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Integrated fault estimation and fault-tolerant control
for uncertain Lipschitz non-linear systems

Jianglin Lan, Ron J. Patton

Abstract

This paper proposes an integrated fault estimation and fault-tolerant control (FTC) design for Lipschitz non-linear systems
subject to uncertainty, disturbance, and actuator/sensor faults. A non-linear unknown input observer without rank requirement is
developed to estimate the system state and fault simultaneously, and based on these estimates an adaptive sliding mode FTC
system is constructed. The observer and controller gains are obtained together via H∞ optimization with a single-step linear
matrix inequality (LMI) formulation so as to achieve overall optimal FTC system design. A single-link manipulator example is
given to illustrate the effectiveness of the proposed approach.

Index Terms

Integrated design, adaptive sliding mode fault-tolerant control, non-linear unknown input observer, H∞ optimization, Lipschitz
non-linear systems

I. INTRODUCTION

Lipschitz non-linear systems are one of the most important classes of systems studied by the control community. Indeed,
almost all real dynamic systems can be represented as Lipschitz non-linear systems (at least locally). Automatic dynamic systems
sometimes might suffer from faults (malfunctions), e.g., offsets of actuators/sensors, deviations of component parameter, loss
of actuator effectiveness, etc. These faults may degrade system performance or even cause safety problems [1]. In order
to provide guaranteed performance in the presence of certain bounded faults, tolerating faults as well as having maintained
stability properties and good robustness to uncertainty, fault-tolerant control (FTC) systems (including FTC Lipschitz non-linear
systems) have been researched extensively [1]–[3]. The FTC systems can be achieved using passive FTC designs without fault
information (location, magnitude and time occurrence) or active FTC designs with control redesign based on fault information
[1]. The passive FTC approach is known to be limited since it treats faults in the way of perturbations using optimization
methods. Therefore, in this work we consider the less conservative active FTC problem for Lipschitz nonlinear systems.

The traditional method for obtaining fault information for non-linear systems is the fault diagnosis approach, which includes
the procedures of fault detection and fault isolation (FDI). Many FDI methods involve residual generator designs, as well as
isolation filters for fault location [4]–[9]. In contrast to these classical methods fault estimation (FE) directly reconstructs the
fault shape (the magnitude with respect to time) without any of the aforementioned complex designs. The FE signals are thus
conveniently available for use in a compensation scheme to robustly compensate the fault effects within all control loops.
Significant literature on the subject of FE design methods for Lipschitz non-linear FTC systems has been established, e.g., for
the adaptive observer (AO) [10], [11], the sliding mode observer (SMO) [12], the extended state observer (ESO) [13], and the
non-linear unknown input observer (NUIO) [14]–[16]. However, in the AO faults are estimated with zone convergence, and a
proportional-integral (PI) structure with carefully chosen learning rate is implemented for time-varying fault estimation. The
canonical form SMO proposed in [12] requires several state transformations as well as a priori knowledge of the fault upper
bounds. The ESO reconstructs the faults in polynomial form with an assumption of their orders. The NUIO approach can
obtain asymptotic state and fault estimations with a comparatively simple design. Nevertheless, the NUIOs proposed in [14]
and [15] are designed with rank requirement on system coefficient matrices in order to decouple the disturbance completely,
which limits the applicability to real systems. Although [16] releases this rank requirement by considering partially decoupled
disturbance, the effect of system uncertainties are not taken into account. A novel NUIO without rank requirement for Lipschitz
non-linear systems subject to faults and both disturbance and uncertainty is of great interest in this paper.

The FE-based FTC for Lipschitz non-linear systems has attracted great attention in the past decade, see for example, [10],
[11], [13], [14], [17], [18] and the references therein. Without considering disturbance and uncertainty, AO-based FTC designs
for Lipschitz non-linear systems and Lipschitz non-linear sampled-data systems with actuator faults are proposed in [10] and
[18], respectively. Considering disturbance, [13] proposes an ESO-based FTC for Lipschitz non-linear descriptor systems with
actuator fault, and [17] proposes a mixed H2/H∞ approach to FTC design for Lipschitz non-linear systems with actuator
faults using FE obtained by a dynamic compensator which is kind of AO. Further, [11] proposes an AO-based FTC design
for discrete-time Lipschitz non-linear systems subject to actuator fault along with matched uncertainty and disturbance. [14]
addresses the FTC design for Lipschitz non-linear systems subject to lumped uncertainty and disturbance along with sensor
faults using a NUIO.
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However, it can be concluded that as a currently acceptable FTC strategy in the literature for Lipschitz non-linear systems
the FE and FTC modules are designed separately, assuming that the FE process offers a robust and accurate estimation of
faults. Moreover, most of the existing works do not take into account the effect of system uncertainty (especially unmatched
uncertainty).

Actually, in the presence of system uncertainty, interaction exists between the FE and FTC system functions in the sense
that there is a complex uncertainty coupling between their roles. Due to this interaction, the separately designed FE and FTC
functioning models might not fit each other when assumed together. Hence, this “bi-directional” robustness interaction between
the FE and FTC functions should be taken into account a priori along with the development of a robust approach to integrate
their designs into one overall design. An early form of integrated design concept was introduced in [19] to achieve FDI and
control objectives simultaneously by taking account of the effect of the control system uncertainty on the FDI performance. A
number of studies followed this theme as summarised in the review [20]. However, these early studies did not consider the FTC
problem. Although very complex some effort has also been made to integrate together the designs of the FDI and FTC modules
[21], [22], within the context of the residual design approach to FDI. Recently, a bi-directional integrated FE/FTC strategy was
proposed for uncertain linear systems with disturbance and actuator/sensor faults [23]. For this case the FE function is affected
by the uncertainty of the FTC system and also the estimation error in the FE system affects the FTC sysem performance. The
work in [23] is based on the use of a single-step LMI formulation and in this work detailed discussion about the bi-directional
robustness interaction as well as the basic idea of integrated design can be found.

No studies have described the use of integrated design in FE/FTC schemes for Lipschitz non-linear systems. Hence, this
paper provides an extension of the earlier study [23] applicable to Lipschitz non-linear systems. Both matched and unmatched
uncertainties along with disturbance and actuator/sensor faults are considered. The main contributions of this paper are: (i) For
Lipschitz non-linear systems subject to uncertainty, disturbance and actuator/sensor faults, a new type of NUIO is proposed to
estimate the state and fault simultaneously, without any rank requirement; (ii) An adaptive sliding mode FTC controller using
the NUIO based FE is constructed. Although sliding mode FTC has recently been researched extensively (e.g. [23]–[27]), few
works consider unmatched system uncertainty and FE design for Lipschitz non-linear systems; (iii) A novel integrated design
of FE/FTC with a single-step LMI formulation is proposed for Lipschitz non-linear systems.

The paper is organized as follows. Section II formulates the problem. Section III proposes an integrated FE/FTC strategy
and it is extended in Section IV for the case of simultaneous actuator and sensor faults. Section V provides an illustrative
example and Section VI concludes the study.

In the paper, † denotes the pseudo-inverse, ‖ · ‖ denotes the Euclidean norm of a vector and the induced norm of a matrix,
He(W ) = W +W�, � denotes the symmetric part of a matrix.

II. PROBLEM STATEMENT

Consider a non-linear system

ẋ(t) = (A+ΔA(t))x(t) + (B +ΔB(t))u(t) + f(x, t) + Fafa(t) + d0(t)

y(t) = Cx(t) (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp are the state, control input, and system output, respectively. fa ∈ Rq denotes the actuator
fault. d0 ∈ Rl denotes the external disturbance. f(x, t) ∈ Rn is a continous non-linear function. A ∈ Rn×n, B ∈ Rn×m,
Fa ∈ Rn×q, and C ∈ Rp×n are known constant matrices. ΔA(t) represents the modelling uncertainty related to the matrix A
and satisfies ΔA(t) = M0F0(t)N0 with F�

0 (t)F0(t) ≤ I and appropriate dimension matrices M0 and N0. Similarly, ΔB(t)
represents the uncertainty associated with B. The following Assumptions on the system (1) are made.

Assumption 1: The pair (A,C) is observable, the pair (A,B) is controllable, and rank(B,Fa) = rank(B) = m.
Assumption 2: The disturbance d and fault fa belong to L2[0,∞), and fa is continuously smooth with bounded first time

derivative.
Assumption 3: The non-linear term f(x, t) satisfies a Lipschitz constraint

‖f(x̂, t)− f(x, t)‖ ≤ Lf‖x̂− x‖, ∀ x, x̂ ∈ Rn

where Lf is the Lipschitz constant independent of x and t.
Assumption 4: The control input uncertainty ΔB and external disturbance d0 satisfy the matching condition: ΔBu+d0 = Dd,

where D ∈ Rn×l is a known constant matrix and d ∈ Rl is defined as a lumped perturbation.
Remark 1: Assumptions 1 and 2 are usually made for FE-based FTC systems with actuator faults, and Assumption 3 is

a general assumption corresponding to the Lipschitz non-linearity. When compared with the matching condition normally
made in sliding mode control theory [28], it is not restrictive to specify Assumption 4 including both matched and unmatched
uncertainties. Moreover, it is not unusual for external disturbance and uncertainties to have a common distribution matrix in
[11], [29].

The FE and FTC considered in this work are defined as follows.
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Definition 1: FE: reconstruction of fault shape (the magnitude with respect to time). FTC: compensation of fault effect
through control redesign.

In keeping with the above the aim of this study is to develop an integrated procedure for combining the FE and FTC system
functions into one (single step) design procedure for the system (1). This is a single-step FTC scheme based on FE rather than
the use of residual-based FDI. The method ensures robust stability of the closed-loop system in the presence of uncertainty,
disturbance, and actuator faults for which the system non-linearity satisfies a Lipschitz structure.

III. INTEGRATED FE/FTC FOR LIPSCHITZ NON-LINEAR SYSTEMS

A. NUIO-based FE design
Define an actuator fault to be represented as an auxiliary state system, then (1) is augmented into

˙̄x = Āx̄+ΔĀx̄+ f̄(A0x̄, t) + B̄u+ D̄d̄

y = C̄x̄ (2)

where

x̄ =

[
x
fa

]
, Ā =

[
A Fa

0 0

]
, ΔĀ =

[
ΔA 0
0 0

]
, f̄(A0x̄, t) =

[
f(x, t)

0

]
,

B̄ =

[
B
0

]
, D̄ =

[
D 0
0 Iq

]
, d̄ =

[
d

ḟa

]
, C̄ = [C 0], A0 = [In 0].

Remark 2: It can be verified below that the observability of systems (1) and (2) are equivalent. Since the pair (A,C) is
observable,

rank
[

sIn −A
C

]
= n, ∀s ∈ C, Re(s) ≥ 0

which leads to

rank
[

sIn+q − Ā
C̄

]
= rank

⎡
⎣ sIn −A Fa

0 sIq
C 0

⎤
⎦ = n+ q, ∀s ∈ C, Re(s) ≥ 0.

The augmented state x̄ is estimated by a NUIO in the form of

ż = Mz +Gu+Nf̄(A0 ˆ̄x, t) + Ly

ˆ̄x = z +Hy (3)

where z ∈ Rn+q is the observer system state and ˆ̄x ∈ Rn+q is the estimate of x̄. The matrices M ∈ R(n+q)×(n+q),
G ∈ R(n+q)×m, N ∈ R(n+q)×(n+q), L ∈ R(n+q)×p, and H ∈ R(n+q)×q are to be designed.

Defining the estimation error as e = x̄− ˆ̄x, it follows that the error dynamics are

ė = ˙̄x− ˙̄̂x

= (ΞĀ− L1C̄)e + (ΞĀ− L1C̄ −M)z + Ξf̄(A0x̄, t)−Nf̄(A0 ˆ̄x, t) + (ΞB̄ −G)u

+[(ΞĀ− L1C̄)H − L2]y + ΞΔĀx̄+ ΞD̄d̄ (4)

where Ξ = In+q −HC̄ and L = L1 + L2. The matrices M , N , G, and L2 are defined as

M = ΞĀ− L1C̄, N = Ξ, G = ΞB̄, L2 = (ΞĀ − L1C̄)H (5)

and the matrices L1 and H are to be determined.
With the definition given in (5), the error dynamics (4) become

ė = (ΞĀ− L1C̄)e + ΞΔf̄ + ΞΔĀx̄+ ΞD̄d̄ (6)

where Δf̄ = f̄(A0x̄, t)− f̄(A0 ˆ̄x, t).
Now a sufficient condition for the existence of a robust NUIO (3) is given in Theorem 1.
Theorem 1: There exists a robust NUIO (3) if the error system (6) is robustly asymptotically stable.

Proof: With (5), the error system (6) is equivalent to the original error system (4). Therefore, if (6) is robustly asymptotically
stable, then (4) is also robustly asymptotically stable, indicating that limt→∞ e(t) = 0 in the presence of uncertainty and
disturbance.

Note that the design matrices M , N , G, and L can be derived once the matrices L1 and H are obtained. Thus, the main
task of obtaining the NUIO (3) as described in the sequel is to design L1 and H such that (6) is robustly asymptotically stable.
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Remark 3: Note from (6) that the disturbance/uncertainty are completely decoupled from the state/fault estimation if the
following two conditions hold: (C1) rank(CD) = rank(D)+q, and (C2) rank(ΔA) = rank(CΔA). On the one hand, similar
to that in [14] and [15], the disturbance can be completely decoupled by designing H such that (In+q −HC̄)D̄ = 0 with the
rank requirement rank(C̄D̄) = rank(D̄), i.e., (C1). On the other hand, the uncertainty effect can be totally eliminated only
when rank(ΔĀ) = rank(C̄ΔĀ), i.e., (C2).

These rank requirements are conservative and limit the applicability of the proposed NUIO. Considering the case of partially
(rather than totally) decoupled disturbance, [16] proposes a robust NUIO based on H∞ optimization. However, satisfaction of
a rank requirement similar to (C1) is still required and the effect of system uncertainties on the estimation is not considered.
Taking account of both disturbance and uncertainty, a robust NUIO (3) is proposed in this paper using H∞ optimization which
does not impose a rank requirement and is thus applicable to many more real engineering systems.

Remark 4: It should be noted that unlike the traditional FDI, which includes the residual-generator based processes of fault
detection and isolation with residual threshold design, the proposed NUIO directly estimates the fault shape once a fault occurs.
The observer can naturally estimate the faults by considering them as new states in an augmented system. Moreover, for the
FDI approach the sensitivities of the residual generator to the faults and to the disturbance should be simultaneously maximized
and minimized, respectively, which is a very challenging and difficult problem to solve.

In the proposed NUIO, the faults are assumed to be bounded and continuously smooth, and it is seen from (6) that the FE
performance is affected not only by the non-linearity and uncertainty but also by the fault modelling error ḟa. The augmented
perturbation d̄ in 2 is not totally decoupled, but attenuated through robust design. Therefore, the robust FE performance depends
on the robustness of the error system (4).

Remark 5: Although the actuator fault considered is assumed to be continuously smooth with bounded first time derivative,
it is not required to be everywhere differentiable. According to [30], for any piecewise continuous fault f0 ∈ Rq0 and a stable
matrix Af ∈ Rq0×q0 , there always exists an input vector w ∈ Rq0 such that: ḟ0 = Aff0 +w. Thus, following a similar design
procedure, the proposed observer can also be used to estimate piecewise continuous faults.

B. Adaptive sliding mode FTC design
A sliding surface for the system (1) is designed as [31]

s1 = N1x̂ (7)

where s1 ∈ Rm, x̂ ∈ Rn is the estimate of the system state x, and N1 = B† − Y1(In −BB†) with B† = (B�B)−1B� and
an arbitrary matrix Y1 ∈ Rm×n. Define the state estimation error as ex = x− x̂. Differentiating s1 with respect to time gives

ṡ1 = N1(A+ΔA)x + u+N1Fafa +N1f(x, t) +N1Dd−N1ėx. (8)

Design the control input as

u = ul + un (9)

where the linear feedback component is ul = −K ˆ̄x with a design matrix K = [Kx E1]. Kx ∈ Rm×n is to be determined
while E1 is chosen as E1 = B†Fa. The non-linear component un is designed as

un =

{
−ρs1(t) s1

‖s1‖
, s1 �= 0

0, s1 = 0

with ρs1(t) = η̂s1 +ϕs1 + εs1 . ϕs1 , εs1 > 0 are design constants. The scalar η̂s1 is introduced to estimate ηs1 which is defined
as ηs1 = ‖N1‖f0 + ‖N1D‖d0 + ‖E1‖(f̄a + ‖f̂a‖) + ‖Kx‖ex0 +N1ēx0, where f0, ex0 and ēx0 are unknown scalars assumed
to be the upper bounds of f(x, t), ‖ex‖ and ‖ėx‖, respectively. The update law of η̂s1 is

˙̂ηs1 = σ1‖s1‖, η̂s1(0) ≥ 0

with a learning rate σ1 > 0 to be designed.
Define the estimation error of ηs1 as η̃s1 = ηs1 − η̂s1 . Consider a Lyapunov function

Vs1 =
1

2
(s�1 s1 +

1

σ1
η̃2s1).

It follows from (8) and (9) that

V̇s1 = s�1 ṡ1 −
1

σ1
η̃s1 ˙̂ηs1

≤ (ωs1‖x‖+ ηs1 − ρs1(t))‖s1‖ − η̃s1‖s1‖
≤ (ωs1‖x‖ − ϕs1 − εs1)‖s1‖.



Preprint submitted to International Journal of Robust and Nonlinear Control, 2016 5

where ωs1 = ‖N1A−Kx‖+‖N1M0‖‖N0‖. By choosing ϕs1 > ωs1φs1 with some scalar φs1 > 0, it follows that the reaching
and sliding conditions are satisfied, i.e., s�1 ṡ1 ≤ −εs1‖s1‖, in the subset Ωs1 = {x : ‖x‖ ≤ φs1}. Thus, the controller (9)
ensures that if x(0) ∈ Ωs1 , then for all t > ‖s1(0)‖/εs1 , s1 = ṡ1 = 0.

Consider next the system stability analysis corresponding to the sliding mode. Suppose that the system has already been
controlled to remain within the sliding mode (7). Substituting the equivalent control

ueq = − (N1Ax +N1f(x, t) +N1Dd) + ul (10)

into (1) gives the closed-loop system

ẋ = (ΘA−BKx)x+ΔAx+BKe+Θf(x, t) + ΘDd (11)

where Θ = In −BN1.
Thus, by designing Kx such that (11) is robustly stable, then the system (1) is maintained on the sliding mode with the

equivalent control (10).

C. Integrated synthesis of FE/FTC
The augmented closed-loop system composed of (6) and (11) is

ẋ = (Θ1A−BKx)x +BKe+Θf(x, t) + ΔAx+D1d̄

ė = (ΞĀ− L1C̄)e + ΞΔf̄ + ΞΔĀx̄+ ΞD̄d̄

z1 = Cxx+ Cee (12)

where z1 ∈ Rr is the measured output used to verify the closed-loop system performance with matrices Cx ∈ Rr×n and
Ce ∈ Rr×(n+q), and D1 = [ΘD 0].

Fig. 1. Integrated FE/FTC for Lipschitz nonlinear systems

It is seen from (12) that the system uncertainty and disturbance affect the state/fault estimation, and in turn the estimation
error has an immediate effect on the control system. This shows that a bi-directional robustness interaction exists between the
FE and FTC models, which breaks down the so-called Separation Principle and gives rise to an integrated FE/FTC design
approach to achieve optimal and robustness of the overall FTC system performance.

Now the proposed integrated design problem (see Figure 1) can be stated as follows: design the controller gain Kx and the
observer gains H and L1 to ensure the robust stability of the augmented closed-loop system (12).

This integrated design is virtually an observer-based robust control problem, and to solve it a single-step LMI formulation is
proposed in Theorem 2. This single-step approach is modified from the method used in [32], which focuses on an observer-based
robust control design for nominal (fault free) discrete-time Lipschitz non-linear systems.

Theorem 2: Given positive scalars γ1, ε1, ε2, ε3, ε1, and ε2, the closed-loop system (12) is stable with H∞ performance
‖Gz1d̄

‖∞ < γ1, if there exist three symmetric positive definite matrices Z ∈ Rn×n, Q ∈ Rn×n, and R ∈ Rq×q, and matrices
M1 ∈ Rm×n, M2 ∈ Rn×p, M3 ∈ Rn×p, M4 ∈ Rq×p, and M5 ∈ Rq×p such that[

Π1 Π2

� Π3

]
< 0 (13)
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with Π1 =

[
Ξ1,1 Ξ1,2

� J2,2

]
, Π2 =

[
Ξ1,3 Ξ1,4 0 Ξ1,6 Ξ1,7 0 0 Ξ1,10

J2,3 J2,4 J2,5 0 0 I J2,9 0

]
,

Π3 = −diag
{
γ2
1I, I, ε1I, (ε1 + ε2)

−1I, ε−1
3 Z, ε3Z, ε1I, (ε2L

2
f)

−1I
}

,

J2,2 =

[
Ξ2,2 Ξ2,3

� Ξ3,3

]
, J2,3 =

[
QD −M2CD 0
−M4CD R

]
, J2,4 =

[
C�

ex

C�
efa

]
,

J2,5 =

[
QM0 −M2CM0

−M4CM0

]
, J2,9 =

[
Q−M2C 0
−M4C R

]
,

Ξ1,1 = He(ΘAZ − BM1) + ε−1
2 M0M

�
0 + ε−1

2 ΘΘ�,Ξ1,2 = [0 Fa],Ξ1,3 = [ΘD 0], Ξ1,4 = ZC�
x ,

Ξ1,6 = ZN�
0 , Ξ1,7 = BM1, Ξ1,10 = Z, Ξ2,2 = He(QA−M2CA−M3C) + ε1L

2
fIn,

Ξ2,3 = QFa −M2CFa −A�C�M�
4 − C�M�

5 , Ξ3,3 = He(−M4CFa),
then the gains are given by

Kx = M1Z
−1, H1 = Q−1M2, H2 = R−1M4, L11 = Q−1M3, L12 = R−1M5.

Proof: Consider a Lyapunov function Ve = e�P1e with a symmetric positive definite matrix P1. Denote χ1 = x�ΔĀ�Ξ�P1e+
e�P1ΞΔAx and M̄0 = [M�

0 0]�, it follows that

χ1 = −
[√

ε1
−1

M̄�
0 Ξ�P1e−√ε1F0N0x

]� [√
ε1

−1
M̄�

0 Ξ�P1e−√ε1F0N0x
]

+ε−1
1 e�P1ΞM̄0M̄

�
0 Ξ�P1e+ ε1x

�N�
0 F�

0 F0N0x

≤ ε−1
1 e�P1ΞM̄0M̄

�
0 Ξ�P1e+ ε1x

�N�
0 N0x.

According to Assumption 3, for some positive scalar ε1,

2e�P1ΞΔf̄ ≤ ε−1
1 e�P1ΞΞ

�P1e+ ε1L
2
f‖A0e‖2.

The time derivative of Ve along (6) is

V̇e = ė�P1e+ e�P1ė

= e�He
[
P1(ΞĀ − L1C̄)

]
e+ 2e�P1ΞΔf̄ +He(e�P1ΞD̄d̄) + χ1

≤ e�
[
He(P1(ΞĀ− L1C̄)) + ε−1

1 P1ΞΞ
�P1 + ε1L

2
fA

�
0 A0In+q + ε−1

1 P1ΞM̄0M̄
�
0 Ξ�P1

]
e

+He(e�P1ΞD̄d̄) + ε1x
�N�

0 N0x. (14)

Consider another Lyapunov function Vx = x�Px. Assume f(0, t) = 0, then Assumption 3 indicates that ‖f(x, t)‖ ≤
Lf‖x‖, ∀x ∈ Rn. It thus holds that, for some positive scalar ε2,

2x�PΘf(x, t) ≤ ε−1
2 x�PΘΘ�Px+ ε2L

2
f‖x‖2.

Denote χ2 = x�ΔA�Px+ x�PΔAx, then for some positive scalar ε2,

χ2 = −
[√

ε2
−1

M�
0 Px−√ε2F0N0x

]� [√
ε2

−1
M�

0 Px−√ε2F0N0x
]

+ε−1
2 x�PM0M

�
0 Px+ ε2x

�N�
0 F�

0 F0N0x

≤ ε−1
2 x�PM0M

�
0 Px+ ε2x

�N�
0 N0x.

Then the time derivative of Vx along (11) is

V̇x = ẋ�Px+ x�P ẋ

= x�He [P (ΘA−BKx)]x+ 2x�Pf(x, t) + He(x�PBKe) + χ2 +He(x�PD1d̄)

≤ x�
[
He(P (ΘA−BKx)) + ε−1

2 PΘΘ�P + ε2L
2
fIn + ε−1

2 PM0M
�
0 P + ε2N

�
0 N0

]
x

+He(x�PBKe) + He(x�PD1d̄). (15)

The H∞ performance ‖Gz1d̄
‖ < γ can be represented as

J =

∫ ∞

0

(z�1 z1 − γ2
1 d̄

�d̄)dt < 0. (16)

Under zero initial conditions, it follows that

J =

∫ ∞

0

(z�1 z1 − γ2
1 d̄

�d̄+ V̇x + V̇e)dt−
∫ ∞

0

(V̇x + V̇e)dt

=

∫ ∞

0

(z�1 z1 − γ2
1 d̄

�d̄+ V̇x + V̇e)dt− (Vx(∞) + Ve(∞)) + (Vx(0) + Ve(0))

≤
∫ ∞

0

(z�1 z1 − γ2
1 d̄

�d̄+ V̇x + V̇e)dt.



Preprint submitted to International Journal of Robust and Nonlinear Control, 2016 7

A sufficient condition for satisfaction of (16) is

J1 = z�1 z1 − γ2
1 d̄

�d̄+ V̇x + V̇e < 0. (17)

Substituting (14) and (15) into (17) yields

J1 =

⎡
⎣ x

e
d̄

⎤
⎦
� ⎡
⎣ J11 PBK PD1

� J22 P1ΞD̄
� � −γ2

1I

⎤
⎦
⎡
⎣ x

e
d̄

⎤
⎦ < 0 (18)

where J11 = He(P (ΘA−BKx)) + ε−1
2 PΘΘ�P + ε2L

2
fIn + (ε1 + ε2)N

�
0 N0 + ε−1

2 PM0M
�
0 P

+C�
x Cx, J22 = He(P1(ΞĀ − L1C̄)) + ε−1

1 P1ΞΞ
�P1 + ε1L

2
fA

�
0 A0In+q + ε−1

1 P1ΞM̄0M̄
�
0 Ξ�P1

+C�
e Ce.

Define Z = P−1. Pre- and post-multiplying both sides of (18) with diag(Z, I, I) gives⎡
⎣ J11 BK D1

� J22 P1ΞD̄
� � −γ2

1I

⎤
⎦ < 0 (19)

where J11 = He((ΘA−BKx)Z)+ε−1
2 ΘΘ�+ε2L

2
fZZ+(ε1+ ε2)ZN�

0 N0Z+ ε−1
2 M0M

�
0 +ZC�

x CxZ , J22 = He(P1(ΞĀ−
L1C̄)) + ε−1

1 P1ΞΞ
�P1 + ε1L

2
fA

�
0 A0In+q + ε−1

1 P1ΞM̄0M̄
�
0 Ξ�P1

+C�
e Ce.

It follows from the Young relation [33] that for some positive scalar ε3,

He

⎧⎪⎨
⎪⎩
⎡
⎣ BKx

0
0

⎤
⎦
⎡
⎣ 0

I
0

⎤
⎦
�
⎫⎪⎬
⎪⎭ ≤ ε3

⎡
⎣ BKxZ

0
0

⎤
⎦Z−1

⎡
⎣ BKxZ

0
0

⎤
⎦
�

+ ε−1
3

⎡
⎣ 0

I
0

⎤
⎦Z−1

⎡
⎣ 0

I
0

⎤
⎦
�

.

Further define

P1 =

[
Qn×n

Rq×q

]
, L1 =

[
L11

L12

]
, H =

[
H1

H2

]
and M1 = KxZ , M2 = QH1, M3 = QL11, M4 = RH2, and M5 = RL12. Using the Schur complement repeatedly, (19) can
be finally reformulated into (13).

Remark 6: In previous work by the authors [23], the integrated FE/FTC problem is solved via a single-step LMI formulation
by introducing an equality constraint to linearize the non-linear term PBKx in (18). This equality constraint imposes some
restriction on the systems (e.g., the matrix B has to be full-column) as well as some requirement on the Lyapunov matrix P
[23]. Here the requirement for an equation constraint is removed by using the Young relation, which thus offers more flexibility
to achieve an optimal design. However, it should also be noted that this LMI formulation has one more prescribed design
scalar ε3 for solving the LMI (13).

IV. EXTENSION TO SIMULTANEOUS ACTUATOR AND SENSOR FAULTS CASE

The FE/FTC design problem for actuator faults in Lipschitz non-linear systems has been outlined in Section III. However, the
possibility of the presence of sensor faults should also be considered for real applications. It is well known that measurement
noise also affects the FE/FTC performance and can be regarded as a bias type of sensor fault, estimated and compensated
within FTC system design [34]. With these considerations, the integrated FE/FTC strategy proposed in Section III is extended
here for Lipschitz non-linear systems with simultaneous actuator and sensor faults.

Consider the non-linear systems

ẋ(t) = (A+ΔA(t))x(t) + (B +ΔB(t))u(t) + f(x, t) + Fafa(t) + d0(t)

y(t) = Cx(t) + Fsfs(t) (20)

where fs ∈ Rq1 denote the sensor fault with a known constant distribution matrix Fs ∈ Rp×q1 , and the other terms are defined
the same as those in (1). fs is also assumed to be bounded and continuously smooth with bounded first time derivative.

Using a similar augmentation method in Section III-A, the system (20) is represented as

˙̄x = Āx̄+ΔĀx̄+ f̄(A0x̄, t) + B̄u+ D̄d̄

y = C̄x̄ (21)
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where

x̄ =

⎡
⎣ x

fa
fs

⎤
⎦ , Ā =

⎡
⎣ A Fa 0

0 0 0
0 0 0

⎤
⎦ , ΔĀ =

⎡
⎣ ΔA 0 0

0 0 0
0 0 0

⎤
⎦ , f̄(A0x̄, t) =

[
f(x, t)

0

]
,

B̄ =

⎡
⎣ B

0
0

⎤
⎦ , D̄ =

⎡
⎣ D 0 0

0 Iq 0
0 0 Iq1

⎤
⎦ , d̄ =

⎡
⎣ d

ḟa
ḟs

⎤
⎦ , C̄ = [C 0 Fs], A0 = [In 0 0].

Following a similar proof as that in Remark 2, it is verified that this augmented system is observable. Thus, the following
NUIO is proposed,

ż = Mz +Gu+Nf̄(A0 ˆ̄x, t) + Ly

ˆ̄x = z +Hy (22)

where z ∈ Rn+q+q1 is the observer system state and ˆ̄x ∈ Rn+q+q1 is the estimate of x̄. The design matrices M , G, N , L,
and H are of compatible dimensions.

The adaptive sliding mode FTC design is the same as the one constructed in Section III-B, except that the linear feedback
component gain becomes K = [Kx E1 0]. Finally, the obtained augmented closed-loop system is

ẋ = (Θ1A−BKx)x +BKe+Θf(x, t) + ΔAx+D1d̄

ė = (ΞĀ− L1C̄)e + ΞΔf̄ + ΞΔĀx̄+ ΞD̄d̄

yc = y − Fsf̂s

z2 = Cxx+ Cee (23)

where yc is the system output after sensor compensation, z2 ∈ Rr is the measured output with matrices Cx ∈ Rr×n and
Ce ∈ Rr×(n+q+q1), and D1 = [ΘD 0 0].

A single-step LMI formulation is outlined in Theorem 3 to solve the gains Kx, L1 and H from the augmented closed-loop
system (23).

Theorem 3: Given positive scalars γ2, ε1, ε2, ε3, ε1, and ε2, the closed-loop system (23) is stable with H∞ performance
‖Gz2d̄

‖∞ < γ2, if there exist four symmetric positive definite matrices Z ∈ Rn×n, Q ∈ Rn×n, R ∈ Rq×q , and S ∈ Rq1×q1 ,
and matrices M1 ∈ Rm×n, M2 ∈ Rn×p, M3 ∈ Rn×p, M4 ∈ Rq×p, M5 ∈ Rq×p, M6 ∈ Rq1×p, M7 ∈ Rq1×p such that[

Π1 Π2

� Π3

]
< 0 (24)

with Π1 =

[
Ξ1,1 Ξ1,2

� J2,2

]
, Π2 =

[
Ξ1,3 Ξ1,4 0 Ξ1,6 Ξ1,7 0 0 Ξ1,10

J2,3 J2,4 J2,5 0 0 I J2,9 0

]
,

Π3 = −diag
{
γ2
2I, I, ε1I, (ε1 + ε2)

−1I, ε−1
3 Z, ε3Z, ε1I, (ε2L

2
f)

−1I
}

,

J2,2 =

⎡
⎣ Ξ2,2 Ξ2,3 Ξ2,4

� Ξ3,3 Ξ3,4

� � Ξ4,4

⎤
⎦ , J2,3 =

⎡
⎣ QD −M2CD 0 −M2Fs

−M4CD R −M4Fs

−M6CD 0 S −M6Fs

⎤
⎦ ,

J2,4 =

⎡
⎣ C�

ex

C�
efa

C�
efs

⎤
⎦ , J2,5 =

⎡
⎣ QM0 −M2CM0

−M4CM0

−M6CM0

⎤
⎦ , J2,9 =

⎡
⎣ Q−M2C 0 −M2Fs

−M4C R −M4Fs

−M6C 0 S −M6Fs

⎤
⎦ ,

Ξ1,1 = He(ΘAZ − BM1) + ε−1
2 M0M

�
0 + ε−1

2 ΘΘ�,Ξ1,2 = [0 Fa 0],Ξ1,3 = [ΘD 0 0],
Ξ1,4 = ZC�

x , Ξ1,6 = ZN�
0 , Ξ1,7 = BM1, Ξ1,10 = Z, Ξ2,2 = He(QA−M2CA−M3C)+ε1L

2
fIn, Ξ2,3 = QFa−M2CFa−

(M4CA+M5C)�, Ξ2,4 = M3Fs − (M6CA+M7C)�,
Ξ3,3 = He(−M4CFa), Ξ3,4 = −M5Fs − (M6CFa)

�, Ξ4,4 = He(−M7Fs),
then the gains are given by: Kx = M1Z

−1, H1 = Q−1M2, H2 = R−1M4, H3 = S−1M6, L11 = Q−1M3, L12 = R−1M5, L13 =
S−1M7.

Proof: Define

P1 =

⎡
⎣ Qn×n

Rq×q

Sq1×q1

⎤
⎦ , L1 =

⎡
⎣ L11

L12

L13

⎤
⎦ , H =

⎡
⎣ H1

H2

H3

⎤
⎦ ,

and M1 = KxZ , M2 = QH1, M3 = QL11, M4 = RH2, M5 = RL12, M6 = SH3, and M7 = SL13. According to the proof
of Theorem 2, the proof of Theorem 3 is straightforward and thus is omitted here.

Remark 7: In the proposed method the Lipschitz constant is explicitly required to allow the use of H∞ optimization to
suppress the effect of the non-linearity on the control system and the observer. More details can be found in the proof of
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Theorem 3.2. Larger values of the Lipschitz constant would increase the value of the H∞ performance index, resulting in less
robust observer/control designs. Considering this, for non-linear systems with relatively large Lipschitz constants the proposed
H∞ optimization design might not be able to reach the required robust FE/FTC performance. Therefore, a new method for
handling large Lipschitz constants can be a research topic to follow this current work.

V. APPLICATION TO A SINGLE-LINK MANIPULATOR

Adopted from [10] the single-link manipulator

ẋ = (A+ΔA)x + (B +ΔB)u+ f(x, t) + d0

y = Cx (25)

where x = [x1 x2 x3 x4]
� = [θm wm θ1 w1]

� are the angular positions and angular velocities of the motor and the link,
respectively. The system matrices are defined as

A =

⎡
⎢⎢⎣

0 1 0 0
−48.6 −1.25 48.6 1.25

0 0 0 1
1.95 0 −1.95 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
21.6
0
0

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , ΔA =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

−0.1 sin(t) 0 0.1 sin(t) 0

⎤
⎥⎥⎦ ,

(26)

ΔB =

⎡
⎢⎢⎣

0
0.1 cos(t)

0
0

⎤
⎥⎥⎦ , f(x, t) =

⎡
⎢⎢⎣

0
0
0

−0.333 sin(x3)

⎤
⎥⎥⎦ , d0 =

⎡
⎢⎢⎣

0
0.1 sin(10t)

0
0

⎤
⎥⎥⎦ .

It follows from (1) that

ΔBu+ d0 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ (0.1 cos(t)u+ 0.1 sin(10t)) = Dd, M0 = I4,

F0(t) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 sin(t)

⎤
⎥⎥⎦ , N0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
−0.1 0 0.1 0

⎤
⎥⎥⎦ .

To demonstrate better the performance of the proposed integrated FE/FTC design, two simulation cases are studied, i.e.,
the system (25) has (i) actuator faults alone or (ii) both actuator and sensor faults. Comparative simulations with the same
system parameters and initial conditions are performed, using the proposed integrated design, the normal control (without
actuator/sensor fault compensation) and the separated design proposed in [14].

A. Actuator fault case
Suppose that the system has the following actuator fault and distribution matrix

Fa =

⎡
⎢⎢⎣

0
21.6
0
0

⎤
⎥⎥⎦ , fa(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ 1
t− 1, 1 < t ≤ 2

sin(1.5πt), 2 < t ≤ 5
1, 5 < t ≤ 6
2, 6 < t ≤ 7
1, 7 < t ≤ 8

1.5 sin(π(t− 8)), 8 < t ≤ 12
100∑
k=0

0.5k cos(3kπt), 12 < t ≤ 20

.

Although the faults studied are assumed to be differentiable, a Weierstrass function type fault (smooth but non-differentiable)
is used in the time period t ∈ (12, 20]s to further verify the capability of the proposed method. Given Cx = Cex = I4,
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Cefa = Cefs = [1 1 1 1]
�, Lf = 0.333, ε1 = 0.1, ε2 = 1000, ε3 = 0.01, ε1 = 10, ε2 = 100, and Y1 = [0.1 0.1 0.1 0.1].

Solving Theorem 2 gives γ1 = 0.2 and the controller and observer gains

Kx =

⎡
⎢⎢⎣

111.8034
4.5655
−37.5276
76.0131

⎤
⎥⎥⎦
�

, H =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 2.3696 0 0

⎤
⎥⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎢⎣

0
0
0
0

−51.1825

⎤
⎥⎥⎥⎥⎦ ,

M =

⎡
⎢⎢⎢⎢⎣
−0.5219 0 0.0047 −0.0072 0

0 −0.5001 0 0 0
0.0047 0 −0.5253 −0.0037 0
−0.0072 0 −0.0037 −0.5232 0
−3.9498 −12.3294 −4.5633 −3.8218 −51.1825

⎤
⎥⎥⎥⎥⎦ ,

N =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −2.3696 0 0 1

⎤
⎥⎥⎥⎥⎦ , L =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

115.1605 −118.3179 −115.1605 0.00001

⎤
⎥⎥⎥⎥⎦ .

The sliding surface and the non-linear component of the sliding mode controller are designed as

s1 = [−0.1 0.0463 − 0.1 − 0.1]x̂, ˙̂ηs1 = 5‖s1‖, ρs1(t) = η̂s1 + 1.2

un =

{
−ρs1(t) s1

‖s1‖+0.01 , s1 �= 0

0, s1 = 0

where a continuous approximation of the function sign(s) = s1/‖s1‖ is used here.
Simulations are performed with initial conditions: x(0) = [π/15 0.2 π/12 0]

�, z(0) = 0, and η̂(0) = 0. The H∞

attenuation levels of the integrated/separated designs are listed in Table I. Compared with the separated design, the proposed
integrated design loses a certain degree of FTC robustness resulting from the sharing of the common Lyapunov matrices in
the observer and controller designs.

TABLE I
H∞ ATTENUATION LEVEL

Integrated design Separated design
Observer Controller

γ1min 0.2 0.1 0.1
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Fig. 2. Actuator fault estimation performance: actuator fault case

In the presence of uncertainty, disturbance, and actuator fault, the results in Figures 2 - 6 show that the normal control and
the separated FTC in [14] cannot ensure the stability of the closed-loop system and the faults are not well estimated. When
compared with this the proposed integrated design approach estimates the actuator fault with good accuracy and ensures that
the closed-loop system is robustly stable. Although the proposed integrated design is developed for the faults assumed to be
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Fig. 3. Motor angular position: actuator fault case
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Fig. 4. Motor angular velocity: actuator fault case
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Fig. 5. Link angular position: actuator fault case

smooth with first time derivative, it is verified in the results that it is also able to achieve acceptable FE/FTC performance for
the non-differentiable fault case.
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Fig. 6. Link angular velocity: actuator fault case

B. Actuator and sensor faults case
Consider the situation that the system (25) suffers from simultaneous actuator and sensor faults, which are assumed to be

Fa =

⎡
⎢⎢⎣

0
21.6
0
0

⎤
⎥⎥⎦ , fa(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, 0 ≤ t ≤ 3
2, 3 < t ≤ 6
1, 6 < t ≤ 9
0.5, 9 < t ≤ 12
−1, 12 < t ≤ 15

, Fs =

⎡
⎢⎢⎣
−1
1
1
1

⎤
⎥⎥⎦ , fs(t) = 0.1 sin(πt).

Given Cx = Cex = I4, Cefa = Cefs = [1 1 1 1]
�, Lf = 0.333, ε1 = 10, ε2 = 100, ε3 = 0.01, ε1 = 1, ε2 = 100, and

Y1 = [0.1 0.1 0.1 0.1]. Solving Theorem 3 gives γ2 = 0.25 and the controller and observer gains

Kx =

⎡
⎢⎢⎣

49.2502
4.6288
−1.5937
55.3266

⎤
⎥⎥⎦
�

, H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.6895 0.0318 0.3100 0.3112
0.3105 0.9682 −0.3100 −0.3112
0.3105 −0.0318 0.6900 −0.3112
0.3105 −0.0318 −0.3100 0.6888
0.7993 2.4914 −0.7975 −0.8018
−0.3092 0.0361 0.3095 0.3087

⎤
⎥⎥⎥⎥⎥⎥⎦
,

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

−116.9957 113.8338 134.1462 128.3954 −0.6875 495.2110
116.4494 −114.3354 −134.1383 −128.4409 0.6875 −495.2040
116.4494 −113.8260 −134.6669 −128.4470 0.6875 −495.2292
116.3993 −113.8292 −134.1477 −129.0052 0.6875 −495.2215
14.7328 −27.4614 −23.0327 −19.7599 −53.8134 157.1884
73.1861 −70.7960 −78.6252 −76.0187 −0.7791 −296.3691

⎤
⎥⎥⎥⎥⎥⎥⎦
,

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3105 −0.0318 −0.3100 −0.3112 0 0.0366
−0.3105 0.0318 0.3100 0.3112 0 −0.0366
−0.3105 0.0318 0.3100 0.3112 0 −0.0366
−0.3105 0.0318 0.3100 0.3112 0 −0.0366
−0.7993 −2.4914 0.7975 0.8018 1 −0.0928
0.3092 −0.0361 −0.3095 −0.3087 0 0.0365

⎤
⎥⎥⎥⎥⎥⎥⎦
,

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.6875
0.6875
0.6875
0.6875
−53.8134
−0.7791

⎤
⎥⎥⎥⎥⎥⎥⎦
, L =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.4411 0.7946 −0.0398 −0.3930
−0.4411 −0.7946 0.0398 0.3929
−0.4412 −0.7947 0.0398 0.3930
−0.4411 −0.7946 0.0398 0.3930
4.6438 −123.3795 −4.7294 118.9216
−0.5446 −2.7707 0.3007 1.7396

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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The sliding surface and the non-linear component of the sliding mode FTC controller are designed as

s1 = [−0.1 0.0463 − 0.1 − 0.1]x̂, ˙̂ηs1 = 5‖s1‖, ρs1(t) = η̂s1 + 1.1

un =

{
−ρs1(t) s1

‖s1‖+0.01 , s1 �= 0

0, s1 = 0
.

Simulations are performed with initial conditions: x(0) = [π/10 0.2 π/2 0]
�, z(0) = 0, and η̂(0) = 0. Similarly, it

is observed from Table II that the proposed integrated design loses a certain degree of FTC robustness compared with the
separated design.

TABLE II
H∞ ATTENUATION LEVEL

Integrated design Separated design
Observer Controller

γ2min 0.25 0.1 0.12
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Fig. 7. Actuator fault estimation performance: actuator/sensor faults case
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Fig. 8. Sensor fault estimation performance: actuator/sensor faults case

In the presence of uncertainty, disturbance, and actuator/sensor fault, the results in Figures 7 - 14 show that the normal
control and the separately designed FE and FTC functions cannot stabilize the closed-loop system and the faults are not well
estimated. Moreover, the sensor fault effect in the system output is not compensated well using the separated design. However,
the proposed integrated design estimates the faults with good accuracy and ensures the robust stability of the closed-loop
system with the sensor fault well compensated.
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Fig. 10. Motor angular velocity: actuator/sensor faults case
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Fig. 11. Link angular position: actuator/sensor faults case

VI. CONCLUSION

An FE-based integrated FTC design for uncertain Lipschitz non-linear systems subject to bounded disturbance and actu-
ator/sensor faults is proposed. A NUIO without rank requirement is proposed to estimate simultaneously the system states
and faults, and using the obtained estimates an adaptive sliding mode FTC controller is constructed. The integrated FE/FTC
design problem is formulated as an observer-based robust control problem solved using H∞ optimization in a single-step LMI
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Fig. 12. Link angular velocity: actuator/sensor faults case
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Fig. 13. Compensated system output: actuator/sensor faults case
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Fig. 14. Compensated system output: actuator/sensor faults case

formulation. By taking account of the bi-directional robustness interactions between the FE and FTC models the integrated
design achieves good FE/FTC performance as shown in the comparative simulations of a single-link manipulator. This is
demonstrated with the proposed FTC design and the normal control design as well as with the existing separated FTC design.
The future research should focus on an extension of the proposed design to address the output tracking control problem for
Lipschitz non-linear systems.



Preprint submitted to International Journal of Robust and Nonlinear Control, 2016 16

ACKNOWLEDGMENT

Jianglin Lan acknowledges joint scholarship funding support from the China Scholarship Council for 2014-2017 [No.201406150074]
along with the Hull-China scholarship at Hull University.

REFERENCES
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