Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2016
Accepted 00th January 2016
DOI: 10.1039/x0xx00000x
www.rsc.org/

Synthesis and conformations of [2.n]metacyclophan-1ene epoxides and their conversion to [n.1]metacyclophanes

Thamina Akther, ${ }^{,}$Md. Monarul Islam, ${ }^{a, b}$ Shofiur Rahman, ${ }^{c}$ Paris E. Georghiou, ${ }^{c}$ Taisuke Matsumoto, ${ }^{d}$ Junji Tanaka, ${ }^{d}$ Carl Redshaw ${ }^{e}$ and Takehiko Yamato*a

Abstract

A series of syn- and anti-[2.n]metacyclophan-1-enes are prepared in good yields by a McMurry cyclization of $1, n$-bis(5-tert-butyl-3-formyl-2-methoxyphenyl)alkanes. Interestingly, acid catalyzed rearrengements of [2.n]metacyclophan-1-enes afforded [n.1]metacyclophanes in good yield. The ratio of the products is strongly regulated by the number of methylene bridges present. The percentage of the rearrangement product increases with increasing length of the carbon bridge. Characterization and the conformational studies of these products are described. Single crystal X-ray analysis revealed the adoption of syn- and anti- conformations. DFT calculations were carried out to estimate the energyminimized structures of the synthesized MCPs.

Introduction

Cyclophanes ${ }^{1}$ have been well-studied in organic chemistry and found to adopt unusual chemical conformations due to build-up of strain. Although the parent [2.2]metacyclophane (MCP = metacyclophane) was first reported as early as 1899 by Pellegrin, ${ }^{2}$ the synthesis of syn-[2.2]MCP was not realized until 85 year later. Mitchell et al. ${ }^{3}$ have efficiently prepared syn-[2.2]MCP at low temperature by using (arene)chromiumcarbonyl complexation to conduct the stereochemistry. Later, Itô et al. ${ }^{4}$ have also isolated and characterized syn-[2.2]MCP; we note that syn-[2.2]MCP isomerizes conveniently to its anti-isomer above $0^{\circ} \mathrm{C}$. On the other hand, Boekelheide ${ }^{5}$ and Staab ${ }^{6}$ have successfully designed intra-annularly substituted syn[2.2]MCPs. However, reports on the synthesis and reaction chemistry of syn-[2.n]MCP have not thus far been published.
On the other hand, Merz et al. ${ }^{7}$ reported the stereospecific epoxidation of (E) - and (Z)-stilbene crown ethers with m chloroperbenzoic acid to afford the epoxy crown ethers. Oda et al. ${ }^{8}$ also published the epoxidation of trans-diethylstilbestrol with m chloroperbenzoic acid to afford the racemic trans-diethylstilbestrol oxide. Thus, there is considerable interest in synthesizing the [2.n]MCP-1-enes and their conversion to 1,2-epoxy-[2.n]MCP, which can enforce the syn-conformation, whilst restricting the flexibility resulting from ring inversion.
Although [n.1]MCPs have been prepared by various workers, these previous synthetic routes were too tedious for practical application. Vögtle ${ }^{9}$ reported the first synthesis of both [4.1] and [5.1]MCP by the appliance of a new method, namely sulfone pyrolysis. Later, Lin
et al. ${ }^{10}$ suceeded in preparing the lower [3.1]homologue by implementing a photochemical method. However, it was quite difficult to obtain sufficient amounts of the products for any subsequent studies by following such a route.

anti-conformation
Figure 1. Possible conformations of [$n .1$]MCPs.

Recently, we have reported the formation of 1,2-dimethyl[2.n]MCP1 -enes ${ }^{11}$ by employing the reductive coupling of carbonyl compounds by low-valent titanium, i.e. deploying the McMurry reaction ${ }^{12-16}$ as a key step. In this paper, we report the synthesis of [2.n]MCP-ene using the McMurry cyclization reaction and subsequent conversion to 1,2 -epoxy[2.n]MCP. The latter compounds were further modified to $[n .1] \mathrm{MCPs}$ by an acid catalyzed rearrangement. Conformational studies of these MCPs both in solution and the solid state are also described.

Results and Discussions

The starting compounds 1,6-bis(5-tert-butyl-3-formyl-2-methoxy phenyl)hexane 1a and 1,8-bis(5-tert-butyl-3-formyl-2-methoxy
phenyl)octane $\mathbf{1 b}$ are easily prepared from 1,6-bis(2-methoxy phenyl)hexane and 1,8-bis(5-tert-butyl-2-methoxyphenyl)octane, respectively according to our previous synthetic route. ${ }^{17-19}$ In the presence of dichloromethyl ether and titanium tetrachloride $\left(\mathrm{TiCl}_{4}\right)$, a regioselective Friedel-Crafts acylation reaction ${ }^{20,21}$ at the meta positions of 1,6 -bis(2 -methoxyphenyl)hexane and 1,8 -bis(5 -tert-butyl-2-methoxyphenyl)octane was achieved at room temperature to afford the required $\mathbf{1 a}$ and $\mathbf{1 b}$ in 68 and 74% yield, respectively. To a solution of methylmagnesium iodide in $\mathrm{Et}_{2} \mathrm{O}$ was added a solution of compounds $\mathbf{1 a}$ and $\mathbf{1 b}$ in tetrahydrofuran (THF) dropwise under relatively mild conditions (refluxing for 12 h) to afford 1,6 -bis(5-tert-butyl-3-(1-hydroxyethyl)-2-methoxyphenyl)hexane 2a and 1,8-bis(5-tert-butyl-3-(1-hydroxyethyl)-2-methoxyphenyl)octane 2b in 74 and 77% yield, respectively.

Scheme 1. Synthesis of 1,n-bis(3-acetyl-5-tert-butyl-2methoxyphenyl)alkane 3.

After that, chromic acid oxidation ${ }^{22}$ of $\mathbf{2 a}$ and $\mathbf{2 b}$ was carried out in acetone by adding them dropwise to a solution of pyridinium chlorochromate (PCC) in acetone and stirring at room temperature for 24 h to produce 1,6-bis(3-acetyl-5-tert-butyl-2methoxyphenyl)hexane 3a and 1,8-bis(3-acetyl-5-tert-butyl-2methoxyphenyl)octane 3b in 69 and 62% yields, respectively as shown in Scheme 1. ${ }^{23-29}$ Elemental analysis and spectral data were used to resolve the structures of compounds 2 and $\mathbf{3}$. We have assigned the ${ }^{1} \mathrm{H}$ NMR signals of $\mathbf{2}$ and $\mathbf{3}$ in a similar manner. The compounds $\mathbf{3 a}$ and $\mathbf{3 b}$ were subjected to reductive coupling by the McMurry reaction following the upgraded Grützmacher's

$$
3 \xrightarrow[\begin{array}{c}
\text { in } \mathrm{THF} \\
\text { reflux, } 60 \mathrm{~h}
\end{array}]{\mathrm{TiCl}_{4} / \mathrm{Zn}}
$$

 procedu

Scheme 2. Synthesis of 5,n-di-tert-butyl-8,n-dimethoxy-1,2-dimethyl[2.n] MCP-1-ene 4.

Thus, the reductive coupling reaction of $\mathbf{3}$ was carried out by using $\mathrm{TiCl}_{4}-\mathrm{Zn}$ in the presence of pyridine in refluxing THF under high dilution conditions to afford the required compounds anti- and syn-5,17-di-tert-butyl-8,20-dimethoxy-1,2-dimethyl[2.6]MCP-1-ene 4a in 23 and 13% yields, respectively and anti- and syn-5,19-di-tert-butyl-8,22-dimethoxy-1,2-dimethyl[2.8]MCP-1-ene 4b in 21 and 64% yields, respectively. This result was different from that of the related McMurry cyclization of 1,3-bis(5-acetyl-2-methoxyphenyl)propane, which afforded the corresponding [3.1]MCP by TiCl_{4} or acid induced pinacol rearrangement. ${ }^{31}$
The structures of $\mathbf{4 a}$ and $\mathbf{4 b}$ were elucidated based on their elemental analyses and spectral data. In particular, the mass spectral data for $\mathbf{4 a}$ and $\mathbf{4 b}\left(\mathrm{M}^{+}=462\right.$ for $\mathbf{4 a}$ and 490 for $\left.\mathbf{4 b}\right)$ fully support the cyclic structure. The conformations of $\mathbf{4 a}$ and $\mathbf{4 b}$ were readily apparent from their ${ }^{1} \mathrm{H}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum of anti-4a in CDCl_{3} exhibits a singlet at $\delta 3.34 \mathrm{ppm}$ for the methoxy protons, a singlet at $\delta 1.31 \mathrm{ppm}$ for the tert-butyl protons and a pair of doublets at $\delta 6.89$ and $7.04(J=2.7 \mathrm{~Hz}) \mathrm{ppm}$ for the aromatic protons, which are in the deshielded region of the bridged double bond. Thus, the methoxy protons appear upfield because of the ring current of the opposite aromatic ring. The structure of the synconformer is also easily evaluated from the chemical shift of the methoxy protons at $\delta 3.67 \mathrm{ppm}$. Here, the tert-butyl proton of syn-4a is observed at higher field, $v i z \delta 1.11 \mathrm{ppm}$, due to the shielding effect of the aromatic ring. The aromatic protons of syn- $\mathbf{4 a}$ are reported at much higher field ($\delta 6.64$ and 6.77 ppm) than those of compound anti-4a. These data confirm the assignedcanti and eyn structures for both of the two $\mathbf{4 a}$ conformers. C24 C5

Figure 2. ORTEP drawing of anti-5,17-di-tert-butyl-8,20-dimethoxy-1,2-dimethyl[2.6]MCP-1-ene 4a and anti-5,19-di-tert-butyl-8,22-dimethoxy-1,2-dimethyl[2.8]MCP-1-ene 4b. Thermal ellipsoids are drawn at the 50% probability level. All hydrogen atoms are omitted for clarity.

The X-ray structure of anti-4a (Figure 2) clearly reveals that it is the anti-conformer in the solid state and that the two methoxy groups lie on the correlative side of the inner ring, which consists of a long bridging C16-C21 chain pointing outwards to minimize the steric repulsion with the bridge chain. The bond lengths of C21-C20 and $\mathrm{C} 22-\mathrm{C} 21$ in the hexamethylene chains and $\mathrm{C} 2-\mathrm{C} 24$ and $\mathrm{C} 1-\mathrm{C} 5$ in the ethylenic chains have standard values at $1.53,1.50,1.50$ and 1.49 \AA, respectively. The length of the double bond in C1-C2 is $1.34 \AA$, which is similar to that of ethylene. The bond angles defined by $\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 24$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$ are $123.3(2)^{\circ}$ and $122.7(2)^{\circ}$, showing that compound anti-4a displays a non-distorted conformation. The two benzene rings of $\mathbf{4 a}$ slightly deviate from planarity. The intramolecular distances of C5-C24, C6-C23, C9-C29, C10-C25, C7-C22, C8-C27 are 2.97, 3.45, 8.08, 5.18, 4.69 and 6.11 Å.
The ${ }^{1} \mathrm{H}$ NMR spectrum of anti- $\mathbf{4} \mathbf{b}$ in CDCl_{3} possesses a singlet at δ 3.52 ppm for the methoxy protons, and a singlet at $\delta 1.28 \mathrm{ppm}$ for the tert-butyl protons. For the aromatic protons, a pair of doublets was observed at $\delta 6.86$ and $7.01(J=2.7 \mathrm{~Hz}) \mathrm{ppm}$ which are in the deshielding region of the bridged double bond. Thus, the methoxy protons experience an upfield shift due to the ring current of the opposite aromatic ring. From the chemical shift of the methoxy protons at $\delta 3.69 \mathrm{ppm}$, the structure of the syn conformer is confirmed. Also, the tert-butyl proton of syn-4b occurs to higher field, i.e. $\delta 1.12 \mathrm{ppm}$, due to the shielding effect of the benzene ring. The aromatic protons of syn- $\mathbf{4 b}$ are observed at much higher field (δ 6.74 and 6.82 ppm$)$ than those of anti-4b. These data allow for the assignment of the anti and syn structures of the two conformers of 4b.

The X-ray structure of anti-4b (Figure 2) clearly demonstrates that the anti-conformer is adopted in the solid state and that the two methoxy groups lie on the correlative side of the inner ring, which contains the long bridging C16-C23 chain pointing outwards to keep the steric repulsion with the bridge chain to a minimum. The bond lengths of C23-C22 and C24-C23 in the octamethylene chains and $\mathrm{C} 2-\mathrm{C} 26$ and $\mathrm{C} 1-\mathrm{C} 5$ in the ethylenic chains have standard values at $1.44,1.43,1.45$ and $1.45 \AA$, respectively. The length of the double bond in $\mathrm{C} 1-\mathrm{C} 2$ is $1.34 \AA$, which is similar to that of ethylene. The bond angles defined by $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 26$ and $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$ are $121.4(2)^{\circ}$ and $121.3(2)^{\circ}$, showing that compound $\mathbf{4 b}$ displays a non-distorted conformation. The two benzene rings of $\mathbf{4 b}$ moderately deviate from planarity. The intramolecular distances of C5-C26, C6-C25, C9C31, C10-C27, C7-C24, C8-C29 are 2.86, 3.70, 6.29, 5.80, 4.89 and $4.85 \AA$.
The epoxidation ${ }^{32}$ of $\mathbf{4}$ with m-chloroperbenzoic acid in the presence of dichloromethane at room temperature for 40 h afforded the desired 1,2-epoxy[2.n]MCP $\mathbf{5}$ as colourless prisms in quantitative yield (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectrum $(300 \mathrm{MHz})$ of anti-5a exhibited a doublet for the benzene proton at $\delta 7.38 \mathrm{ppm}(J=$ 2.4 Hz) in addition to resonances at $\delta 6.95$ and 7.29 ppm for the other two protons of the aromatic rings. These observations strongly suggest that the structure corresponds exclusively to the anti-conformation. These findings strongly suggest that the exo-epoxide structure of 5a and the syn-epoxidation resulting from exo-attack at the double bond of syn-5a formed during the ring inversion of anti5 a might be sterically favourable.
The protons of the hexamethylene bridge gave rise to a complicated signal pattern as expected for a rigid syn-[2.6]MCP. The protons
of the benzylic CH_{2} group were observed as two multiplets centered at $\delta 2.28$ and 2.49 ppm which were further split by coupling with the protons of the other CH_{2} groups. The peak pattern ascribed to twelve chemically distinct protons of the alkane bridge proved the absence of a anti-anti interconversion which would exchange H_{A} and H_{B} of each CH_{2} group.

Scheme 3. Synthesis of $5, n$-di-tert-butyl-1,2-epoxy-1,2-dimethyl-8,ndimethoxy[2.n]MCP 5.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\operatorname{syn}-\mathbf{5 b}$ revealed a doublet for the aromatic proton at $\delta 7.11(J=2.4 \mathrm{~Hz}) \mathrm{ppm}$ in addition to the resonances at $\delta 6.84 \mathrm{ppm}$ for the other two protons of the aromatic rings. These observations suggest that the structure consists exclusively of the syn-conformation. These estimations strongly suggest the exo-epoxide structure of syn-5b and syn-epoxidation from exo-attack at the double bond of syn- $\mathbf{4}$ formed at the time of the ring inversion of syn-4b might be sterically favourable.

Table 1. Conformational analysis of [n.2]MCP-enes 5.

Compound	Number of methylene units $[n]$	Products yield [\%] $^{\mathrm{a}}$	
	anti-5	syn-5	
anti-4a	6	55	0
anti-4b	8	0	67

${ }^{a}$ Isolated yields are shown in parentheses.
The protons of the octamethylene bridge gave rise to a complex signal pattern as expected for a rigid syn-[2.8]MCP. The protons of the benzylic CH_{2} group were observed as two multiplets centered at $\delta 2.21$ and 2.91 ppm which were further split by coupling with the protons of the CH_{2} groups. The peak pattern ascribed to sixteen chemically distinct protons of the alkane bridge proved the absence of syn-syn interconversion which would exchange H_{A} and H_{B} of each CH_{2} group. These findings suggest a rigid structure for syn-4b at this temperature. This result suggests that the introduction of an oxirane ring into the ethano bridge can strongly reduce the flexibility arising from ring inversion.

Compound anti-5a crystallized in the centrosymmetric space group $\mathrm{P} 2_{1} / \mathrm{a}$. There are independent molecules $(\mathrm{Z}=4)$ at general positions in the asymmetric unit of the crystal structure. It is clear
that anti-5a adopt the anti-conformation in which two benzene rings are in a non-planar chain form. The measured torsional angles between the planes $\mathrm{C} 6-\mathrm{C} 8-\mathrm{C} 10-\mathrm{C} 7, \mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ and C8-C3-C7 planes, and those of C22-C27-C25-C24 with C27-C28-C29 and

C24-C25-C26 are $116.9^{\circ}, 121.1^{\circ}, 117.1^{\circ}$ and 120.9°, respectively, showing that this molecule has an asymmetrical strain between the 'top' and 'bottom' rings, and that the amount of strain is much greater at the internal carbons than at the external carbons. The C6-C5-C1-C3 and C4-C2-C26-C25 planes are twisted out of coplanarity and have a dihedral angle of 5.2°, and thus the two carbonyl groups, C6-O2 and C25-O3 do not lie in the same plane where the adjacent two carbon atoms are included.

Figure 3. ORTEP drawing of anti-5,17-di-tert-butyl-1,2-epoxy-1,2-dimethyl-8,20-dimethoxy[2.6]metacyclophane $\mathbf{5 a}$ and syn-5,19-di-tert-buthyl-1,2-epoxy-1,2-dimethyl-8,22-dimethoxy[2.8]MCP 5b. Thermal ellipsoids are drawn at the 50% probability level. All hydrogen atoms are omitted for clarity.

The crystal structure shows that the conformation adopted by compound syn- $\mathbf{5 b}$ is the syn-conformation, in which two aromatic rings are part of a non-planar chain (Figure 3). Here, the bond lengths of $\mathrm{C} 16-\mathrm{C} 17$ and $\mathrm{C} 16-\mathrm{C} 7$ in the octamethylene chains and $\mathrm{C} 5-\mathrm{C} 1$ and $\mathrm{C} 26-\mathrm{C} 2$ in the ethylenic chains have typical values at $1.54,1.51,1.50$ and $1.51 \AA$, respectively. The bond angles defined by C25-C26-C2 and C1-C5-C6 are 121.6 and $122.8 \AA$, showing that $\mathbf{5 b}$ displays a slightly distorted conformation. The two benzene rings of $\mathbf{5 b}$ slightly deviate from planarity. The intramolecular distances of C5-C26, C1-C6, C7-C24, C9-C28 are 3.08, 4.41, 5.88 and $4.95 \AA$. Both methoxy groups on the benzene rings of $\mathbf{5 b}$ point outwards, away from the decamethylene bridge chain. This contributes to the lack of steric crowding with the hydrogens and carbons of the bridge chains. Thus, it is a meso compound.
In the case of the treatment of compounds $\mathbf{5 a}$ and $\mathbf{5 b}$ with $\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$ as catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the desired acid catalyzed rearrangement ${ }^{33}$ products [6.1]MCP $\mathbf{6 a}$ and [8.1]MCP 6b were obtained as the main products in 51 and 41% yield, respectively. No formation of dehydration product or ring-cleavage product was observed. The yields of the rearrangement products 6 decrease with
the number of the methylene bridges. This result might be attributed to the decrease of carbon ring strain in the [n.1]MCPs.

Scheme 4. Synthesis of 13-acetyl-9,16-di-tert-butyl-12,19-dimethoxy-13methyl[6.1]MCP 6a and 15-acetyl-11,18-di-tert-butyl-14,21-dimethoxy-15methyl[8.1]MCP 6b.

Similarly, the conformation of the $[n .1]$ MCPs $\mathbf{6 a}$ and $\mathbf{6 b}$ was readily apparent from their ${ }^{1} \mathrm{H}$ NMR spectra. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of [6.1]MCP $\mathbf{6 a}$ in CDCl_{3} upfield shifts and different chemical shifts for the internal aromatic protons at $\delta 7.25$ and 7.28 ppm due to the ring current of the opposite aromatic ring were observed. This data strongly suggests that the structure of $\mathbf{6 a}$ is the anti-conformer.
Furthermore, the two methoxy groups exhibit different chemical shifts at $\delta 3.29$ and 3.41 ppm , each as a singlet. The four external aromatic protons were also observed as different chemical shifts at δ 7.12 and 7.05 ppm ; the latter proton is in a strongly deshielding region of the oxygen atom of the acetyl group on the methylene bridge. The compound $\mathbf{6 a}$ exhibits a split pattern for the benzyl protons as two multiplets centred at $\delta 2.25$ and 2.41 ppm . The central CH_{2} groups were also observed as two multiplets centred at $\delta 0.88$ and 1.32 ppm . These findings suggest a rigid structure of [6.1]MCP 6a at this temperature.

Table 2. Conformational analysis of [n.1]MCP-enes 6.

| Compound | $\begin{array}{l}\text { Number of } \\ \text { methylene } \\ {[n]}\end{array}$ | units |
| :---: | :---: | :---: | :---: | :---: |$)$

${ }^{a}$ Isolated yields are shown in parentheses.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of [8.1]MCP $\mathbf{6 b}$ in CDCl_{3} upfield shifts and different chemical shifts for the aromatic protons at $\delta 6.86$ and 6.87 ppm strongly suggest that the structure of $\mathbf{6 b}$ is the synconformer. Furthermore, the two methoxy groups appear as a singlet with chemical shift $\delta 3.71 \mathrm{ppm}$. A splitting pattern for the benzyl protons as two multiplets centred at $\delta 2.30$ and 2.89 ppm was exhibited for this compound. The CH_{2} groups were also observed as two multiplets centred at $\delta 0.78$ and 1.59 ppm . These findings suggest a rigid structure of [8.1]MCP $\mathbf{6 b}$ at this temperature.

Figure 4. (a) Chromatogram of anti-6a (HPLC on chiral column). Daicel chiralpak ADeH. Eluent: hexanes. (b) CD spectra of P - and M-enantiomers of inherently chiral MCP anti-6a.

The chiral properties of the compound anti-6a in solution were investigated by chromatographic resolution using a chiral column. Interestingly, anti-6a exhibits two well resolved peaks in the ratio of 50:50 for the P - and M-enantiomers. This finding strongly suggests that the resolution of racemic anti-6a could be accomplished by chromatographic separation using a chiral column. In fact, we have succeeded in resolving each P - and M-enantiomers. The circular dichroism (CD) spectra of the separated enantiomer with precise mirror images are shown in Figure 4. Indeed, we have succeeded in generating inherent chirality in the metacyclophane system containing two aromatic rings by the regio-selective rearrangement of [6.1]metacyclophane $\mathbf{6 a}$.

Density functional theory (DFT) computational studies were carried out to demonstrate the geometry-optimized energies of compounds 5-6 (Figure 5). The starting structures were generated with the initial geometries based upon their own X-ray crystal structures. The DFT level of theory using the prominent B3LYP (Becke, three-parameter, Lee-Yang-Parr) ${ }^{34}$ exchange-correlation functional with the $6-31 \mathrm{G}(\mathrm{d})$ basis set. By using Gaussian-09, the individual geometry-optimized structures of these molecules were first conducted in the gas phase and after that in solvent (chloroform) with the B3LYP/6-31G(d) basis set. ${ }^{35}$ The DFT-geometry optimized B3LYP/6-31G(d) energies for compounds 5-6 reveal that the order (in both the gas-phase or with the solvent correction term) of increasing stability is $\mathbf{6 a}>\mathbf{6 b}>\mathbf{5 a}>\mathbf{5 b}$.

The trend for the stabilities of 6 and 5 could tentatively be rationalized on the basis of the anti-conformations of 6a and 5a vs the syn-conformations of $\mathbf{6 b}$ and $\mathbf{5 b}$. However, the geometryoptimized energy of the syn-structure is sufficiently higher than that of the anti-structure.

Both the single crystal and DFT-optimized structures of 5a indicate that it adopts an anti-conformation and that the methoxy groups are positioned opposite to the benzene rings (Figures $\mathbf{3}$ and $\mathbf{5}$).

Figure 5. DFT geometry-optimized structures of anti-5a (top left), syn-5b (top right), anti-6a (bottom left) and syn-6b (bottom right). Colour code: carbon $=$ dark and light grey, and oxygen $=$ red. Hydrogen atoms omitted for clarity.

Table 3. DFT geometry-optimized computed energies for the compounds 5-6 generated from the solid-state X-ray coordinates.

Compound	Energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$			
	Gas-phase	HOMO	LUMO	$\Delta \mathrm{E}$
anti-5a	-3866698.72	-553.98	5.25	548.73
syn-5b	-3866688.48	-545.05	7.04	538.01
anti-6a	-4073149.44	-15.75	2.63	13.12
syn-6b	-4073145.22	-13.13	2.63	10.50

${ }^{a}$ Based on DFT using the B3LYP/6-31G(d) basis set-up.

The greater activity may be attributed to the higher solubility of the compounds. We have calculated the energies of the HOMO and LUMO orbitals. The difference between the energies of the HOMO and LUMO (the HOMO-LUMO gap) shows the stability or reactivity of the molecules, pointing out the possible structures, such as electron rich or electron deficient regions.

Conclusions

In conclusion, a new synthesis of [2.n]MCP-1-enes by a McMurry cyclization has been developed. Acid catalysed rearrangements of $\mathbf{4 a}$ and $\mathbf{4 b}$ can be applied to the synthesis of [n.1]MCPs. Further studies on the ring contraction of [2.n]cyclophanes with glycol units at the ethylene bridge to afford [$n .1]$ cyclophanes are now in progress.

Acknowledgments

This work was performed under the Cooperative Research Program of "Network Joint Research Centre for Materials and Devices (Institute for Materials Chemistry and Engineering, Kyushu University)". We would like to thank the OTEC at Saga University for financial support. CR thanks the EPSRC for an overseas travel grant.

Experimental

General

All melting points were uncorrected. Proton nuclear magnetic resonance $\left({ }^{1} \mathrm{H}\right.$ NMR) spectra were recorded on a Nippon Denshi JEOL FT-300 spectrometer and Varian-400MR-vnmrs400 spectrometer. Chemical shifts are reported as δ values (ppm) relative to internal Me4Si. The IR spectra were obtained as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were

obtained on a Nippon Denshi JMS-HX110A Ultrahigh Performance Mass Spectrometer at 75 eV using a direct-inlet system. Elemental analyses were performed with a Yanaco MT-5 analyser. Elemental analyses were performed by Yanaco MT-5. Gas-liquid chromatograph (GLC) analyses were performed by Shimadzu gas chromatograph, GC-14A; silicone OV-1, 2 m ; programmed temperature rise, $12{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$; carrier gas nitrogen, $25 \mathrm{~mL} \mathrm{~min}{ }^{-1}$.

Materials

1,6-Bis(5-tert-butyl-3-formyl-2-methoxyphenyl)hexane 1a and 1,8-bis(5-tert-butyl-3-formyl-2-methoxyphenyl)octane $\mathbf{1 b}$ were prepared by following previous reports. ${ }^{17}$

Preparation of 1,6-bis(5-tert-butyl-3-(1-hydroxyethyl)-2methoxylphenyl) hexane

To a solution of methylmagnesium iodide [prepared from methyl iodide (14.4 $\mathrm{g}, 101 \mathrm{mmol})$ and magnesium ($2.05 \mathrm{~g}, 84.3 \mathrm{mmol}$)] in $\mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL})$ was added a solution of $\mathbf{1 a}(8.85 \mathrm{~g}, 20.9 \mathrm{mmol})$ in tetrahydrofuran $(100 \mathrm{~mL})$ dropwise under the conditions of gentle reflux. After the reaction mixture was refluxed for an additional 5 h , it was quenched with 10% ammonium chloride $(100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The extract was washed with water $(2 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated in vacuo. The residue was recrystallized from hexane to afford 1,6-bis(5-tert-butyl-3-(1-hydroxyethyl)-2-methoxyphenyl)hexane $\mathbf{2 a}(7.71 \mathrm{~g}, 74 \%)$ as colourless prisms, M.p. $125-126^{\circ} \mathrm{C}$. IR (KBr): $v_{\max }=3308,2963,2856,2827,1480,1463,1429$, 1363, 1282, 1231, 1202, 1172, 1119, 1074, 1011 and $879 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30(18 \mathrm{H}, \mathrm{s}), 1.51-1.70(6 \mathrm{H}, \mathrm{m}), 1.52(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, 2.26-2.36 (4H, m), 2.58-2.68 (4H, m), 3.77 (6H, s), 5.16-5.25 (2H, bs), 7.11 $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz})$ and $7.27(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=23.94,29.77,30.07,31.11,34.31,61.76,65.76,120.74,126.29$, $134.58,137.50,146.81$ and 153.25 ppm . MS (EI): m/z found $499[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}$ (498.74): C, $77.06 ; \mathrm{H}, 10.10 \%$, found: C, $77.23 ; \mathrm{H}$, 10.41%.

Preparation of 1,8-bis(5-tert-butyl-3-(1-hydroxyethyl)-2-methoxyphenyl) octane

Compound $\mathbf{2 b}$ was synthesized in the same manner as described above for $\mathbf{2 a}$ and obtained ($8.48 \mathrm{~g}, 77 \%$) as colourless prisms, M.p. $107-108{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max }=3313,2915,1469,1295,1174,1115,1000$ and $879 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.30(18 \mathrm{H}, \mathrm{s}), 1.36-1.45(4 \mathrm{H}, \mathrm{m}), 1.52(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $1.58-1.69(6 \mathrm{H}, \mathrm{m}), 2.33(4 \mathrm{H}, \mathrm{s}), 2.59-2.63(4 \mathrm{H}, \mathrm{m}), 3.77(6 \mathrm{H}, \mathrm{s}), 5.20(2 \mathrm{H}$, bs), $7.12(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$ and $7.27(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.51,28.87,29.65,30.49,31.03,34.16,61.22,65.12$, $120.03,125.91,134.58,136.84,146.55$ and 152.69 ppm . MS (EI): m/z found $527[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{34} \mathrm{H}_{54} \mathrm{O}_{4}(526.79)$: C, $77.52 ; \mathrm{H}, 10.33 \%$, found: C, 76.17; H, 10.29\%.

Preparation of 1,6-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)hexane

To a solution of pyridinium chlorochromate, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+} \mathrm{CrO}_{3} \mathrm{Cl}^{-}(31.0 \mathrm{~g}, 144$ $\mathrm{mmol})$ in acetone $(300 \mathrm{~mL})$ was added a solution of 1,6-bis(5-tert-butyl-3-(1'-hydroxyethyl)-2-methylphenyl)hexane 2a ($10.62 \mathrm{~g}, 21.3 \mathrm{mmol}$) in acetone $(100 \mathrm{~mL})$ dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 24 h . The reaction mixture was filtered and the filtrate was concentrated. The residue was subjected to silica-gel (Wako, C-300; 500 g) column chromatography using as eluent CHCl_{3} to afford 1,6-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)hexane $\mathbf{3 a}(7.27 \mathrm{~g}, 69 \%)$ as colourless prisms (Hexane), M.p. $127-128^{\circ} \mathrm{C}$. IR (KBr): $v_{\max }=2848,1676,1472,1362,1222$, 1126 and $1004 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.30(18 \mathrm{H}, \mathrm{s}), 1.42-$ $1.50(4 \mathrm{H}, \mathrm{m}), 1.45(4 \mathrm{H}, \mathrm{s}), 1.61-1.72(4 \mathrm{H}, \mathrm{m}), 2.63(6 \mathrm{H}, \mathrm{s}), 3.73(6 \mathrm{H}, \mathrm{s}), 7.33$ $(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$ and $7.41(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}): $\delta=29.65,30.08,30.50,30.98,31.43,34.51,62.81,124.30,131.13$, $133.06,136.04,146.84,155.27$ and 201.92 ppm . MS (EI): m/z found $495[\mathrm{M}]^{+}$

Anal. calcd. For $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{4}$ (494.71): C, 77.69 ; H, 9.37%, found: C, 77.91 ; H, 9.36\%.

Preparation of 1,8-bis(3-acetyl-5-tert-butyl-2-methoxyphenyl)octane

Compound $\mathbf{3 b}$ was synthesized in the same manner as described above for $\mathbf{3 a}$ and obtained $(6.91 \mathrm{~g}, 62 \%)$ as colourless prisms (MeOH), M.p. $58-59{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v_{\max }=2944,2848,1682(\mathrm{C}=\mathrm{O}), 1476,1369,1266,1222$ and 1008 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.30(18 \mathrm{H}, \mathrm{s}), 1.37-1.46(12 \mathrm{H}, \mathrm{m})$, $1.55-1.68(4 \mathrm{H}, \mathrm{m}), 2.63(6 \mathrm{H}, \mathrm{s}), 3.73(6 \mathrm{H}, \mathrm{s}), 7.34(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$ and $7.41(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.49$, 29.75, $29.96,30.43,30.91,31.35,34.44,62.72,124.17,131.04,132.97,136.04$, 146.74, 155.18 and 201.88 ppm . MS (EI): m/z found $522[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{4}$ (522.76): C, 78.12 ; H, 6.94%, found: C, $77.88 ; \mathrm{H}, 9.60 \%$..

McMurry coupling reaction of 3

The McMurry reagent was prepared from $\mathrm{TiCl}_{4}(13.75 \mathrm{~mL}, 125 \mathrm{mmol})$ and Zn powder ($18 \mathrm{~g}, 275 \mathrm{mmol}$) in dry THF (500 mL), under nitrogen. A solution of 1,6-bis(3-acetyl-5-tert-butyl-2-methoxylphenyl)hexane 3a ($3.4 \mathrm{~g}, 6.8 \mathrm{mmol}$) and pyridine ($22.8 \mathrm{~mL}, 0.2 \mathrm{~mol}$) in dry THF $(250 \mathrm{~mL})$ was added within 60 h to the black mixture of the McMurry reagent by using a high-dilution technique with continuous refluxing and stirring. The reaction mixture was refluxed for additional 8 h , cooled to room temperature, and hydrized with aqueous $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(200 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined extracts were washed with water, dried with MgSO_{4} and concentrated in vacuo. The residue was chromatographed over silica gel (Wako C-300, 300 g) with hexane-toluene (1:1) and toluene as eluents to give anti-4a and syn-4a as a colourless solid. Each eluents were recrystallized from hexane to afford anti-4a ($724 \mathrm{mg}, 23 \%$) and syn-4a (410 mg, 13\%), respectively.
anti-5,17-di-tert-butyl-8,20-dimethoxy-1,2-dimethyl[2.6]metacyclophan-1-ene (anti-4a) was obtained as colourless prisms (MeOH), M.p. $183-184{ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v_{\max }=2944,2856,1469,1358,1233,1107,1023,875,805$ and 654 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.50(2 \mathrm{H}, \mathrm{m}), 0.83(2 \mathrm{H}, \mathrm{m}), 1.26(4 \mathrm{H}$, $\mathrm{m}), 1.31(18 \mathrm{H}, \mathrm{s}), 2.10,(2 \mathrm{H}, \mathrm{m}), 2.22(6 \mathrm{H}, \mathrm{s}), 2.52(2 \mathrm{H}, \mathrm{m}), 3.34(6 \mathrm{H}, \mathrm{s}) 6.89$ $(2 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz})$ and $7.04(2 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta=22.13,26.56,27.94,29.13,31.30,33.90,59.37,124.29,124 . .36$, $129.44,133.39,135.98,144.19$ and 152.03 ppm . MS (EI): m/z found 462.4 $[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{2}$ (462.7): C, 83.06; H, 10.02%, found: C, 82.87; H, 9.99\%.
syn-5,17-di-tert-butyl-8,20-dimethoxy-1,2-dimethyl[2.6]metacyclophan-1-ene (syn-4a) was obtained as colourless prisms (MeOH), M.p. $90-91{ }^{\circ} \mathrm{C} . \mathrm{IR}$ $(\mathrm{KBr}): v_{\max }=2961,2923,1476,1235$ and $1026 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.59(2 \mathrm{H}, \mathrm{m}), 0.85(2 \mathrm{H}, \mathrm{m}), 1.11(\mathrm{~s}, 18 \mathrm{H}), 1.30(4 \mathrm{H}, \mathrm{m}), 2.18(6 \mathrm{H}$, s), $2.28,(2 \mathrm{H}, \mathrm{m}), 2.80(2 \mathrm{H}, \mathrm{m}), 3.67(6 \mathrm{H}, \mathrm{s}) 6.64(2 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz})$ and 6.77 $(2 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=30.7,31.2,32.8$, $33.9,34.3,64.5,70.7,122.1,126.9,127.2,127.4,128.0,128.6,128.9,129.3$, 129.5, 137.3, 143.6, 146.8, 146.9, 156.2 and 156.6 ppm . MS (EI): m/z found 462 [M] ${ }^{+}$. Anal. calcd. For $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{2}$ (462.7): C, 83.06 ; H, 10.02%, found: C, 82.59; H, 10.01%.

Preparation of 5,19-di-tert-butyl-8,22-dimethoxy-1,2-dimethyl[2.8] metacyclophan-1-ene

Compound anti-4b was synthesized in the same manner as described above for anti-4a and obtained ($701 \mathrm{mg}, 21 \%$) as colourless prisms (MeOH), M.p. 178$179{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max }=2959,2856,1472,1458,1262,1233$ and $1104 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.79-1.95(6 \mathrm{H}, \mathrm{m}), 1.12-1.33(6 \mathrm{H}, \mathrm{m}), 1.28$ $(18 \mathrm{H}, \mathrm{s}), 2.01-2.11(2 \mathrm{H}, \mathrm{m}), 2.15(6 \mathrm{H}, \mathrm{s}), 2.59-2.70(2 \mathrm{H}, \mathrm{m}), 3.52(6 \mathrm{H}, \mathrm{s})$, $6.86(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$ and $7.01(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.25,24.41,25.89,27.45,28.96,31.44,34.02,59.76$, $124.93,125.59,129.90,132.92,136.42,143.74$ and 152.44 ppm . MS (EI): m/z found $490.4[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{2}$ (490.8): C, 83.21 ; H, 10.27%, found: C, 83.52; H, 10.18\%.

Compound syn-4b was synthesized in the same manner as described above for syn-4a and obtained ($2.14 \mathrm{~g}, 64 \%$) as colourless prisms (MeOH), M.p. 104$105{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max }=2944,2856,1472,1454,1362,1214,1015,875$ and $801 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.94-1.12(6 \mathrm{H}, \mathrm{m}), 1.12(18 \mathrm{H}, \mathrm{s})$, $1.27-1.36(6 \mathrm{H}, \mathrm{m}), 2.13-2.23(2 \mathrm{H}, \mathrm{m}), 2.20(6 \mathrm{H}, \mathrm{s}), 2.73-2.85(2 \mathrm{H}, \mathrm{m}), 3.69$ $(6 \mathrm{H}, \mathrm{s}), 6.74(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$ and $6.82(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.62,26.92,27.62,29.24,30.40,31.57,33.93,60.02$, $125.58,126.14,131.40,134.06,136.16,144.25$ and 153.48 ppm . MS (EI): m/z found $490[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{2}$ (490.8): C, 83.21 ; H, 10.27%, found: C, $83.82 ; \mathrm{H}, 10.18 \%$.

General procedure for epoxydation of 4 with m-CPBA.

To a suspension of anti-4a ($20 \mathrm{mg}, 0.044 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(6 \mathrm{mg}, 0.082$ $\mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added $\mathrm{m}-\mathrm{CPBA}(20.5 \mathrm{mg}, 0.082 \mathrm{mmol})$ and the mixture was stirred for 40 h . The reaction mixture was diluted with water (20 $\mathrm{mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined extracts were washed with water $(2 \times 10 \mathrm{~mL})$, dried with MgSO_{4} and concentrated. The residue was recrystallized from methanol to gave ($11 \mathrm{mg}, 55 \%$) anti-5,17-di-tert-butyl-1,2-epoxy-1,2-dimethyl-8,20-dimethoxy[2.6]metacyclophane (anti-5a) as colourless prisms (MeOH), M.p. $192-193{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): \mathrm{v}_{\max }=$ 2944, 2856, 1472, 1450, 1352, 1229, 1085, 1019, 875 and $750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=0.25-0.35(4 \mathrm{H}, \mathrm{m}), 0.70-0.81(4 \mathrm{H}, \mathrm{m}), 1.30(9 \mathrm{H}, \mathrm{s})$, $1.31(9 \mathrm{H}, \mathrm{s}), 1.73(3 \mathrm{H}, \mathrm{s}), 1.95(3 \mathrm{H}, \mathrm{s}), 2.21-2.35(2 \mathrm{H}, \mathrm{m}), 2.44-2.53(2 \mathrm{H}, \mathrm{m})$, $3.39(3 \mathrm{H}, \mathrm{s}), 3.49(3 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 6.95(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$, $7.29(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$ and $7.38(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.13,27.67,29.70,31.79,33.87,60.21,61.91,66.77$, $125.91,126.43,132.48,134.94,145.30$ and 153.58 ppm . MS (EI): m/z found $478.4[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{3}$ (478.72): C, 80.29 ; H, 9.69%, found: C, $79.90 ; \mathrm{H}, 9.62 \%$.
However, several attempted epoxidations of syn-5a failed. Only an intractable mixture of products resulted.

Preparation of syn-5,19-di-tert-butyl-1,2-epoxy-1,2-dimethyl-8,22dimethoxy[2.8]metacyclophane.

Compound syn-5b was synthesized in the same manner as described above for anti-5a and obtained ($15 \mathrm{mg}, 67 \%$) as colourless prisms (MeOH), M.p. 152$153{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max }=2959,2922,2856,1480,1362,1258,12031111$, 1011 and $801 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.71-0.97(4 \mathrm{H}, \mathrm{m}), 1.16$ $(18 \mathrm{H}, \mathrm{s}), 1.31-1.42(4 \mathrm{H}, \mathrm{m}), 1.48-1.59(4 \mathrm{H}, \mathrm{m}), 1.88(6 \mathrm{H}, \mathrm{s}), 2.16-2.26(2 \mathrm{H}$, $\mathrm{m}), 2.87-2.94(2 \mathrm{H}, \mathrm{m}) 3.80(6 \mathrm{H}, \mathrm{s}), 6.84(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$ and $7.11(2 \mathrm{H}, \mathrm{d}, J$ $=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.88,26.03,27.35,28.18$, $30.55,31.44,34.06,60.63,67.84,122.93,127.20,131.92,133.05,144.36$ and 153.87 ppm . MS (EI): m/z found $506.4[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{3}$ (506.76): C, 80.58 ; H, 9.94%, found: C, $80.58 ; \mathrm{H}, 9.86 \%$.

General procedure for the acid catalyzed rearrangement of epoxymetacyclophane.

To a suspension of anti-5a ($30 \mathrm{mg}, 0.062 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(8.4 \mathrm{mg}, 0.059 \mathrm{mmol})$ and the mixture was heated to reflux for 1 h . The cooled solution was quenched by water $(5 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined extracts were washed with 5% aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, water $(2 \times 10 \mathrm{~mL})$, dried with MgSO_{4} and concentrated to give syn-13-acetyl-9,16-di-tert-butyl-12,19-dimethoxy-13methyl[6.1]metacyclophane (anti-6a) $(15 \mathrm{mg}, 51 \%)$ as colourless prisms (MeOH), M.p. $111-112{ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): \mathrm{v}_{\max }=2966,2915,2863,1690(\mathrm{C}=\mathrm{O})$, 1476, 1454, 1358, 1222, 1107, 1004, 879 and $643 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.53-0.70(2 \mathrm{H}, \mathrm{m}), 0.80-0.95(2 \mathrm{H}, \mathrm{m}), 1.30(9 \mathrm{H}, \mathrm{s}), 1.32(9 \mathrm{H}, \mathrm{s})$, $1.26-1.37(4 \mathrm{H}, \mathrm{m}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.76(3 \mathrm{H}, \mathrm{s}), 2.20-2.30(2 \mathrm{H}, \mathrm{m}), 2.34-2.47$ $(2 \mathrm{H}, \mathrm{m}), 3.29(3 \mathrm{H}, \mathrm{s}), 3.41(3 \mathrm{H}, \mathrm{s}), 7.05(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=$ $2.4 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz})$ and $7.28(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.12,26.29,27.16,28.72,28.85,29.17,31.39,31.55$, $34.28,61.08,61.89,123.67,125.36,125.40,128.52,133.27,144.55,144.85$
and 210.26 ppm . MS (EI): m/z found $478.3[\mathrm{M}]^{+}$. Anal. calcd. For $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{3}(478.71)$: C, $80.29 ; \mathrm{H}, 9.69 \%$, found: C, $80.33 ; \mathrm{H}, 9.67 \%$.

Preparation of syn-15-acetyl-11,18-di-tert-butyl-14,21-dimethoxy-15methyl[8.1]metacyclophane.

Compound syn-6b was synthesized in the same manner as described above for anti-6a and obtained ($13 \mathrm{mg}, 41 \%$) as colourless prisms (MeOH), M.p. $118-119{ }^{\circ} \mathrm{C}$. IR (KBr): $v_{\max }=2937,2856,1690(\mathrm{C}=\mathrm{O}), 1568,1476,1476$, $1362,1211,1008,894,750$ and $717 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $0.70-0.86(4 \mathrm{H}, \mathrm{m}), 1.16(18 \mathrm{H}, \mathrm{s}), 1.24-1.34(4 \mathrm{H}, \mathrm{s}), 1.54-1.64(4 \mathrm{H}, \mathrm{m})$, $2.25-2.35(2 \mathrm{H}, \mathrm{m}), 2.37(3 \mathrm{H}, \mathrm{s}), 2.42(3 \mathrm{H}, \mathrm{s}), 2.82-2.95(2 \mathrm{H}, \mathrm{m}), 3.71(6 \mathrm{H}, \mathrm{s})$ and $6.87(4 \mathrm{H}, \mathrm{dd}, J=2.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=22.45$, $25.21,27.67,28.72,29.02,29.39,30.06,31.44,31.77,34.23,61.91,63.61$, $110.31,125.90,126.31,126.58,135.60,144.92,156.34$ and $210.70 \mathrm{ppm} . \mathrm{MS}$ (EI): m/z found $506.3\left[\mathrm{M}^{+}\right.$. Anal. calcd. For $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{3}$ (506.77): C, 80.58; H, 9.94%, found: C, $80.66 ; \mathrm{H}, 9.88 \%$.

Notes and references

a Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 8408502, Japan. Fax: (internat.) + 81(0)952/28-8548;
E-mail: yamatot@cc.saga-u.ac.jp.
${ }^{\mathrm{b}}$ Chemical Research Division, Bangladesh Council of Scientific and Industrial Research(BCSIR), Dhanmondi, Dhaka-1205, Bangladesh ${ }^{c}$ Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B3X7.
d Institute of Materials Chemistry and Engineering, Kyushu University,
6-1, Kasugakoen, Kasuga 816-8580, Japan.
${ }^{\mathrm{e}}$ School of Mathematics and Physical Sciences, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK.
\dagger Electronic Supplementary Information (ESI) available: Details of the single-crystal X-ray crystallographic data and DFT computational data and xyz files. For ESI and crystallographic data in CIF see DOI: 10.1039/b000000x/

1. (a) Cyclophanes (Eds.: P. M. Keehn, and S. M. Rosenfield), Academic Press: New York, 1983, vol. 1, chapter 6, p. 428; (b) F. Vögtle, Cyclophane-Chemistry, Wiley: Chichester, 1993.
2. M. Pelligrin, Recl. Trav. Chim. Pays-Bas Belg., 1889, 18, 458.
3. R. H. Mitchell, T. K. Vinod and G. W. Bushnell, J. Am. Chem. Soc., 1985, 107, 3340.
4. Y. Fujise, Y. Nakasato and S. Itô, Tetrahedron Lett., 1986, 27, 2907.
5. (a) R. H. Mitchell and V. Boekelheide, J. Am. Chem. Soc., 1974, 96, 1547; (b) Y.-H. Lai, H.-L. Eu, J. Chem. Soc., Perkin Trans. 1, 1993, 233.
6. H. A. Staab, W. R. K. Riebel, and C. Krieger, Chem. Ber., 1985, 118, 1230.
7. A. Merz, A. Karl, T. Futterer, N. Stacherdinger, O. Schneider, J. Lex, E. Luboch and J. F. Biernat, Liebigs Ann. Chem., 1994, 1199.
8. (a) T. Kawase, N. Ueda, H. R. Darabi, and M. Oda, Angew. Chem., 1996, 108, 1658; Angew. Chem. Int. Ed. Engl., 1996, 35, 1556; (b) T. Kawase, H. R. Darabi, and M. Oda, Angew. Chem., 1996, 108, 2803; Angew. Chem. Int. Ed. Engl., 1996, 35, 2664; (c) T. Kawase, N. Ueda, and M. Oda, Tetrahedron Lett., 1997, 38, 6681.
9. F. Vögtle and P. Neumann, Synthesis, 1973, 85.
10. J. M. Coxon and C. Lim, Aust. J. Chem., 1977, 30, 1137.
11. (a) T. Yamato, K. Fujita, K. Futatsuki and H. Tsuzuki, Can. J. Chem., 2000, 78, 1089; (b) T. Yamato, K. Fujita and H. Tsuzuki, J. Chem. Soc. Perkin Trans. 1, 2001, 2089; (c) T. Yamato, S. Miyamoto, T. Hironaka and Y. Miura, Org. Lett., 2005, 7, 3; (d) T. Saisyo, M. Shiino, T. Hironaka and T. Yamato, Journal of Chemical Research, 2007, 3, 141-143.
12. (a) J. E. McMurry, M. P. Fleming, K. L. Kees and L. R. Krepski, J. Org. Chem., 1978, 43, 3255; (b) J. E. McMurry, Acc. Chem. Res., 1983, 16, 405; (c) J. E. McMurry, G. J. Haley, J. R. Matz, J. C. Clardy and G. V. Duyne, J. Am. Chem. Soc., 1984, 106, 5018; (d) J. E. McMurry, Chem. Rev., 1989, 89, 1513; (e) M. Ephritikhine and C. Villiers, in Modern Carbonyl Olefination: Methods and Applications (Ed.: T. Tanaka), Wiley-VCH, New York, 2004, 223-285.
13. R. H. Mitchell and S. A. Weerawana, Trtrahedron Lett.,1986, 27, 453.
14. D. Tanner and O. Wennerström, Acta Chem. Scand., Ser. B., 1983, 37, 693.
15. H. Hopf and C. Mlynek, J. Org. Chem., 1990, 55, 1361.
16. H.-F. Grützmacher and E. Neumann, Chem. Ber., 1993, 126, 1495.
17. (a) T. Yamato, K. Fujita, T. Abe and H. Tsuzuki, New J. Chem., 2001, 25, 728-736; (b) T. Saisyo, M. Shiino, J.-Y. Hu, T. Yamato, Journal of Chemical Research, 2007, 11, 621-625.
18. (a) T. Akther, M. M. Islam, S. Rahman, P. E. Georghiou, T. Matsumoto, J. Tanaka, P. Thuéry, C. Redshaw and T. Yamato, ChemistrySelect, 2016, 1, 3594-3600; (b) T. Akther, M. M. Islam, T. Matsumoto, J. Tanaka, X. Feng, C. Redshaw and T. Yamato, J. Mol. Struct., 2016, 1122, 247-255.
19. (a) M. M. Islam, T. Hirotsugu, P. Thuery. T. Matsumoto, J. Tanaka, M. R. J. Elsegood, C. Redshaw and T. Yamato, J. Mol. Struct., 2015, 1098, 47-54; (b) M. M. Islam, T. Akther, Y. Ikejiri, T. Matsumoto, J. Tanaka, S. Rahman, P. E. Georghiou, D. L. Hughes, C. Redshaw and T. Yamato, RSC Adv., 2016, 6, 50808-50817.
20. (a) E. Berliner, Organic Reactions, 1949, 5, 247; (b) F. G. Baddar, A. M. Fleiffel, and S. Sheriff, J. Chem. U.A.R. 1960, 3, 47; (c) I. Hashimoto, Bull. Chem. Soc. Jpn. 1981, 54, 3219.
21. (a) I. Hashimoto and T. Kawaji, Res. Chem. Intermed, 1996, 22, 855-869; (b) A. Bensari and N. T. Zaveri, Synthesis, 2003, 267271.
22. (a) R. M. Lanes and D. G. Lee, J. Chem. Educ., 1968, 45, 269; (b) J. Roček, Tetrahedron Letters, 1995, 5, 1-3.
23. T. Yamato, J. Matsumoto, S. Ide, K. Suehiro, K. Kobayashi and M. Tashiro, Chem. Ber. 1993, 126, 447-451.
24. T. Yamato, M. Sato, K. Noda, J. Matsumoto and M. Tashiro, J. Chem. Res. (S), 1993, 10, 394-395.
25. T. Yamato, J. Matsumoto, S. Ide, K. Tokuhisa, K. Suehiro and M. Tashiro, J. Org. Chem., 1992, 5, 5243-5246.
26. T. Yamato, J. Matsumoto, K. Tokuhisa, M. Kajihara, K. Suehiro and M. Tashiro, Chem. Ber. 1992, 125, 2443-2454.
27. T. Yamato, J. Matsumoto, M. Sato, K. Noda and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 1995, 10, 1299-1308.
28. T. Yamato, J. Matsumoto and K. Fujita, J. Chem. Soc., Perkin Trans. 1, 1998, 1, 123-130.
29. Y. Uchikawa, K. Tazoe, S. Tanaka, X. Feng, T. Matsumoto, J. Tanaka and T. Yamato, Can. J. Chem. 2012, 90, 441-449.
30. (a) H.-F. Grützmacher, E. Neumann, F. Ebmeyer, K. Albrecht and P. Schelenz, Chem. Ber., 1989, 122, 2291-2297; (b) H.-F. Grützmacher and E. Neumann, Chem. Ber., 1993, 126, 14951497; (c) H.-F. Grützmacher and G. Nolte, Chem. Ber., 1994, 127, 1157-1162; (d) H.-F. Grützmacher, A. Mehdizadeh and A. Mülverstedt, Chem. Ber., 1994, 127, 1163-1166.
31. T. Yamato, K. Fujita and H. Tsuzuki, J. Chem. Soc. Perkin Trans. 1, 2001, 2089-97.
32. (a) T. Itoh, K. Jitsukawa, K. Kaneda and S. Teranishi, J. Am. Chem. Soc., 1979, 101, 159-169; (b) K. B. Sharpless, R. C. Michaelson, J. Am. Chem. Soc., 1973, 95 (18).
33. (a) S.-J. Jeon and P. J. Walsh, J. Am. Chem. Soc., 2003, 125, 9544-9545; (b) P. W. Atkins, Physical Chemistry, 5th ed. Oxford University Press, 1994, 945; (c) V. C. Ukachukwa, J. J. Blumenstein, D. L. Whalen, J. Am. Chem. Soc., 1986, 108, 5039; (d) N. Hara, A. Mochizuki, A. Tatara, Y. Fujimoto, Tetrahedron Asymm., 2000, 11, 1859.
34. (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B. 1998, 37, 785-789.
35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc., Wallingford CT, 2013.
36. MolEN: an International Structure Solution Procedure, EnrafNonius, Delft, The Netherlands, 1990.
37. M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Crystallogr., 1989, 22, 389.
