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Abstract 

 A novel form of shape-changing bistable structure has been successfully developed through the 

use of viscoelastically generated prestress.  Bistability is achieved through pairs of deflecting 

viscoelastically prestressed polymeric matrix composite (VPPMC) strips, which are orientated to give 

opposing cylindrical configurations within a thin, flexible resin-impregnated fibreglass sheet.  This 

arrangement enables the structure to ‘snap through’ between one of two states by external stimulation.  

Deflection from the VPPMC strips occurs through compressive stresses generated from the non-uniform 

spatial distribution of nylon 6,6 fibres undergoing viscoelastic recovery.  In this study, snap-through 

behaviour of the bistable structure is investigated both experimentally and through finite element (FE) 

analysis.  By using experimental results to calibrate FE parameter values, the modelling has facilitated 

investigation into the development of bistability and the influence of modulus ratio (fibreglass sheet: 

VPPMC strip) on the snap-through characteristics.  Experimental results and FE simulation show good 

agreement with regard to snap-through behaviour of the bistable structure and from this, the bistability 

mechanisms are discussed. 

 

Keywords:  A. Polymer-matrix composites (PMCs); B. Residual/internal stress; C. Finite element analysis 

(FEA); D. Mechanical testing; Bistable (snap-through) structure.   
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1. Introduction 

 

 Morphing technology has received increasing interest in recent years for applications involving 

aircraft aerofoils [1-3], automobile structures [4], and wind turbine blades [5].  This arises from the 

potential benefits that morphing structures can provide over the more conventional mechanical 

approaches; i.e. in terms of reduced cost, complexity and weight, combined with improved aerodynamic 

efficiency and shape adaptivity.  Morphing structures generated from utilising the deformation of fibre-

reinforced polymeric matrix composites (PMCs) have been developed since the 1980s [6-8].  These can 

be bistable or multistable structures, which possess the ability to change rapidly or ‘snap-through’ from 

one stable shape to another by external stimulation, e.g. from piezoelectric patches [9], piezocomposite 

actuators [10] or  pressure [11,12].  To date, these morphing (shape-adaptive or shape-changing) 

structures are generally produced through: (i) thermally induced residual stresses in unsymmetric 

laminates or (ii) elastically induced compressive stresses in symmetric laminates.   

 For (i), research has been carried out by many investigators [6-8, 13-19], in which the mismatch 

in thermal expansion coefficients between the reinforcing fibre and matrix materials is exploited.  The 

resulting residual stresses developed during cool-down from curing can generate large out-of-plane 

displacements to give bistable or multistable behaviour [6, 7].  There is however, evidence to show that 

the residual stresses generated from thermal expansion mismatch within a non-symmetrical multi-layer 

laminate are highly susceptible to hygrothermal variability [15, 17, 20-22].  Thus it is difficult to exploit 

thermal effects [23].   

 For (ii), the concept of morphing structures from symmetric laminates is comparatively recent.  

Initial studies focused on exploiting thermal stresses between different fibre prepreg materials, i.e. 90˚ 

carbon fibre laminated with 0˚ unidirectional glass fibre, to produce a multistable structure with 

symmetric layup across the mid-plane [24].  Nevertheless, Tuttle [25] demonstrated that the thermal 

residual stresses within a composite could be reduced or converted into compressive strains by adopting 

elastic fibre prestressing.  Daynes et al [11, 26] utilised the principle to produce morphing symmetric 

laminates.  By applying prestrain to the 0˚ fibre layers for both CFRP and GFRP [0/90/90/0] laminates 

during resin curing, it was found that bistability could be achieved [11].  In further work [26], prestressing 

was applied to selected fibre layers during curing: here, bistability was produced from laminate layups of 

[0P/90/90P/0]T and [0P/90/90/90P/90P/0]T, with superscript P referring to prestressing in fibres.  In addition 
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to morphing laminates, Lachenal et al [27] produced a bistable twisting I-beam by combining two 

elastically prestressed CFRP flanges on GFRP web geometry, the prestress being achieved by flattening 

the flanges previously moulded to a curved configuration.  By applying an external moment, the beam 

could snap between two stable shapes.  Similar twisting structures, that had multistable capability, were 

also developed [28, 29]. 

 Although the use of elastically generated fibre prestress offers significant advantages over 

thermally induced stress for morphing structures, there are potential drawbacks.  First, fibre length, 

orientation and spatial distribution are restricted by the need to apply fibre elastic tension as the matrix 

cures [30]; these restrictions can compromise fibre and mould geometries for more complex structural 

situations.  Also, achieving suitable stretching rig and reliable fibre clamping designs can be technically 

challenging [26, 31].  Second, the matrix material is polymeric; thus localised matrix creep at the fibre-

matrix interface regions within the composite may occur, in response to the elastically generated 

prestress.  This can be expected to cause some deterioration in prestress levels [30] as recently 

demonstrated by Mostafa et al [32]. 

 Viscoelastically prestressed polymeric matrix composites (VPPMCs) offer a novel solution to 

morphing composite production.  To produce a VPPMC, polymeric fibres are subjected to tensile creep so 

that they progressively extend through viscoelastic deformation; the creep load is then released before the 

fibres are moulded into a matrix.  Following matrix curing, the previously strained fibres continue to 

attempt viscoelastic recovery within the solidified matrix.  This results in compressive stresses being 

generated within the matrix, and these are counterbalanced by residual tension in the fibres.  Previous 

work has demonstrated notable improvements in mechanical properties from VPPMCs, especially in 

terms of impact toughness and flexural stiffness, using nylon 6,6 fibres [30, 33, 34] and UHMWPE fibres 

[35, 36].  There are significant opportunities offered by VPPMC processing, as the fibre stretching and 

moulding operations are decoupled.  Recent published work has also shown that the viscoelastic fibre 

stretching period can be significantly reduced from 24 h to tens of minutes, by using higher creep stress 

levels [37].  In addition to simplifying equipment requirements and procedures, there is total flexibility in 

terms of product geometry [38].  A further benefit is longevity: any potential for deterioration through 

localised matrix creep would be offset by activity from longer term viscoelastic recovery mechanisms 

within the polymeric fibres [30].  Although viscoelastic activity is temperature sensitive, recent 

accelerated ageing (time-temperature superposition) experiments on nylon 6,6 fibre-based VPPMCs have 
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demonstrated no deterioration in impact performance over a duration equivalent to ~25 years at 50°C 

[33]. 

 Clearly, the benefits from VPPMC technology could be applicable to morphing structures.  The 

initial development of a mechanically bistable morphing composite structure, based on the use of 

viscoelastically generated prestress, has been recently reported [39], and subsequently presented in 

conference proceedings [40].  This paper provides further details on the fabrication and evaluation of the 

bistable structure.  Snap-through behaviour was investigated through both experimental and finite element 

(FE) analysis.  The purpose of an FE model was to evaluate the nonlinear response from snap-through of 

the bistable assembly, and offer further insight into the mechanisms of bistability. 

 

2. Background 

2.1. Bistability principles 

 

 To create a simple bistable structure, four identical VPPMC strips can be bonded to a thin, 

flexible resin-impregnated fibreglass sheet, as shown schematically in Fig. 1.  The cross-sectional spatial 

density of fibres (such as nylon 6,6) used for producing the prestress in a VPPMC strip is normally non-

uniform, due to the use of open casting.  This arises from fibres settling towards the bottom of the mould 

prior to curing taking place [30, 33, 34].  As described by Timoshenko [41], the critical load ��� for the 

generation of elastic buckling (beam bending) from an eccentrically compressed strut can be calculated 

through Euler’s formula: 

 

 ��� = ����
4
�  (1) 

 

where E is the Young’s modulus and L is the beam length; I is the second moment of area, which is 

(bh3/12) for a rectangular beam of width b and thickness h.  Therefore, beyond the critical compressive 

load, the resulting non-uniform stress distribution created through the thickness of a thin flat strip can be 

expected to cause bending, to give a mid-span deflection, δ, in Fig. 1.  If a VPPMC strip is considered in 

isolation, δ can be associated with the prestressed beam relationship [42]: 
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 � = ��
�
8��� (2) 

 

Here, P is the force generated from the compressive prestress and Em is the elastic modulus of the matrix 

material; I and L are as defined in Eq. (1).  The distance between beam and fibre centroids, e, can be 

estimated from the cross-sectional spatial density of fibres in a composite strip sample.  As shown in Fig. 

1, the upper and lower strips are oriented to deflect in opposite directions, giving opposing cylindrical 

configurations within the structure.  Therefore, the whole assembly should be capable of demonstrating 

bistability. 

 For a situation where a simple concrete beam is prestressed by steel rods which occupy a 

relatively small proportion of the total beam volume, Eq. (2) can be expected to give realistic predictions 

[43].  For the current work however, the assumption that Em in Eq. (2) can be represented by the matrix 

modulus alone may be unrealistic.  This arises from (i) the nylon fibres occupying a significant proportion 

of the total beam volume and (ii) the addition of the resin-impregnated fibreglass sheet.  The limitations 

and applicability of Eq. (2) on beam structure configurations relating to the bistable composite assembly 

have been previously discussed [40].  In this work however, such limitations have been addressed through 

the use of FE-based numerical simulation as described below.   

 

2.2. The finite element method 

 

 FE analysis offers an approximate solution to realistic types of structures.  To understand further 

the deformation mechanisms of the VPPMC-based bistable morphing composite structure, it is necessary 

to apply FE to the nonlinear response from snap-through and determine the equilibrium configurations.  

Thus, FE modelling was used to complement the experimental study by offering further insight into the 

snap-through mechanisms from bistability. 

 The simulation of viscoelastic prestress was achieved through a predefined temperature change 

in the fibre material.  During cool down from high temperature curing in composite production, it is well 

known that residual thermal stresses will be generated due to mismatch in thermal expansion coefficients 

between the constituent materials [31, 44, 45].  Therefore, in an FE model, the force can be generated by 

employing a temperature change to the embedded fibre material, with a constant thermal expansion 
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coefficient [26, 46].  Since recovery force inside a VPPMC sample has been measured through 

experimental procedures [47], the magnitude of the recovery force can be represented by the thermally 

induced force within a model, to give deflection, δ, as shown in Fig. 1.  Detailed construction of the FE 

model is presented in Section 4. 

 

3. Experimental procedures 

3.1. Production of VPPMC strips 

 

 Production of the VPPMC strips followed previously described procedures [30, 33, 34] and the 

main points are outlined here.  A continuous multifilament yarn of nylon 6,6 fibres with 140 filaments, 26 

µm filament diameter and 94 tex, was used.  This was supplied by Ogden Fibres Ltd, UK.  The yarn was 

annealed at 150°C in a fan-assisted oven for 0.5 h; this step was essential for providing long-term 

viscoelastic recovery following the applied creep load.  As ~330 MPa has been the most commonly used 

stress for VPPMC production [30, 33, 34, 38, 47-49], the yarn was then subjected to a 330 MPa tensile 

creep stress for 24 h under ambient conditions (20-21°C, 30-40% RH).  The creep load was subsequently 

released and the yarn was folded, cut into lengths of ~500 mm and brushed into flat ribbons ready for 

moulding. 

 The matrix material was a clear-casting polyester resin, Reichhold Polylite 32032, mixed with 

2% MEKP catalyst, supplied by MB Fibreglass, UK.  This had a gel-time (at room temperature) of ~0.3 

h.  Unidirectional continuous fibre composites were open-cast in two aluminium moulds, the process 

being completed within 0.5 h following the fibre stretching procedure.  Each mould had a polished 

channel that was 10 mm in width and 1 mm in depth, for casting a 460 mm strip of material.  The average 

(macroscopic) fibre volume fraction was ~18%.  The two composite strips were then removed from the 

moulds after ~2 h and each strip was cut into two 200 mm lengths to provide the four separate VPPMC 

strips. 

 

3.2. Production of the bistable composite structure 

 

 To produce a bistable composite assembly, a 200 × 200 mm square fibreglass tissue, with an 

areal density of 30 gm-2 was used.  First, the tissue was impregnated, by hand lay-up, with the same resin 
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used in Section 3.1.  Following resin curing, after ~24 h, two of the 200 mm VPPMC strips were bonded 

to each side of the fibreglass layer.  The assembled composite sample was then held under a weighted 

solid plate for a further 48 h.  For repeatability purposes, three of these VPPMC-based ‘test’ samples were 

produced and stored at 20-21°C for subsequent evaluation.  As facilities were limited to producing one 

sample at a time, there was some variation in sample age on subsequent testing. 

 A ‘control’ sample of the composite assembly was also required, this being structurally identical 

to the VPPMC-based test samples, but with the 24 h fibre stretching stage omitted.  Instead, the annealed 

yarn at this stage of production was stored under the same ambient conditions for 24 h, prior to composite 

production.  Therefore, the control sample provided a reference to determine whether other production-

based stresses might be significant. 

 The fibreglass layer, during its production, was placed on mould release film.  Therefore, the 

side in contact with the film surface had a smooth finish while the opposite side had a comparatively 

rough surface.  To clarify any potential influences from this slight difference, cylindrical shapes with the 

smooth resin layer on the outside convex surface were denoted as Shape I; while those with the smooth 

layer on the inside concave surface were denoted as Shape II. 

 

3.3. Evaluation of the bistable composite assembly 

 

 The three test assemblies were evaluated for static (stable) deflection at the centre of each 

VPPMC strip, this being associated with δ in Fig. 1 and Eq. (2).  Subsequently, a Lloyd Instruments EZ-

50 testing machine with a 2.5 N load cell was used for dynamic (snap-through) evaluation of the bistable 

samples.  Each test sample was supported on a rigid three-point bending jig as illustrated in Fig. 2, and a 

jig span of 190 mm enabled the supports to be centred on the VPPMC strips at the sample edges.  

Bending was achieved through a point-force indenter as shown schematically in Fig. 2.  The three bistable 

samples were each tested three times to give a total of nine readings in each snap-through direction with a 

test speed of 60 mm/min.  As explained in Section 3.2, there was some variation in sample age for the 

snap-through tests (i.e. 338, 434, 646 h), thus the average age for evaluation of snap-through behaviour 

was considered to be ~500 h after production. 

 

4. FE model 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
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4.1. Material properties required for the FE model 

 

 To construct the FE model, certain geometrical information and material properties relating to 

the bistable structure were required.  For geometry, isolated VPPMC strips were produced following the 

procedures described in Section 3.1, to evaluate the dimensions of a single beam structure.  Here, the 

resulting mean values based on four samples were 9.89 ± 0.01 mm in width and 1.10 ± 0.02 mm in 

thickness.  A further batch of four cured fibreglass strips were made following Section 3.2 but with 

dimensions of 200 × 10 mm.  This enabled the thickness of the mid-layer within a bistable assembly to be 

determined, and the mean value was 0.40 ± 0.03 mm.  The glass fibre volume fraction was found to be 

3.2%, based on weight measurements. 

 

Table 1 Mechanical properties of the materials used in the bistable assembly. 

 Nylon 6,6 fibre [50] Polyester resin [34, 51] E-glass fibre fabric [52] 

Density, ρ (g/cm3) 1.14 1.12 2.55 
Young’s modulus, E 

(GPa) 
3.3 3.3 72 

Poisson’s ratio, υ 0.41 0.40 0.25 

Thermal expansion 
coefficient, α (˚C-1) 

90×10-6 -- -- 

 

 The required mechanical properties of the materials involved are listed in Table 1.  As explained 

in Section 2.2, the thermal expansion coefficient of nylon fibre was needed for the model to induce fibre 

prestressing through a predefined temperature change.  Another concern was the effective modulus of the 

glass fibre mid-layer.  Since this layer was very thin (~0.4 mm), measurement of the elastic modulus 

through three-point bending tests [34] was unrealistic.  Thus a theoretically-based predictive model was 

considered to determine the stiffness of the mid-layer.  It is well-known that for a two-phase composite 

with known fibre volume fraction (Vf), the simplest model to predict the effective modulus is the ‘rule of 

mixtures’, which is represented by the Voigt-Reuss (VR) bounds [53-55].  The Voigt upper bound is the 

isostrain rule of mixtures, which assumes the fibre reinforcement and matrix are arranged in parallel and 

subject to the same stress.  The Reuss lower bound is the isostress rule of mixtures, in which the applied 

stress is perpendicular to the fibres and constituents of the composite undergo the same stress.  The upper 

bound ����  and lower bound ����  can be represented through: 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
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 ���� = ���� + ���� (3) 

 ���� = ����� +
��
���

��
 (4) 

 

where Ef is the elastic modulus of the fibre reinforcement; Vm is the matrix volume fraction; the 

superscripts ‘u’ and ‘l’ correspond to the upper and lower bounds, respectively.   

 For randomly oriented two phase fibre composites, an expression similar to the rule of mixtures 

for the effective modulus ��� can be utilised as follows [56]: 

 

 ��� = ����� + ���� (5) 

 

where k is a fibre efficiency parameter, which depends on Vf and the Ef /Em ratio; the latter is usually 

between 0.1 to 0.6.  For a two-dimensional (in plane) random orientation of fibres, it has been 

demonstrated that k is 3/8 [56].  Thus for our work, the suitability of Eq. (5) to predict ��� for glass fibre 

mat reinforced PMCs was required.  With the material properties listed in Table 1, the ��� is plotted in 

Fig. 3 as a function of Vf, together with the upper and lower VR bounds from Eqs. (3) and (4).  Good 

agreement is found between predicted values from Eq. 5 with k = 3/8 and experimental points from 

published work [57, 58].  Thus Eq. (5) enables the effective modulus of the mid fibreglass layer (Vf = 

3.2%) in our sample to be calculated (with k = 3/8).  This gives a value of 4.06 GPa. 

 

4.2. FE model construction 

 

 For the FE study, ABAQUS software was adopted.  Numerical simulation analysis was 

developed to identify the structural response of the bistable assembly and the possible effects of various 

factors on the sample configuration.  To simulate the bistable morphing structure as illustrated in Fig. 1, 

the model consisted of four identical 200 × 10 × 1 mm strips with 18% Vf and a 200 × 200 × 0.4 mm 

fibreglass layer (Section 4.1).  As fibres settle towards the bottom of the mould (Section 2.1), fibres in the 
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model were set to be 0.2 mm away from the beam centroids, and constrained within the matrix utilising 

the ‘embedded region’ method; this value has been verified through optical microscopy [39].  Strips were 

then bonded on the edges of the fibreglass layer through ‘tie’ constraints and numbered as ‘X1’, ‘X2’, 

‘Y1’, ‘Y2’, with strips ‘X1’ and ‘X2’ placed on the Z- side of the mid-layer, and strips ‘Y1’, ‘Y2’ on the 

Z+ side, as presented in Fig. 4. 

 The analysis was performed using the following: T3D2 elements (a 2-node linear 3-D truss) on 

fibres, C3D8R elements (an 8-node linear brick, reduced integration, hourglass control) on VPPMC 

strips, and S4R elements (4-node general purpose reduced integration shell elements) on the mid-layer.  

Geometrically nonlinear algorithms ‘NLGEOM’ were employed.  The ‘stabilize’ function was used in the 

model to minimise the instabilities [11, 59] with a damping factor of 1×10-6.  Element size used for the 

mid-layer was 5 × 5 mm, and 5 × 1 × 0.2 mm on the strips, which gave a total element number of 9600.  

The snap-through model developed in this work comprised three steps: 

 Step-1: Generation of the prestress within a composite strip; 

 Step-2: Snap-through response of the bistable structure upon loading; 

 Step-3: Recovery of the structure after loading. 

 In Step-1, since recovery force within a VPPMC sample can be measured experimentally [47], a 

particular viscoelastic recovery force may be represented through the cooling of a polymeric fibre as 

explained in Section 2.2.  As fibres are constrained within the composite, compressive stresses in the 

matrix are generated through the fibre-matrix interface.  Since the peak curing temperature of the resin 

used in this study was found to be less than 28˚C [60], any residual thermal stresses induced by resin 

curing could be neglected in the FE analysis.  Step-2 was achieved through applying displacement to an 

indenter with 6 mm radius, to simulate the point-force indenter in Fig. 2, at a velocity of 60 mm/min.  

‘Analytical rigid’ was employed to simulate the indenter.  This did not require meshes, so it could reduce 

the simulation period and minimise the mesh dependent snap-through load [61].  In Step-3, the loading 

was removed to enable the model to recover freely. 

 The constrained translational degrees of freedom applied to the plate in different steps are shown 

in Fig. 4; no rotational constraints were applied to the panel.  Numerical simulation results were 

compared with the experimental data to determine model significance, i.e. the experimental snap-through 

process of the bistable assembly with sample age of ~500 h, loaded with the point-force indenter (Section 

3.3) at 60 mm/min was chosen as the reference.  Development of the snap-through process and effect of 
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modulus ratio on snap-through behaviour were subsequently performed, based on the adjusted model 

solution.  The results were then analysed to establish the snap-through mechanism for the proposed 

bistable structure. 

 

5. Results and discussion 

5.1. Static evaluation of the bistable structure 

 

 Fig. 5 shows a typical VPPMC-based test (bistable) sample in comparison with the control 

sample.  The test sample with curved surface is shown in one of the two stable shapes, i.e. Shape II as 

described in Section 3.2.  It is clear that the control sample is flat, signifying that there were no other 

production-based residual stresses of any significance.  Therefore it may be concluded that deflection 

from the test sample is generated through viscoelastic prestress alone.  The static deflection δ (as shown 

in Fig. 5) was measured with time, and the mean from all three samples at ~500 h was found to be 11.6 ± 

0.4 mm standard error.  This was based on 6 readings, i.e. one reading from each stable state. 

 

5.2. Dynamic (snap-through) characteristics 

 

 Fig. 6 shows representative load-displacement curves from a typical bistable sample tested at 60 

mm/min.  The snap-through direction for (a) is Shape I to Shape II, while (b) represents the snap-back 

process from Shape II to Shape I.  The snap-through process in both directions initially shows a region of 

fluctuation below ~3mm displacement, followed by a critical snap-through load.  These initial 

fluctuations can be attributed to the snap-through effect from localised ripples on the sample surface as 

highlighted in Fig. 7.  A possible explanation for the fluctuation effect arises from the bistable assembly 

being produced through the hand lay-up process (Section 3.2).  Thus some non-uniformity in the 

distribution of resin and variability in areal density of the glass fibre sheet throughout the mid-layer can 

be expected, resulting in a variation in load-displacement characteristics for the localised ripples.  

Moreover, although the indenter was positioned at the centre of the assembly, the sample was not 

geometrically perfect; thus displacement effects from the point loading force could propagate 

preferentially in any direction. 
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M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 12

Table 2 Point-force loading snap-through test results with a test speed of 60 mm/min; SE is the 
standard error of the mean. 

 Test speed 60 mm/min 

Sample No. Peak load (N) Displacement at peak load (mm) 

1 1.32 ± 0.02 16.0 ± 0.4 
 1.26 ± 0.02 13.1 ± 0.2 
2 1.10 ± 0.04 17.5 ± 0.8 
 1.47 ± 0.01 17.6 ± 0.5 
3 1.24 ± 0.03 14.1 ± 0.1 
 1.57 ± 0.08 17.7 ± 0.2 

Mean ± SE 1.32 ± 0.04 16.0 ± 0.5 

 

 The results of peak loading force and corresponding displacement from the snap-through tests 

are listed in Table 2.  At a sample age of ~500 h, the peak force and displacement were found to be 1.32 ± 

0.04 N and 16.0 ± 0.5 mm; the deviations in data values may be attributed to variations arising from 

sample age and hand lay-up processing.  Clearly, the displacement values in Table 2 are larger than the 

static values (11.6 ± 0.4 mm) reported in Section 5.1.  Since displacement recorded during snap-through 

was the maximum value from the centre of each sample, the differences may be explained by flexibility 

effects within the fibreglass sheet, as the static values were measured at the edges of each sample.   

 

5.3. FE analysis 

5.3.1. Numerical simulation 

 

 The loading history for FE analysis is illustrated in Fig. 8.  As explained in Section 4.2, prestress 

was introduced to the composite through a ‘predefined field’ in Step-1, and only fibres were subjected to 

the temperature change ∆T.  As the amplitude of ∆T determines the force that is generated, which leads to 

sample deflection, a linear relationship was obtained from the FE model, which could predict the ∆T 

value for the required deflection at ~500 h; i.e. 11.6 mm.  The relationship (δ = 0.0973 ∆T + 0.3941) gave 

a value of 115˚C for ∆T. 

 Using the parameters outlined above and information from Section 4, the FE model was 

generated and the first stable shape in the y-direction after Step-1 is shown in Fig. 9.  This is associated 

with the von Mises stress distribution within the mid-fibreglass layer.  Since the stress within the fibres is 

much higher than the strip and layer, the stress distribution is not clearly presented in Fig. 9 (a).  Thus the 

mid-layer is isolated to demonstrate the stress distribution as shown in Fig. 9 (b).  It shows that the von 
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Mises stress is symmetrical about the centre of the structure, and the maximum von Mises stress is 

located within the area influenced by the combined effect of the strips.  As the stable cylindrical shape is 

in the y-direction, any deflection in the y-direction is not constrained, thus a low stress distribution area is 

formed along this direction.  The strip deflection in the x-direction however, is constrained by the 

structure, which therefore gives a higher concentration of stress. 

 Step-2 and Step-3, as described in Section 4.2 and Fig. 8, were then applied to the FE model.  In 

contrast with the experimental investigation, the model is based on homogeneous materials, the whole 

structure is perfectly symmetrical, and snap-through and snap-back processes are identical.  Therefore, 

only the snap-through process was investigated and the stable shapes before and after loading are shown 

in Fig. 10.  Note that the white object represents the simulated rigid point-force indenter, and the 

deflection of the second stable shape in the x-direction is found to be equal to that of the first stable shape, 

i.e. 11.6 mm.  The loading velocity of 60 mm/min for Step-2 enables direct comparison of the FE results 

to the experimental snap-through process in Section 5.2, as shown in Fig. 11. 

 As discussed in Section 5.2, the region of fluctuation at the beginning of the experimental 

loading process was thought to be caused by variations resulting from sample production, while the FE 

model was based on homogenous materials and uniform geometries.  Therefore, the FE load shows a 

linear relationship with loading displacement, as demonstrated in Fig. 11.  The FE model gave a peak 

load of 1.26 N which is comparable to the experimental data of 1.32 ± 0.04 N, and the variation could be 

attributed to optimisation of model geometry (Section 4.2); however, the displacement at peak load was 

8.42 mm, i.e. approximately half the value obtained from experimental data (16.0 ± 0.5 mm).  For 

displacements above ~8 mm, the gradient of the experimental curves prior to snap-through is similar to 

the FE curve.  Therefore, we suggest that the discrepancy below 8 mm may be attributed to displacement 

losses from fluctuations below 3 mm in the former case (Section 5.2); hence the shift in peak load 

position.  It can also be seen that the load-displacement process in the numerical simulation differs from 

the experimental characteristic in terms of snap-through behaviour: in the experimental process, the snap-

through occurs rapidly when peak force is reached; in the FE simulation however, there is some delay 

after reaching the peak load.  Furthermore, it was found that the critical displacement value in Step-2 for 

the snap-through phenomenon to occur in the model was 14.2 mm, i.e. similar to the displacement at peak 

load from the experimental results.  When this value was reached, the panel deformed quickly to the 

second stable shape.  Thus, it can concluded that since the actual sample is not perfectly symmetrical, 
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snap through occurs when it has reached the peak load, while the FE results show that peak load and 

indenter displacement are both essential to the snap-through behaviour. 

 The FE model of the morphing bistable structure demonstrates validity in terms of peak load and 

critical displacement.  Despite the differences outlined above, it is clearly a convenient tool to investigate 

factors that could affect bistable snap-through behaviour.  These include prestress level P, fibre volume 

fraction Vf, edge length L, and modulus of the mid-layer EML.  Of particular interest are the effects of 

sample deflection and material modulus values on the development of bistable behaviour and 

understanding of the underlying mechanisms.  To investigate the effects of various factors, the basic 

model parameters are maintained constant, and the chosen factor can then set as the variable. 

 

5.3.2. Development of bistable behaviour 

 

 It has been experimentally demonstrated that the bistable sample deflection δ is directly 

proportional to prestress force P in Eq. (2) [40].  Since sample deflection δ is proportional to ∆T (Section 

5.3.1), FE analysis can be used to investigate the development of snap-through behaviour in terms of 

model deflection; i.e. realistic deflections can be achieved through adjusting the prestress levels and Vf 

within a composite.  The snap-through responses of the panel with δ ranging from 1.6 to 11.7 mm were 

investigated using the FE method and results are shown in Fig. 12.  Here, the dashed lines represent the 

trends in maximum load and critical indenter displacement.  Inserted figures show the corresponding 

deformation (contours) during different snap-through stages. 

 As shown in Fig. 12, pre-snap-through behaviour basically follows the same characteristic, and 

the maximum (peak) load increases with deflection.  No clear critical snap-through indenter displacement 

is observed with sample deflections less than 3.7 mm and, beyond 5.8 mm, the load at critical 

displacement increases linearly with deflection.  Furthermore, with increasing deflection, peak load and 

critical displacement diverge from each other, and gradually form two snap-through features as 

highlighted by the images in Fig. 12.  Feature 1 is formed as contours in the y-direction contribute 

collectively to snap, giving a peak load to the curve.  Feature 2 corresponds to a similar effect in the x-

direction and occurs when the loading indenter reaches the critical displacement; the structure then jumps 

rapidly into the second stable shape. 

 

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 15

5.3.3. Effect of modulus ratio 

 

 Section 5.3.2 demonstrates that the snap-through behaviour of the proposed bistable structure 

depends on the movement of contours in both x- and y-directions.  As model deflections increase, there is 

greater divergence between peak load and critical displacement, which is detrimental to a rapid snap-

through response.  This section looks into the feasibility of improving this response.  The sample stiffness 

could be considered as a vital factor in affecting the snap-through behaviour, especially since the VPPMC 

strips and mid-layer were different materials (Sections 3.1 and 3.2).  Thus a modulus ratio, RE, can be 

defined as (Elayer/Estrip); i.e. the ratio of elastic moduli between the mid-layer and prestressed strips.  

Therefore, the FE model developed in Section 5.3.1 is denoted with an RE value of (4.06/3.30), i.e. 1.23. 

 To investigate the modulus ratio effect, model parameters from Section 5.3.1 were adopted.  

With RE as the variable, the corresponding snap-through responses are plotted in Fig. 13.  Here, the 

dashed line shows how the maximum load during snap-through varies with RE.  Thus when the mid-layer 

is more flexible than the VPPMC strips (i.e. RE<1), a large snap-through region is developed; conversely, 

as RE increases, (the layer becoming stiffer), the two features (as highlighted in Fig. 12) gradually merge 

into one peak.  The maximum load can be seen to reach a peak at an RE value of 4, and then starts to 

decrease.  Therefore, the ability of the bistable structure to respond rapidly can be enhanced through 

adjustment of the RE value; i.e. material properties can be tailored to produce bistable structures for 

specific objectives. 

 Fig. 14 shows the effect of RE on maximum load, critical displacement and model deflection.  

Here, the maximum load peaks at an RE value of 4, concurring with Fig. 13.  The critical displacement for 

snap-through and model deflection both decrease as the mid-layer stiffness increases, becoming closer, 

thus facilitating a more rapidly responding snap-through. 

 

5.3.4. Bistability mechanisms 

 

 The snap-through behaviour of a bistable structure utilising VPPMC technology has been 

investigated through both experimental and numerical methods.  For a symmetrical model consisting of 

homogeneous materials, the snap-through performance is dependent on the contours accumulated in two 

directions during the loading process, which leads to two snap-through features: (i) the first contour 
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transition generates a peak in the load-displacement curves; (ii) the following contour transition 

determines the critical displacement in the snap-through behaviour.  As the structure is based on two 

composite materials, a critical value of modulus ratio exists, where the two features merge into one snap-

through peak (Section 5.3.3).  This infers that the rapid response characteristics of the bistable structure 

can be improved through tailoring the material properties.  The differences between numerical and 

experimental results illustrated in Fig. 11 may be further explained: since the real sample is not perfectly 

homogeneous as demonstrated in Fig. 7 (localised ripple effect), the first contour effect, i.e. Feature 1 (as 

observed in the model), could be dispersed into small ripples during loading, which leads to its 

disappearance.  Displacements from the small ripples occur at an early stage of loading to create the area 

of fluctuation as shown in Fig. 6, and this we believe, shifts the critical snap-through displacement, as 

demonstrated in Fig. 11. 

 

5.3.5. Future considerations 

 

 Since composite materials can reduce structural weight and complexity, their use as morphing 

structures adds an extra dimension to their exploitation within engineering applications.  In aerospace, 

simple aerofoil shape control can be achieved by using shape-adaptive structures [1-3].  For automotive 

applications, there is interest in shape-changing structures for improved aerodynamic performance [4].  

Moreover, morphing structures in wind turbines offer new approaches for load control to reduce blade 

stress [5].  Clearly, progression from the development of bistable to multistable composite structures will 

enable improved control and increased shape-changing variability, thereby facilitating further 

exploitation. 

 In this paper, we have presented an alternative solution to producing bistable morphing 

composite structures.  As highlighted in Section 1, the viscoelastic fibre prestressing technique offers 

benefits in terms of flexibility in manufacture and moulding geometry, with demonstrable product 

longevity.  Multistable structures may also be achievable, based on viscoelastically generated prestress.  

For example, single bistable structures could be combined to produce a multistable assembly.  Here, FE 

analysis based on further development of the current model would facilitate this work, as it should lead to 

optimised model solutions for more efficient experimental verification. 
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6. Conclusions 

 

 This work reports the snap-through behaviour of a novel morphing bistable structure, based on 

the principles of viscoelastically generated prestress.  An FE model was successfully developed to 

simulate the bistability, and the viscoelastic recovery mechanism within a VPPMC was achieved by 

exploiting thermally induced dimensional changes within the fibre material.  The main findings are: 

(i) A localised ripple effect was observed during snap-through testing of the bistable structure with 

a point-force indenter, which was not predicted through numerical simulation.  This discrepancy 

is attributed to the non-uniform distribution of resin and glass fibre within the mid-layer, 

resulting in unstable load transfer. 

(ii) Numerical simulation results of the snap-through behaviour show good agreement with the 

experimental work in terms of peak load and critical displacement.  Investigation into the 

development of bistable behaviour shows the contours accumulated in both x- and y-directions 

give two features which determine the snap-through performance of the bistable structure.  These 

two features gradually diverge as model deflections increase. 

(iii) By considering the modulus ratio effect, the model solution demonstrates that rapid response 

from the bistable structure can be improved through adjustment of the modulus ratio value; in 

practice, this can be achieved through tailoring the material properties. 

(iv) From the experimental and numerical simulation results, analysis of the bistable behaviour offers 

further insight into the snap-through mechanisms (critical load and displacement) of these 

structures. 

 VPPMC technology offers a novel solution to produce morphing composite structures.  It 

provides flexibility in terms of product geometry and offers product longevity.  Moreover, the influence 

of sample deflection and modulus ratio show that VPPMC-based morphing composite structures could be 

tailored to various industrial applications. 
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Figure captions 

 

Fig. 1. Schematic representation of bistable VPPMC principles, showing the VPPMC assembled 
structure in both states (Shapes I and II) and also the prestress-generated deflection δ in 
accordance with Eq. (2).  Redrawn from [39].   

 

Fig. 2. Schematic three point bending set-up used to evaluate the snap-through characteristics of the 
VPPMC-based test samples; a point-force loading indenter was adopted. 

 

Fig. 3. Effective modulus of glass fibre mat reinforced polyester resin composite as a function of 
fibre volume fraction. The dashed line represents Eq. (5) with k = 3/8, showing good 
agreement with published data [57, 58]; the black solid lines represent the standard ‘rule of 
mixtures’ relationships, i.e. Eqs. (3) and (4). 

 
Fig. 4. Boundary and loading conditions on the plate: (a) constraints applied in Step-1; (b) 

constraints applied in Step-2. 
 
Fig. 5. An assembled VPPMC-based bistable sample (test), compared with the equivalent control 

(no prestress) sample. 
 
Fig. 6. Snap-through load response of the bistable composite assemblies in both directions with a 

test speed of 60 mm/min. 
 
Fig. 7. Localised ripple effect during the snap-through tests, showing the critical moment (a) before 

and (b) after the snap-through event. 
 
Fig. 8. Loading history for the FE analysis: (a) temperature change during the FE process; (b) 

displacement change of the indenter through the modelling period. 
 
Fig. 9. Simulated stable shape in the y-direction generated after Step-1: (a) stress distribution within 

the whole bistable structure; (b) stress distribution within the fibreglass mid-layer. 
 
Fig. 10. Snap-through process of the bistable structure through the FE model: (a) original plate; (b) 

first stable cylindrical shape in the y-direction; (c) second stable cylindrical shape in the x-
direction. 

 
Fig. 11. Reaction force versus indenter displacement within the snap-through process for FE 

simulation, compared to the experimental data from Section 5.2. 
 
Fig. 12. Development of the snap-through process for a bistable structure panel with pre-defined 

deflection values, δ.   Dashed lines show the change in maximum load and critical 
displacement for snap-through behaviour; inserted figures show the corresponding 
deformation (contours) that occur (a) before and (b) after the critical moment of each feature. 

 
Fig. 13. FE results showing load-displacement curves for bistable structures with different modulus 

ratios, RE. 
 
Fig. 14. FE results of the modulus ratio effect on peak load, critical displacement and model 

deflection; dashed lines show the trends. 
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Fig. 6. 
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Fig. 12. 
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Fig. 14. 
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