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Abstract 1 

Animal groups are highly variable in their spatial structure, and individual fitness is 2 

strongly associated with the spatial position of an animal within a group. Predation 3 

risk and food gains are often higher at the group peripheries; thus, animals must trade 4 

off predation costs and foraging benefits when choosing a position. Assuming this is 5 

the case, we firstly use simulation models to demonstrate how predation risk and food 6 

gains differ for different positions within a group. Secondly, we use the patterns from 7 

the simulation to develop a novel model of the trade-off between the costs and 8 

benefits of occupying different positions, and predict the optimal location for an 9 

animal in a group. A variety of testable patterns emerge. As expected, increasing 10 

levels of satiation and vulnerability to predators, and increasing predation risk result 11 

in increased preferences for central positions, likely to lead to increased competition 12 

or more tightly packed groups. As food availability increases, individuals should first 13 

prefer center positions, then edge, returning to central positions under highest food 14 

levels. Increasing group size and/or density lead to more uniform preferences across 15 

individuals. Finally, we predict some situations where individuals differing in 16 

satiation and vulnerability prefer a range of different locations, and other situations 17 

where there is an abrupt dichotomy between central and edge positions, dependent on 18 

the levels of monopolization of food by peripheral individuals. We discuss the 19 

implications of our findings for the structure of groups and the levels of competition 20 

within them, and make suggestions for empirical tests. 21 

 22 

Keywords: group living, optimization, simulation model, group structure, 23 
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Introduction 1 

There is growing evidence that the costs and benefits of group living are not 2 

experienced equally by all members of the group. The spatial structure of groups is 3 

highly variable (Parrish and Hamner 1997; Krause and Ruxton 2002), and evidence 4 

suggests that fitness is strongly related to the spatial position of an individual within a 5 

group (Krause and Ruxton 2002). In mating groups (e.g. leks), positional preferences 6 

for individuals are well understood (Fiske et al. 1998), and thus we consider here only 7 

non-mating groups. Energy intake, energy expenditure and predation risk are likely to 8 

be the major factors which differ with respect to position within a stationary group.  9 

 10 

The theory of marginal predation (Hamilton 1971; Vine 1971) suggests that if 11 

predators always attack the nearest prey, then peripheral individuals should 12 

experience greater risk, and there is good evidence to suggest that this is the case. 13 

Across taxa, the levels of predation experienced by animal in a group increases with 14 

the distance from the centre (e.g. lapwings Vanellus vanellus; (Šálek and Šmilauer 15 

2002), spiders Metepeira incrassata (Rayor and Uetz 1990), mussels Mytilus edulis 16 

(Okamura 1986), and see (Stankowich 2003) for a review). Even when predators have 17 

equal access to central and peripheral individuals, predators still select marginal prey 18 

(Romey et al. 2008), and sensory biases for peripheral individuals on the part of their 19 

predators could contribute to these preferences (Tosh et al. 2006). Using simulation 20 

models, Bumann et al. (1997) demonstrated that predation risk may be strongly biased 21 

towards peripheral positions in large shoals of fish.  22 

 23 

Foraging gains are also likely to be higher on the periphery of groups foraging on 24 

dispersed food particles, as the capture of food items by peripheral individuals limits 25 
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the food resources available to those in the centre (Wilson 1974). Burrowing spiders 1 

(Seothyra henscheli) show increased growth rates when they are positioned at the 2 

edge of a group (Lubin et al. 2001). Similar benefits to peripheral positioning have 3 

been demonstrated in some colonial spiders Metepeira incrassata (Rayor and Uetz 4 

1990, 1993). Antlion larvae (Myrmeleon immaculatus) relocate their pits to the 5 

periphery of groups, forming groups in the shape of hollow circles, to minimize this 6 

competition (Linton et al. 1991). In fish, individuals at the front of moving shoals are 7 

more likely to obtain food (Krause 1994), and in groups of whirligig beetles (Dineutes 8 

spp.) 95% of food particles are captured by the outer echelon of individuals (Romey 9 

1995). Simulation modeling illustrates that such competition increases in intensity as 10 

the density of a group increases. In high density groups, only peripheral individuals 11 

can forage successfully, but in low density groups, some prey items reach the group 12 

centre (Lubin et al. 2001).  13 

 14 

To maximize survival, individuals within a group need to simultaneously avoid 15 

starvation by foraging, and avoid falling prey to a predator. The experimental and 16 

theoretical evidence above demonstrates that both tend to be significantly higher at 17 

the periphery of a group, and thus an individual cannot simultaneously choose one 18 

position that maximizes both. Gregarious animals have been shown to balance these 19 

competing selection pressures (Okamura 1986; Rayor and Uetz 1990), and base their 20 

decisions both on external pressures, and on internal state variables such has hunger 21 

levels (Krause 1994; Romey 1995). There are several mechanistic models which 22 

relate proximate factors such as attraction-repulsion rules, speed and trajectory to 23 

group position (Romey 1996; Krause et al. 2000; Hemelrijk and Kunz 2005), but few 24 

that directly tie evolutionary fitness to position (but see Beauchamp (2007) for a 25 
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theoretical study of the effect of spatial position on vigilance and survival), 1 

particularly when considering trade-offs between differing selection pressures.  2 

 3 

Here, we investigate the effect of the trade-off between foraging gains and predation 4 

risk on the optimal position for an individual within a group. There are several key 5 

areas that we will examine: firstly, we will look at how internal state variables 6 

influence position preferences. A fully satiated individual, for example, might be 7 

predicted to occupy a central position where it is safer from marginal predation, but 8 

how would intermediately satiated individuals trade off the foraging gains and 9 

predation risk of peripheral positions? Secondly, we will investigate how external 10 

selection pressures such as food availability and predation risk affect an individuals’ 11 

position preference. Finally, we will study the impact of group properties (such as size 12 

and density) on optimal positions. Our aim is to generate the first general predictions 13 

regarding the spatial positioning of individuals, as a function of empirically 14 

manipulable conditions, and to investigate possible implications for group structure 15 

and competition levels within the group. 16 

 17 

Our model is applicable to groups in which social hierarchies have not developed. 18 

There are several terms in the literature that are used to describe this type of simple 19 

group, including ‘congregation’ (Parrish and Hamner 1997), ‘ephemeral group’ 20 

(Hirsch 2007) and ‘FSH’ (for flocks, shoals/schools and herds; Romey 1997). The 21 

primary criteria are that individuals do not form long lasting dominance hierarchies, 22 

they are gregarious, and entry to or exit from the group is not restricted. Fish shoals 23 

and insect swarms are good examples of this type of group.  In more complex groups, 24 

with, for example, stable dominance hierarchies, interactions between individuals are 25 
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partly responsible for determining positions within the group (Hirsch 2007). Examples 1 

of such groups include primates, foraging bird flocks and ungulates (Barta et al. 1997; 2 

Ruckstuhl and Neuhaus 2005; Hirsch 2007). However, at times, even these types of 3 

groups might act in the simple way we propose here (such as during times of 4 

migration when smaller groups combine into larger ones for several weeks of the 5 

year). 6 

 7 

A Simple Conceptual Model 8 

The evidence presented above suggests that both food availability and prey capture 9 

rates are greater on the edge than at the centre of a (stationary) group. Therefore, 10 

individuals occupying central positions should benefit from reduced predation risk, 11 

but pay the cost of reduced food intake. In contrast, peripheral individuals benefit 12 

from increased food intake, but suffer from greater levels of predation. It is also likely 13 

that the costs and benefits of occupying different spatial positions may be affected by 14 

the ‘state’ of the individual concerned. Hungry individuals may place a greater 15 

emphasis on foraging, and therefore be willing to accept a greater risk of predation, 16 

while individuals that are well-defended against predators (for example, those that 17 

have high levels of toxic compounds (Eisner 2003), strong behavioral defenses or 18 

large body size) may place a lower emphasis on risk.  19 

 20 

In the conceptual model (figure 1), foraging success (probability of surviving) 21 

increases as individuals occupy more peripheral positions, and the probability of 22 

surviving a predator attack decreases as a function of risk. Hypothetical fitness 23 

functions are shown for two levels of hunger (satiated individuals are more likely to 24 

survive, regardless of their position) and two levels of defense (well-defended 25 
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individuals also have a higher survival rate). Individuals attempt to maximize their 1 

survival through both foraging gains and avoiding predators. The optimum position 2 

for an individual to occupy is found where overall survival is highest, which can 3 

found most simply by multiplying the two fitness functions. A key assumption is that 4 

animals simultaneously, rather than sequentially, balance conflicting selection 5 

pressures, as found in previous manipulative studies (Romey 1995). There are likely 6 

to be other situations where individuals switch positions conditionally in response to a 7 

predation threat, for example (see Hamilton 1971). Although this conceptual model 8 

illustrates one potential class of functions linking position to evolutionary fitness, it 9 

has not been empirically tested whether the relationship between these factors is 10 

directly proportional. We use simulation modeling (see below) to generate patterns 11 

that are potentially more likely to be found in empirical systems. We take the results 12 

of the simulation modeling to develop an optimality model of the trade-off between 13 

predation risk and foraging gains. 14 

 15 

Optimality model of position trade-offs 16 

1. Simulation of predation risk and foraging gains 17 

Previous authors have modeled how predation risk and foraging gains change as a 18 

function of the distance from the centre of a group (Linton et al. 1991; Bumann et al. 19 

1997; Lubin et al. 2001). We follow their approaches here to simulate how predation 20 

risk and foraging gains change with position in a group, and how risk and gains are 21 

affected by parameters of interest. Our aim is to build on this background to generate 22 

predictions for patterns of food gain and predation risk as a function of spatial 23 

position and other parameters of interest, in the same modeling environment, from 24 

which we can develop a specific model of this trade-off. All modeling was carried out 25 
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in Matlab R2006b.  In the simulation, N point-like individuals are positioned within a 1 

circle of radius r (Figure 2). Individuals were placed at random by first selecting an 2 

angle from a uniform distribution between 0 and 360°, and then a random distance 3 

from the centre of the circle. Distances (d) were selected as the square root of a 4 

distance picked from a uniform distribution between 0 and r2. This approach gives a 5 

uniform density of points within a circle. We carry out separate simulations for 6 

predation risk and foraging gains as these are measured in different ‘currencies’ (per 7 

capita predation risk and per capita number of food items consumed, see below), 8 

which are difficult to combine into a single fitness measure (Krebs and Kacelnik 9 

1991; Clark and Mangel 2000). Risk and gains are combined in the optimality model 10 

below. 11 

 12 

Predation risk 13 

P predators were added within a circle of radius R (figure 2a), using the same 14 

methodology as for the prey. We use a large value of R (R=20) such that the vast 15 

majority of predators predominantly appear outside the prey group, attacking from the 16 

periphery (Hamilton 1971), although some predators may attack from inside the 17 

group, particularly when r is larger (r = 10 is the largest value we use: 25% of 18 

predators attack from within the group in this case). Although marginal predation is 19 

common, one can imagine some situations where central individuals may be attacked: 20 

ground or water-surface dwelling animals subject to aerial predation for example. 21 

(Parrish 1989) found that fast moving predatory fish are able to capture prey in the 22 

centre of the shoal. Prey individuals are attacked solely based on their position (Ranta 23 

et al. 1994); each predator attacks the nearest prey individual (Hamilton 1971; 24 

Bumann et al 1994), with a probability a that the prey avoids the predator attack. Prey 25 
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avoidance probability a therefore measures the level of anti-predator defense 1 

possessed by the prey. This may be in the form of physical defenses such as spines or 2 

distasteful chemicals, or in the form of behavioral defenses such as a rapid escape 3 

response, or vigilance allowing the prey to detect the predator and then escape. We 4 

record the distance from centre (d) for each successfully attacked prey individual.  5 

Each predator attacks in turn, and consumed prey are removed from the group. We are 6 

interested in how animals should respond to overall levels of predation risk rather than 7 

immediate behavioral responses to the presence of an attacking predator. We therefore 8 

assume no collective vigilance by the prey group, which may result, for example, in 9 

the rapid compaction of a prey group when a predator appears (e.g. (Foster and 10 

Treherne 1981; Krause and Tegeder 1994). Such behavioral responses to an attacking 11 

predator have been studied in the context of selfish herd behavior, for example 12 

((Hamilton 1971; Morton et al. 1994; Viscido et al. 2002; Morrell and James 2008). 13 

 14 

We divided the group into 20 concentric zones, of equal width. Thus, the edge of the 15 

most central zone was located a distance r/20 from the circle centre, and contained all 16 

individuals in that area, and the most peripheral zone contained those individuals 17 

between 0.95r and r from the centre. Thus, more individuals were able to occupy 18 

peripheral positions than central ones. The per capita risk for each zone was 19 

calculated as the number of attacks directed at individuals in that zone, divided by the 20 

total number of individuals in the zone. Figures 3 and 4 are plotted as per capital risk 21 

against the lower bound of each zone (i.e. the risk for individuals in the most central 22 

zone are plotted against zero, and for those in the most peripheral zone, risk is plotted 23 

against 0.95). We ran 10000 simulations for each set of parameter values to obtain an 24 
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estimate of the mean per capita predation risk for each zone. Each simulation 1 

consisted on one attack by each of the P predators. 2 

 3 

Food gains 4 

A fixed number of food items f enter the prey circle sequentially (Figure 2b). 5 

Individuals intercept food items moving in straight lines across the circle, and are 6 

equally likely to appear at any point outside the group. Food items are modeled as 7 

chords drawn within the group circle. Following Baker & Zemel (2000) we use an 8 

unbiased algorithm for the identification of chords, thus, the probability of a chord 9 

crossing over any given point within the circle is independent of the position in the 10 

circle (Baker and Zemel 2000). First, we randomly select an angle af from the circle 11 

centre, and then a distance from the centre df (from a uniform distribution between 0 12 

and r). The chord is then drawn at right angles to af, passing through the position 13 

defined by af and df. A food item moves along the length of the chord in discrete 14 

steps, and at each step we calculate the distance from each prey individual to the food 15 

item. The first individual within a capture distance c successfully consumes the food 16 

item. If no individuals are within the capture distance, the food item moves another 17 

step. If more than one individual is within c, then the closest is assumed to 18 

successfully consume prey. A large value of c means that individuals can move some 19 

distance to intercept prey items (individuals in mobile groups such as whirligigs, for 20 

example). A small value for c indicates that individuals are unable to move large 21 

distances (foragers with fixed positions such as antlions). The value of c is always 22 

smaller than the value of r, constraining individuals to movement less than the radius 23 

of the group, but allowing movement outside the group boundary to intercept prey 24 

(similar to a fish darting out from a shoal to capture a prey item).   There is no limit on 25 
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the number of prey items any individual can consume, and all prey items carry equal 1 

nutritional value.  After capturing a food item, individuals return to their original 2 

location within the group. We calculate the total number of food items consumed by 3 

each individual, and use this to calculate the per capita food consumption for 4 

individuals in each zone (as above). Again, we ran 10000 simulations for each set of 5 

parameter values to obtain an estimate of the mean per capita foraging success for 6 

individuals in each zone. 7 

 8 

We use the simulation model to investigate the relationship between distance from 9 

group centre and predation risk. We vary each parameter separately while holding the 10 

others constant. Figures give examples of the type of results our model generates. We 11 

vary the size of the group (N), the density of the group (N/r), the number of predators 12 

(P), the radius of the circle in which the predator appears (and therefore the 13 

probability that the predator attack comes from outside the group; R) and the 14 

probability that an individual avoids a predator attack (a). To investigate the 15 

relationship between distance from group centre and foraging gains, we vary group 16 

size (N), the number of food items (f), the capture distance (c), and the radius of the 17 

group (r; this effectively alters the density, calculated as N/pr2).  18 

 19 

Results of simulated foraging and predation 20 

In line with our expectations and the findings of previous simulations (Linton et al. 21 

1991; Bumann et al. 1997), predation risk and foraging gains both increase with the 22 

distance from the group centre (figures 3 and 4). Each panel in figures 2 and 3 shows 23 

the per capita risk (figure 3) or per capita food gains (figure 4) for four different 24 

values for one of the variable parameters. All other parameters are kept constant. As 25 
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group size (N, but not density, N/pr2 remains constant as N increases) increases, per 1 

capita risk decreases for all individuals, and is reduced to zero for those in central 2 

positions (figure 3a). Increasing the number of predation events (P) also has the 3 

expected effect of increasing risk, particularly for individuals towards the edge of the 4 

group (figure 3b). An increased probability of escaping from a predator attack (a) 5 

decreases overall risk (figure 3c). Finally, there was little effect of increasing the 6 

density of the group (decreasing r) on predation risk (figure 3d).  7 

 8 

Per capita foraging gains also decreased as group size (N) increased (figure 4a), as 9 

food items were split amongst more group members. As the number of food items (f) 10 

increased, capture rate also increased, although this was primarily of benefit to 11 

peripheral group members (figure 4b); that is, our model predicts a greater asymmetry 12 

in this one selective factor as food level increases. Peripheral individuals are 13 

increasingly able to monopolize resources when capture distances (c) are large, but 14 

food is more evenly distributed among members when their movement is constrained 15 

(small values of c; figure 4c). Finally, lower densities of individuals within the group 16 

(increasing r) lead to a more even distribution of food (figure 4d). 17 

 18 

2. Simulation of optimal position within a group 19 

We use the shapes of the curves generated using the simulation model above to define 20 

suitable mathematical functions linking the position of an individual within a group to 21 

the risk of predation and the gains from foraging. This approach allows us to 22 

investigate more closely the impact of varying parameter values on the optimal 23 

position of an individual within a group. The equations were chosen to approximate 24 

the shape of the curves generated by the simulation model, and were fitted by eye to 25 
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the general shape of the data. Variation in the parameter values results in changes 1 

similar to those demonstrated by the simulation model, and the constants in each 2 

equation serve to match the shape and magnitude of the resulting curve more closely 3 

to the simulation results.  4 

 5 

The costs (C) of occupying any given position within a group (figure 3) can be 6 

described by a logistic function of the form: 7 

 8 
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This value represents the probability that an individual is successfully attacked by a 10 

predator, given its position within the group and the number of predation events 11 

relative to the size of the group.  12 

 13 

The number of food items an individual is able to obtain, given their position within 14 

the group (figure 4), can be described using a similar function: 15 

 16 
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 18 

The constants 0.1, 100 and 0.8 serve to approximate the shape and magnitude of 19 

foraging gains curve generated by the simulation model. An individual’s probability 20 

of surviving is a function of the number of food items gained, and their current level 21 

of satiation (s).  A food item gained by an individual with a low satiation level 22 

decreases their probability of starvation by a greater amount than the same food item 23 

gained by an individual whose satiation level is already high. We calculate the 24 
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probability that an individual starves (S), given its current food reserves and the gains 1 

from occupying any position using the following equation: 2 

 3 
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 5 

The fitness of an individual depends on it avoiding both predation and starvation, and 6 

this is a multiplicative function (as illustrated in figure 1) of the probability that it 7 

avoids starvation (1-S) and the probability that the individual avoids predation (1-C): 8 

 9 

W = (1-S)(1-C)       (4) 10 

 11 

The optimal position of an individual within a group is given by the value of d which 12 

maximizes the value of W.  13 

 14 

We investigate the effect of altering the parameters on the optimal position of an 15 

individual in a group. In particular, we are interested in the effect of the internal state 16 

variables (escape probability a, satiation s) and environmental selection pressures 17 

(food availability f, predation risk, P) on optimal group position.  We also investigate 18 

the effects of changes in capture distance (c), group radius (r) and group size (N).  19 

 20 

Results for optimality model 21 

Our model makes a number of predictions as to how the optimal position of an 22 

individual within a group varies according to the parameters of the model. We see a 23 

number of intuitive results (figure 5). Firstly, as satiation level increases, or 24 

probability of escaping from a predator decreases, animals preferentially occupy 25 
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central positions (figure 5a). This predicts that within a group of individuals where 1 

there is variation in satiation and defense levels, there should be considerable 2 

variation in optimal positions for those individuals. Central positions would be 3 

occupied by satiated individuals with little chance of escaping a predator, whereas 4 

peripheral positions would be occupied by hungry individuals with a good chance of 5 

escaping from a predator, as predicted by the simple conceptual model of figure 1.  6 

 7 

Figure 5a represents baseline levels: figures 5b-d represent results when a single 8 

parameter value relative to figure 5a. Increasing the risk of predation (figure 5b) 9 

results in an increased preference for central positions (comparing figure 5a with 5b, 10 

which illustrates the effect of increasing predation risk) for any given combination of 11 

satiation and escape probability. This would predict that competition for central 12 

positions may increase, or groups may become increasingly compact, with reduced 13 

distances between individuals.  Increasing group size (but not density; figure 5c) 14 

results in more uniform preferences: differences in satiation and defense levels have a 15 

lower impact on position preferences in larger groups than in smaller groups, for 16 

constant levels of food availability and predation risk (comparing figures 5a and 5c). 17 

In this case, we would predict that animals would be competing for similar positions 18 

within a group, however, preferences are for reasonably peripheral positions, and we 19 

may expect the group to expand. Finally, increasing the density of the group (but not 20 

the number of individuals; figure 5d) results in a shift in preference for more 21 

peripheral positions (comparing figures 5a and 5d), particularly for individuals with 22 

high satiation levels but low probabilities of escaping from a predator attack. High 23 

densities may therefore also lead to the group spreading out, and therefore becoming 24 

less dense. 25 
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 1 

The model also generates a number of less intuitive results, which suggest testable 2 

predictions not yet explored in empirical systems. For example, as food availability 3 

increases, preferences alter from central to peripheral positions (figure 6). Then, as 4 

food availability increases further, from intermediate to high levels, the optimal 5 

position shifts back to the centre again. This is likely to occur because low food 6 

availability means that the foraging gains from occupying peripheral positions are not 7 

sufficient to outweigh the predation costs of occupying those positions. As food 8 

availability increases, the potential benefits to be gained means that individuals can 9 

offset predation costs in peripheral positions. However further increases in food 10 

availability mean that more food items are able to penetrate into the centre of the 11 

group, and it becomes worthwhile for individuals to occupy those central positions 12 

once again. As the food available to a group increases, we might expect to see the 13 

group expanding and then contracting again as the optimal position preferences of 14 

individuals alter. 15 

 16 

Figures 5 and 6 show a continuum of positional preferences, from centre to edge, 17 

including preferences for intermediate positions. Increasing the distance over which 18 

individuals can move to capture the prey (c) can result in a different pattern appearing. 19 

As capture distance increases, instead of a continuous set of preferences (figure 7a), 20 

the range of satiation and defense combinations which predict intermediate optimum 21 

positions decreases (figure 7b). Further increases in capture distance lead to 22 

preferences for either very central or very peripheral positions (figure 7c and d).  23 

When individuals can only move a short distance relative to the area of the group (low 24 

c), many food items will penetrate the group, meaning that central individuals benefit 25 
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from avoiding predation, but are also able to gain food. If individuals can move a 1 

greater distance relative to the area of the group, then individuals on the very edge of 2 

the group capture all the available prey items, leaving none for the central individuals. 3 

Satiated individuals (that do not need to capture food resources to ensure survival) 4 

therefore benefit by positioning themselves in a location which leads to the greatest 5 

avoidance of predation (the absolute centre of the group) while hungry and/or well-6 

defended individuals move to the position which affords them the greatest food 7 

capture (the very edge). In this instance we might expect to see a group with a very 8 

compact centre, but with reduced distances between neighbors. 9 

 10 

Discussion 11 

Our model illustrates a variety of potential optimum positions for individuals of 12 

differing internal state, namely satiation levels and escape capabilities. We focus our 13 

investigation on variations in patterns in these two internal factors, as these are the 14 

most likely to vary between individuals within a group. Factors such as the 15 

availability of food, the abundance of predators and the size of a group, for example, 16 

are likely to be common to all group members, and represent external selection 17 

pressures. If individuals within a group differ in satiation and escape capabilities, then 18 

our model demonstrates that they should differ in their positional preferences. We find 19 

conditions under which all individuals prefer similar locations within the group 20 

(figure 5c), conditions where there is a spectrum of preferences from central to edge 21 

positions (figure 5a), and conditions where there appears to be an abrupt 22 

dichotomy/cut-off in preferences for central and edge positions (figure 7). To our 23 

knowledge, this is the first time such patterns have been investigated theoretically, 24 



 18 

and they have implications for the overall structuring of groups (Parrish and 1 

Edelstein-Keshet 1999).  2 

 3 

If individuals show a spectrum of preferences based on their combination of satiation 4 

and escape parameters (figure 5a), then assuming relatively even variation in these 5 

parameters, each individual should be able to occupy its optimal position, and 6 

competition for positions within the group may be reduced. If, however, the majority 7 

of individuals show a preference for similar positions (figure 5c), we might expect 8 

that competition for those positions is increased. If overall preferences are for 9 

peripheral positions (figure 5c) then individuals are likely to move outwards, leading 10 

to an increase in the area occupied by the group, or the formation of circular groups 11 

with empty centers (Barta et al. 1997). Alternatively, such patterns may lead to the 12 

breakdown of the group, as individuals move further apart in order to maximize their 13 

foraging success.  Outward movement of individuals is likely to be triggered by cues 14 

such as a reduction in perceived levels of predation risk, increased group size (if two 15 

groups merge, for example), or increasing hunger levels for an individual. 16 

 17 

If all individuals prefer more central positions (as would happen if predation risk 18 

increased (figure 5b), or food availability was high (figure 6), or individuals became 19 

increasingly satiated) then groups should become increasingly compact. Increasing 20 

density of individuals within a group (i.e. increasing levels of aggregation) in 21 

response to a perceived predation threat is common across taxa (Foster and Treherne 22 

1981; Krause and Tegeder 1994; Watt et al. 1997; Viscido and Wethey 2002). These 23 

predictions for changing group structure could easily be tested in empirical systems 24 

by, for example, altering the availability of food.  25 
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 1 

If all individuals have preferences for similar, central locations, they might also be 2 

predicted to compete for those preferred positions. In our model, we assumed the 3 

absence of interaction effects between individuals which might lead to competition 4 

and dominance hierarchies (despotic distributions). In groups where membership is 5 

constant and individual recognition is possible, such hierarchies often develop (see 6 

Hirsch (2007) for a review). In such groups, individuals are unlikely to be free to 7 

position themselves at their optimum point, as there is likely to be competition for 8 

positions within a group. Dominance, for example, is known to structure groups, with 9 

dominant individuals occupying central positions and forcing subordinates to the 10 

periphery (e.g. capuchin monkeys Cebus capucinus (Hall and Fedigan 1997).  11 

However, our model may be useful in determining the types of environmental 12 

conditions under which competition for positions may arise.  Where predation risk is 13 

high, for example, many individuals will have similar preferences for central 14 

positions, leading to high competition and potential for the development of 15 

hierarchies. Where there is a range of preferences for the individuals, competition for 16 

particular positions is less likely. Further modeling work could be used here to predict 17 

how groups are structured when individuals are not free to occupy their optimal 18 

position, but must contend with conspecifics who may be seeking similar positions.  19 

 20 

Even in the absence of direct competition for positions, individuals within a group 21 

may impact on food intake and anti-predator behavior of others. Our model already 22 

includes the effects of shadow competition (Wilson 1974), where peripheral 23 

individuals limit the availability of food to central ones, but the position occupied by 24 

any given individual is likely to depend on the behavior of the other group members. 25 



 20 

If the majority of individuals moved to peripheral positions, for example, an isolated 1 

individual in the center of a group may be at greater predation risk due to its isolation 2 

and might benefit by moving towards other individuals (Hamilton, 1971), away from 3 

the center of the group. A game theoretical approach where individual decisions are 4 

influenced by the choices of other group members (Houston et al. 2003; Morrell 2004; 5 

Morrell and Kokko 2004) would provide a more accurate picture of the dynamics of 6 

spatial positioning within groups, and allow investigation of how competition for 7 

positions within groups could be played out. Our model does not include this level of 8 

complexity, but provides a basis upon which such a game theory model could be built, 9 

and provides predictions that could be tested in empirical systems. 10 

 11 

A final pattern that we observe from our model is one where either very central or 12 

very peripheral positions are preferred (figure 7c-d). It is more difficult to predict the 13 

structure of the group from this pattern, although we may expect to see groups 14 

remaining together, with a cluster of individuals at the centre and others occupying 15 

the periphery.  In whirligig groups, for example, central individuals tend to be closely 16 

packed, and nearest-neighbor distances increase towards the periphery of the group 17 

(Romey 1995). Alternatively, as mentioned above, the positioning of other individuals 18 

in the group may exert a strong influence on the behavior of others, causing central 19 

individuals to move to more peripheral positions (to benefit from the dilution effect 20 

(Foster and Treherne 1981), for example), or peripheral individuals moving into a 21 

second ‘tier’ behind the most peripheral to reduce their predation risk (Hamilton 22 

1971). Moving away from other individuals may also lead to a perceived reduction in 23 

group size, altering the trade-off and changing the optimal location for an individual. 24 



 21 

Empirical investigation or more complex modeling approaches could shed light on 1 

how animals respond to conditions such as these. 2 

  3 

The majority of studies looking at the effect of group positioning consider only 4 

‘central’ versus ‘peripheral’ individuals, with no intermediate individuals – they are 5 

either on the edge or not.  Thus, there is a lack of empirical data defining the shapes of 6 

the foraging and predation risk curves. However, some empirical studies suggest that 7 

predators attack only the most peripheral individuals in a group. In fish attacking 8 

Daphnia (Milinski 1977) or groups of surface-dwelling whirligigs (Romey et al. 9 

2008), the predators choose only the individuals on the very edge, suggesting 10 

intermediate positions are actually as safe as those in the very centre. Empirical work 11 

is needed to investigate this, as our results are likely depend on the shapes of the 12 

curves that are assumed to link distance from the group centre with predation risk and 13 

food availability or intake. However, under certain parameter values, our model in 14 

fact predicts a dichotomy between individuals that prefer central positions and those 15 

that prefer edge positions. Only small alterations in their levels of satiation or escape 16 

probability switch preferences from the centre to the edge, suggesting that 17 

categorizing individuals as central or peripheral may be an adequate description.  18 

 19 

Our model includes several further simplifying assumptions. Firstly, the selection 20 

pressures that we considered most important to the fitness of individuals within a 21 

group were predation and food distribution, but there are other factors which could 22 

influence fitness and should be considered in future studies (such as energy 23 

expenditure or potential for reproduction). We assume that there are foraging benefits 24 

to occupying peripheral positions – our model applies to situations where groups are 25 
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foraging on dispersed food resources. Alternatively, groups may be centered on a food 1 

resource or moving together towards aggregated resources. If this is the case, then 2 

food gains are likely to be higher for centrally positioned individuals, or those leading 3 

the groups. In this case, dominance will play a key role in the structuring of the group, 4 

as dominants are able to monopolize access to food (Hirsch 2007), and simultaneously 5 

occupy lower predation risk positions.  6 

 7 

Our model considers only stationary groups, but in many species, moving groups are 8 

common. Rather than differential predation risk and foraging gains from centre to 9 

edge, these groups are likely to differ from front to back. Individuals at the front of 10 

moving groups tend to have higher foraging success, and front positions tend to be 11 

occupied by hungry individuals (Krause et al. 1998; Romey and Galbraith 2008). 12 

There is, however, likely to be an energy cost in occupying front positions, and 13 

individuals at the back can make considerable energetic savings (Krause and Ruxton 14 

2002). Predation risk is also likely to vary as a function of distance from the front of a 15 

group. In chub (Semilotus atromaculatus), individuals occupying front positions 16 

suffered from greater levels of predation than individuals in rear positions (Bumann et 17 

al. 1997). Front positions may therefore be equivalent to edge positions, but with the 18 

added energetic costs.  19 

 20 

Predators may also make deliberate decisions as to which individual within a group 21 

prey to target, rather than attacking peripheral individuals at random (Stankowich 22 

2003). Predators may more successfully track individuals at the edge of groups due to 23 

the confusion effect (Neill and Cullen 1974), explaining why in some systems only 24 

very peripheral individuals are attacked (Romey et al. 2008; Milinski 1977). 25 
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Alternatively, predators may attack individuals that are phenotypically or behaviorally 1 

distinct from the rest of the group (the oddity effect; (Landeau and Terborgh 1986). 2 

Sparrowhawk (Accipiter nisus) attacks on redshank (Tringa totanus) depend on 3 

several behavioral factors related to the vulnerability of the prey (Quinn and 4 

Cresswell 2004), rather than solely on position within the group. Isolation of 5 

individuals may also be important: the selfish herd hypothesis predicts that individuals 6 

are attacked in proportion to the size of their ‘domain of danger’, the area around each 7 

individual that is closer to it than to any other individual (Hamilton 1971). The 8 

perceptual ability of a predator may also limit predation risk for peripheral foragers 9 

(James et al. 2004; Morrell and James 2008). Levels of anti-predator vigilance may 10 

also play a role, and may differ spatially within groups (Beauchamp 2007). Higher 11 

vigilance by peripheral individuals may reduce the foraging benefits associated with 12 

occupying such positions, for example, leading to increased preferences for central 13 

locations, or occupation of peripheral positions by more satiated individuals who have 14 

less need to forage.  15 

 16 

Individuals are likely to want to switch positions within a group. In colonial spiders 17 

(Metepeira incrassata), larger females with egg sacs show a strong preference for 18 

central positions, while younger spiders prefer peripheral positions, as they have yet 19 

to attain sufficient size for successful reproduction (Rayor and Uetz 1993).  If hungry 20 

individuals occupy peripheral positions, then as those individuals become increasingly 21 

satiated, their preference for the safer, central locations should increase, resulting in a 22 

rotation of positions within a group (see also (Krause and Ruxton 2002). Such a 23 

cycling of positions due to changing hunger levels can be seen in whirligig groups 24 

(Romey 1995). Nutritionally deprived roach (Rutilus rutilus) and chub (Leuciscus 25 
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cephalus) show strong preference for front positions (Krause 1993a), but frightened 1 

minnows (Phoxinus phoxinus) tended to seek positions in the centre of shoals (Krause 2 

1993b, c).   3 

 4 

We included satiation and the ability to escape once attacked as the internal state 5 

variables in our model. In reality, both of these factors may be correlated with an 6 

individuals size, parasite load, age (Krause and Ruxton 2002) and sex (Romey and 7 

Wallace 2007), or may be dependent upon one another, if an animal’s ability to 8 

escape from a predator depends on its energy levels, or investment in chemical 9 

defenses (i.e. condition dependent anti-predator responses). These patterns may either 10 

confound attempts to distinguish the factors underlying positional choices, or provide 11 

a means by which preferences can be systematically investigated. In the laboratory, 12 

many of the parameters of our model (such as hunger levels, food availability and 13 

perceived risk of predation) can easily be manipulated, and in certain species, this 14 

may also be possible with levels of defense. It would be instructive to investigate 15 

levels of competition and group structure in response to changes in these parameters, 16 

for groups where individuals differ in one or more of the internal state variables. 17 

 18 

Combining different factors such as foraging and predation risk into a single fitness 19 

function can also be problematic, as they are measured in different currencies (one as 20 

a risk and one as food intake). Stochastic dynamic modeling provides useful 21 

methodology for combining currencies that can be measured in natural systems  22 

(Krebs and Kacelnik 1991; Clark and Mangel 2000; Krause and Ruxton 2002), and 23 

this approach could be applied to the positioning behavior of individuals within 24 

groups (Krause and Ruxton 2002; Hirsch 2007). Finally, there are many other factors 25 
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which may influence positioning within a group and which should be considered in 1 

future approaches, including dominance hierarchies (Hirsch 2007), aggression 2 

(Hemelrijk 2000), food acquisition tactics (producer-scrounger behavior; (Barta et al. 3 

1997; Mónus and Barta 2008), condition-dependent predator avoidance, trade-offs 4 

with other behaviors such as vigilance or mating (Houston et al. 2003; Morrell 2004; 5 

Jackson and Ruxton 2006) and game theoretical approaches. Such future 6 

investigations could provide a fascinating insight into the dynamics of grouping in 7 

animals, extending the predictions we make here. 8 

 9 
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Figure legends  1 

Figure 1: a) Conceptual model relating fitness to the distance from the centre of the 2 

group. Food availability and risk of predation increase with distance from centre, for 3 

individuals that are hungry or satiated and at low (defended) or high (vulnerable risk 4 

of predation. b) Graph of combined fitness due to multiplicative effects of a given 5 

combination of food availability and predation risk (e.g.: defended x hungry).  Filled 6 

circles and dropped lines indicate the optimum distance from the centre for each type 7 

of individual. 8 

 9 

Figure 2: N individuals (black filled circles, here N=10) are placed within a circle of 10 

radius r (solid edged circle). Each individual is a distance d from the centre of the 11 

circle. a) Predators, P (large checkerboard circle, here P=2) appear at random within a 12 

circle of radius R (dashed circle) and attack the nearest individual (solid arrow). b) 13 

Each individual can move a distance c to capture food items (dotted circles 14 

surrounding the individuals). Food items (f) enter from the outside of the group 15 

(dashed lines) and are intercepted by individuals at the solid diamond. Note that 16 

figures 2a and 2b are drawn to different scales. 17 

 18 

Figure 3:  Effect of varying parameters on the link between occupied position (x-axis) 19 

and per capita risk of predation (y axis) in the simulation model. a) Varying group 20 

size (N). Filled squares: N=10, filled circles: N=20, open squares: N=50, open circles, 21 

N=100. b) Varying number of predators (P). Filled squares: P=1, filled circles: P=2, 22 

open squares: P=5, open circles, P=10. c) Varying the probability an individual 23 

evades a predator attack (a). Filled squares: a=0, filled circles: a=0.2, open squares: 24 

a=0.4, open circles, a=0.6. d) Varying the radius of the circle formed by the group (r: 25 
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equivalent to varying density). Filled squares: r=1.128, filled circles: r=1.596, open 1 

squares: r=2.253, open circles, r=3.568. For each panel, all other parameter values 2 

are: N=20, P=2, a=0.2, r=1.595. Distances from the centre are scaled between 0 and 1 3 

(zero being the centre and 1 being the maximum value of r) to allow comparisons to 4 

be made between figure panels. 5 

 6 

Figure 4: Effect of varying parameters on the number of food items captured in the 7 

simulation. a) Varying group size (N). Filled squares: N=10, filled circles: N=20, open 8 

squares: N=50, open circles, N=100. b) Varying number of food items (f). Filled 9 

squares: f=10, filled circles: f=20, open squares: f=50, open circles, N=100. c) Varying 10 

the distance over which an individual can capture a food item (c). Filled squares: 11 

c=0.05, filled circles: c=0.1, open squares: c=0.2, open circles, c=0.3. d) Varying the 12 

radius of the circle formed by the group (r: equivalent to varying density). Filled 13 

squares: r=1, filled circles: r=2, open squares: r=5, open circles, r=10. For each panel, 14 

all other parameter values are: N=20, f=20, c=0.2, r=1.595. Distances from the centre 15 

are scaled between 0 and 1 (zero being the centre and 1 being the maximum value of 16 

r) to allow comparisons to be made between figure panels. 17 

 18 

Figure 5: Results of the model. a) The effect of increasing levels of satiation (s; x-19 

axis) and probability of escaping a predator (a; y-axis). Shading indicates the optimal 20 

distance from the group centre of an individual with each combination of satiation (s) 21 

and escape probability (a), where black indicates central positions (d = 0) and white 22 

indicates peripheral positions (d = 1; all panels). Parameter values used: N=10, P=2, 23 

f=20, c=0.05, r=2. b) As panel a) but with predation risk increased to P=5. c) As panel 24 
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a), but with group size increased to N=20. d) As panel a) but with group radius 1 

decreased to r=0.5 (increased group density) 2 

 3 

Figure 6: Effects of increasing satiation (s) and food availability (f) on the optimal 4 

distance from the group centre (d). Shading again indicates optimal position as in 5 

figure 4. Other parameter values used: N=10, r=2, a=0.2, P=2, c=0.05. 6 

 7 

Figure 7: Effect of altering capture distance (c) on optimal distance from the group 8 

centre (d). Each panel shows the effect of satiation (s) and escape probability (a) on 9 

optimal position in a group (d). Shading again indicates optimal position: black 10 

indicates centre positions (d = 0) and white indicates peripheral positions (d = 1). 11 

Each panel shows different value for capture distance (c). Other parameter values are 12 

N=10, P=2 and f=20, r=2. a) c=0.05, b) c=0.075, c) c=0.1, d) c=0.15. 13 

14 
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Table 1: Parameters used in the models. Information in parentheses relates to the 1 
simulation model only. 2 
 3 

Parameter Description 

N Number of individuals 

d Distance from the centre of the group 

r Radius of the circle in which the prey are positioned 

P Predation risk (number of predation events) 

R (Radius in which predators are positioned) 

a Probability that an individual avoids a predation attempt 

f Number of food items available 

af Angle used for calculating food trajectory 

df Distance used for calculating food trajectory 

c Distance individuals can move to capture the prey 

C Costs of occupying any given position within a group 

F Foraging gains from occupying any position within a group 

B Benefits of occupying any position within a group 

W Fitness of an individual 

 4 
5 
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Figure 1  1 
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Figure 2 1 
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Figure 3 1 
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Figure 4  1 
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Figure 6  1 
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