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Abstract 

 Six new lanthanide metal organic complexes, i.e. [La2(NO2-BDC)3(H2O)4] (1) 

[Ln(L)0.5(NO2-BDC)(H2O)]∙3H2O (Ln = Eu (2), Tb (3), Dy (4) and Ho (5); L = BDC2- or 

BDC2-/NO2-BDC2-) and [Tm(NO2-BDC)1.5(H2O)]∙H2O (6), have been synthesized using 

mixed ligands of benzene-1,4-dicarboxylic acid (H2BDC) and the in situ generated 2-nitro-

benzene-1,4-dicarboxylic acid (NO2-BDC2-). Single crystal structures and topologies of the 

complexes are presented based on the single crystal X-ray diffraction and spectroscopic data. 

Whilst the structures of 1 and 6 contain negligible voids, the frameworks of 2-5 are 

microporous in nature and stable upon the removal of all the water molecules from the 

structures and thermal treatment to over 400 C. Based on the study of 2, significant 

adsorption capacities for carbon dioxide (95 cm3∙g-1 or 4.2 mmol∙g-1) and hydrogen (79 

cm3∙g-1 or 4 mmol∙g-1), as well as the remarkable stability of the framework upon the 

sorption/desorption experiments are revealed.  
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1. Introduction 

 Environmental impact caused by the emission of greenhouse gases has become a 

major global concern which therefore demands technologies to control the emission of such 

gases especially carbon dioxide which is reported to be the primary culprit for the rising of 

global temperature [1,2]. Despite extensive research on the capture of carbon dioxide in the 

last two decades, none of the existing technologies have fulfilled the target performance 

criteria; for example, large capture capacity, high selectivity, optimal affinity and high 

stability under capture and regeneration conditions [3-5]. Among the capturing techniques 

under investigation at the present, solid sorbent materials and metal organic frameworks 

(MOFs) draw an immense interest as the most promising candidates. This is due to their 

unprecedentedly high active surface area, remarkably large void volume, structural and 

chemical robustness, and potential to be tailor-made, up-scaled and made into membranes 

[4,6-8]. Since the first report of [Zn(BDC)]∙(DMF)(H2O) (BDC = benzene-1,4-dicarboxylate 

and DMF = N,N′-dimethylformamide) with promising carbon dioxide capture capacity [9], 

several series of new MOFs with encouraging performance have been reported. Strategies to 

enhance the capture capacities and selectivity such as the generation of unsaturated or open 

metal sites, the fabrication of flexible interpenetrating frameworks, and the installation of 

desired functionalities on the organic linkers have been proposed [4,10,11]. Regarding the 

open metal sites, lanthanide metal ions are deemed to be judicious choices as they tend to 

include small solvent molecules in their coordination sphere which can be removed to 

generate open metal sites without framework disruption. In addition, there is a tendency for 

lanthanide metal ions to provide robust frameworks of high dimensionality with adjustable 
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pore characteristics. The study of lanthanide MOFs for carbon dioxide capture has thus far 

been limited with only few examples reported; Tb2(BDC)3 [12], Tb(BDC)NO3 [13] and 

[Ln2(TPO)2(HCOO)]∙(Me2NH2)∙(DMF)4∙(H2O)6 (Ln = Y and Eu, H3TPO = tris-(4-

carboxylphenyl)phosphineoxide, DMF = N,N-dimethylformamide) [14].  

 Here, a series of six new lanthanide MOFs have been designed and synthesized using 

NO2-BDC2- and BDC2- as the primary linkers because of its tendency to generate 

microporous frameworks which was reported to be suitable for carbon dioxide capture [9,15]. 

In situ nitration was employed to introduce the nitro group to BDC2- and therefore to generate 

the multivariate frameworks comprising both BDC2- and NO2-BDC2- linkers. The inclusion 

of the nitro group was intended to increase the interaction of the framework and carbon 

dioxide [16]. Four of the six reported complexes are microporous with accessible voids, 

extraordinary stability and significant gas capture capacities. The photoluminescence 

properties of the complexes have also been investigated. 

 

2. Experimental 

2.1 Materials and methods 

All chemicals were obtained commercially and used without further purification; 

La2O3 (99.9%, Merck), Eu2O3 (99.9%, Merck), Tb2O3 (99.9%, Merck), Dy2O3 (99.9%, 

Fluka), Ho2O3 (99%, Prolabo), Er2O3 (99%, Fluka), Tm2O3 (99%, Merck), HNO3 (90%, 

Sigma-Aldrich), benzene-1,4-dicarboxylic acid (H2BDC; C8H6O4, 97%, BDH), and 1,4-

diazabicyclo[2.2.2]octane (DABCO; C6H12N2, 98%, Sigma-Aldrich). 

Infrared (IR) spectra were recorded using a Bruker Tensor 27 FT-IR instrument and 

KBr discs (98.5%, BDH). Thermogravimetric analyses were conducted on a Perkin Elmer 

Pyris Diamond TG/DTA using a heating rate of 10 oC∙min-1 from room temperature to 1000 

oC in a nitrogen gas flow. Powder X-ray diffraction (PXRD) experiments were conducted 
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using a Bruker D8 Advance X-ray diffractometer operated with Ni filtered Cu K radiation 

( = 1.5418 Å, 48 kV, 30 mA). The gas sorption experiments were performed using a 

BELSORP-mini II instrument in a range of 0-1 bar pressures. Ultra-pure research grade 

nitrogen, hydrogen and carbon dioxide gases were used. The samples were heated at 250 C 

for 2 h under vacuum before the measurements which were performed at 77 K for the 

nitrogen and hydrogen and at 195 K for the carbon dioxide. Photoluminescence spectra were 

collected at room temperature using an Avantes Multichannel spectrometer with the Ocean 

Optics LED 255 nm excitation source. 

 

2.2 Hydrothermal syntheses of 1-6 

To synthesize [La2(NO2-BDC)3(H2O)4] (1) [Ln(L)0.5(NO2-BDC)(H2O)]∙3H2O {Ln = 

Eu (2), Tb (3), Dy (4) and Ho (5); L = BDC2- or BDC2-/NO2-BDC2-} and [Tm(NO2-

BDC)1.5(H2O)]∙H2O (6), the solution of the corresponding Ln2O3 was first prepared by 

dissolving the Ln2O3 (1.70 mmol) in 1.00 mL of concentrated HNO3 aqueous solution. Each 

solution was then mixed with 10.0 mL of an aqueous solution containing H2BDC (4.0 mmol) 

and DABCO (4.0 mmol) with vigorous stirring. The Ln2O3 : HNO3 : H2BDC : DABCO : H2O 

mole ratio of every reaction was 1.70 : 5.16 : 4.00 : 4.00 : 556. The reactions were performed 

using a 23.0 mL Teflon lined hydrothermal autoclave under an autogenous pressure 

generated at 180 oC for 24 h, and afforded a few crystals as the solid products.  

 

2.3 X-ray crystallography 

Diffraction data of 1 and 6 were collected on a Bruker APEX-II CCD diffractometer 

and a Stoe IPDS2 image plate diffractometer, respectively, whereas those of 2-5 were 

collected on a Bruker D8 QUEST CMOS diffractometer. The machines were operated using 

Mo Kα radiation (λ = 0.71073 Å) at 298(2) K for 1-5 and 150(2) K for 6. Data reduction and 
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an adsorption correction of 1-5 were performed with the SAINT [17] and SADABS [18] 

software packages, whilst that of 6 was done using the Tompa method [19]. The structures 

were solved by direct methods implemented within SHELXS-86 [20] and full-matrix least 

squares refinements were carried out on F2 for all data with the program SHELXL-97 [20] 

via either the WinGX [21] or the OLEX2 [22] program interfaces. Non-hydrogen atoms were 

refined anisotropically, and the hydrogen atoms on the organic ligands were located at ideal 

geometrical positions using a riding model. No hydrogen atoms were assigned on the 

unbound water molecules. Crystallographic and refinement data are summarized in Table 1.  

 

3. Results and discussion 

3.1 Hydrothermal crystal growth and in situ ligand synthesis 

 Following our interest in extending the use of lanthanide ions in fabricating new 

microporous frameworks [23], six new complexes have been synthesized. The colors of the 

crystals are in good agreement with the characteristic colors of the corresponding lanthanide 

ions. The crystals showed a tint of yellow color which is consistent with the presence of the 

nitrated BDC2- (NO2-BDC2-) derived in situ under strong acidic hydrothermal conditions 

[23,24]. The existence of NO2-BDC2- is confirmed by characteristic υ(C-N) and υ(N-O) in 

the IR spectra of all complexes (see Appendix). To the best of our knowledge, these 

lanthanide MOFs can be regarded as one of the very few multivariate lanthanide MOFs 

yielded by using the in situ ligand synthesis strategy. It should be however noted that the 

formation of nitrosamines may be possible under the employed condition according to the 

previous literature reporting on the formation of these powerful carcinogens under similar 

synthesis condition [25].  

 The employment of the in situ nitration in the synthesis results nonetheless in 

pronounced disorder in the structures of the synthesized complexes. In the cases of 1 and 6 in 
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which there are two NO2-BDC2- in the asymmetric unit, the nitro group on one of the NO2-

BDC2- ligands in both structures shows disorder over two sites with approximately equal 

occupancies of 50%. Similar site disorder is also observed in the structures of 3 and 5 which 

are isostructural to 2 and 4. The disorder in structures 2 and 4 is however more complicated 

and similar to those observed in [Ln(NO2-BDC)(L)0.5(H2O)]∙3H2O (Ln = Pr, Nd, Sm and Gd, 

and L = BDC2- or BDC2-/NO2-BDC2-) [23]. In addition to site disorder at the nitro group of 

one of the NO2-BDC2- ligands, there are two types of crystallographic disorder, including site 

and substitutional disorder, at the nitro group of the other ligand. This suggests the co-

existence of both BDC2- and NO2-BDC2- of which the nitro group on the NO2-BDC2- shows 

additional site disorder over two crystallographic sites with equal site occupancy. The BDC2--

to-NO2-BDC2- ratios in both structures are intriguingly similar of approximately 0.7 : 0.3. 

Given the synthetic conditions the variable degree of nitration is not unexpected.  

 Despite the addition of DABCO in the reaction, the absence of DABCO in the title 

structures should be noted. The attempts to synthesize the title complexes without the 

addition of DABCO were however unsuccessful, suggesting the crucial role of this organic 

base in the synthesis. Acid-base reaction between H2BDC and DABCO can be assumed [26]. 

The deprotonation of the carboxyl groups of H2BDC by such acid-base reaction should 

generate free carboxylate groups on the organic ligands to coordinate lanthanide metal ions. 

 

3.2 Crystal structures of 1-6 

[La2(NO2-BDC)3(H2O)4] (1). Complex 1 crystallizes in the triclinic space group ܲ1ത 

with two unique lanthanum ions in the asymmetric unit (Fig. 1a). The two distinct lanthanum 

ions are similarly eight-fold coordinated by eight oxygen atoms from the carboxylates of six 

NO2-BDC2- and two coordinated water molecules, and form a distorted square-face bicapped 

trigonal prismatic unit, TPRS-{LaO8}, alike. All of the NO2-BDC2- function as the 
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tetradentate linkers using the μ4-η1:η1:η1:η1 coordination mode, leading to the formation of 

the three-dimensional [La2(NO2-BDC)3(H2O)4] framework. The framework of 1 is a dense 

framework without any void according to calculations using PLATON [27], and can be 

viewed as being composed of two-dimensional puckered layers spreading in the ac plane 

which are further pillared by the organic ligands in the direction of b (Fig. 1b). The 

framework can be simplified to the uninodal 6-connected pcu -Po net with {412.63} point 

symbol using the TPRS-{LaO8} units as nodes and the NO2-BDC2- as linker (Fig. 1c). The 

framework of 1 is governed mainly by very strong OH∙∙∙O hydrogen bonding interactions 

involving every coordinated water molecules and the nitro groups of NO2-BDC2- (Table 2). 

The hydrogen bonding interactions are in good agreement with the apparent disorder in the 

structure of 1 and additionally result in an arrangement of the organic ligand that prohibits 

any - interaction. 

[Ln(L)0.5(NO2-BDC)(H2O)]∙3H2O {Ln = Eu (2), Tb (3), Dy (4) and Ho (5); L = 

BDC2- or BDC2-/NO2-BDC2-}. Complexes 2-5 are isostructural and crystallize in the same 

orthorhombic space group Pbca (Table 1). The unit cell parameters of 2-5 are in good 

agreement with those of [Ln(NO2-BDC)(L)0.5(H2O)]∙3H2O (Ln = Pr, Nd, Sm and Gd; L = 

BDC2- or BDC2-/NO2-BDC2-) [23], with a descending tendency across the series attributed to 

the lanthanide contraction. The asymmetric units of 2-5 are similar comprising only one 

unique lanthanide metal ion which exhibits the same nine-fold coordination of the square-

face capped square antiprismatic geometry, SAPRS-{LaO9}, as exemplified in Fig. 2. Two 

modes of coordination including the μ4-η1:η1:η2:η2 and μ4-η1:η1:η1:η1 are adopted by the 

ligands upon the coordination leading to the formation of the one-dimensional {Ln(μ3-

OCO)4(μ2-OCO)2(1,1-OCO)(OH2)} chains extending along the direction of a (Fig. 3a). 

These chains are further linked by the ligands to form a three-dimensional framework which 

can be simplified to the four-connected uninodal NbO net (Fig. 3b). 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



9 
 

The framework includes the one-dimensional rectangular channel extending in the 

same direction as the {Eu(μ3-OCO)4(μ2-OCO)2(1,1-OCO)(OH2)} chains, housing the 

unbound water molecules. In the same fashion to [Ln(NO2-BDC)(L)0.5(H2O)]∙3H2O [23], 

these unbound water molecules are organized as the edge-shared pentagons by strong 

hydrogen bonding interactions (Table 2). Besides the hydrogen bonding interactions, there 

are - interactions between the adjacent organic ligands. The distances and angles between 

the centroids of the two aromatic rings, range from 4.022 Å and 78.7 in 2 (Eu) to 3.951 Å 

and 78.0  in 5 (Ho). The effective sizes of the channel openings of 2-5 are similar (48 Å2) 

which is also similar to those of [Ln(NO2-BDC)(L)0.5(H2O)]∙3H2O [23]. If the unbound water 

molecules are excluded, the solvent accessible void volumes of 895.7 Å3 (2; 25.87 %), 848.7 

Å3 (3; 24.88%), 825.4 Å3 (4; 24.40%), 809.0 Å3 (5; 24.10%) could be calculated. The slight 

decrease of these values across the lanthanide series are in good agreement with the 

lanthanide contraction. 

[Tm(NO2-BDC)1.5(H2O)]∙H2O (6). Complex 6 crystallizes in the monoclinic C2/c 

space group comprising only one unique thulium ion which is eight-fold coordinated in a 

distorted square-face bicapped trigonal prismatic geometry, TPRS-{TmO8} (Fig. 4a). Every 

two TPRS-{TmO8} motifs are linked by four carboxyl bridges, i.e. 22-1:1 

(O10C14O10 and O7C9O7) and 22-2:1 (O5C8O6), to form an edge-shared 

{Tm2O12} dimer (Fig. 4b). These dimers are then connected by the NO2-BDC2- ligands 

through 4-1:1:1:1 and 4-2:1:1:1 modes of coordination establishing the three-

dimensional framework. There are rectangular channels extending along the direction of b of 

the framework housing the water of crystallization. The crystallizing water molecule is in 

close proximity to both the coordinating water and the carboxylate oxygen atoms rendering a 

strong OH∙∙∙O hydrogen bonding interactions (Table 2). The framework structure of 6 is 

further stabilized by the other extensive weak interactions, including the weak CH∙∙∙O 
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hydrogen bonding and the aromatic - parallel-displaced interactions. The distance and 

angle between the centroids of the two aromatic rings of two adjacent NO2-BDC2- are 3.929 

Å and 82.5 , respectively. The framework of 6 notably contains negligible solvent accessible 

void. If the edge-shared {Tm2O12} dimer is regarded as node with the organic ligand as a 

linker, the framework of 6 can be intriguingly simplified to the same uninodal pcu -Po net 

as that of 1 (Fig. 4c), although degrees of puckering of the two nets are different. According 

to the literature, the structure of 6 is isostructural to those of the recently reported [Ln2(NO2-

BDC)3(H2O)2]∙2(H2O) (Ln = Sm, Eu, Gd, Tb, Er) which were synthesized directly using the 

NO2-H2BDC ligand under hydrothermal and slow evaporation conditions [28].  

Intriguingly, the eight-fold coordination as found for the unoccupied f orbital in 

lanthanum ion (1) and the smallest thulium ion (6) results in similar dense frameworks with 

negligible void and the same pcu -Po topology. This is however not the case for [Ln2(NO2-

BDC)3(H2O)2]∙2(H2O) (Ln = Sm, Eu, Gd, Tb, Er), where the NO2-H2BDC was used as the 

sole linker during the synthesis [28]. This implies the influence of the NO2-BDC2- linker in 

regulating the construction of such a dense framework which may be due to the steric nitro 

group on the linker, and the crucial role of the BDC2- linker in providing genuine 

microporosity to the derived frameworks. 

 

3.3 Thermal stability and gas sorption behavior of 2 

To investigate gas sorption behavior of the reported microporous complexes, thermal 

stability of 2 (as a representative of 2-5) was investigated by thermogravimetric analysis. It is 

apparent that the complex remains stable up to over 400 C (Fig. 5) despite the two 

successive losses of both the unbound and the coordinating water molecules (RT-180 C; 

exp. 10.0%, calcd. 10.5%). Nonetheless, such losses resulted in the vanishing of the long-

range order in the c direction revealed by the disappearance of the (0 0 l) reflections in the 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



11 
 

PXRD pattern. The importance of the hydrogen bonded water molecules which are organized 

in the framework void in regulating the framework is therefore illustrated. The persistence of 

the h00 and 0k0 reflections with appreciable intensities, on the other hand, suggests the 

retention of the framework crystallinity in the other two directions. A slight shift of the (0 2 

0) diffraction peak to lower 2 for the heat-treated samples implies the modest alteration of 

the framework structure after the losses of the water molecules. Stability of the framework 

and the retention of the framework microporosity after the removal of the water molecules 

were confirmed by the classical type I sorption isotherm of the nitrogen gas collected at 77 K 

(Fig. 6a). The surface area of 543 m2∙g-1 could be calculated based on the BET model with an 

average pore size of 1.2 nm.  

The sample exhibited similar adsorption behavior for carbon dioxide gas (Fig. 6b). 

The sudden uptake of the gas signifies the interactions of the gas molecule with the 

unoccupied coordination sites on the europium ions generated by the removal of the 

coordinated water. The maximum gravimetric capacity of approximately 19 wt%, which is 

equivalent to 95 cm3∙g-1 or 4.2 mmol∙g-1, was achieved at extremely low pressure of less than 

10 kPa or 0.1 bar. This value is much higher than those reported for zeolitic materials [3], and 

comparable to some recently reported MOFs under similar measuring temperatures and 

pressures such as [(Ni2L2)(bptc)]∙6H2O∙3DEF, [(Ni2L4)(bptc)]∙14H2O (bptc4- = 1,1-biphenyl-

3,3,5,5-tetracarboxylate, DEF = N,N-diethylformamide) [29], and 

[Co2.5(btc)(Hbtc)0.5(atz)(CH3CN)(H2O)]∙H2O (H3btc = 1,3,5-benzenetricarboxylic acid, atz = 

3-amino-1,2,4-triazole) [30]. In addition to the interactions to the exposed europium ions, the 

interactions between the polar nitro groups on the NO2-BDC2- linker and the carbon dioxide 

molecule [30-32] should also contribute to the significant uptake capacity in 2. Intriguingly, 

this capacity was retained even after six cycles of sorption/desorption experiments with the 

intact framework crystallinity revealed by both the powder (Fig. 5) and single crystal X-ray 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



12 
 

diffraction experiments. A single crystal that had been used for six cycles of gas sorption was 

exposed to air for a period of a few weeks and then examined by single crystal X-ray 

diffraction. This demonstrated that the same network present in the pristine sample is 

retained. The structure refinement of this crystal (data to 56.5° 2θ for Mo radiation) 

converged with R = 4.53% and wR(F2) = 7.13%. The stability of the framework and therefore 

recyclability of the material is one of the most desired properties for the storage applications 

[33].  

Rather than an abrupt increase in gravimetric adsorption like that observed for the 

nitrogen and carbon dioxide gases, the uptake of the hydrogen gas by 2 gradually occurred 

over a range of pressures before reaching approximately 0.80 wt% at 1 bar, which is 

equivalent to 79 cm3∙g-1 or 4 mmol∙g-1 (Fig. 6c). This gravimetric sorption capacity is 

comparable to those reported for the best zeolite ZSM-5 [34] and the series of Co-INA, CO-

FINA and IRMOF [35]. The rather small gravimetric capacities observed for 2 attributes 

partially to relatively heavy framework compared to the light weight of the hydrogen gas. 

The gradual increase in the sorption with increasing pressure at low temperatures is notably 

characteristic of the physisorption process in the microporous solids [36], which is reported to 

be potential for the pressure swing adsorption processes [37]. Regarding the structure of 2, 

the sorption of the hydrogen gas should occur through the interactions with the electron rich 

phenyl rings of both the BDC2- and NO2-BDC2- linkers [38].  

       

3.4 Photoluminescence properties of 1-6 

The NO2-BDC2- ligand has been reported previously as a poor sensitizer in [Ln(NO2-

BDC)(L)0.5(H2O)]∙3H2O [23] and the closely relevant [Ln2(NTA)3(OH2)2](H2O)2 (Ln = Sm, 

Eu, Gd, Tb, Er and H2NTA = 2-nitroterephthalic acid) [28], which is also true for the 

complexes reported here. Upon the excitation at 255 nm, similar broad bands covering almost 
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the entire region of the visible light derived from the intra-ligand charge transfer (ILCT) 

transitions is present, as exemplified in Fig. 7. Characteristic emissions of the europium (2; 

5D07FJ, J = 1, 2, 3, 4) and terbium (3; 5D47FJ, J = 3, 4, 5, 6) can, nonetheless, be 

observed. These emission bands are significantly less intense relative to other europium and 

terbium complexes which agree with the poor sensitizing role of the NO2-BDC2- ligand. The 

relatively high intensity of the 5D07F2 band in the spectrum of complex 2 can be attributed 

to the absence of the inversion center at the europium ion crystallographic site [28]. 

 

4. Conclusions 

 By employing the H2BDC ligand and the in situ nitration reaction, six new lanthanide 

metal organic complexes have been synthesized; [La2(NO2-BDC)3(H2O)4] (1) [Ln(L)0.5(NO2-

BDC)(H2O)]∙3H2O (Ln = Eu (2), Tb (3), Dy (4) and Ho (5); L=BDC2- or BDC2-/NO2-BDC2-) 

and [Tm(NO2-BDC)1.5(H2O)]∙H2O (6). Complexes 1 and 6 are can be simplified to the same 

topology of pcu -Po net despite the different framework structures, and the isostructural 

frameworks of 2-5 can be simplified to the NbO net. Whilst the frameworks of 1 and 6 

contained negligible void, those of 2-5 are microporous in nature with similar void opening 

of 48 Å2 and solvent accessible void volumes varying in a range of 809.0-895.7 Å3. 

Complex 2 (as a representative of 2-5) exhibits exceptional stability upon the loss of all the 

water in the structure and also the heat treatment. After the loss of the water, the BET surface 

area of 543 m2∙g-1 and an average pore size of 1.2 nm can be calculated for 2, which shows 

significant adsorption capacities for both carbon dioxide (95 cm3∙g-1 or 4.2 mmol∙g-1) and 

hydrogen gases (79 cm3∙g-1 or 4 mmol∙g-1). The framework shows high stability even after six 

cycles of sorption/desorption experiments. The poor sensitizing ability of the NO2-BDC2- 

ligand has been illustrated.  
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Appendix A. Supplementary data 

 The IR spectra assignments and illustrations of different coordination modes observed 

in the title complexes as well as the three-dimensional framework of 2 after six cycles of 

carbon dioxide sorption/desorption experiments can be found as supplementary data. 

Crystallographic data for the title complexes have been deposited with the Cambridge 

Crystallographic Data Centre; CCDC 1517766-1517771. Copies of this information may be 

obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK 

(fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk). 
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Figure captions 

Fig. 1 Views of (a) an extended asymmetric unit drawn as 50% thermal ellipsoids, (b) the 

three-dimensional framework, and (c) the simplified pcu -Po topology of 1. 

Symmetry operations: (i) 2-x, -1-y, 1-z (ii) 2-x, -y, 1-z (iii) x, -1+y, z (iv) x, 1+y, z (v) 

1-x, 1-y, 1-z (vi) 2-x, -y, 1-z (vii) 1-x, -y, 1-z (viii) 1-x, 2-y, 2-z (ix) 2-x, -1-y, -z (x) x, 

y, 1+z. 

Fig. 2  Views of the extended asymmetric units of (a) 2 and (b) 4 both of which are drawn 

as 50% thermal ellipsoids. Symmetry operations for 2: (i) 0.5+x, 0.5-y, 1-z (ii) x, 

0.5-y, 0.5+z (iii) 0.5+x, y, 0.5-z (iv)1-x, -y, 1-z. For 3: (i) 1.5-x, 1-y, -0.5+z (ii) 1.5-x, 

0.5+y, z (iii) x, 0.5-y, -0.5+z (iv) 1.5-x, 1-y, 0.5+z (v) x, 0.5-y, 0.5+z (vi) 1-x, 1-y, 2-z.  

Fig. 3 Illustrations showing (a) the three-dimensional framework and (b) the simplified 

NbO topology of 2 (as a representative of 2-5).  

Fig. 4  Views of (a) an extended asymmetric unit drawn as 50% thermal ellipsoids, (b) a 

dense three-dimensional framework, and (c) the simplified pcu -Po topology of 6. 

Symmetry operations: (i) 0.5+x, 1.5-y, 0.5+z (ii) 1.5-x, 0.5+y, 1.5-z (iii) 2-x, y, 1.5-z 

(iv) x, 1+y, z. 

Fig. 5  The PXRD pattern of the pristine sample of 2 compared with the pattern simulated 

from single crystal data and those of the treated samples with the enlargement of the 

low 2 area and the thermogravimetric curve in the insets. 

Fig. 6 Gas sorption/desorption isotherms of (a) nitrogen (b) carbon dioxide and (c) 

hydrogen gases. 

Fig. 7 Photoluminescence spectra (solid lines) of (a) 1 (as a representative of 1 and 4-6) (b) 

2, and (c) 3, compared with those of the H2BDC (dotted lines). 
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