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Abstract: Schiff base macrocycles are emerging as useful scaffolds for binding two or more catalytic
metals in close proximity. Such coordination chemistry allows for the evaluation of potentially
beneficial catalytic cooperative effects. In the field of ring opening polymerization (ROP) of cyclic
esters, only a handful of metal systems bound by Schiff base [2 + 2] type macrocycles have been
studied. Nevertheless, results to date have, for certain metals, identified some interesting structure
activity relationships, whilst for other systems results have revealed particular combinations of
metals and macrocycles to be virtually inactive. This perspective review takes a look at two
types of recently-reported Schiff base macrocycles that have been employed as pro-ligands in the
metal-catalyzed ROP of cyclic esters, specifically ε-caprolactone and rac-lactide.
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1. Introduction

There remains immense interest in catalytic systems capable of producing poly(lactide) and
poly(caprolactone) given that such biodegradable polymers have found widespread application,
notably in the medical and packaging fields [1]. The catalysts of choice should be both cheap and
non-toxic, whilst being highly active and are, hopefully, constructed in such a way that they can be
readily modified and thereby allow for a high degree of control over the ring opening polymerization
(ROP) process. It is now well established that the use of bimetallic catalysts versus their monometallic
counterparts can impart improved activities and selectivities over the catalytic process, be it α-olefin
polymerization [2] or for the ROP of lactides [3]. In order to synthesize such bimetallic catalysts,
suitable pro-ligand frameworks need to be available, whose coordination chemistry is well suited to
binding more than one metal simultaneously in close proximity. Macrocycles are ideal in this respect,
and we and others have had some success with the use of calix[n]arenes in ROP [4–9].

A relatively untapped pro-ligand family are imine-based macrocycles, the frameworks of which
can be readily manipulated to allow multiple metal centers to bind at specific distances apart. For
a particular macrocyclic family, combining the catalytic studies with crystallographic work can give
insight into the optimum degree of metallation, the preferred geometrical parameters at each metal,
and favourable inter-metallic distances for enhanced catalysis. In-turn, this allows for control over
possible synergistic cooperation between the metal centers. Imine-based macrocycles can vary greatly
in composition, for example [2 + 2], [3 + 3], [4 + 4], and [6 + 6] condensation products have all been
found to be readily accessible [10,11].

In terms of the ROP of cyclic esters, the use of [2 + 2] tetraimine Schiff bases has found favour as
of late. Of these, two types that have attracted increased attention are the bis(imino)phenoxide-derived
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macrocycles IH2 (see Scheme 1, left) and the bis(anilido)tetraimine macrocycles IIH2 (see Scheme 1,
right) [12–16]. The ROP behaviour of complexes derived from IH2 and IIH2 is discussed herein.
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to exhibit poor activity [19]. Looking at the geometrical parameters for 3 and 5, a favourable distance 
between Al centres appears to be ca. 5.78 Å (as in 3), whilst the closer Al centres in 5 (ca. 3.22 Å) 
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2. Discussion

2.1. The Use of IH2 (X = CH2CH2)

Initial ROP work focused on macrocycles of type IH2 derived from the dianiline
[(CH2CH2)(2-C6H4NH2)2] and organoaluminium complexes [12]. The macrocycles IH2 were readily
accessible via standard condensation procedures.

2.1.1. Organoaluminium Complexes

A number of complexes 1–5 were prepared by employing either two or four equivalents of
R3Al (R = Me, Et)—see Scheme 2. For the type 2 complexes, a ‘trans’ structure rather than the ‘cis’
structure shown in Scheme 2 was subsequently characterized by X-ray crystallography [13]. Complex
4 was also isolated in which a methylaluminium centre was bound by the macrocycle in a tridentate
N,N,O-fashion. The tetranuclear complexes have undergone a double alkyl transfer to one side of
the macrocycles. Screening of 1–5 (compared to 6–8) for the ROP of ε-caprolactone revealed how
the pro-catalyst structure can influence the observed catalytic behaviour. The use of alkylaluminium
complexes for the ROP of cyclic esters has recently been reviewed [17], as has the use of aluminium
alkyl complexes bearing salicylaldiminato ligands [18].

Using the ratio 500:1:1 (ε-CL:Cat:BnOH) over 24 h at 25 ◦C, the activities of 1 and 2 are similar
and are better than that of the acyclic complex 6, whilst acyclic complexes 7 and 8 perform poorer
than type 3 and 5 macrocyclic complexes. Interestingly, complexes of type 3 outperform type 5, which
suggests that although there is a cooperative effect observed, this only operates in the absence of
aluminoxane-type bonding. It should be noted that MAO, with its Al-O-Al bonds, has been reported
to exhibit poor activity [19]. Looking at the geometrical parameters for 3 and 5, a favourable distance
between Al centres appears to be ca. 5.78 Å (as in 3), whilst the closer Al centres in 5 (ca. 3.22 Å)
appears to hinder the polymerization process. However, such correlations are system-specific; for
example, we have noted that in the case of acyclic systems derived from o-, m-, or p-anisidines, the
highest activity is exhibited by the ortho system for which the Al-Al distance is ca. 3.11 Å [20].
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compounds 11 and 12. At temperatures above 60 °C, results for 10 were slightly better than observed 
for 9, however both systems were poorly active with conversions <15%, and significant trans-
esterification was present. The salts 11 and 12 were found to be inactive. 

Scheme 2. Organoaluminium complexes (1–8).

The Al-Al distance in 3 may permit one metal centre to be used as a Lewis acid whilst the other can
attack the carbonyl group of the monomer, akin to the situation postulated for the ROP of propylene
oxide [21,22].

2.1.2. Manganese Complexes

As part of a programme aimed at exploring the use of earth abundant metal catalysts for
ROP, [23–25] the manganese complexes 9 and 10 (Scheme 3) were screened for their ability to ROP
ε-caprolactone in the presence of benzyl alcohol [14]. Results were compared against the acyclic
salt compounds 11 and 12. At temperatures above 60 ◦C, results for 10 were slightly better than
observed for 9, however both systems were poorly active with conversions <15%, and significant
trans-esterification was present. The salts 11 and 12 were found to be inactive.
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caprolactone and of rac-lactide. Optimization of the screening conditions using complex 17 suggested 
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2.2. Use of IH2 (X = O)

2.2.1. Organoaluminium Complexes

Similar use of the dianiline 2-(2-aminophenoxy)aniline (2-NH2C6H4)2O in the condensation
procedure afforded the Schiff base macrocycles IH2 (X = O) in good yield. Treatment with either two
or four equivalents of R3Al afforded the complexes 13–18 and 19–22, respectively (see Scheme 4) [13].
The structure of the compound 19 is shown in Figure 1, and reveals that, as for 5, intramolecular
regioselective methyl transfer to two imine moieties (originating from the same dianiline) of the
macrocycle has occurred; such methyl transfers are well established in imine chemistry [26–30]. The
bonding in 19 is asymmetrical in that one of the aluminium centres is five-coordinate, whilst the other
three are distorted tetrahedral. This means that unlike the case of 5 (where the macrocycle has a
-CH2CH2- bridge), complex 19 does not possess approximate C2 symmetry in the solid state.

These complexes were screened for the ability to act as pro-catalysts for the ROP of ε-caprolactone
and of rac-lactide. Optimization of the screening conditions using complex 17 suggested that the ROP
runs were best carried out using the ratio 250:1:1 (ε-CL:Cat:BnOH) over 30 min at 80 ◦C. Systems
employing 13–18 all behaved similarly with Conversions in the range 93% (for 13) to 98% (for 17).
For analogous compounds, the ethyl derivatives out-performed (higher activities and molecular
weights) the methyl derivatives. All systems were relatively well behaved with PDIs in the range
1.22–1.49. Interestingly, when complexes 1 and 5 were screened under the same conditions as 13–18,
they were found to be far inferior exhibiting percent conversions of 25.6% and 38.5%, respectively.
In the case of the tetranuclear complexes 19–22, screening for ROP of ε-CL was, again, conducted at
30 min at 80 ◦C, and it is thought that the enhanced solubility of the systems bearing a para methyl
group at the phenolic group, i.e., 19 and 21, leads to enhanced conversions (99% versus 80.9% (for
20) and 94.3% (for 22)). Again, the ethyl derivatives outperformed the analogous methyl derivatives.
There was little evidence of transesterification occurring, with close agreement between observed and
calculated polymer molecular weights. When screened under the same conditions, the -CH2CH2-
bridged system 5 was far inferior, exhibiting only a percent conversion of 29.1%. It was postulated
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for these systems that the presence of the oxygen bridge in the macrocycle can help to stabilize the
catalytically-active species, a situation reminiscent of the vanadium-based calixarene polymerization
catalysis of ethylene [31].
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When these systems were employed for the ROP of rac-lactide, best conversions were achieved at
110 ◦C with the ratio 100:1:1 (rac-LA:Al:BnOH) over 12 h. For organoaluminium systems, the ROP
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of lactide often requires more robust conditions than those employed for ε-CL [32]. However, there
was no clear evidence of an enhanced performance for the tetranuclear versus the dinuclear systems.
For the latter, the ethyl derivatives were slightly more active than the methyl derivatives; the same
trend though was not evident for the tetranuclear systems. All of the systems appeared to be well
behaved with PDIs in the range 1.07–1.38, and observed and calculated molecular weights did not
differ greatly. The use of 2D J-resolved 1H NMR spectroscopy [33] revealed moderately isotactic PLA
with Pr values in the range 0.64–0.67.

2.2.2. Manganese Complexes

Under a variety of conditions, use of the compounds 23 and 24 (Scheme 5) for the ROP of
ε-caprolactone failed to afford any polymer product [14].
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2.3. Use of IIH2

Condensation of 2,2′-iminobisbenzaldehyde with the likes of 1,2-diaminoethane or
1,2-diaminopropane in refluxing methanol affords macrocycles of type IIH2 [34]. Brooker et al. have
shown that the reaction of IIH2 (n = 1, a 22-membered macrocycle) with diethylzinc affords complex 25
which, on further treatment with isopropyl alcohol, affords 26 (see Scheme 6) [15]. This reaction needs
to be heated to 60 ◦C over 2 h for complete conversion to 26 as evidenced by 1H NMR spectroscopy,
whilst on scale-up the isolated yield is about 30%. The reaction is thought to proceed via two steps,
namely protonation of the anilido function followed by an intramolecular deprotonation of the NH
by a zinc-bound ethyl group. Using 25 (catalyst:rac-LA 1:200) in THF and adding two equivalents of
isopropyl alcohol, 78% conversion is accomplished at 25 ◦C over 1 h. The system was well behaved
with PDI of the atactic polymer <1.1 and with no evidence of transesterification observed.

When diaminopropane is employed as a precursor (i.e., n = 2) in the condensation process, the
result is a slightly larger 24-membered macrocycle, which is conformationally more flexible. This
larger ligand, as well as IIH2 (n = 1), have been reacted with {Zn[N(SiMe3)2]} and, subsequently, with
two equivalents of isopropyl alcohol to afford the complexes 27 and 28 and 30 and 31, respectively.
For comparative catalytic studies, the monometallic complexes 29 and 32 were also prepared
(Scheme 7) [16].
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Scheme 7. Zinc complexes (27–32).

Screening for the ROP of rac-LA revealed that 27 and 28 could, in the absence of any additional
alcohol, polymerize 1000 equivalents of monomer in 60 s with good control (PDIs ≤ 1.4). Evidence for
a cooperative effect was provided by the observation that the activity of 28 was, per zinc centre, three
times greater than that of 29. The enhanced activity of these systems is best illustrated by the activity of
27, which was found to be 600 times more active than the system employing 25. Polymerization kinetics
for these systems revealed a zero-order rate dependence on lactide concentration, which is thought
to be associated with the pre-equilibrium constant of lactide binding at the metal. Furthermore, the
systems 27 and 29 exhibit an induction period that, following a 15–20% conversion, a linear conversion
versus time plot is adopted. Examination of the higher-than-expected molecular weights suggested
that only a fraction of the catalyst was being utilized. This, in turn, suggests that complex 27 is 1.5 times
quicker than 28 and six times more active than 29. These results for 27 and 28 can be equated to the
distance between the metal centres, which will be closer in 27, enabling better ‘communication’.

Somewhat surprisingly, the isopropoxide complexes 30 and 31 are much less active than the
amide derivatives; for example, 30 is 400 times slower than 27, but exhibited better control exhibiting
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first-order dependence on monomer concentration. Further, the mono- and bimetallic systems display
comparable activities with one another. Molecular structure determinations (see Figure 2) shed some
light on the reasons for the differing behaviour of these systems. In the case of the amide 27, the
complex was found to adopt a ‘folded’ C2 symmetric structure with the amide on the same side of the
complex. By contrast, the isopropoxide complex 30 possesses a more planar conformation, for which
the flexibility is greatly reduced by the two bridging k2 alkoxide ligands.
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It proved possible to combine the catalytic advantages of both families of catalysts by use of
27–29 under immortal conditions (simultaneous addition of 10 equivs. of isopropanol and lactide
monomer). The systems proved to be well behaved and extremely active under such conditions,
achieving complete conversion in just 30 s; TOF values were three times greater than any other
reported zinc-based systems. High activities were maintained even at very low catalyst loadings
(0.02–0.002 mol %). It has been postulated that a new highly active alkoxide complex is present under



Catalysts 2017, 7, 165 9 of 11

these immortal conditions which possesses a ‘folded’ conformation. This can then rearrange over
about one minute to 30 (thermodynamic stability) which, given that the ROP process is complete
within 29 s, is not problematic and is consistent with the observations. End group analysis of the
polymer (alkoxide and amide groups are present) and low temperature NMR measurements on the
alcoholysis of 30 lends support to this theory.

3. Outlook

The handful of reports to-date involving the use of macrocycles as ancillary ligands for the
metal-based ROP catalysis of cyclic esters clearly show there is much potential for developing systems
of industrial relevance. Such systems have the advantage over acyclic systems, given that the ability
to control the size of the macrocycle by judicious choice of starting materials allows for control
over conformational flexibility and manipulation of metal-metal distances. They are also capable
of supporting structural motifs not seen in acyclic systems. By combining catalytic studies with
crystallographic work insight into the optimum degree of metallation, the preferred geometrical
parameters at each metal and favoured inter-metallic distances can be gleaned. In turn, this allows for
possible synergistic cooperation between the metal centres. Furthermore, the ability to incorporate
pendant arms into the macrocycles has the potential to give a further dimension to the construction
and coordinating ability of such macrocycles [35].

It is envisaged that many new macrocyclic catalysts will be reported in the coming years with
controllable properties. Macrocycles also offer the opportunity to access mixed metal systems and this,
in turn, will allow for new polymeric materials with desirable properties to be accessed.
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