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1. Introduction

     The development of selective and sensitive chemosensors for the 

recognition of cations and anions of biological interest has been a 

subject of current research in recent years given that they play an 

important role in many environmental and biological processes.1–4 

Amongst the various essential metal ions in the human body, copper 

is the third most abundant transition metal ion. Copper as a catalytic 

cofactor, plays a crucial role for a variety of metal enzymes 

including superoxide dismutase, cytochrome oxidase and tyrosinase. 

However, if excessive amounts are ingested, exposure to a high level 

of copper may result in neurodegenerative diseases as it is involved 

in the production of reactive oxygen species.5 Furthermore, in 

addition, high levels of ingested copper causes gastrointestinal 

disturbance even when present for a short period of time, whilst over 

longer periods, liver or kidney damage may also occur.6 Thus 

although copper is essential for life, it can also be highly toxic to 

organisms.   For these reasons, Cu2+ is one of the most frequently 

studied metal ions of the first row transition metals in the area of 

chemosensors.7, 8 Beside this, Cu2+ has the highest formation 

constant with ligands which contain oxygen or nitrogen donor 

atoms.9 Therefore, the development of highly selective chemosensors 

for the copper ion in the presence of various metal ions is attracting 

* Corresponding author. Fax: +81 952 28 8548; e-mail address: yamatot@cc.saga-u.ac.jp 

(T. Yamato). 

growing interest. Of the sensors reported to-date, several advantages 

for fluorescent chemosensors over other methods have been noted. 

These include their sensitivity, specificity and real time monitoring 

with a fast response time.10  Although fluorescent chemosensors for 

the copper ion have been widely investigated,11 there are still only 

some examples of “off-on” sensors.12 As Cu2+ is a fluorescence 

quencher, owing to its paramagnetic nature,13 most fluorescent 

sensors bind Cu2+ by the fluorescence quenching process which 

involves a charge-, or energy-transfer mechanism.14 Fluorescence 

quenching is unfavourable for a high signal output and also hampers 

the temporal separation of spectroscopically similar complexes with 

time-resolved fluorometry.15 Considering this factor, Yoon et al. 

have synthesized a highly selective and ratiometric ‘off-on’ sensor, 

namely a rhodamine-pyrene derivative for Cu2+ detection.16  

    Many fluorescence mechanisms have also been reported based on 

photoinduced electron transfer (PET), intermolecular charge transfer 

(ICT), excited state intramolecular proton transfer (ESIPT), excimer 

formation and non-coordinative interations between a ligand and the 

metal ion. In the case of PET, there is little or no change of the 

spectral shifts with changes of emission intensities, whereas both 

spectral shifts and intensity changes are observed for ICT, ESIPT 

also shows fluorescence enrichment with or without accompanying 

spectral changes. Furthermore, excimer emission typically provides 

a broad fluorescence band without vibrational structure, with the 

maximum shifted, in the case of most aromatic molecules.17 In order 
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to develop the fluorescence intensity enhancement of the receptor 

upon binding of Cu2+ via a photoinduced intramolecular electron 

transfer, one needs to carefully choose or design the receptor 

molecule containing a fluorophore. The fluorescence quenching 

needs to be maximized in the free receptor responsible for the PET, 

whereas the PET should be minimized in the Cu2+-bound state of the 

receptor.   Among different fluorophore units, pyrene is the most 

useful due to its high fluorescence quantum yield, chemical stability, 

and long fluorescence lifetime. Additionally, pyrene exhibits 

monomer-excimer dual fluorescence, and the fluorescence intensity 

ratio of the monomer-to-excimer emission is sensitive to 

conformational changes of the pyrene-functionalized system.11a,18

Consequently, several pyrene-based sensors have been constructed 

for metal ion detection.19 Based on monomer-excimer conversion, a 

pyrene chemosensor containing a thiophene moiety was a highly 

selective and ratiometric fluorescent sensor which induces the dual 

appearance of excimer emission and disappearance of monomer 

emission after addition of Cu2+ ion.20 Venkatesan and Wu. have 

designed a pyrene-based fluorescent probe bearing the hydrazinyl 

pyridine moiety for Cu2+ ion detection based on the PET mechanism. 

The chemosensors binding with the metal ion block the PET 

mechanism resulting in significant fluorescence enhancement.21 

Furthermore, Wu et al. have developed a highly selective turn-on 

fluorescence sensor for Cu2+ detection in living cells, in which the 

picolinohydrazide act as a chelator and can bind to Cu2+ through two 

functional groups, namely the amide nitrogen atom and the pyridine 

nitrogen atom.22  

   On the basis of the above, we have focused our interest on 

designing molecules which can serve as receptors to recognize 

cations based on a fluorescence ‘off-on’ mechanism. In this 

regard, we have utilized Schiff base derivatives in which a 

hydrazido carbonyl group binds with the pyrene moiety, whilst 

a diethylaminocarbonylmethoxy group forms the upper part of 

the phenyl ring for the formation of the receptor ligand L1 

(Scheme 1). Receptors L2 and L3 were also synthesized: a 

methoxy instead of the diethylaminocarbonylmethoxy group 

Scheme 1 Synthesis of receptors L1, L2 and L3. 

was present in L2 whilst only a phenylimino moiety instead of a 

hydrazido carbonyl group was present in L3. Ligands L1 and 

L2 can bind and sense Cu2+ by fluorescence through the 

coordination bond with the hydrazidocarbonyl group, following 

a 1:1 ligand to metal binding mode. Interestingly, in case of 

ligand L1, the upper part, N,N-diethylaminocarbonylmethoxy 

group has prominent effect upon binding with Cu2+. 

    The probes show very weak fluorescence (Φ = 0.01) at 405 

nm due to PET. When binding with Cu2+, ligand L1 induces a 

blue emission (intensity Φ = 0.31) by inhibiting the PET, and 

the emission intensity is approximately 65 times greater than 

that of the free ligand. Furthermore, in comparison with the 

receptors L2 and L3, ligand L1 is highly sensitive for Cu2+ 

detection due to the strong inhibition of PET and the different 

binding phenomenon of ligand to metal complex. 

2. Results and discussions

2.1. Synthesis 

    The synthetic pathways of the fluorogenic molecules L1, L2 and 

L3 are similar, and are summarized in Scheme 1. The amidation of 

compound 1 was carried out with hydrazine in a solution mixture of 

EtOH to synthesize 4-(hydrazidocarbonyl)(N,N-diethylaminocar-

bonylmethoxy)benzene 2. Compound 2 was then condensed with 1- 

pyrenecarbaldehyde to give L1. Following a similar reaction 

pathway, the reference compound L2 was prepared from ethyl-p- 

anisate in order to compare the binding affinities for Cu2+. Ligand L3 

was also synthesized from the condensation reaction of Py-CHO 

with 4-methoxyanisidine. Reference compounds L223 and L324 were 

prepared following the reported procedures. The structures of 

compounds L1, L2 and L3 were characterized by 1H and 13C NMR 

spectroscopy and are given in the ESI (Figures. SI 16–SI 20). IR 

spectra, FAB-MS and elemental analysis were taken to confirm the 

structure of ligand L1.   

2.2. Binding studies 

    At first, the cation-binding properties of compounds L1, L2 and 

L3, featuring the Schiff-base sites and armed with the pyrene moiety, 

were characterized by spectroscopic measurements. These were 

carried out in CH3CN/CH2Cl2 (1000:1, v/v) by addition of different 

metal cations Li+, Na+, K+, Cs+, Ag+, Zn2+, Cu2+, Pb2+, Hg2+, Fe2+ and 

Fe3+ (perchlorate salts), Ni2+, Cd2+, Co2+, Cr3+ (nitrate salts) 

dissolved in CH3CN. As shown in Fig. 1, the UV−vis absorption  

Fig. 1 UV-vis spectra of ligand L1 (10.0 µM) in CH3CN/CH2Cl2 (1000:1, v/v) 
upon addition of 10 equiv. of Cu2+ metal ions as their aqueous solution. 

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 2 Fluorescence response of ligands L1, L2 and L3 (1.0 μM) upon 
addition of Cu2+ ions (10 equiv.) measured in CH3CN/CH2Cl2 (1000:1, v/v). 
λex = 367 nm.  
 

spectra of ligand L1 exhibited typical pyrene absorption bands at 

277 and 349 nm along with a LE broad band centered at 367 nm, 

attributed to the hydrazido carbonyl group as well as the 

diethylaminocarbonylmethoxy group of the upper part. Upon 

addition of up to 10 equiv. of Cu2+ to the solution of ligand L1, the 

absorbance at 367 nm decreased progressively and at the same time, 

a new UV−vis absorption band at around 430 nm was observed; two 

identical isosbestic points were observed at around 305 and 410 nm 

indicating the presence of a unique complex after addition of Cu2+. 

The resulting titration data suggests strong interactions between 

ligand L1 and Cu2+.   

   Ligands L1, L2 and L3 (1.0 µM, λex = 367 nm) showed only very 

weak fluorescence in CH3CN/CH2Cl2 (1000:1, v/v). The emission 

intensity of the pyrenyl fluorophore is quenched because the lone 

pair electrons from the nitrogen atoms are transferred to the excited 

pyrenyl moiety. After the addition of small concentrations of Cu2+, 

preferential binding occurs to terminate the PET. Before and after 

addition of Cu2+, the fluorescence intensity changes of ligand L1 are 

compared with L2 and L3 and it can be seen that the free ligand L1 

exhibits higher fluorescence intensity than L2 and L3 (Figure SI 8). 

Fig. 2 shows that after addition of Cu2+, the fluorescence intensity is 

predominantly enhanced. In the case of L1, which is enhanced 

approximately 40 times more than L2 and 57 times more than L3. 

This suggests that PET occurs predominantly in L3 versus L2 and 

then L1. To elucidate the binding properties of L1 towards other 

metal ions, the fluorescence changes upon addition of a wide range 

of metal cations (10 equiv.) using their perchlorate salts and nitrate 

salts in CH3CN solution were determined. As shown in Fig. 3, ligand 

L1 exhibited high selectivity toward Cu2+ ions. By contrast, the 

addition of different metal cations Li+, Na+, K+, Cs+, Ag+, Zn2+, Cu2+, 

Pb2+, Hg2+, Fe2+, Fe3+, Ni2+, Cd2+, Co2+ and Cr3+ resulted in almost 

no fluorescence enhancement.  

    The binding property of probe L1 with Cu2+ (Fig. 4) was then 

determined by a fluorescence titration experiment. When excited at 

367 nm, L1 displayed a weak emission band at about 405 nm. The 

stepwise addition of Cu2+ leads to an increase of fluorescence 

intensity. The fluorescence intensity is increased by 65-fold upon the 

addition of 10 equiv. of Cu2+ in CH3CN/CH2Cl2 (1000:1, v/v) The 

resulting binding or association constant determined by a global 

analysis25a, for the L1-Cu2+ complexation, was 1.29 × 105 ± 0.32% 

M–1 value. The covariance of fit value was < 0.01 which is a 

reasonably good fit of the data to the 1:1 binding model (Figure SI 9). 

The Benesi-Hildebrand plot gave a smaller value of 6.12 × 104 M–1 

 
Fig. 3 Fluorescence spectra of ligand L1 (1.0 µM, λex = 367 nm) upon 
addition of various metal ions (10 equiv.) as their CH3CN solutions.  

 

and the limitations of the B-H method has been well-addressed in 

the literature.25a,b The global analysis approach offers a more 

accurate determination of the equilibria involved since it avoids the 

manipulation of the actual experimental data to effect linear 

relationship was observed between the fluorescence intensity and 

the concentration of Cu2+ showing a low detection limit of 8.80 × 

10–8 M.26a This value is much lower than the concentration allowed  

in drinking water according to the US EPA (20 µM).20 Furthermore, 

when excited at 367 nm, the quantum yield, Φ, of the L1-Cu2+ 

complex was 0.31 which was 31-fold more enhanced than of free 

ligand L1 alone.26b The fluorescence titration experiments of Cu2+ 

complex was 0.31 which was 31-fold more enhanced than of free 

ligand L1 alone.26b The fluorescence titration experiments of Cu2+ 

with L2 were also conducted in the same CH3CN/CH2Cl2 solvent 

mixture and revealed an 8-fold enhancement in the quantum yield 

over the free ligand L2 (Figure SI 6). The global fit analysis25a 

(Figure SI 10) for the binding or association constant of L2 was 

determined to be 1.55 × 104 ± 0.24% M–1 (cov fit < 0.01) and was 

found to have a detection limit of 4.94 × 10–7 M (Figure SI 12). In 

this case, the quantum yield is enhanced only 8-fold after addition of 

Cu2+ (Φ = 0.08). On the other hand, the minor changes in the 

fluorescence titration spectra of L3 indicate the very weak 

coordination with Cu2+ (Figure SI 7). There are also insignificant 

changes of the photophysical properties of ligand L3. These results 

confirm that ligand L1 is more sensitive and exhibits a stronger 

affinity toward Cu2+ than L2 and L3 in CH3CN/CH2Cl2 (Table 1). 

Fig. 4 Fluorescence spectra of ligand L1 (1.0 μM) upon addition of 
increasing concentration of Cu2+ ions (0–10 equiv.) measured in 
CH3CN/CH2Cl2 (1000:1, v/v). λex = 367 nm. 
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Table 1. Photophysical properties of ligands L1, L2 and L3 with their Cu2+ 
complexes.  

 

aKa = Association constant; bLODs = Detection limits (measured from 
fluorescence titration experiments); Φc = Quantum yield of  L1Cu2+; (Φ) 
enhancedd = Difference between the quantum yield of free ligand and after 
addition of Cu2+; NA means fluorescence change was scarcely observed; 
photophysical properties cannot be calculated.  

Moreover, the association constant of the pyrene containing the 

picolinohydrazide moiety was found to be 2.75 × 103 M–1.22 On the 

basis of the findings above, it is suggested that ligand L1 is a highly 

sensitive fluorescent probe than L2 and L3 in CH3CN/CH2Cl2 

(1000:1, v/v). The coordination of Cu2+ with the Schiff base site 

presumably caused the inhibition of PET effect which was much 

stronger than any cavity-control effect. Furthermore, upon addition 

of metal ions (10.0 µM) to the receptor L1 (1.0 µM) and Cu2+ (10.0 

µM), all of the competitive cations caused no significant interference 

at higher concentration. These results indicate that L1 displays an 

excellent selectivity toward Cu2+ over the other metal cations (Fig. 

5). In order to quantify the stoichiometry of the complexes L1-Cu2+, 

a Job’s plot analysis was carried out in which the emission of the 

complexes at 405 nm were plotted against molar fractions of L1 and 

Cu2+ under the conditions of an invariant total concentration. The 

fluorescence intensity shows a maximum at the mole fraction 0.5 

which corresponds to a 1:1 ratio of L1Cu2+ complex (Figure SI 13). 

    A 1H NMR spectroscopic analysis with L1 was performed to 

investigate the nature of the co-ordination structure of L1 and Cu2+. 

Since the receptor L1 was only partially soluble in CD3CN/CDCl3, a 

9:3 ratio of CDCl3/DMSO-d6 was employed for these analyses. 

Copper ion has paramagnetic nature, therefore when binding occurs, 

the proton signals close to the binding site is easily affected by 

Cu2+.22 Fig. 7 shows that, upon addition of Cu2+, the proton (amide 

NHa) signal at δ 11.7 ppm completely disappeared. This result 

indicates the influence of Cu2+ on the amide NH group. In addition, 

the proton Hb (CH=N) also disappeared at about δ = 9.55 ppm. 

Furthermore, Cu2+ addition leads to a large downfield shift of 0.5 
 

 
Fig. 5 Fluorescence response of L1 (1.0 μM) in CH3CN/CH2Cl2 (1000:1, v/v) 
to 10.0 μM of various tested metal ions and to the mixture of 10.0 μM of 
tested metal ions with 10.0 μM Cu2+ ion. Here L represents the emission 
intensity of ligand L1 in the presence of Cu2+. I0 is the fluorescence intensity 
of free L1, and I is the fluorescence intensity after addition of metal ions at 
405 nm. 

and 0.54 ppm for the pyrene proton Hc, and the phenyl ring proton 

Hd, respectively (Table 2). The other phenyl ring protons also shifted 

from δ = 8.12 ppm to δ = 8.30 ppm. These protons are broad and 

have lower intensities. The phenyl proton shifts are due to the 

inductive effect of the diethylaminocarbonylmethoxy group which 

overlapped with other pyrene protons. Moreover, the methylene 

proton He and ethyl protons Hg and Hf also underwent slight upfield 

shifts of 0.05 and 0.06 and 0.04 ppm, respectively. In contrast, in 

order to clarify the co-ordination structure of ligand L1, 1H NMR 

analysis of ligand L2 was also performed in presence of Cu2+ ion 

(Figure SI 14). In this case, like with ligand L1, the amide proton, Ha 

and imine proton Hb of L2 disappeared due to the paramagnetic 

nature of Cu2+. On the other hand, the pyrene proton Hc and the 

phenyl ring proton Hd induced smaller downfield shift of 0.16 and 

0.26 ppm than with ligand L1Cu2+. The other phenyl ring protons 

overlapped with the pyrene protons and the chemical shifts remain 

unchanged. In addition to this, there is no change in the methoxy 

proton He which signifies that the methoxy protons have no 

contribution to the binding. These results indicate that Cu2+ ions are 

only bound to the imine nitrogen atom and the amide carbonyl 

oxygen of ligand L2. Also, up to the addition of 1 equiv. of Cu2+, the 

prominent changes which were monitored represent 1:1 complexes. 

Furthermore, to gain a further understanding of the binding 

stoichiometry of L1 and Cu2+ complex, 13C NMR titration    

experiments were carried out in a mixture of CDCl3/DMSO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 6 Geometry-optimized (PBE0/LANL2DZ) structures of L1 with 
complex Cu2+ ion. Left: The free ligand L1 (Ellipsoid); Right: Ligand L1 
complex with Cu2+ ion (Ellipsoid). Colour code: carbon = dark grey and 
oxygen atom = red, nitrogen = blue and Cu2+ = purple. 
 

 
Fig. 7 Partial 1H-NMR titration of L1/guest (H/G = 1:1); (a) Free ligand L1 
(8.60 × 10–3 M); (b) L1Cu2+ (0.5 equiv.) (c) L1Cu2+ (1 equiv.); (d) 
L1Cu2+ (2 equiv.). Solvent: CDCl3–DMSO (9:3, v/v). 400 MHz at 298 K. 

Comp.         Ka (M
-1)a     LODs (M)b    Φc    (Φ) enhancedd 

L1Cu2+    1.29 × 105    8.80 × 10-8    0.31       31-fold 

L2Cu2+    1.55 × 104    4.94 × 10-7    0.08        8-fold 

L3Cu2+        NA              NA             0.01          NA 
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Table 2. 1H NMR chemical shift differences of free L1 and L2 with L1Cu2+ 

and L2Cu2+, respectively.a 

 

 

     δ
ppm

 in L1 (H/G = 1:1)             δ
ppm

 in L2 (H/G = 1:1)               

  Free L1   L1Cu
2+

    Δδ          Free L2    L2Cu
2+       

Δδ 
H

a
      11.66       ----           ----           11.79         ----           ----    

H
b
       9.55        ----           ----            9.58          ----           ----                     

H
c
       7.06       7.56          0.50           7.04         7.21          0.16 

H
d
       8.74       9.28          0.54           8.77         8.96          0.26  

H
e
       4.81       4.75          0.05           3.92         3.91          0.01     

 

a Δδ Values are the difference of the chemical shift between free ligand L1 or 
L2 and complexation with Cu2+. 

 (Figure SI 15). The diethylaminocarbonylmethoxy, carbonyl carbon 

C1, and the hydrazido carbonyl carbon C2, of L1 were first 

identified by comparison with L2. Upon the addition of Cu2+, the C2 

and C3 peaks of the ligand L1 disappeared completely and the 

resonances corresponding to the C1 carbon mostly disappeared. 1H 

NMR analysis revealed that the changes are almost terminated after 

addition of 1.0 molar equiv. of Cu2+ which is indicative of a 1:1 

binding complex formation. It is also proposed that ligand L1 forms 

a complex with Cu2+ by strong coordination with the 

hydrazidocarbonyl moiety. In this case, Cu2+ is coordinated with the 

imine nitrogen atom and amide carbonyl oxygen of ligand L1. 

Furthermore, the diethylaminocarbonylmethoxy group also has a 

prominent influence through an inductive effect on the L1Cu2+ 

complexation. 

    A DFT computational study was also undertaken to shed further 

light on the binding mode of the ligand with Cu2+. The geometries of 

the molecular structures were optimized with the PBE0 functional 

with the LANL2DZ basis set. The DFT level of theory using the 

hybrid Perdew-Burke-Ernzerhof parameter free-exchange correlation 

functional PBE0 (PBE1PBE in the Gaussian realization)27 with the 

Hay and Wadt effective core potential LANL2DZ basis set was 

employed.28 The starting structure was first generated using 

SpartanPro10 with the MMFF94 method.29 The generated structures 

were then imported into Gaussian-09 Revision D.0130 and were 

geometry-optimized in the gas-phase. The calculated 

interactionenergy (IE) for each of L1Cu2+ and L2Cu2+ are -

1519.2 and -1467.8 kJ mole–1, respectively (See SI section for 

details). The DFT binding mode of the guest Cu2+ ion involves 

strong coordination with the hydrazidocarbonyl moiety of the ligands 

L1 and L2. Furthermore, from the computed IE data, L1Cu2+ is 

energetically favoured by 50.2 kJ mole–1 over the corresponding 

L2Cu2+ complex, which is in agreement with the trend for the 

observed complexation data obtained by fluorescence titration 

experiments. This finding is also in agreement with the observed 

changes in the chemical shifts of the surrounding 

hydrazidocarbonyl moiety of both ligands and the changes of 

the chemical shifts of the upper part of ligand L1. The interaction 

energy (IE) for each complex was calculated according to equation 

(1): 

IE   =   EComplex    (Eligand  +  ECu
2+ ion)    (1) 

  

 

           

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Geometry-optimized (PBE0/LANL2DZ) structures (Space fill) of L1 
and as its Cu2+ complex ion. Left: The free ligand L1; Right: 1:1 L1Cu2+ 
complex. Colour code: carbon = drack grey and oxygen atom = red, nitrogen 
= blue and Cu2+ = purple.  
 

3. Conclusion 

    In conclusion, fluorogenic molecules L1, L2 and L3 which are 

pyrene-based Schiff base derivatives have been designed in order to 

compare their binding affinities for Cu2+ detection where the probes 

worked as a fluorescence “turn off-on” sensor. A PET mechanism 

was exploited to afford a convenient analytical strategy. The sensing 

ability and photophysical properties are well-supported by the 

fluorescence spectra and NMR titration experiments. The 

hydrazidocarbonyl moiety L1 and L2, are strongly co-ordinated with 

Cu2+. Moreover, the upper part of L1 has a noticeable effect upon the 

binding of the complex of L1Cu2+ which is also supported by DFT 

computational studies. Consequently, receptor L1 acquires a higher 

affinity (65-fold enhanced) in comparison with compound L2 (25-

fold) and L3 exhibits very weak fluorescence enhancements (7-fold) 

for Cu2+ detection.  

4. Experimental 

4.1. General  

    1H and 13C NMR spectra were recorded on a Nippon Denshi JEOL 

FT-300 NMR spectrometer and Varian-400MR-vnmrs400 with 

SiMe4 as an internal reference: J-values are given in Hz. IR spectra 

were measured for samples as KBr pellets in a Shimadzu FTIR-8400 

spectrophotometer. Mass spectra were obtained with a Nippon 

Denshi JMS-HX110A Ultrahigh Performance Mass Spectrometer at 

75 eV using a direct-inlet system. Elemental analyses were 

performed by a Yanaco MT-5. UV-vis spectra were recorded using a 

Shimadzu UV-3150UV-vis-NIR spectrophotometer. Fluorescence 

spectroscopic studies of compounds in solution were performed in a 

semimicro fluorescence cell (Hellma®, 104F-QS, 10 × 4 mm, 1400 

μL) with a Varian Cary Eclipse spectrophotometer. Fluorescence 

quantum yields were recorded in solution (Hamamatsu Photonics K. 

K. Quantaurus-QY A10094) using the integrated sphere absolute PL 

quantum yield measurement method. Unless otherwise stated, all 

reagents used were purchased from commercial sources and were 

used without further purification. All the solvents used were dried 

and distilled by the usual procedures before use. All melting points 

(Yanagimoto MP-S1) are uncorrected. 
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4.2. Materials 

4.2.1. Synthesis of Compound 2. To 1 (300 mg, 1.19 mmol) in a 

round-bottom flask, ethanol (18 mL) and hydrazine hydrate (3.0 mL) 

were added and with stirring, the temperature was maintained at 60 

C for 30 h. The reaction mixture was cooled to room temperature 

and concentrated under reduced pressure to afford a colourless solid. 

Crystallization from a mixture of CH2Cl2–CH3OH (2:1, v/v) afforded 

compound 2 as colourless prisms (240 mg, 76%). Mp: 157.5 C; IR: 

max(KBr) = 3294 (NH2) and 1635 (C=O) cm−1. 1H NMR (300 MHz, 

CDCl3):  = 1.17 (6H, m, CH3), 3.38 (4H, m, CH2), 4.07 (1H, s, 

NH), 4.72 (2H, s, CH2O), 6.97 (2H, d, J = 8.22 Hz, Ar-H), 7.54 (2H, 

s, NH2) and 7.72 (2H, d, J = 8.22 Hz, Ar-H) ppm. 13C NMR (100 

MHz, CDCl3):  = 12.8 (CH3), 40.4 (CH2), 67.2 (CH2), 114.2 (Ar-C), 

125.7 (Ar-C), 128.7 (Ar-C), 160.9 (Ar-C), 166.3 (C=O) and 168.1 

(C=O) ppm. FABMS: m/z 266.16 [M+]. Anal. calcd. for C13H19N3O3: 

C, 58.84; H, 7.22; N, 15.84. Found: C, 59.17; H, 7.16; N, 15.76.  

4.2.2. Synthesis of Receptor L1. A solution of 1-pyrenecarbaldehyde 

(40 mg, 0.15 mmol) in methanol (5.0 mL) was added to a solution of 

2 (39 mg, 0.17 mmol) in a 1:1 mixture of chloroform and methanol 

(20 mL). The mixture was heated at reflux for 24 h and concentrated 

under reduced pressure, to afford a yellow solid. Crystallization from 

a mixture of chloroform–methanol (3:1, v/v) afforded compound L1 

as a light yellow solid (50 mg, 69%). Mp: 253.5 °C. IR: max(KBr) = 

1650 (CH=N and C=O), 3256 (NH) cm−1. 1H NMR (400 MHz, 

CDCl3 / DMSO = 9:3): δ = 1.03 (6H, m, CH3), 3.20 (4H, m, CH2), 

4.70 (2H, s, OCH2), 6.93 (2H, d, J = 8 Hz, Ar-H), 7.99 (2H, d, J = 8 

Hz, Ar-H), 8.61 (1H, d, J = 12 Hz, Py-H), 7.91–8.23 (8H, m, Py-H), 

9.44 (1H, s, HC=N) and 11.55 (1H, s, NH) ppm. 13C NMR (100 

MHz, CDCl3/DMSO = 9:3): δ = 13.6 (CH3), 41.0 (CH2), 67.1 (CH2), 

114.6132.7 (Ar-C, Py-C), 146.7 (C=N), 161.2 (Ar-C), 163.9 (C=O) 

and 166.3 (C=O) ppm. FABMS: m/z 478.21 [M+]. Anal. calcd. for 

C30H27O3N3: C, 75.45; H, 5.70; N, 8.80. Found: C, 75.26; H, 5.31; N, 

8.57%. 
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