,{a,b} =
q{a,b}|0a

q{a,b}|0b
and R1,a,b,{a,b} =

q{a,b}|1a

q{a,b}|1b
,

where R0,a,b,{a,b} = R1,a,b,{a,b} = 1 represents the special case of CAR/MAR.
In most cases, it might be difficult to justify knowledge about the exact value of
the ratios, but former studies or material considerations may naturally provide
a rough evaluation of their magnitude. In this way, for a given subgroup partial
assumptions as “respondents from the high income class tend to give a coarse
answer more likely” may be expressed by choosing R0,a,b,{a,b}, R1,a,b,{a,b} ∈
[0, 1[, which can be covered in a powerful way in the likelihood approach (cf.
[22]) also underlying our paper.

5Considering categories without inherent order, an arbitrary order has to be chosen.
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3.2. Subgroup independence and its generalized version
If the data are missing not at random (MNAR) [17], commonly the miss-

ingness process is modelled by including parametric assumptions (e.g. [12]), or
a cautious procedure is chosen ending up in set-valued estimators (cf. e.g. [7],
[22], [34]). For the categorical setting, it turns out that there is a special case of
MNAR, in which single-valued estimators can be obtained without additional
parametric assumptions. For motivating this case, one can further differenti-
ate MNAR, distinguishing between the situation where missingness depends on
both the values of the response Y and the covariate X and the situation where
it depends on the values of Y only. Referring to the related coarsening setting,
the latter case corresponds to SI sketched in [22], and studied in detail here.
This independence from the covariate value shows, beside CAR, an alternative
kind of coarsening assumption.

Again, one should generally use this assumption cautiously: Under SI, in our
example giving a coarse answer is then taken to be independent of the receipt
of UBII given the value of Y , i.e.

q{a,b}|0a = q{a,b}|1a and q{a,b}|0b = q{a,b}|1b.

In practice, a different coarsening behaviour with regard to the income question
is expected from respondents receiving and not receiving UBII, such that also
this assumption turns out to be doubtful.

A generalization, in the following called generalized subgroup independence
(gSI), consists in assuming the values of the ratios

Rx,x′,y,y =
qy|xy

qy|x′y
, (4)

defined for all compatible y ∈ ΩY and y ∈ ΩY (apart from y = {y}) and directly
successive (cf. Footnote 5) covariate values x, x′ ∈ ΩX (cf. [24]). In the example,
the values of the ratios

R0,1,a,{a,b} =
q{a,b}|0a

q{a,b}|1a
and R0,1,b,{a,b} =

q{a,b}|0b

q{a,b}|1b

are assumed, where assuming R0,1,a,{a,b} = R0,1,b,{a,b} = 1 corresponds to SI.
By e.g. selecting R0,1,a,{a,b}, R0,1,b,{a,b} ∈]1,∞[ for a given true income group,
partial information in the sense that “respondents who do not receive UBII
tend to give coarse answers more likely” can be expressed, which again can be
included into the likelihood-based approach explained in the next section. These
ratios will be the starting point for the generalized hypothesis test in Section 7.

4. Identifiability and estimation: General case, (g)CAR and (g)SI

This section recalls some important aspects of our approach developed in
[22] by sketching the basic idea of the therein considered cautious, likelihood-
based estimation technique and giving the obtained estimators with and without
the assumptions in focus. Beyond that, we confirm that CAR/gCAR is point-
identifying and elaborate a criterion for the point-identifiability of parameters
under SI/gSI .
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4.1. Basic argument of the estimation method

To estimate (πxy)x∈ΩX ,y∈ΩY
of the latent world, basically three steps are

accomplished. Firstly, we determine the maximum likelihood estimator (MLE)
(p̂xy)x∈ΩX ,y∈ΩY in the observed world based on all n =

∑
x∈ΩX

nx observations
with nx > 0, x ∈ ΩX . Since the counts (nxy)x∈ΩX ,y∈ΩY are multinomially
distributed, the MLE is uniquely obtained by the relative frequencies of the
respective categories (cf. [27]), coarse categories treated as own categories. Sec-
ondly, we connect the parameters of both worlds by a mapping

Φ : Θlat → Θobs, (5)

θlat 7→ θobs

expressing the observation process, where Θlat and Θobs are the parameter space
of the latent and the observed world, respectively. The mapping Φ can be shown
to be separable into independent components Φx corresponding to subgroup x,
x ∈ ΩX .
For our example, we obtain

Φx

 πxa
q{a,b}|xa
q{a,b}|xb

=

(
πxa · (1− q{a,b}|xa)

(1− πxa) · (1− q{a,b}|xb)

)
=

(
px{a}
px{b}

)
, (6)

x ∈ {0, 1}, determined by utilizing the law of total probability. Thirdly, by
the invariance of the likelihood under parameter transformations, we may in-
corporate the parametrization in terms of πxy and qy|xy into the likelihood of
the observed world. Since the mapping Φ is generally not injective, we obtain
multiple combinations of estimated latent variable distributions and estimated
coarsening parameters, all leading to the same maximum value of the likelihood.
In this way, we obtain the set-valued estimator

Γ̂ = {θ̂lat | Φ(θ̂lat) = θ̂obs}, (7)

with θ̂lat and θ̂obs as the MLE’s of θlat and θobs, respectively.6 This set-valued
estimator can also be illustrated by building the one dimensional projections,
which are intervals: in the situation of the example

π̂xa ∈
[
nx{a}

nx
,
nx{a} + nx{a,b}

nx

]
, q̂{a,b}|xy ∈

[
0,

nx{a,b}

nx{y} + nx{a,b}

]
, (8)

with x ∈ {0, 1} and y ∈ {a, b}. Points in these intervals are constrained by
the relationships in Φ. The obtained set-valued estimator in (7), and thus the
corresponding projections, may be refined by including assumptions about the

6This result is strictly related to the one obtained from cautious data completion (cf. e.g.
[1], §7.8.), by plugging in all potential precise values compatible with the observations.
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coarsening justified from the application standpoint (in the spirit of [18]).7 Very
strict assumptions may induce point-identified parameters, as estimation under
CAR or SI in the categorical case shows.8

4.2. Basic argument of studying the identifiability

Discussing identifiability, we consider the general case with k = |ΩX | and
m = |ΩY |, using the setting of the example only for reasons of illustration.
In Section 4.3 and 4.4, we briefly study the cases in which CAR/gCAR and
SI/gSI can be point-identifying. The mapping Φ is definitely not injective if
dim(Θobs) < dim(Θlat). In this way, we need the degrees of freedom under the
assumption in focus (here generally noted as aspt), i.e.

dfaspt = dim(Θobs)− dim(Θaspt
lat ), (9)

to be non-negative, in order to be able to make Φ injective and thus to receive
point-valued estimators under aspt at all. Including an assumption into the
estimation problem has an impact on dim(Θlat) only, while dim(Θobs) stays
equal to k · (2m−2) (cf. Equation (1)) independently of whether the assumption
of CAR/gCAR or SI/gSI is included.9

4.3. Identifiability and estimation under CAR/gCAR

Thus, we study the possibility of achieving point-valued estimators under
CAR by checking whether dfCAR ≥ 0 is satisfied (cf. (9)). Within each sub-
group, every coarse category requires one coarsening parameter only, wherefore
additionally to the k · (m− 1) parameters representing the latent variable dis-
tribution, k · (2m − 1−m) coarsening parameters are estimated (also cf. Equa-
tion (1) and its explanation). In this way,

dfCAR = k · (2m − 2)− [k · (m− 1) + k · (2m − 1−m)] = 0

is obtained, pointing to the well-known result that CAR is generally point-
identifying.

By assuming CAR in the example, i.e. by restricting the set of possible
coarsening mechanisms to q{a,b}|xa = q{a,b}|xb with x ∈ {0, 1}, we obtain the
point-valued estimators

π̂CARxa =
nx{a}

nx{a} + nx{b}
, q̂CAR{a,b}|xa = q̂CAR{a,b}|xb =

nx{a,b}

nx
. (10)

7An approach that aims at refining the results under total ignorance is e.g. given in [34],
where the conservative inference rule is presented as a compromise between a too optimistic
(i.e. assuming CAR) and a too pessimistic (i.e. assuming total ignorance) knowledge about the
coarsening process. Note that a different setting is studied there, considering coarse covariates
instead of a coarse response variable.

8Identifiability may not only be obtained by assumptions on the coarsening: e.g. for dis-
crete graphical models with one hidden node, conditions based on the associated concentration
graph are used in [29].

9For every of the k subgroups, |ΩY | − 1 = |P(ΩY ) \ {∅}| − 1 parameters of the observed
world have to be estimated (cf. Section 2).
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Interpreting these results, under this type of coarsening, π̂xa corresponds to
the proportion of {a}-observations in subgroup x ignoring all coarse values and
q̂{a,b}|xa = q̂{a,b}|xb is the proportion of observed {a, b} in subgroup x.

Since the dimension of the parameter space under gCAR always corresponds
to dim(ΘCAR

lat ), we receive point-valued estimators for the general version as well.
For fixed values of the ratios in (3), the parameters of main interest πxy are
point-identified, wherefore the ratios may be regarded as sensitivity parameters
in the sense of [16]. Partial assumptions, as e.g. R0,a,b,{a,b}, R1,a,b,{a,b} ∈ [0, 1[,
can be included into the estimation by taking the collection of all point-valued
results obtained by the estimation under fixed ratios that are compatible with
these assumptions (cf. [22]).

4.4. Identifiability and estimation under SI/gSI

If SI is incorporated into the estimation, dfSI = dim(Θobs) − dim(ΘSI
lat) is

not necessarily non-negative. Since the value of the subgroup does not play any
role for the coarsening under SI, the number of coarsening parameters corre-
sponds to the one in the homogeneous case, i.e. m · (2m−1 − 1), thus receiving
dim(ΘSI

lat) = k · (m− 1) +m · (2m−1 − 1) (as compared to Equation (1)). Solv-
ing (cf. (9)) in this setting

dfSI = k · (2m − 2)− [k · (m− 1) +m · (2m−1 − 1)] ≥ 0

for k, we obtain the condition

k ≥ m · (2m−1 − 1)

2m −m− 1
, (11)

that has to be satisfied to concede point-valued estimators.

In this paper we focus on the setting where ΩY = P(ΩY )\{∅} with all categories
observable. But frequently, especially in cases with a high number of categories
for the variable Y , there are naturally data situations where only specific coarse
categories, i.e. a strict subset of P(ΩY )\{∅}, can be observed and we are in fact
considering a space Ω̃Y ( ΩY . In these cases, the number v = |Ω̃Y |, instead of
|ΩY | = 2m − 1, has to be included into dfSI , so that the minimum number of
subgroups needed for point-identifiability generally can no longer be expressed
in terms of m exclusively. In particular, in the prominent missing data case,
which is of high practical relevance, we are concerned with m precise categories
and one missing category, wherefore |Ω̃Y | = m + 1. The number of subgroups
k has to be greater or equal to m in order to have point-identifiability, since in
this case

dim(Θobs) = k · (m+ 1− 1) = k ·m
dim(ΘSI

lat) = k · (m− 1) +m, and thus

dfSI = k ·m− (k · (m− 1) +m) ≥ 0 ⇔ k ≥ m .
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In the setting of our example, there are two subgroups available, which corre-
sponds to the lower bound in (11), such that the respective condition is satis-
fied. This is in line with the result that under rather weak regularity conditions,
namely π0a 6= π1a,10 π0a /∈ {0, 1}, and π1a /∈ {0, 1} for x ∈ {0, 1}, under SI the
mapping Φ becomes injective (a proof is given in [23, p. 17, 20]). Hence, we
obtain point-valued estimators

π̂SIxa =
nx{a}

nx

n0 n1{b} − n0{b} n1

n0{a} n1{b} − n0{b} n1{a}
,

q̂SI{a,b}|xa =
n0{a,b} n1{b} − n0{b} n1{a,b}

n0 n1{b} − n0{b} n1
,

q̂SI{a,b}|xb =
n0{a,b} n1{a} − n0{a} n1{a,b}

n0 n1{a} − n0{a} n1
,

(12)

provided they are well-defined and inside [0, 1].
Turning to gSI again, all findings concerning the identifiability under SI are
equally applicable to gSI, since dim(ΘgSI

lat ) corresponds to dim(ΘSI
lat). By in-

cluding partial knowledge about the ratios in (4), the estimator in (7) can again
be refined substantially.

5. On the testability of CAR and SI

Due to the potentially substantial bias of π̂xy if CAR or SI are wrongly
assumed (cf. e.g. [23, p. 15, 18]), testing these assumptions is of particular
interest. Although it is already established that without additional information
it is not possible to test whether the CAR condition holds (e.g. [18, p. 29]),
it may be insightful, in particular in the light of Section 5.2, to address this
impossibility in the context of the example.

5.1. Testability of CAR and gCAR

A closer consideration of (10) already indicates that CAR can never be re-
jected without including additional assumptions about the coarsening. This
point is illustrated in Figure 1 by showing the interaction between points in the
intervals arising from (7). Spoken for the situation of the example: The coarsen-
ing scenario where respondents from the low income category and respondents
from the high income category tend to give coarse answers in the same way, can
generally not be excluded. The in this sense uninformative coarsening, which
here just ignores all coarse values, is always a possible scenario included in the
estimator in (7).

For the example, under CAR we obtain

π̂CAR0a = 0.09, π̂CAR1a = 0.46, q̂CAR{a,b}|0y = 0.18, q̂CAR{a,b}|1y = 0.10, y ∈ {a, b},

10The case of π0a = π1a represents the homogeneous case, where multiple solutions result
(cf. [22], p.254).
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π̂xa =
nx{a} + nx{a,b}

nx

π̂CAR
xa =

nx{a}
nx{a} + nx{b}π̂xa =

nx{a}
nx

q̂{a,b}|xa =
nx{a,b}

nx{a,b} + nx{a}

q̂{a,b}|xb = 0q̂{a,b}|xa = 0

q̂{a,b}|xb =
nx{a,b}

nx{a,b} + nx{b}

q̂CAR
{a,b}|xb =

nx{a,b}
nx

= q̂CAR
{a,b}|xa

CAR

Figure 1: Since the relationships expressed via Φ in (6) have to be met, only specific
points from the estimators in (8) are combinable, ranging from (π̂xa, q̂{a,b}|xa, q̂{a,b}|xb)

to (π̂xa, q̂{a,b}|xa, q̂{a,b}|xb) with the CAR case always included.

which may not be excluded from the set-valued estimator, and also the corre-
sponding intervals

π̂0a ∈ [0.073, 0.26], q̂{a,b}|0a ∈ [0, 0.71], q̂{a,b}|0b ∈ [0, 0.20],

π̂1a ∈ [0.41, 0.52], q̂{a,b}|1a ∈ [0, 0.20], q̂{a,b}|1b ∈ [0, 0.18],

unless further assumptions as e.g. “respondents from the high income group
tend to give coarse answers more likely” are justified. In the same way, specific
dependencies of the coarsening process on the true underlying value in the sense
of gCAR are generally not excludable, and thus the generalization neither can
be tested, too.

Nevertheless, there are several approaches that show how testability of MAR
is achieved by the inclusion of additional assumptions (e.g. [14]), where the re-
sults probably could be extended to CAR. For instance, testability of MAR can
be achieved under the availability of instrumental variables that are required
to be conditionally independent from the missingness given the response vari-
able and covariates and additionally assuming bounded completeness (cf. [2]).
Another approach of that kind is for instance given in [15], where distribu-
tional constraints on the structure of a network are incorporated. Generally,
the challenge remains to distinguish between cases, where MAR is justifiably
rejected/not rejected, and cases where the included additional assumptions were
wrongly made, so that the test decision is meaningless.

5.2. Testability of SI and gSI

Our considerations concerning the testability of SI are mainly based on two
findings from Section 4.4. There, we firstly elaborated the condition in (11) as
a necessary condition to be able to obtain point-valued estimators at all. In
this sense, we cannot generally obtain point-valued estimators as in the case of
CAR. Similarly, also when studying the testability of SI, two cases have to be
distinguished: The case of dfSI < 0, where SI cannot be tested in the sense that
the “test statistic” is completely degenerate, and dfSI ≥ 0, where we can test
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it indeed. Secondly, the (unconstrained)11 estimators in (12) already indicated
that – depending on the data situation – results partly outside the interval [0, 1]
are conceivable. In order to illustrate this point, we apply the estimators in (12)
to the example. We obtain the unconstrained estimates

π̂SI0a = 0.070, π̂SI1a = 0.40, q̂SI{a,b}|xa = −0.04, q̂SI{a,b}|xb = 0.20, x ∈ {0, 1},
revealing that there are data situations that might hint to (partial) incompatibil-
ity with SI. Informally spoken, the reason for this indication of incompatibility
can be explained as follows: The subgroup specific coarse observations have to
be produced by the compatible, precise values within the considered subgroup.
This might be prevented under SI, representing a too strict coarsening rule in
certain observed data situations, wherefore SI might be testable.

Although we will present the test statistic only then in Section 6.1 (cf. (14)),
we can – at least if we restrict to the standard case with sufficiently many sub-
groups – already prepare its main underlying idea: Comparing the maximal
likelihood under SI and the maximal likelihood achieved under refraining from
strict coarsening assumptions and using those mentioned in Section 2 only, al-
lows us to distinguish the two cases pointing to the two possible test decisions.
Case 1: The likelihood optimized under SI achieves the computational maxi-
mum obtained by Φ−1(θ̂obs), where Φ−1 is the inverse of Φ. In this situation the
value of our likelihood-based test statistic will result in the test decision that SI
cannot be rejected. Case 2: The optimization under SI induces a lower value of
the likelihood compared to the case of refraining from strict coarsening assump-
tions and using those mentioned in Section 2 only.12 Then, our test statistic
indeed will react sensitively to the reduction of the likelihood value and will lead
to a rejection of SI if this reduction is large enough in the light of the significance
level α. This differentiation between the two cases gives us the opportunity to
test on SI, while we always end up in case 1 if CAR is included into the likeli-
hood optimization making testability impossible (cf. Section 5.1). In the next
section, especially in Figure 2, we will seize on the two cases characterizing the
two possible test decisions, where the sensitivity of the deviation between the
maximum value of the likelihood with and without SI will be exploited in the
likelihood ratio test.

If the criterion given in (11) is satisfied, gSI is testable as well, where we
devote ourselves to this question in Section 7.

6. Likelihood-ratio test for SI

6.1. General aspects: Hypotheses, test statistic and test decision

If sufficient subgroups are available in the sense that the condition in (11)
is met, a statistical test for the following hypotheses can be constructed in the

11Probability restrictions are not included.
12In our example, the unconstrained estimators in (12), which are the unique inverse image

of the MLE’s p̂x{a} and p̂x{b} under (an extension of) the injective function Φ, are partly
outside the interval [0, 1].
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Figure 2: The impact on Λ of two substantially differing data situations is illustrated.

categorical case:

H0 : qy|xy = qy|x′y for all y ∈ ΩY , x, x
′ ∈ ΩX , y ∈ ΩY ,

H1 : qy|xy 6= qy|x′y for some y ∈ ΩY , x, x
′ ∈ ΩX , y ∈ ΩY .

(13)

Since we here consider a likelihood-based approach directly based on the real-
izations in the observed level, applying a corresponding likelihood-ratio test is
natural. Thus, our test for the general hypotheses H0 and H1 in (13) can be
based on the classical test statistic (e.g. [33])

T = −2 · ln(Λ(y1, . . . , yn, x1, . . . , xn)) (14)

with likelihood ratio

Λ(y1, . . . , yn, x1, . . . , xn) =
supH0

L(θlat||y1, . . . , yn, x1, . . . , xn)

supH0∪H1
L(θlat||y1, . . . , yn, x1, . . . , xn)

, (15)

(cf., e.g. (2)).13 While the denominator of Λ can be obtained by using any point
in (7) (e.g. θCAR, which generally cannot be excluded from (7), cf. Section 5.1),
the numerator must in general be calculated by numerical optimization. In fact,
simulation studies corroborate the decrease of Λ with deviation from SI (cf. [23,
p. 19]). The sensitivity of Λ with regard to the test considered here is also
illustrated informally in Figure 2 by depicting Φ in (5) for two data situations
with binary variables, where only the second one gives evidence against SI. The
gray line symbolizes all arguments satisfying SI, while the bold line represents
all arguments maximizing the likelihood if only the assumptions mentioned in
Section 2 are imposed (i.e. all points in (7)). The intersection of both lines
represents the values in (12), and if it is included in the domain of Φ (cf. left case
of Figure 2), the same maximal value of the likelihood is obtained regardless of
including SI or not, resulting in Λ = 1, and thus T = 0. An intersection outside
the domain (cf. right case of Figure 2) induces a lower value of the likelihood
under SI, also reflected in Λ < 1, causing T > 0. For the example one obtains

13Alternatives to this statistic would include the construction of uncertainty regions, in the
spirit of [32], and then apply the duality between tests and confidence regions.
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Table 2: Distribution of T under H0 in dependence of k and m

m = 2 m = 3 m ≥ 4

k = 1 : δ0 k ≤ 2 : δ0 k ≤ bm2 c : δ0
k = 2 : 0.5 · δ0 + 0.5 · χ2

1 k ≥ 3 : χ2
dfSI k ≥ dm+1

2 e : χ2
dfSI

k ≥ 3 : χ2
dfSI

Λ ≈ 0.93 and T ≈ 0.14, indicating a slight evidence against SI based on a direct
interpretation of the test statistic.

Next, we aim at determining a general decision rule depending on the sig-
nificance level α. In the case of the likelihood-ratio test, the asymptotic dis-
tribution of the test statistic under the null hypothesis is typically given by a
χ2-distribution with degrees of freedom df , providing the basis for the critical
value, namely its (1− α)-quantile, that is used for the test decision (cf. e.g.
[33]). Here, it turns out that the degrees of freedom dfSI , considered in Sec-
tion 4.4, crucially determine the type of the asymptotic distribution. We have
to differentiate between the situation dfSI = 0 and dfSI > 0, whereas subgroup
independence is not testable under dfSI < 0 (cf. Section 5.2). It can be easily
checked that condition (11) corresponds to

k >
m

2
, (16)

when m ≥ 4. While the quantile χ2
df,1−α, with df = dfSI , gives the critical

value in case of dfSI > 0, the critical value is calculated based on a specific
asymptotic distribution in case of dfSI = 0, investigated in the next section.
Table 2 shows the distribution of the test statistic under the null hypothesis for
a given number of subgroups and categories of the variable of interest.

6.2. The test decision in the special case of dfSI = 0

In order to derive the distribution of the test statistic in the special case of
dfSI = 0, it shows to be beneficial to restate the hypotheses in (13) in terms of
the parameters of the observed world first. In this way, we will be able to clearly
distinguish between the boundary and the non-boundary cases, which will be
of great importance in this context. The special case of df = 0 is achieved
in the setting with binary variables addressed in the example, which we will
investigate now in more detail. It can be easily checked that the binary setting
(i.e. k = m = 2) represents the only case with df = 0. Thus, one should mainly
be concerned with non-testability (whenever dfSI < 0) and basing the decision
on χ2

dfSI ,1−α (whenever dfSI > 0).
Considering the setting of the example, one can write the hypotheses as

H∗0 : (p0{a} · p1{a,b} − p1{a} · p0{a,b}) · (p0{b} · p1{a,b} − p1{b} · p0{a,b}) ≤ 0

H∗1 : (p0{a} · p1{a,b} − p1{a} · p0{a,b}) · (p0{b} · p1{a,b} − p1{b} · p0{a,b}) > 0.
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q{a,b}|xb

q{a,b}|xa
q{a,b}|1a
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q{a,b}|0a

q{a,b}|1b

q{a,b}|0b

Figure 3: The gray and black solid lines symbolize all coarsening parameters within Γ (cf. (7))
for subgroup x = 0 and x = 1, respectively. While the CAR case is represented by the
intersection points with the diagonal, the SI assumption is satisfied at the intersection point
of both lines.

To explain the conditions therein, Figure 3 shows informally the subgroup
specific coarsening parameters q{a,b}|xa and q{a,b}|xb ranging from 0 to

q{a,b}|xa =
px{a,b}

px{a,b} + px{a}
, q{a,b}|xb =

px{a,b}

px{a,b} + px{b}
(17)

respectively, x ∈ {0, 1}, where the interactions between q{a,b}|xa and q{a,b}|xb
can be inferred from Figure 1. The assumption of SI is only achievable, if both
lines intersect, i.e.

q{a,b}|1b − q{a,b}|0b ≥ 0 and q{a,b}|1a − q{a,b}|0a ≤ 0 , (18)

or the other way round. After replacing the upper bounds for the coarsening
parameters in (18) by (17) and making some little rearrangements, it turns out
that an intersection requires

p0{b} · p1{a,b} − p1{b} · p0{a,b} ≥ 0 and p0{a} · p1{a,b} − p1{a} · p0{a,b} ≤ 0 ,

or the other way round, which corresponds to the null hypothesis H∗0 . To receive
a first impression of the situations that are in accordance with H∗0 , Figure 6 in
appendix 9 might be helpful, depicting over a grid of parameters p0{a}, p1{a},
p0{a,b} and p1{a,b}, whether the condition in H∗0 is satisfied or not.

By referring to the hypothesis H∗0 , one can note that the boundary case is
attained if either p0{a} · p1{a,b} = p1{a} · p0{a,b} or p0{b} · p1{a,b} = p1{b} · p0{a,b}
(but not both, which would correspond to the case where both solid lines in
Figure 3 completely overlap). In the non-boundary case, the value of the test
statistic is asymptotically degenerate at T = 0 (as implied by the consistency of

θ̂obs), inducing that the null hypothesis generally cannot be (wrongly) rejected.
Against this, according to Chernoff ([4]), in the boundary case

T
a∼
H0

0.5 · δ0 + 0.5 · χ2
1 , (19)
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Figure 4: For an exemplary boundary case, the (smoothed) empirical distribution of the test
statistic T under H0 (black line) is compared to the theoretical asymptotic distribution (gray
line).

is obtained, where δ0 is the Dirac distribution at zero. In words, the asymptotic
distribution of T in the boundary case is that of a random variable which is zero
half of the time and has a χ2-distribution with one degree of freedom the other
half of the time.
Since we do not know, whether we are in the boundary case or not, we always
go for the worst case scenario in case of dfSI = 0 and take the critical value of
the boundary case, thus generally referring to the distribution in (19). Taking
the (1 − β)-quantile of the χ2

1-distribution as critical value, the probability of
wrongly rejecting H0 is 0.5·β, since one does not reject H0 for sure in the δ0 part
of the mixture distribution. Therefore, in the boundary case β has to be chosen
as 2 · α, thus obtaining the critical value χ2

1,1−2·α.14 Applying the decision rule
to the data of the example, H0 cannot be rejected at significance level α = 0.01,
since the value of the test statistic T ≈ 0.14 falls below the critical value 5.4,
i.e. the (1− 2 · α)-quantile of the χ2

1-distribution.
To quickly illustrate the finite sample distribution of the test, we calculated

the test statistic T for M = 10 000 simulation runs referring to the exemplary
boundary case with p0{a} = 0.1, p0{b} = 0.7, p0{a,b} = 0.2, p1{a} = 0.2, p1{b} =
0.4 and p1{a,b} = 0.4. Figure 4 shows the theoretical asymptotic distribution

14Notice that this is similar to the one-sided t-test; in fact, the t-tests are likelihood-ratio
tests: the two-sided ones have the standard asymptotic distribution χ2

1 (since the t-distribution
tends to the normal one), while the one-sided t-tests have the (worst-case) asymptotic distri-
bution given in (19).
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in (19) as well as the (smoothed) empirical distribution of the obtained values
for the test statistic, where both lines are quite close indeed. The vertical line
marks the critical value determined by the χ2

1,1−2·α-quantile (here 5.4), where
we choose α = 0.01. By calculating the percentage of values exceeding this
threshold (illustrated as points in Figure 4), we obtain the estimated type I
error of ≈ 0.0110, basically complying with the level α.

7. Generalized version of the test

By using the ratios Rx,x′,y,y in (4), the hypothesis test for SI may be gener-
alized straightforwardly for gSI. For this purpose, we introduce the hypotheses

H0 : qy|xy = Rx,x′,y,y · qy|x′y, for all y ∈ ΩY , x, x
′ ∈ ΩX , y ∈ ΩY ,

H1 : qy|xy 6= Rx,x′,y,y · qy|x′y, for some y ∈ ΩY , x, x
′ ∈ ΩX , y ∈ ΩY .

(20)

As a test statistic we again utilize T in (14), where the numerator of the likeli-
hood ratio Λ in (15) is the only component that changes: Instead of optimizing
the likelihood under SI, we refer to a specific coarsening scenario expressed by
assuming certain values for the ratios Rx,x′,y,y.

To illustrate this test, we consider the PASS data example and the ratios in
(4). Thus, we focus on the hypotheses

H0 : q{a,b}|0a = R0,1,a,{a,b} · q{a,b}|1a and q{a,b}|0b = R0,1,b,{a,b} · q{a,b}|1b
H1 : q{a,b}|0a 6= R0,1,a,{a,b} · q{a,b}|1a or q{a,b}|0b 6= R0,1,b,{a,b} · q{a,b}|1b or both

and exemplarily assume R0,1,a,{a,b} = 1.2 and R0,1,b,{a,b} = 0.5. By maximizing
the likelihood for this coarsening situation and determining the value of the test
statistic, we get T = 9.2, exceeding the obtained critical value of ≈ 5.4 (given
by the (1−2 ·α)-quantile of the χ2

1-distribution, with α = 0.01), so that H0 can
be rejected.

Figure 5 gives an overview of the test decision for testing various hypothesis
on gSI in our data situation, including different specifications of R0,1,a,{a,b} and
R0,1,b,{a,b} varying on a grid with values 0.2, 0.5, 1, 1.5, 3, 10, respectively.
Coarsening scenarios expressed by values of R0,1,a,{a,b} and R0,1,b,{a,b} above the
horizontal line, which indicates the critical value, are rejected by the likelihood-
ratio test based on α = 0.01. Thus, subgroup independence (with R0,1,a,{a,b} =
R0,1,b,{a,b} = 1, cf. (4)) is represented by a point falling below the line, so that
the null hypothesis cannot be rejected. Against this, the point representing
gSI with R0,1,a,{a,b} = 1.2 and R0,1,b,{a,b} = 0.5 considered here, is above the
line, resulting in a rejection of H0. Interpreting the dependencies depicted in
Figure 5 as a whole, the null hypothesis is rejected if both ratios are jointly
either relatively small or large. This is reasonable, since the number of coarse
observations for a given subgroup, here e.g. n0{a,b}, has to be produced by the
precise categories that are compatible with the observation, which is not the
case in the rejection scenarios.
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Figure 5: The figure gives some indication of the test decision for a selection of coarsening
scenarios, where the horizontal line marks the critical value. All other lines represents the
value of the test statistic in dependence of R0,1,a,{a,b} for a given value of R0,1,b,{a,b}, where
only the points on the chosen grid are directly interpretable, the other values on the lines give
rough information about the actual value of T only.

The construction as likelihood-ratio test, which relies on a test statistic in-
cluding the ratio of suprema of likelihoods under different specifications of pa-
rameters, allows testing on partial knowledge as a substantial extension. While
a test on partial assumptions including some ratios Rx,x′,y,y leading to values
of T above and some ratios leading to values below the critical value cannot be
rejected, there are also partial assumptions that can be rejected, in the example,
e.g. R0,1,a,{a,b} ∈ [0.2, 1.5] and R0,1,b,{a,b} ∈ [0.2, 0.5] (cf. Figure 5).15

8. Non-binary data: Illustrations and discussion of limitations

Despite the general representation of all results of this paper, in the context of
the illustration we focused on a binary setting, reducing to the missing data
problem. To make the coarse data structure clearly visible, we briefly exem-
plify more general categorical settings now. Thereby, we start by considering
a response variable with three possible values, i.e. ΩY = {a, b, c}, e.g. denoting
three income categories that are either precisely observed, partly observed or

15This idea of testing on partial assumptions reminds of the hypothesis test by Nordheim
[21], who formalized hypotheses about the latent variable distribution (not about the coars-
ening parameters) and included Rx,y,y′y (not Rx,x′,y,y) into the respective test statistic.
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Table 3: Dimensions in case of k = 3 values of Y and m = 3 subgroups

θSIlat dim(ΘSI
lat)

π0a, π0b, π1a, π1b, π2a, π2b 6 (= k · (m− 1)) +
q{a,b}|0a, q{a,b}|0b, q{a,c}|0a, q{a,c}|0c, q{b,c}|0b, q{b,c}|0c, 9 (= m · (2m−1 − 1))
q{a,b,c}|0a, q{a,b,c}|0b, q{a,b,c}|0c
θobs dim(Θobs)
p0{a}, p0{b}, p0{c}, p0{a,b}, p0{a,c}, p0{b,c}, 18 (= k · (2m − 2))
p1{a}, p1{b}, p1{c}, p1{a,b}, p1{a,c}, p1{b,c},
p2{a}, p2{b}, p2{c}, p2{a,b}, p2{a,c}, p2{b,c}

Table 4: Minimum number of subgroups k for a given m

m 2 3, 4, 5 6, 7 8, 9 . . . 20 . . . 50 . . .
minimum k 2 3 4 5 . . . 11 . . . 26 . . .

completely unobserved.16 To make the parameters identifiable under SI and to
guarantee testability, according to Equation (11), at least three subgroups are
required in this case, such that the here considered covariate “receipt of UBII”
would not be sufficient, but a covariate as e.g. “age” with categories “≤ 30
years”, “> 30 and ≤ 40 years”, “> 40 years” could be employed. Using this co-
variate, i.e. x ∈ {0, 1, 2}, we obtain θSIlat and θobs and the dimensions of Θlat and
Θobs as given in Table 3. In this way, we compare the test statistic determined
by (14) to the (1− α)-quantile of χ2

dfSI with dfSI = 18− 15.
The minimum number of subgroups already turned out to be a restriction

that should not be neglected. A first impression about the minimum number of
necessary subgroups can be gained by considering Table 4 (also cf. the condition
in (16)). If a rather high number of categories of the response variable were
possible, as e.g. m = 20, already eleven subgroups would be necessary, and an
explosion of the number of parameters would follow (in this case dim(ΘSI

lat) =
10, 485, 949 and dim(Θobs) = 11, 534, 314).

Nevertheless, from a practical viewpoint both points do not have to be re-
garded as a dramatic limitation: Firstly, in the context of survey questionnaires,
most categorical variables reveal a small number of categories, thus mostly re-
garding cases with a very small k. Secondly, in cases of a comparably high num-
ber of categories of Y the observed values ymight rather be in Ω̃Y ( P(ΩY )\{∅},
where in most practical situations |Ω̃Y | might even be remarkably reduced com-
pared to the cardinality of ΩY considered here (also cf. Section 4.4). Thus, the
number of parameters that have to be estimated substantially reduces. Thirdly,
most surveys mainly provide categorical data, such that the inclusion of several

16The questioning technique in the PASS data leads to data of that kind obtaining for
instance coarse categorical data with a value like “either (< 500 e) or (≥ 500 e and ≤ 1000
e)” induced by a nonresponse to a later question (also cf. [24]).
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categorical covariates should be reasonable in most cases, inducing a remark-
able increase17 of the available subgroups. Nevertheless, especially in rather
small datasets, a high number of subgroups may induce the drawback of ob-
serving only few units per subgroups. Thus, giving confidence intervals is of
great importance to communicate the uncertainty arising from this point.

9. Conclusion

We studied the (non-)testability of the dual assumptions CAR and SI, as
well as the extended assumptions gCAR and gSI, in a categorical setting. By
calculating the number of degrees of freedom of the respective estimation prob-
lem under these assumptions, we could confirm the already well-known result
that CAR, and equally gCAR, is generally point-identifying. Moreover, we elab-
orated the criterion of the minimum number of subgroups required to obtain
also point-valued estimators in the case of SI and gSI at all. The estimates of
the example illustrated the result that SI/gSI – in contrast to CAR/gCAR – is
indeed testable in case of sufficiently many subgroups, wherefore the likelihood-
ratio test for SI was presented. While the setting of the example is a specific
case where the calculation of the critical value has to be based on a mixture dis-
tribution, referring to the common χ2-distribution with the number of degrees
of freedom achieved in the estimation problem under SI is appropriate in all
other cases (cf. Section 8). Straightforwardly transferring this test to gSI and
the facility of expressing partial knowledge about the coarsening process sub-
stantially increase the relevance of this test, enabling the user to test for specific
dependencies of the coarsening process on the value of categorical covariates.

Although both strict assumptions are in a certain manner uninformative in
the sense that specific underlying values do not play any role for the coarsening,
we could detect a substantial difference with regard to the testability, summed
up as follows: CAR is characterized by the absence of information within the
coarsening process itself, making the true underlying value irrelevant, which
cannot be refuted from observations. Against this, under SI the value of the
covariate is negligible for the coarsening, and not the value of the variable of
interest. As elaborated in this paper, this kind of assumption can be shown
to be incompatible with some data situations since SI may require too strong
coarsening rules for each given subgroup, which means that it is testable.

Finally, we should take note of a general issue of applying statistical pro-
cedures in the presence of coarse data: Generally, two kinds of uncertainties
should be distinguished – uncertainty due to a finite sample only and uncer-
tainty arising from the incompleteness in the data. While a hypothesis test
reacts to an increasing sample size reducing the first kind of uncertainty, the
set-valued estimator does not respond sensitively. Thus, although the proposed
test does test on the coarsening process directly, it does not – and should not

17For instance considering three binary covariates (coded by 0 and 1 respectively), would
already lead to 23 = 8 subgroups, obtained by spliting by “0,0,0”, “0,0,1”, . . . , “1,1,1”.
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– reduce the second kind of uncertainty in the sense of gathering extra infor-
mation about the hidden coarsening process that goes beyond the information
gained by the estimator in (7).
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Appendices
Visual depiction of H∗

0 over a grid of parameters (cf. Section 6.2)
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Figure 6: On a grid of values for the observed variable distribution different cases
are distinguished: While the boundary case contains all combinations with either
p0{a} · p1{a,b} = p1{a} · p0{a,b} or p0{b} · p1{a,b} = p1{b} · p0{a,b}, joint equality is attained in
the i.i.d. case. Moreover, it is differentiated between combinations that are (non-boundary)
inside and outside H∗0 . Impossible cases, where the sum of probabilities exceeds one, are not
marked by points.
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