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Abstract 

Frequent pattern mining usually requires much run time and memory usage. In some 

applications, only the patterns with top frequency rank are needed. Because of the limited 

pattern number, quality of the results are even more important than time and memory 

consumption. A Frequent Pattern algorithm for mining Top-rank-K patterns, FP_TopK, is 

proposed. It is based on Node-list data structure extracted from FTPP-tree. Each node is with 

one or more triple sets, which contain supports, preorder and postorder transversal orders for 

candidate pattern generation and top-rank-k frequent pattern mining. FP_TopK uses the 

minimal support threshold for pruning strategy to guarantee that each pattern in the top-rank-k 

table is really frequent and this further improves the efficiency. Experiments are conducted to 

compare FP_TopK with iNTK and BTK on four datasets. The results show that FP_TopK can 

achieve a better performance. 
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1. Introduction

The task of frequent pattern mining is to discover the relationships between items in a dataset. 

It is important to build knowledge base, which is the basic components of expert systems (Sadik, 

2008) or decision support systems (Chae et al., 2003). These systems can make contribution to 
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an intelligent life for people by providing concise and accurate results. Previous frequent 

pattern mining algorithms are usually based on Apriori (Agrawal et al., 1994) and FP-growth 

(Han et al., 2000). Apriori algorithm employs candidate generation and test strategy to discover 

frequent patterns. It is expensive for repeatedly scanning the database and checking a large set 

of candidates. There are many improvements of Apriori (Shenoy et al., 2000; Zaki et al., 2003) 

that achieve good performance by reducing the candidate number and the database scanning 

times. FP-growth algorithm mines frequent patterns by divide-and-conquer approach without 

candidate generation. It achieves better efficiency by adopting a condensed FP-tree data 

structure. More improved algorithms (Liu et al., 2004; Liu et al., 2007; Tanbeer et al., 2008) of 

FP-growth are followed. However, when the datasets are sparse, building FP-tree and 

conditional pattern bases recurrently make the methods inefficient. There are also other various 

data structures, like lattice-based algorithms (Vo et al., 2013; Vo et al., 2014) and node based 

algorithm (Le et al., 2014; Deng et al., 2016). Frequent pattern mining is still an active topic in 

data mining, ranging from various extended mining tasks (Deng et al., 2016; Vo et al., 2017; 

Le et al., 2016) and a variety of new applications (Bieshoy et al., 2010; Wei et al., 2015). In 

general, frequent pattern mining needs a minimal support threshold to generate real frequent 

patterns. Whether the threshold is large or small, there will be too many frequent patterns for 

those applications such as the expert systems and so on. Because only a small scale of the 

frequent patterns are used in the final results. To this point, TFP algorithm (Wang et al., 2005) 

is proposed for mining top-k frequent closed patterns, and k is the desired number of frequent 

closed patterns to be mined. It does not use a minimal support threshold, and a threshold min_l 

is set as the minimal length of each pattern. However, it is not easy to decide the value of min_l 

and new algorithms for top-rank-k pattern mining are proposed to solve the problem. FAE 

(Deng et al., 2007) and VTK (Fang et al., 2008) select patterns according to their frequency 

rank instead of using min_l. FAE reduces the searching space by using heuristic rules. It filters 



the undesired patterns and the useful patterns are selected for pattern extension. VTK performs 

better than FAE because it gets the desired results by intersecting the Tid-lists of candidate 

frequent patterns without scanning the entire dataset. NTK algorithm (Deng et al., 2014) is 

built for mining top-rank-k frequent patterns using a Node-list structure extracted from a PPC-

tree, which is helpful for reducing the run time and memory consumption, but NTK must 

always generate and test all the candidates. iNTK (Huynh-Thi-Le et al., 2015) uses an improved 

N-list structure and employs the subsume index without candidate generation to achieve higher 

efficiency, however, it costs lots of time for finding subsume index especially when the dataset 

is sparse. These algorithms mine top-rank-k frequent patterns without minimal support 

threshold. BTK (Dam et al., 2016) employs a TB-tree structure and a B-list structure for mining 

top-rank-k frequent patterns, and pruning strategy with minimal support threshold is also used, 

but its efficiency is also dropped if the database is sparse. 

This paper presents top-rank-k frequent pattern mining algorithm using Node-list data structure, 

called FP_TopK. With a minimal support threshold, a frequent pattern must satisfy the minimal 

support requirement. FTPP-tree is built by frequent 1-patterns instead of using all the 1-patterns 

like PCC-tree. The number of Node-lists are reduced because there are less nodes in the FTPP-

tree. The minimal support threshold works for pruning infrequent patterns and guaranteeing 

the quality of the top-rank-k patterns. It can interact with value of rank k. When there is specific 

requirement for frequency, minimal support plays a leading role. And its value can be adjusted 

not to affect the top-k result when rank k is dominant. 

The remainder of the paper is organized as follows. Section 2 introduces the problem definition. 

Section 3 develops FP_TopK algorithm and gives some examples. Section 4 presents our 

performance study. Section 5 contains concluding remarks. 

2. Problem definition 



Let I={I1, I2, I3 ... Im} be a set of items, and DB={T1, T2, T3 ... Tn} be a database, where each 

transaction Ti(1<i<n)is a set of items such that Ti⊆I. Given a pattern P, it is said that T contains 

P if P⊆T. If P contains t items, P is a t-pattern. Given a database DB and a pattern P. The 

support of the P in DB, denoted as Sup(P), is the number of the transactions containing 

P. A pattern P is a frequent pattern if Sup(P) is no less than a minimal support min_sup. 

The min_sup is calculated by ξ*|DB| where ξ is a given threshold and |DB| is the number 

of transaction in DB. 

2.1. Problem of top-rank-k frequent patterns 

Deng et al.[28] described the problem of mining top-rank-k frequent patterns, and here 

some improvements are made. 

Definition 1 (The rank of a pattern). Given a transaction database DB and a pattern A(A⊆I), 

RA, the rank of A, is defined as RA=|{Sup(X)|X⊆I and Sup(X)≥Sup(A)}|, where |Y| is the 

number of elements in Y. 

Definition 2 (Top-rank-k frequent patterns). Given a transaction database DB, a rank 

threshold k, and minimal support min_sup, a pattern A(A⊆I) is called to be a top-rank-

k frequent pattern if and only if RA≤k and Sup(A)≥min_sup. 

Property 1 (Anti-monotone). If A is not a top-rank-k frequent pattern, any pattern 

B containing A, which is also called superset of A, cannot be a top-rank-k frequent pattern. 

Definition 3 (Top-rank-k frequent table). A top-rank-k frequent table Tabk records the top-

rand-k frequent patterns with their rank and support.  

Patterns with the same support are stored in the same entry of Tabk. The number of entries in 

the top-rank-k table is no more than the threshold k. 

Example 1. Table 1 shows a database DB. Sup(c)=5, because there are five transactions which 

contain c. Table 2 shows the supports and the ranks of all the 1-patterns. According to Table 2, 



Sup(c) is the biggest, so Rc=1. Let rank=4, min_sup=2. Tab4 for the frequent 1-pattern can be 

obtained after deleting the fourth row of Table 2. Although Rf=4, it is not a frequent 1-pattern. 

Table 1. A database DB. 

TID Items 

1 a,b 

2 a,b,c,d 

3 a,c,e 

4 a,b,c,e 

5 c,d,e,f 

6 c,d 

Table 2. Rank of the items in DB. 

Rank Support Items 

1 5 c 

2 4 a 

3 3 b,e,d 

4 1 f 

 

2.2. Node-list structure 

Deng et al.[28] presented the PPC-tree structure, and Node-list is extracted from PPC-tree. 

FP_TopK algorithm also uses Node-list structure, and it is created from FTPP-tree. 

Definition 4 (FTPP-tree). FTPP-tree is a tree structure which includes one root and a set of 

top-rank-k frequent 1-pattern nodes. Each node N is composed of five values: N.name, N.child, 

N.count, N.pre and N.post. N.name is the 1-pattern name, N.child is all the children of node N, 

N.count is Sup(N.name), N.pre and N.post are the preorder and postorder of node N, 

respectively. The root of FTPP-tree which is named R has R.name=null and R.count=0. 

Example 2. Table 3 shows the sorted database, and item f is removed. Fig.1 shows the FTPP-

tree. In each rectangle, there are name and support of the 1-pattern. Next to the rectangle, 

preorder and postorder of the 1-pattern are stored in pairs in a bracket. 

Table 3. The sorted database DB. 

TID Sorted Items 

1 a,b 

2 c,a,b,d 

3 c,a,e 

4 c,a,b,e 

5 c,d,e 

6 c,d 



null:0

a:1 c:5

b:1 a:3 d:2

b:2 e:1

d:1 e:1

e:1

(0,10)

   (1,1)

(2,0)

(3,9)

(4,6)

(5,4)

(6,2) (7,3)

(8,5)

(9,8)

(10,7)

 
Fig.1 FTPP-tree for DB. 

Definition 5 (Node-list of a top-rank-k frequent 1-pattern). Given a FTPP-tree, Node-list 

of a top-rank-k frequent 1-pattern A is a sequence of all the PP-codes of nodes in the FTPP-

tree whose name is A. In an Node-list, PP-codes are arranged in preorder ascending order. Each 

PP-code in Node-list is denoted by PP=<(pre, post): count>. Node-list of a top-rank-k frequent 

pattern is denoted by {PP1, PP2,…,PPn}, where PP1.pre<PP2.pre<…<PPn.pre. 

Property 2 (Ancestor-descendant relationship of 1-pattern PP-codes). Given PPi and PPj 

are two PP-codes, PPi is an ancestor of PPj if and only if PPi.pre<PPj.pre and  PPi.post>PPj.post. 

Example 3. Noed-list of 1-pattern b contains two PP-codes, b.PP1=<(2,0):1> and 

b.PP2=<(5,4):2>. They are arranged in preorder ascending order. Fig.2 shows the Node-lists of 

all the top-rank-k frequent 1-patterns. PP-code for 1-pattern c is c.PP1=<(3,9):5>, PP-codes for 

a is a.PP1=<(1,1):1> and a.PP2=<(4,6):3>. c.PP1 is an ancestor of a.PP2=<(4,6):3> because 

c.PP1.pre=3<a.PP2.pre=4, c.PP1.post=9>a.PP2.post=6. But c.PP1 is not an ancestor of a.PP1. 

<(3,9):5>{c}

<(1,1):1>{a}

<(2,0):1>{b}

<(6,2):1>{d}

<(7,3):1>{e}

<(4,6):3>

<(5,4):2>

<(9,8):2>

<(8,5):1> <(10,7):1>

 
Fig.2 Node-lists of all the 1-patterns in Tab4. 



Definition 6 (Node-list of a top-rank-k frequent t-pattern). Let two t-patterns be PX1 and 

PX2, where PX1.Node-list={PP11,PP12,...,PP1m} and PX2.Node-list={PP21,PP22,. . . ,PP2n}, 

respectively. ∀PPi∈ PX1.NL(1≤i≤m) and PPj∈ PX2.NL(1≤j≤n), if PPi.pre＜ PPj.pre and 

PPi.post＞PPj.post, add the PP-code PX2.Node-list[j]=<(PPj.pre, PPj.post):PPj.count> to Node-

list of PX1X2. 

Property 3 (Support acquisition). P is a t-pattern and its Node-list P.Node-

list={PP1,PP2,...,PPn}. The support of P is determined by Sup(P)=PP1.count+…+PPn.count. 

Example 4. As shown in Fig.3. Take 1-pattern c and a as an example. c.Node-list[1]=<(3,9):5> 

and a.Node-list[1]=<(1,1):1>, a.Node-list[2]=<(4,6):3>. The ca.Node-list generation of 

candidate 2-pattern ca is as follows.  

<(3,9):5>{c}

<(1,1):1>{a}
3>1 

{ca}

<(4,6):3>

<(4,6):3>

3<4 and 10>6NO OK

 

Fig.3 Node-list genration of 2-pattern ca 

(1) c.Node-list[1].pre=3>a.Node-list[1].pre=1. Connection is failed and it is then moved to 

a.Node-list[2]. 

(2) c.Node-list[1].pre=3<a.Node-list[2].pre=4, c.Node-list[1].post=9>a.Node-list[2].post=6. 

Then ca.Node-list[1]=a.Node-list[2]=<(4,6):3>, Sup(ca)=3. 

Example 5. As shown in Fig.4. Take 2-pattern ca and ce as an example. ca.Node-

list[1]=<(4,6):3> and ce.Node-list[1]=<(7,3):1>, ce.Node-list[2]=<(8,5):1>, ce.Node-

list[3]=<(10,7):1>. The cae.Node-list generation of candidate 3-pattern cae is as follows. 



<(4,6):3>{ca}

<(7,3):1>{ce}

4＜7 and 6>3 

{cae} <(7,3):1>

OK

<(8,5):1> <(10,7):1>

<(8,5):1>

4＜8 and 6>5 4＜10 and 6＜7 OK NO

 

Fig.4 Node-list formation of 3-pattern cae 

(1) ca.Node-list[1].pre=4 ＜ ce.Nnode-list[1].pre=7, and ca.Node-list[1].post=6>ce.Node-

list[1].post=3. Connection is OK. 

(2) ca.Node-list[1].pre=4 ＜ ce.Node-list[2].pre=8 and ca.Node-list[1].post=6>ce.Node-

list[2].post=5. OK. 

(3) ca.Node-list[1].pre=4 ＜ ce.Node-list[3].pre=10 and ca.Node-list[1].post=6 ＜ ce.Node-

list[3].post=7. Failed. 

(4) cae.Node-list[1]=ce.Node-list[1]=<(7,3):1>, cae.Node-list[2]=ce.Node-list[2]=<(8,5):1>, 

Sup(cae)=1+1=2. 

3. FP_TopK algorithm 

3.1. Node-list intersection function 

In FP_TopK algorithm, Node-list is extracted from FTPP-tree, so the function for Node-list 

intersection is presented after the FTPP-tree construction algorithm. 

Function FTPP-tree-construction(DB, min_sup, k) 

1. Scan DB and insert all frequent items whose supports are larger than min_sup and their 

supports to L1. 

2. Sort L1 in support descending order and insert the top k items into Tabk. If the supports of 

some items are equal, they have the same rank and the orders among them in the transactions 

can be assigned by alphabetical order. 

3. Create the root of a FTPP-tree, R, and name it as null. 

4. For each transaction Tr in DB do 

5.        Sort all items in Tabk according to the support descending order. 

6.        Call Insert_Tree(Tr, R). 

7. Visit the FTPP-tree to generate the preorder and the postorder values of each node by 

preorder traverse and postorder traverse, respectively.  

Function Insert_Tree(Tr, R) 

1. t is the first element in Tr, Tr=Tr\t. 

2. If R has a child node N such that N.name=t then N.count++. 

javascript:void(0);
javascript:void(0);


3. Else create a new node N with N.count=1 and N.name=t, R.child=N. 
4. If Tr is not null then call Insert_Tree(Tr, N). 

 

Function NL-intersection(NL1, NL2) 

1. NL3=∅; 

2. Let i=0, j=0; 

3. While i<|NL1| and j<|NL2| do 

4.            If NL1[i].pre<NL2[j].pre  

5.                 If NL1[i].post>NL2[j].post  

6.                      Add the tuple (NL2[j].pre, NL2[j].post): NL2[j].count) to NL3; 
7.                       j++; 

8.                 Else         

9.                       i++; 

10.         Else 

11.               j++; 

12. Return NL3; 

 

3.2. The processing procedure of FP_TopK algorithm 

FP_TopK algorithm explores (t+1)-patterns from t-patterns. By using FTPP-tree structure to 

extract Node-lists, FP_TopK algorithm can get the supports of (t+1)-patterns without 

repeatedly scanning the database. When the PP-codes of two different Node-lists don’t match 

each other, they can immediately know the problem and decide who should move ahead. This 

can reduce the comparing times and further decrease the run time. The FP_TopK algorithm 

and the processing procedure are as follows. 

Procedure FP_TopK(DB, k) 

1.  Call FTPP-tree-construction(DB, min_sup, k) to build FTPP-tree 

2.  Determine the Node-list of Tabk(top-rank-k frequent 1-patterns) 

3.  Find 1-patterns in Tabk denote the set of these 1-patterns as TR1 

4.  For(j=2; TRj-1≠∅; j++) 

5.        CRj= Candidate_gen(TRj-1) 

6.         For each C∈CRj, C is generated by P1(∈TRj-1)and P2(∈TRj-1) 

7.               C.Node-list=Node-list-intersection(P1.Node-list, P2.Node-list) 

8.               If Sup(C) is equal to the support of the patterns in any entry of Tabk 

9.                   Insert C with its support into the same rank of Tabk together with other 

patterns who have the same support 

10.             If Sup(C) is larger than min_sup and smaller than the support of the patterns in 

any entry of Tabk and the number of the entries is less than k 

11.                 Insert C into the Tabk as the last rank pattern 

12.             If C∈Tabk then TRj=TRj∪{C} 

 

Procedure Candidate_gen(TRj-1) 



1.  CRj=∅; 

2.  For each Cu∈TRj-1 

3.            For each Cv∈TRj-1(v>u) 

4.                    If (Cu[1]=Cv[1]^Cu[2]=Cv[2]^…^Cu[j-2]=Cv[j-2]^Cu[j-1]≠Cv[j-1]) 

5.                          C=Cu[1]Cu[2]…Cu[j-2]Cu[j-1]Cv[j-1] ; 

6.                          CRj=CRj∪{C}; 

7.  Return CRj; 

 

(1) Scan the database, find the top-rank-k frequent 1-patterns and insert them into top-rank-k 

frequent table Tabk.  

(2) Sort the transactions according to the rank of the 1-patterns in Tabk and form FTPP-tree. 

(3) Scan the FTPP-tree and generate Node-lists of all 1-patterns in Tabk. 

(4) For each t-pattern X and another t-pattern Y in Tabk, FP_TopK finds all candidate (t+1)-

patterns by combining X with Y, satisfying X[1]=Y[1]^X[2]=Y[2]^…^X[t-2]=Y[t-2]^X[t-

1]≠Y[t-1]), X.NL[i].pre<Y.NL[j].pre and X.NL[i].post>Y.NL[j].post. 

(5) Each candidate t-pattern whose support is equal to any entry of Tabk is inserted to the entry. 

If the support is larger than min_sup and less than the smallest support of the Tabk, and the 

number of entries in Tabk is no more than k, then the t-pattern will be inserted into the last entry 

of Tabk. The supports of the t-patterns cannot be larger than any entries of Tabk, because the 

support of their supper patterns must be larger or equal to theirs. 

(6) Repeat steps 4 and 5 until no new candidate patterns can be generated. 

3.3. An illustrative example 

Let rank=4, min_sup=2. The process of mining top-rank-4 frequent patterns from the database 

DB in Table 1 is as follows. 

(1) Find top-rank-4 frequent patterns and form the top-rank-4 frequent table Tab4. The result is 

shown in Table 2 without the last row. 

(2) Sort the transactions in DB and form the FTPP-tree as shown in Table 3 and Fig.1. 

(3) Extract Node-list from FTPP-tree as shown in Fig.2. 



(4) Candidates are generated as shown in Fig.3 and Fig.4. Candidate 2-patterns and their Node-

lists are listed as shown in Fig.5.  

<(4,6):3>{ca}

<(3,0):1>

<(6,2):1>

{de}

{ab}

{cb}

{ad}

{bd} {be}

<(5,4):2>

<(6,2):1>

<(7,3):1>

<(10,7):1>

<(5,4):2> <(7,3):1>{ae} <(8,5):1>

<(6,2):1>{cd} <(9,8):2>

<(7,3):1>{ce} <(8,5):1> <(10,7):1>

 
Fig.5 Node-lists for candidate 2-patterns. 

Sup(ca)=3, Sup(cd)=3, Sup(ce)=3, Sup(ab)=3. Sup(cb)=2, Sup(ae)=2.  

Sup(de)=1, Sup(ad)=1,Sup(bd)=1, Sup(be)=1. 

2-patterns de, ad and bd are infrequent because their supports are smaller than min_sup. 2-

patterns ca, cd, ce, ab are inserted into the third rank entry of Tab4. 2-patterns cb, ae are inserted 

into the fourth rank entry of Tab4 as shown in Table 4. 

Table 4. Tab4 after 2-patterns inserted. 

k Sup(X) Patterns 

1 5 c 

2 4 a 

3 3 b,d,e,ca,cd,ce,ab 

4 2 cb,ae 
 

Node-lists for candidate 3-patterns are shown in Fig.6. 

<(5,4):2>{cab}

<(7,3):1> <(8,5):1>{cae}

<(6,2):1>{cbd}

<(7,3):1>{cbe}

<(6,2):1>{cad}

<(7,3):1>{abe}
 

Fig.6 Node-lists for candidate 3-patterns. 

Sup(cab)=2, Sup(cae)=2. Sup(cad)=1, Sup(cbd)=1, Sup(cbe)=1, Sup(abe)=1. 



3-patterns cad, cbd and cbe are infrequent because their supports are smaller than min_sup. 3-

patterns cab, cae are inserted into the fourth rank entry of Tab4. Table 5 is the final results. 

Table 5. Final results for Tab4. 

k Sup(X) Patterns 

1 5 c 

2 4 a 

3 3 b,d,e,ba,dc,ec,ca 

4 2 ae,cb,cae,cab 

 

4. Experiment results 

Experiments are performed on a PC with Intel(R) Core(TM) 3.6 GHz CPU and 16G main 

memory, running on Windows 8. We evaluate the run time of FP_TopK algorithm, and 

compare it with iNTK and BTK using different rank k thresholds. Minimal support threshold 

is used in FP_TopK and BTK, but not in iNTK. There are three real datasets Connect, 

Mushroom and Retail downloaded from http://fimi.ua.ac.be/data/ and a synthetic dataset 

T25I10D100K generated by the IBM data generator. To test the algorithms in the same coding 

environment, all the programs are written in C++ using Visual Studio 2013. Table 6 shows the 

characteristics of these datasets, including the average transaction length, the item number and 

the transaction number. 

Table 6. Characteristics of the experimental datasets. 

Dataset Average transaction length Item number Transaction number 

Connect 43 130 67557 

Mushroom 23 119 8124 

Retail 10.3 16470 88162 

T25I10D100K 25 990 99822 

 

The run time comparison of FP_TopK with iNTK and BTK is shown in Figs.7-10. It is noted 

that, here run time means the total execution time, from input to output. The min_sup is set to 

5%, which is as small as possible not to affect the mining results of top-rank-k patterns(Retail 

dataset.is affected). Then run time of the two algorithm can be fairly compared. 



 

           Fig.7. Run time on Connect dataset.        

   

       Fig.8. Run time on Mushroom dataset. 

 

            Fig.9. Run time on Retail dataset.        
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     Fig.10. Run time on T25I10D100K dataset. 

The experimental results show that FP_TopK outperforms iNTK more and BTK less for all the 

values of k. This is because FP_TopK can save time in every link than iNTK. At the beginning, 

less nodes are built in the FTPP-tree than PPC-tree. This can lead to less Node-list creation, 

calculation and frequent top-rank-k table insertion. Although iNTK uses subsume indexes to 

avoid unnecessary connection, subsume index generation requires a cost of time and the cost 

is even worse for small value of rank k or sparse datasets. BTK is similar to iNTK as they use 

the same subsume index strategy, but it also uses the min_sup to do early pruning, so its 

performance is better than iNTK and close to FP_TopK. When the value of rank k is small or 

the dataset is sparse, iNTK is not effective and BTK is more or less interrupted. 

FP_TopK performs well in both dense and sparse datasets. It prunes infrequent patterns in the 

early stage, and more infrequent patterns will be pruned in the later process for sparse datasets. 

Among the four datasets, the two real datasets Connect and Mushroom are very dense, another 

real dataset Retail and the synthetic dataset T25I10D100K are much sparser. In Fig.9, it is 

irregular that iNTK runs much slower than FP_TopK. This is because the data characteristic of 

Retail dataset is too sparse. Even the min_sup is small, a lot of the infrequent patterns are 

pruned by FP_TopK at the beginning, however, these infrequent patterns contain many 

elements in the subsume indexes, and most of the run time in iNTK is for generating the 

subsume indexes. The numbers of frequent 1-patterns and top-rank-100 frequent patterns for 

each real dataset and algorithm are shown in Table 7. For FP_TopK and BTK, the pattern 

contained in L1 is smaller than Tab100, that mean less patterns need to be frequency-checked 

and less candidates need to be generated. For iNTK, lots of unwanted patterns and their growth 

patterns will first enter and then leave the Tab100. That is why the efficiency of iNTK is the 

lowest.  

Table 7. Number of returned item sets for each real dataset(min_sup=5%, rank=100) 

Algorithm FP_TopK iNTK BTK 



Dataset (L1/Tab100) (L1/Tab100) (L1/Tab100) 

Connect 86/100 100/100 86/100 

Mushroom 73/100 100/100 73/100 

Retail 6/16 100/100 6/16 

 

It seems that, if the value of rank k is small, the patterns with small support usually have less 

chance to enter the top-rank-k table. In fact, the support is large or small is relative. If there are 

too many small supports, then patterns with poor quality will insert into the table. Min_sup is 

necessary to guarantee that each pattern in the top-rank-k table is meaningful. Whether it affects 

the mining result or not, it can be effectively helpful to save run time.   

5. Conclusion 

This paper presents an algorithm called FP_TopK for fast mining top-rank-k frequent patterns 

based on Node-list data structure. FP_TopK prunes the infrequent items and builds FTPP-tree 

with less nodes. This further avoids unnecessary Node-list creation and frequent top-rank-k 

table insertion, which makes the run time and memory usage reduced. FP_TopK is effective 

for both dense and sparse datasets. The minimal support threshold can satisfy the frequency 

requirement and guarantee the quality of the patterns in the top-rank-k table. Even if it is small 

enough not to affect the top-rank-k patterns, it is helpful for efficiency improvement. After 

analyzing the experimental results, FP_TopK is proved to be efficient. 
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