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APPENDIX A
FAULT SOURCES

The presence of faults in electronic circuits is inevitable
due to the many variables and complex steps involved
when designing and manufacturing them. Fault tolerance
is a research area which is of continued interest since the
presence of faults decreases an electronic system’s reliabil-
ity, which can lead to severe consequences particularly in
safety-critical systems. But also in cases where user experi-
ence is at stake, this can mean significant economic impact
on a manufacturer. Faults can occur throughout the entire
design and fabrication cycle of an electronic system, during
conceptualisation, specification, design, verification, fabrica-
tion and operation. This paper focuses on faults occurring
during fabrication and at runtime, since at these stages a de-
sign is past the point where it can be permanently fixed and
the power of reconfigurable architectures can really be har-
nessed to make such systems more reliable than those which
cannot be reconfigured, i.e. the ones with fixed architectures.
Hence, faults occurring as a consequence of manufacturing,
operation and ageing are briefly discussed here. Based on
this discussion and the fact that the experiments presented
in this paper concentrate on correct circuit function, i.e.
timing is not taken into account at this stage, a simple fault
model regarding transistors as switches that can be “stuck
open” (the transistor is always conducting irrespective of
the gate voltage) or “stuck closed” (the transistor insulates
and blocks any signal) has been adopted.

A.1 Manufacturing
Process technology for manufacturing semiconductor cir-
cuits has made tremendous progress when compared to the
technology that was available 30 years ago, when reliably
printing circuits in CMOS technologies as large as 3 micron
posed major challenges. Transistor sizes have decreased
alongside—or rather enabled by—advances in lithography
and wafer processing, with devices now being as small as
14 nm. Even with careful control and calibration of process
variables an inevitable facts of the physical world are noise
and a degree of mismatch, which leads to variability in
devices fabricated.

These variations are generally classed as systematic or
stochastic (although there is no sharp divide), where sys-
tematic variations are a result of physical limitations to
accuracy of manufacturing, e.g. mask alignment or ion
beam energy over time, and stochastic variations are due
to the atomic-scale size of the devices where the presence
or absence of single atoms, due to inevitable random fluc-
tuations during manufacture, start to matter and impact on
device behaviour. These variations cause random variations
in threshold voltages, speed and power, which may result in
faults occurring due to timing violations or drive strength.
As a consequence, it becomes more important, but also sig-
nificantly higher effort, to create accurate simulation models
and to accurately predict circuit behaviour. If statistically-
enhanced device models are available, then the reliability of
circuit simulations will be improved. However, the level of
uncertainty in predicted circuit behaviour may still increase
due to the feasibility of running a statistically sufficient
number of Monte Carlo samples.

A.2 Environment

The environment in which a circuit is operated can have a
significant effect on its performance and is therefore also a
major cause for faults. The behaviour of electronic devices
is temperature dependent, e.g. shifts in threshold voltage
and carrier mobility affects circuit timing and may, again,
cause faults due to timing violations. High temperatures
increase power dissipation and circuit delay. This is caused
by a number of phenomena that occur when temperature
is increased: semiconductors’ conductivity increases, which
leads to larger transistor leakage currents, which further in-
crease power dissipation leading to self-heating. In contrast,
metals decrease in conductivity, increasing delays in circuits
and dissipating additional heat. This leads to an increase
of the thermal noise floor and introduces timing violations
causing faults and errors. Prolonged exposure to heat can
cause transistors to break down and become permanently
conducting (on) or insulating (off).

Radiation is another environmental cause for circuit
errors, malfunction or even permanent failure. Ionising
radiation can induce currents and cause, in particular in
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sequential circuits or memory cells, illegal states or wrongly
altered memory contents leading to erroneous computation
results. High-energy radiation can even alter the physical
structure of devices through lattice displacement, which
leads to a permanently altered behaviour or, in the worst
case, to permanent failure of components.

A.3 Time

Transistor ageing refers to a number of phenomena which
can cause devices to “wear out”, which in the best case
means a gradual shift towards worse performance and in
the worst case device failure. Ageing is an inevitable cause
for faults and errors. As transistor scaling has progressed,
these effects have become more significant and current
semiconductor technologies require both careful design and
manufacturing to minimise stress, and therefore the impact
of ageing, on the devices. Device ageing is an inevitable
consequence of running a circuit over a period of time and
environmental conditions are a major defining factor of the
speed at which “wear out” takes place. There are a number
of different mechanisms by which a transistor can age as
described in more detail in [1] and [2]: bias temperature
instability (BTI), which results from a charge build up
in the dielectric over time, hot carrier injection (HCI), a
stochastic process of high-energy electrons entering the gate
dielectric, time-dependent dielectric breakdown (TDDB),
resulting from charge trapping that ultimately can cause
a short between source and drain, and electromigration,
which is caused by moving electrons displacing material
(metal tracks and contacts) over time breaking connections.

APPENDIX B
SYNTHESIZING LOGIC GATES ON PANDA
Any binary function can be described by a boolean expres-
sion. For n variables there are 2n possible combinations of
binary values that those variables can take. Each one of
these combinations can be described by an expression or
minterm. By selecting all the minterms associated with the
variable combinations for which a function should output a
‘1’ and summing them together (with an OR operation), an
expression for the logic function can be found. This initial
mapping can often then be minimized in order to reduce
the number of minterms and the number of variables in
each minterm. This is commonly achieved with the Quine-
McCluskey algorithm [3] in circuit design at the next ab-
straction layer up, building logic functions out of standard
AND and OR gates.

An n-input binary logic function can be defined by
a string of 2n bits. Each bit of this string represents the
function’s output based on the input pattern equal to the
bit’s position in the string. Taking the 3-bit function in
Table 1 as an example, the string defining it is 11011000 (the
output column of the truthtable transposed). Table 1 shows
the input states split into two groups, those that produce
a 0 output and those that produce a 1. Here, these will be
referred to as 0-states and 1-states respectively.

Reducing the number of required PAnDA slice branches
works by merging branches with common factors. For ex-
ample, consider two 1-states 000 and 001 that differ by only

ABC Y

000 1
001 1
010 0
011 1
100 1
101 0
110 0
111 0

0-States 1-States

010 000
101 001
110 011
111 100

TABLE 1
Left: truth table for the logic function used in the example. Right: the
input states from the truth table split into two groups based on the

output.

one input which means that the third input does not matter.
If these two states were implemented as branches, changing
the configuration of the PMOS CTs connected to the third
input to be disabled-conducting would have no effect, they
would now both conduct for both states, rather than one or
the other. This means that one is now redundant and can be
removed.

This process breaks down into two instances of boolean
minimisation. If all the 1-states are written as minterms (e.g.
ABC, ABC, ABC . . . ), then a sum of products containing
all of these represents the function required of the PMOS
branches, i.e. whenever this sum of products is true, one
or more PMOS branches must conduct. The same is true of
the 0-states and the NMOS branches. Each product term can
then be directly translated into a branch configuration using
the following rules:

1) Any variables present in the product term represent
enabled CTs.

2) Non-inverted variables map to enabled NMOS CTs
and enabled-inverted PMOS CTs.

3) Inverted variables map to enabled PMOS CTs and
enabled-inverted NMOS CTs.

4) Variables missing after minimisation map to
disabled-conducting CTs.

Looking at the problem in this way enables the use of
standard boolean minimisation algorithms such as Quine-
McCluskey to minimise the expression and hence minimise
the use of branches and CTs required. In addition to stan-
dard boolean functions, this method is capable of mapping
tri-state and voltage divider circuits. For a tri-state function,
the minterm(s) for any desired high-impedance states are
not added to either the 0-states or 1-states lists. When the
PMOS branch and NMOS branch functions are created,
neither will conduct on the input(s) not included and so
the output will be floating. Similarly, if desired, a minterm
could be added to both lists and one of each type of branch
could be made to conduct on that input. This is generally
undesirable and could cause damage to the chip due to
drawing large currents through the CTs.

Through minimising all 216 boolean 4-input functions,
it was found that all of them could be minimised into 8
product terms of each type or less, meaning that any 4-input
boolean function can be implemented on a PAnDA-FÜNF
slice. In addition, there are only two functions that don’t
minimise at all: odd and even 4-parity functions, which are
inverses of each other.
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APPENDIX C
STEP-BY-STEP ILLUSTRATION OF EXECUTING A
STRATEGY LIST

In order to illustrate a typical result of the evolutionary
algorithm, the first eight steps of an “unfixed”-optimised list
for Z0 is worked through and explained in more detail here.
Circuit Z0 is the inverter circuit with one PMOS and one
NMOS CT on Input 0 of branches PMOS 0 and NMOS 0 (see
Table 1). A visualisation of the first five steps is presented in
Figure 1:

0) Strategy 2 - Inputs 0 and 3 are swapped on CAB
0. This is a sensible move as the two CTs used in
the circuit are connected to input 0. If either had
suffered just a conducting fault, this would recover
from it.

1) Strategy 55 - NMOS 0 is swapped with NMOS
4. Again, this is sensible given the implemented
circuit. The NMOS branch from the first CAB is
moved to the 3rd CAB from the left. If the NMOS
branch had suffered an insulating fault this would
be a workaround. Though the NMOS CT had been
moved to input 3 in the first strategy, CAB 2 will
still be in the same state and so the Branch will be
reordered to match CAB 2’s input order.

2) Strategy 17 - Inputs 2 and 3 are swapped on CAB
2. This has no effect in theory. Though an NMOS
Branch has been moved to CAB 2, it is attached to
Input 0 as CAB 2 has the default input order still.
This shows potential for further improvement.

3) Strategy 5 - Inputs 2 and 3 are swapped on CAB
0. This moves the CT on PMOS Branch 0 to Input
2, potentially recovering from a conducting fault on
input 3 of the PMOS 0 Branch.

4) Strategy 74 - NMOS 4 is swapped with NMOS 5.
This certainly seems deliberate as the only NMOS
CT used in the circuit is on NMOS 4.

5) Strategy 3 - Inputs 1 and 2 are swapped on CAB 0,
moving the PMOS CT on PMOS 0 to Input 1. This
CT has now been tried in all four positions on this
branch.

6) Strategy 26 - PMOS 0 is swapped with PMOS 3. This
make a lot of sense given that the previous strategy
tried the active CT in the last possible position on
PMOS 0. It was previously on Input B but will be
translated to Input A when it moves to PMOS 3.

7) Strategy 6 - Inputs 0 and 1 are swapped in CAB 1.
After moving the PMOS CT to a Branch in CAB 1 in
the previous step, the Inputs are now swapped.

The selected strategy list for Z0 appears to have evolved
in a useful way. Apart from the the third strategy, each
change to the circuit puts the circuit into a state that has not
been tried before. This is the obvious approach one would
take to finding a working circuit on a faulty substrate where
the location and nature of the fault is unknown. This result
proves that lists of strategies for this purpose can indeed
be generated automatically by means of an evolutionary
algorithm.

On MiniCAB 0 (leftmost) swap inputs 0 (A) and 3 (D).

Swap NMOS Branch 0 (left, MiniCAB 0) with NMOS Branch 4 (left, MiniCAB 2).

On MiniCAB 2 swap inputs 2 (C) and 3 (D).

On MiniCAB 0 swap inputs 2 (C) and 3 (now A).

Swap NMOS Branch 4 (left, MiniCAB 2) with NMOS Branch 5 (right, MiniCAB 2).
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Fig. 1. A visualisation of the first five steps of a strategy list applied to
circuit Z0 (an inverter). Note that apart from the third strategy applied
(index 2), all the strategies transform an active part of the circuit, sug-
gesting that the evolutionary approach to generating the list converges
towards a useful solution.

APPENDIX D
STOCHASTIC STRATEGIES: NUMBER OF FAULTS
TOLERATED FOR DIFFERENT BIASES

A separate experiment has been undertaken to measure how
the different functions and biases perform under specific
numbers of faults. For each of the functions Z0-Z3 10,000
experiments are carried out, continuously increasing the
number of faults injected and using five different ratios
between the two strategies used. Results are shown in
Figure 2.

The findings echo those of the other experiments in that
branch operations are the most effective strategies. Circuit
Z0 is found to be the most capable of recovering from faults.
This is because there are not many resources required for
this circuit to work and so a large proportion of resources
can be damaged whilst repair is still possible. Since only two
transistors are required for this function to work, hence, as
long as one branch of each type is free of insulating faults
repair is possible. The effect of this can be seen directly from
the results in Figure 2(a).

APPENDIX E
CIRCUIT DIAGRAMS OF THE FOUR TEST CIRCUITS

Circuit diagrams for all four test circuits are provided in Fig-
ure 3. The four test circuits have been selected with regards
to their increasing resource requirements when mapped
onto the PAnDA architecture.
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Fig. 2. The number of circuits fixed out of 10,000 samples when increasing numbers of random faults are introduced into circuit Z0 (a), circuit Z1
(b), circuit Z2 (c), circuit Z3 (d). Five biases of combining the two circuit transformations are tried for each number of faults. The results for circuits
Z1, Z2 and Z3 were truncated to 20 faults as no more circuits were fixed after this point.
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Fig. 3. Circuit diagrams for the test circuits Z0 (a), circuit Z1 (b), circuit Z2 (c) and circuit Z3 (d).
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