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Dear	Editor,	

One	of	the	principal	complications	unexpectedly	reported	in	many	clinical	

studies	of	multiple	myeloma	(MM)	patients	treated	with	immunomodulatory	

drugs	(IMiD)	based	regimens	is	the	development	of	thrombosis.	However,	the	

increased	risk	of	venous	thromboembolism	(VTE)	associated	with	IMiD	is	only	

observed	as	a	synergistic	effect	when	thalidomide	(Thal)	and/or		lenalidomide	

(Len)	are	given	in	combination	with	other	drugs,	and	not	as	a	single‐agent	

therapy	for	which	VTE	incidence	remains	below	5%	in	both	newly	diagnosed	

and	relapsed/refractory	patients.		Specifically,	Thal	or	Len	with	concurrent	

dexamethasone	(Dex)	has	been	shown	to	increase	the	risk	of	VTE	(1).	Moreover,	

an	extremely	high	rate	of	thrombosis	was	initially	observed	in	a	trial	comparing	

Dex	alone	versus	Dex	plus	Len	in	newly	diagnosed	patients;	9	out	of	the	first	12	

patients	(75%)	enrolled	in	the	Len/Dex	arm	experienced	thromboembolic	

events	(including	one	ischemic	stroke)	in	the	absence	of	thromboprophylaxis,	

while	no	events	were	observed	in	the	control	arm	(n=9)	(2).	Routine	

thomboprophylaxis	is	now	recommended	by	the	International	Myeloma	

Working	Group,	European	Society	for	Medical	Oncology	and	American	Society	of	

Clinical	Oncology	for	patients	with	MM	who	are	receiving	IMiD‐based	

combination	regimens,	and	as	with	other	areas	of	thromboprophylaxis,	a	risk	

stratified	approach	is	appropriate	(3).	The	exact	mechanisms	by	which	

chemotherapeutic	agents	increase	VTE	risk	are	predominantly	undefined,	both	

in	vitro	and	in	vivo.	Possible	mechanisms	involve	inducing	release	of	cytokines	

and	subsequently	the	expression/activity	of	procoagulant	molecules,	such	as	

tissue	factor	(TF),	or	by	reducing	the	production	of	endogenous	anticoagulant	

proteins	such	as	protein	C	and	protein	S	during	chemotherapy‐induced	cell	
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damage	and	associated	tumour	lysis,	causing	direct	damage	to	the	vascular	

endothelium	(4),	which	may	be	accompanied	by	microvesicle	(MV)	release.	

In	this	study	we	investigated	MV	populations	through	chemotherapy	in	15	newly	

diagnosed	MM	patients	(mean	age	69.2	(± 10.6) years)	whom	received	

cyclophosphamide,	Thal,	and	Dex	(CTD;	21	day	cycle;	n=4),	an	attenuated	dose	of	

CTD	(CTDa;	28	day	cycle;	n=6),	or	an	attenuated	dose	of	Len,	cyclophosphamide,	

and	Dex	(RCDa;	28	day	cycle;	n=1),	and	relapsed	patients	whom	received	

Len/Dex	(28	day	cycle;	n=4).	Additionally,	antibiotics	and	antiemetic	prophylaxis	

were	given	to	patients	during	treatment	according	to	local	protocols.	Since	all	

MM	patients	received	combination	therapy	with	IMiD,	they	were	consequently	

prescribed	concurrent	LMWH	anticoagulation,	specifically	a	prophylatic	dose	of	

dalteparin	(typically	5000	U/day).	Thus,	no	symptomatic	DVT	or	pulmonary	

embolism	events	were	observed	in	any	of	the	MM	patients	in	this	study.	

However,	2	out	of	the	15	MM	patients	(13%)	suffered	cardiovascular	events	

during	chemotherapy;	these	were	newly	diagnosed	patients	receiving	either	CTD	

or	CTDa	and	endured	fatal	stokes.	Both	patients	were	male,	a	47	year	old	with	no	

prior	history	of	thrombotic	risk	factors,	and	an	80	year	old	with	history	(CABG	

surgery,	TIA,	hypertension	and	angina).	Baseline	values	of	TF+MV	in	these	cases	

were	177	and	348	respectively	(the	mean	for	the	group	was	215	per	L	of	platelet	

poor	plasma	[PPP]).		

Blood	samples	were	taken	through	chemotherapy	(baseline	=	T1	(n=15),	end	of	

1st	cycle	=	T2	(n=10),	end	of	2nd	cycle	=	T3	(n=10)	and	end	of	chemotherapy	=	T4	

(n=5))	and	assessed	for	endothelial	microvesicles	(EMV)	populations	using	a	

FACS	Calibur	flow	cytometer,	validated	by	the	ISTH	working	group	on	

enumeration	of	MV.	A	statistical	comparison	of	each	of	the	MV	populations	

measured	in	this	study	over	time	(T1‐T4)	was	performed.	Specifically,	a	marginal	

model	(with	no	random	effects)	was	fitted	to	the	loge	transformed	data	for	

quantified	MV	using	the	SPSS	MIXED	procedure.	An	unstructured	correlation	

matrix	with	no	pattern	assumed	for	the	variances	and	covariances	of	the	variable	

values	within	a	patient	at	each	time	point	was	used.	Significance	between	model‐

estimated	marginal	means		(T1‐T4)	for	each	variable	was	calculated	using	paired	



Student’s	t	tests.	P	values	<	0.05	were	considered	to	be	statistically	significant.	

All	statistical	analyses	were	performed	with	IBM	SPSS	(v.	20.0).	

Baseline	populations	of	MV	are	shown	in	Figure	1a.	The	median	(IQR)	level	of	

CD105+	EMV	at	T1	was	563.0	[321.0–744.0]/µl	PPP	and	was	unchanged	at	T2	

(605.0	[339.5‐1766.3]/µl	PPP),	but	increased	at	T3	by	2.4‐fold	(1375.0	[361.3–

1794.0]/µl	PPP),	and	remained	elevated	at	T4	(1190.0	[763.5–2184.5]/µl	PPP)	

as	shown	in	Fig	1b.	The	estimated	marginal	mean	of	circulating	CD105+	EMV	

was	significantly	elevated	at	T4	in	comparison	to	T1	(P	<	0.0005)	and		T2	(P	=	

0.001).		

The	median	(IQR)	level	of	CD106+	EMV	(391.0	[243.0–631.0]/µl	PPP)	measured	

at	T1	was	shown	to	sequentially	increase,	through	T2,	(599.5	[314.8–1413.0]/µl	

PPP),	T3	(1058.5	[298.8–1514.0]/µl	PPP)	and	T4	(1491.0	[994.5–1588.0]/µl	

PPP),	shown	in	Fig	1c.	CD106+	EMV	were	significantly	elevated	at	T4	in	

comparison	with	T1,	T2	and	T3	(P	=	0.001,	P	=	0.004,	P	=	0.031,	respectively).	

	There	was	a	clear	trend	of	increasing	levels	of	circulating	CD54+	EMV	from	T1	

(242.0	[179.0–387.0]/µl	PPP)	to	T2,	(400.5	[240.0–601.8]/µl	PPP)	T3	(465.5	

[283.8–960.8]/µl	PPP),	and	T4	(680.0	[560.5–764.0]/µl	PPP,	shown	in	Fig	1d.	

CD54+	EMV	were	significantly	elevated	at	T4	in	comparison	T1	and	T2	(P	0.0005	

and	P	=	0.011,	respectively).		CD144+	EMV	was	unchanged	through	T1	(130.0	

[73.0–216.0]/µl	PPP;	T1)	T2	and	T3	(145.0	[50.5–422.5]/µl	PPP;	T2;	128.5	

[76.3–287.0]/µl	PPP;	T3),	but	increased	significantly	(p=0.017)	at	T4	(305.0	

[162.0–400.5]/µl	PPP),	Fig.	1e.	CD138+	plasma	cell‐derived	MV	numbers	were	

significantly	elevated	at	T4	(P	=	0.004)	in	comparison	to	T1.		

Strong	statistical	correlations	were	found	to	exist	between	all	markers	of	EMV	

(Pearson’s	correlation	coefficient	r	=	0.66	to	0.94,	P	<	0.0005)	indicating	that	the	

detected	MV	were	of	homogenous/endothelial	origin.	Correlations	between	MV	

of	differing	origins	are	shown	in	Table	1.	Changes	in	individual	markers	showed	

some	variation	but	the	overall	trend	was	for	increased	EMV	through	

chemotherapy	(all	markers	significantly	correlated)	and	no	change	in	TF+MV,	



although	post	chemotherapy	samples	were	scarce	(n=5)	and	the	statistical	test	

used	accounted	for	missing	data.	

Elevated	plasma	levels	of	EMV	reflect	endothelial	cell	injury	and	are	now	

considered	a	biomarker	of	vascular	dysfunction	(5).	Furthermore,	previous	

studies	have	demonstrated	that	MV	from	various	cellular	origins	may	also	induce	

endothelial	dysfunction	(6).	In	particular,	high	levels	of	EMV	have	been	observed	

in	cardiovascular	diseases,	including	acute	coronary	syndromes	(7).	While,	in	

VTE,	marked	activation	of	the	endothelium,	platelets,	and	leukocytes	has	been	

reported	and	shown	to	involve	the	generation	of	EMVand	formation	of	EMV‐

monocyte	conjugates	and	platelet‐leukocyte	conjugates	(8).	In	addition,	

endothelial	cell	damage	has	been	described	as	a	mechanism	for	the	increased	

incidence	of	VTE	observed	when	anti‐angiogenic	drugs	were	combined	with	

chemotherapy	agents	such	as	cisplatin	or	gemcitabine	(9).	EMV	shed	into	the	

peripheral	circulation	of	MM	patients	that	received	chemotherapy	with	IMiD,	

either	Thal	or	Len,	may	be	a	consequence	of	endothelial	cell	injury	and/or	

activation	and	subsequently	may	be	involved	in	thrombogenicity	associated	with	

anti‐cancer	agents	in	vivo.	

In	this	study,	4	newly	diagnosed	MM	patients	received	pulsed	high‐dose	Dex	(40	

mg;	days	1‐4	and	12‐15	of	a	21	day	cycle	of	CTD)	and	4	relapsed	MM	patients	

received	weekly	high‐dose	Dex	(40	mg;	days	1,	8,	15,	and	22	of	a	28	day	cycle	of	

Len/Dex).	Kerachian	et	al.	demonstrated	that	treating	endothelial	cells	in	vitro	

with	high‐dose	Dex	significantly	elevates	CD106	and	CD54	mRNA	expression	

levels	(10).	In	addition,	studies	have	reported	that	Dex	modulates	the	expression	

of	endothelial	haemostatic	elements;	specifically	inducing	vWF	and	TF	(10),	

while	down‐regulating	thrombomodulin	(10).	Furthermore,	EMV	derived	from	

TNF‐α‐stimulated	endothelial	cells	have	been	shown	to	bind	to	monocytes	in	

vitro,	involving	the	interaction	between	CD54	on	EMV	and	β2	intergrin	on	

monocytes,	which	induces	TF‐dependent	PCA	in	monocytes	(11).	In	our	study,	

TF+MV	showed	no	significant	change	in	expression	upon	chemotherapy	

administration	(Fig.	1f)	and	this	is	supported	by	similar	studies	that	show	a	

general	absence	of	TF	expression	in	plasma	cells	in	MM,	in	contrast	to	solid	

malignancies	(12).		



In	this	study,	the	number	of	circulating	plasma	cell‐derived	MV	or	more	

specifically,	tumour	cell‐derived	MV	in	MM	patients	were	elevated	6‐8	weeks	

after	chemotherapy	with	IMiD,	either	Thal	or	Len,	relative	to	baseline,	suggesting	

that	the	tumour	cells	have	undergone	apoptosis	in	the	presence	of	cytotoxic	

agents	as	the	number	of	tumour	cell‐derived	MV	correlated	with	the	number	of	

PS+	MV	(Table	1).	In	addition,	previous	studies	have	shown	that	human	acute	

monocytic	leukaemia	THP‐1	cells	exposed	to	daunorubicin	in	vitro	release	higher	

numbers	of	MV	than	untreated	tumour	cells	(13).	

Despite	the	relatively	small	size	of	the	study	population,	the	data	presented	in	

this	pilot	study	suggests	that	the	host	response	to	treatment	may	contribute	to	

the	relatively	increased	thrombogenicity	observed	in	MM	patients	who	received	

chemotherapy	in	combination	with	IMiD,	either	Thal	or	Len.	This	is	a	markedly	

different	procoagulant	profile	than	solid	malignancies.	However,	further	studies	

are	justified	to	evaluate	the	impact	of	circulating	MV	in	chemotherapy‐associated	

VTE	in	cancer	patients.		In	this	study,	we	have	demonstrated	changes	in	MV	

populations	occur	throughout	chemotherapy	on	MM	patients,	and	suggest	that	

these	differences	are	due	to	the	influence	of	IMiD‐based	chemotherapy.	The	

finding	of	elevated	EMV	following	administration	of	IMiD‐based	chemotherapy	

lends	support	to	previous	studies	in	the	literature	that	suggest	further	clinical	

evaluation	for	the	role	of	EMV	as	biomarkers	of	potential	or	ongoing	thrombosis.		
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Table	1	

Statistical	correlations	between	MV	of	differing	cell	origin.	

Figure	1	

Quantified	MV	numbers	at	(A)	entry	to	the	study	and	(B‐F)	baseline	through	
chemotherapy	of	specific	markers	(B)	CD105,	(C)	CD106,	(D)	CD54,	(E)	CD144	
(F)		and	(F)	Tissue	factor.	The	number	of	samples	available	were	as	follows	T1;	
n=15,	T2;	n=10,	T3;	n=10	and	T4;	n=5.		Platelet	free	citrated	plasma	was	isolated	



by	2‐step	centrifugation	and	25mL	of	sample	was	incubated	with	5mL	of	specific	
antibody	for	30	minutes	prior	to	addition	of	counting	beads	(25mL)	and	filtered	
PBS	(150mL).	A	MV	gate	was	setup	based	on	Megamix	SSC	beads	(Biocytex)	
using	ISTH	protocol.	BD	FACSCaliburs	were	used	running	CellQuest	Pro	
software.	
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Correlations between subtypes of MV    Pearson’s  correlation 
coefficient (r) 

P  value  (two‐
tailed) 

PMV and monocyte‐derived MV 

CD42b and CD14 

 

0.31 

 

P = 0.053 
PMV and plasma cell‐derived MV 

CD42b and CD138 

 

0.26 

 

P = 0.11 
PMV and PS+ MV 

CD42b and annexin V 

 

0.63 

 

P < 0.0005 
PMV and TF+ MV 

CD42b and CD142 

 

‐0.25 

 

P = 0.11 
Monocyte‐derived  MV  and  plasma 
cell‐derived MV 

CD14 and CD138 

 

0.63 

 

P < 0.0005 

Monocyte‐derived MV and PS+ MV 

CD14 and annexin V 

 

0.54 

 

P < 0.0005 
Monocyte‐derived MV and TF+ MV 

CD14 and CD142 

 

0.03 

 

P = 0.85 
Plasma cell‐derived MV and PS+ MV 

CD138 and annexin V 

 

0.51 

 

P = 0.001 
Plasma cell‐derived MV and TF+ MV 

CD138 and CD142 

 

0.34 

 

P = 0.03 
PS+ MV and TF+ MV 

Annexin V and CD142 

 

‐0.05 

 

P = 0.75 
EMV and PMV 

CD105 and CD42b 

 

0.39 

 

P = 0.01 
EMV and monocyte‐derived MV 

CD105 and CD14 

 

0.85 

 

P < 0.0005 
EMV and plasma cell‐derived MV 

CD105 and CD138 

 

0.54 

 

P < 0.0005 
EMV and PS+ MV 

CD105 and annexin V 

 

0.53 

 

P < 0.0005 
EMV and TF+ MV 

CD105 and CD142 

 

0.11 

 

P = 0.49 
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