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Three novel thiacalix[4]arene receptors 4a~c each with a 1,3-alternate conformation and possessing two 

urea moieties linking various phenyl groups substituted with either para electron-donating or -

withdrawing groups have been synthesized. The binding properties of these receptors were investigated 

by means of 1H NMR spectroscopy and UV-vis absorption titration experiments using various anions. 

The structures and complexation energies were also studied by density functional theory (DFT) 

methods. The results suggested that receptor 4c, which possesses two p-(trifluoromethyl)phenyl ureido 

moieties, can complex most efficiently in the urea cavity and exhibits high selectivity towards F– and 

AcO– ions. 

 

Introduction 

Calix[n]arenes1 have three-dimensional tuneable shapes and are 

used as molecular building blocks with potentially many 

applications in supramolecular chemistry. Thiacalix[4]arenes2,3 

are calix[n]arenes in which the phenolic groups are bridged by 

sulfur atoms instead of methylene groups, and have received 

much recent attention for potential applications in various fields 

across chemistry, biology and environmental science. Various 

anions such as F– (e.g., in dental caries prevention, in inhalation 

anesthetics and in the treatment of osteoporosis) also play 

fundamental roles in biological, medicinal, catalysis, and 

environmental chemistry.4 The design and synthesis of anion-

selective receptors5 is more difficult than that of cation-

selective receptors. This is due to some unique features of 

anions such as their much larger sizes in comparison with those 
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of cations, and also due to the large variety of geometries 

available,6 some anions are spherical (F–, Cl–, Br–, I–) others are 

trigonal or Y-shaped (AcO–) and others are tetrahedral (H2РO4
–

), etc.. Anion recognition using artificially-designed receptors6 

based on calix[n]arenes is an important research topic in the 

area of supramolecular chemistry. Calix[n]arene urea 

derivatives are capable of effectively recognizing and sensing 

important anions via hydrogen-bonding interactions between 

the anions and the urea NH protons.7,8  

Lhoták and co-workers9 have reported anion receptors 

based on either upper-rim substituted calix[4]arenes or 

thiacalix[4]arenes which contain two p-nitrophenyl or p-tolyl 

urea moieties.9a~c,h These anion receptors exhibited effective 

recognition abilities towards selected anions in common 

organic solvents. Recently, Kumar and co-workers reported an 

anion receptor based on a calix[4]arene in a 1,3-alternate 

conformation and bearing containing two p-nitrophenyl-ureido 

moieties.10 This compound exhibited strong binding and good 

selectivity towards Cl– ion due to strong hydrogen bonding 

between the Cl– ion and the N-H protons, both in THF or 

chloroform solutions. However, investigations concerning the 

influence on the acidity of the urea protons by either electron–

donating or electron–withdrawing groups located on the p-

position of phenyl groups of urea moieties in analogous 

thiacalix[4]arenes and the binding of various anions have 

received scant attension.11j 

In this article, we report the synthesis of three novel 

thiacalix[4]arenes receptors 4a~c with a 1,3-alternate 

conformation and possessing two urea moieties linking various 
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phenyl groups bearing either para electron-donating or 

electron-withdrawing groups, together with two benzyl groups 

at the opposite sides of the thiacalix[4]arene cavity.11 In our 

studies, the complexation properties of 4a~c towards F–, Cl–, Br–, 

I–, AcO– and H2РO4
– ions were investigated by 1H-NMR 

spectroscopy (with 4a~c) and UV-vis absorption (with 4c) 

titration experiments. Furthermore, the structures and 

complexation energies for all complexes of the receptors 4a~c 

with various anions were also determined by theoretical studies 

using DFT methods. 

Results and discussions 

Synthesis 

O-Alkylation of 1,3-alternate-1 was conducted using 2 equivalents 

of bromoacetamide in the presence of 2 equivalents of Cs2CO3 

according to the reported procedure, and afforded the desired 1,3-

alternate-2 in 60 % yield.12 The amide reduction of 1,3-alternate-2 

was carried out with a large excess of BH3/THF solution, and 

afforded the desired 1,3-alternate-3 in 65 % yield. The condensation 

of 1,3-alternate-3 with 2.2 equivalents of the appropriate isocyanate 

in CH2Cl2 furnished the receptors 4a~c in good yields (Scheme 1). 

The 1H NMR spectrum of receptors 4a~c in CDCl3 exhibits the 

characteristics of a 1,3-alternate conformation such as two singlets 

(18H each) for the tert-butyl protons, two triplets (4H each) for the -

OCH2CH2- protons, two singlets (4H each) for the aromatic protons 

and two singlets (2H each) for the four urea NH protons. Moreover, 

concentration dependence of the 1H NMR chemical shifts of the urea 

protons in receptor 4c was not observed (Fig. S11). This (lack of) 

observation indicates that receptor 4c has strong intramolecular 

hydrogen bonds between the two urea groups linking the p-

(trifluoromethyl)phenyl moieties. The molecular structure of 

receptor 4a was also verified by X-ray crystallographic analysis (Fig. 

1, S12). Receptor 4a was recrystallized from a mixture of 

Scheme 1 Synthesis of receptors 1,3-alternate-4a~c. 

Fig. 1 X–ray crystal structure of receptor 4a∙Cl-. H–bonds shown as dashed 

lines. One of four similar molecules in the asymmetric unit is shown in two 

orientations rotated by approx. 90°. H atoms not involved in H-bonding, 

minor disorder components, and solvent of crystallization are omitted for 

clarity. Guest used: tetrabutylammonium (TBA) salt. 

 

CHCl3–CH3CN (3:2, v/v) by slow evaporation. These results 

indicate that receptor 4a adopts the 1,3-alternate conformation in the 

solid state. In case of receptor 4a, there are four thiacalixarenes, two 

Cl– ions, two tetrabutylammonium ions, one chloroform and two 

acetonitrile molecules in the asymmetric unit. Interestingly, it was 

found that the two urea groups approach each other and are oriented 

in parallel due to the existence of dual intramolecular hydrogen 

bonding (in the case of receptor 4a, for the molecule shown: N(3)–

H(3)···O(5) 2.13(3); N(4)–H(4)···O(5) 2.17(3) Å; for the second 

molecule: N(1A)–H(1A)···O(6A) 2.15(3), N(2A)–H(2A)···O(6A) 

2.20(3) Å; for the third molecule: N(3B)–H(3B)···O(5B) 2.30(3), 

N(4B)–H(4B)···O(5B) 2.17(2) Å; for the fourth molecule: N(1C)–

H(1C)···O(6C) 2.31(3), N(2C)–H(2C)···O(6C) 2.27(3) Å) (Fig. 1, 

S12). Moreover, in the case of receptor 4a, pairs of calixarene 

molecules are linked via four H-bonds between two urea NH 

moieties on each calixarene and Cl– ion.  
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Fig. 2 Binding mode of receptor 4c upon addition of F– ion at 298 K as TBA 

salts and partial 1H NMR spectra of 4c (4.0 × 10
-3

 M) in CDCl3–CD3CN (10:1, 

v/v) upon addition of F– ion at 298 K. 

 

Binding studies  

The binding properties of receptors 4a~c in the presence of various 

anions as their tetrabutylammonium (TBA) salts, in CDCl3–CD3CN 

(10:1) solution, were investigated by means of 1H-NMR titration 

spectroscopic experiments. As shown in Fig. 2, for the complexation 

of F– ion with receptor 4c, the signals for the NHa protons (red)  

Fig. 3 Titration curves of receptor 4c with various anions as their TBA 

salts in CDCl3–CD3CN (10:1, v/v) at 298 K. 

 

 

progressively shifted downfield by 4.55 ppm (δ = 7.35 to 11.9 ppm) 

until five equivalents of F– ion was added. On the other hand, the 

signals for the NHb protons (blue) progressively shifted downfield 

by 3.88 ppm (δ = 5.72 to 9.60 ppm) until five equivalents of F– ion 

were added. These results are strongly suggestive of F– ion 

recognition by receptor 4c via hydrogen–bonding interactions 

between the F– ion and the N–H protons. The titration curves shown 

in Fig. 2, 3 (for 4c) and Fig. S13–S49 show that further addition of 

various anions to the solution of each receptors 4a~c in CDCl3 

solution, resulted in clear downfield shifts of the 1H NMR signals of 

the NHa protons. All of the results obtained clearly suggest that 

anion recognition by the receptors is via hydrogen-bonding 

interactions between the anion and the NH protons. In particular, as 

shown in Fig. 2, receptor 4c exhibited the highest selectivity amongst 

all of the anions tested, toward F– and AcO– ions. Ka values for 

receptors 4a~c and the anions tested were determined by 1H NMR 

spectroscopic titration experiments.13a (Table 1). These results 

suggest that the Ka values are influenced by the electron-donating or 

electron-withdrawing groups located at the p-position of the phenyl  
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Table 1. Association constantsa of receptors 4a~c with anions.b 

a Measured in CDCl3–CD3CN (10:1, v/v) at 298 K by the 1H NMR titration method using the chemical-shift change of the NHa proton (Fig. S13–S49); 

host concentration was 4.0 × 10-3 M. b Guests used: TBA salts. 

 

Association constant Ka [M
-1]

Spherical

6,745±472 2,937 ±206 1,453±102

Spherical Spherical Spherical Y-shape Tetrahedral

F- Cl- Br- I- AcO- H2PO4
-

410±29 6,305±441 2,727±191

Host R

H

Me

CF3

4a

4b

4c

3,550 ±286 1,557±109 734±51 203±14 3,033±212 1,338±94

13,950 ±977 6,590±461 2,920±204 883 ±62 12,878±901 5,790±405
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Fig. 4 UV–vis absorption spectra of receptor 4c (2.5 μM) upon the 

addition of F– (0–50 μM) at 298 K as a TBA salt in CH2Cl2. 

 

Table 2. Association constantsa of receptors 4c with anions.b 

a Measured in CH2Cl2 at 298 K by UV–vis titration method (Fig. S50–

S58); host concentration was 2.5 μM. b Guests used: TBA salts. 

 

ureido moieties. The Ka values for 4c having the electron-

withdrawing CF3 groups on the phenyl ureido moieties, were greater 

than those for the other two receptors. The Ka values for 4b which 

had the electron-donating CH3 groups on the ureido phenyl moieties 

were lower than those for 4a and 4b. Therefore, the introduction of 

electron–withdrawing groups at the p-position of the phenyl ureido 

groups appears to increase the acidity of the urea protons, and hence 

enhance the anion-binding ability through hydrogen-bonding 

interactions. Furthermore, receptor 4c had the highest Ka values of all 

three receptors with each of the anions tested and also had the most 

effective recognition ability toward F– and AcO– ions. Further 

complexation studies of 4c with F–, Cl–, AcO– and H2PO4
– ions were 

carried out using UV–vis spectroscopic titration experiments. 

Receptor 4c (2.5 μM) exhibits a broad absorption band at 295 nm in 

its UV–vis absorption spectrum. Upon addition of F– ion (0–50 μM) 

to the solution of 4c, Fig. 4 reveals a gradual decrease in the 

absorption of the band at 288 nm with a simultaneous increase in the 

absorption at 320 nm and a clear isosbestic point at 295 nm. From 

the above, it is clear that receptor 4c bearing the CF3 groups has the 

most effective recognition ability toward F– ions. A Job’s plot for the 

binding between the receptor 4c and F– ion reveals a 1:1 

stoichiometry (Fig. S52), and the Ka for the complexation13b of 

receptor 4c with F– ion was determined to be 465,405  32,578 M-1 

by the UV–vis titrations in CH2Cl2 solution (Fig. S51). These results 

strongly suggested that F– ion recognition by receptor 4c was via a 

hydrogen-bonding interaction between F– ion and NH protons, as 

shown in Fig. 4. The Ka values obtained by similar UV-vis titration 

Fig. 5 Geometry-optimized (ball-and-stick) structures of: Left: 4c; Right: 1;1 

complex of 4cF. Colour code: F = magenta; nitrogen = blue; NHa = light 

blue; NHb = light green; sulphur = yellow; CF3(fluoride) = orange; and 

oxygen atom = red. 

 

experiments of 4c with the other anions are summarized in Table 2. 

To further investigate the binding properties of receptors 4a~c with 

the anions tested, a computational study was carried out. The 

individual structures for all studies in the gas-phase were fully 

geometry-optimized using Gaussian 0914 with the B3LYP level of 

DFT and the 3-21G basis set. Significant changes were observed for 

the distances between two urea NH moieties on each of the receptors 

4a~c in their anion complexes. The conformation changes for 4c upon 

1:1 complexation with F– ion can be seen in Fig. 5 (more precise 

details for the computation studies for receptors 4a~c with the 

different anions are shown in Fig. S59–S94). Fig. 5 shows the 

computed structure (right) of the 1:1 complex of 4c with F– ion. 

Because of the hydrogen-bonding between the F– ion and two urea 

NH protons, distances between two urea NH moieties (NHa···NHa 

and NHb···NHb) on two p-(trifluoromethyl)phenyl ureido moieties 

decrease from 8.783 to 2.530 (Å) and from 8.379 to 3.251 (Å), 

respectively. This also strongly supports the experimental evidence 

obtained for the formation of a 1:1 (4cF–) complex. The calculated 

complexation energies (E kJ mol-1) for receptors 4a~c with the anion 

complexes are shown in Table 3. The trend for the complexation 

energies for 4a~c are in the order: F–  AcO–  H2PO4
–  Cl–  Br–  I–, 

which is in agreement with the trend observed for the observed 

complexation data obtained by means of 1H NMR spectroscopy and 

UV-vis absorption titration experiments.  

Conclusion 

In summary, three novel receptors 4a~c bearing a thiacalix[4]arene in 

a 1,3-alternate conformation have been synthesized. These receptors 

possess two ureas moieties linking various aryl groups bearing 

electron-donating or -withdrawing groups at their p-positions, which 

act as anion-binding sites and two benzyl groups at the opposite side 

of thiacalix[4]arene cavity. The binding of various anions at the two 

urea moieties was investigated by using 1H NMR, UV-vis absorption 

titration experiments. It was found that receptor 4c has a much higher 

Ka [M
-1] 465,40532,578 9,060634 8,258578418,49529,519

Anion F- Cl- AcO- H2PO4
-
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affinity towards all of the selected anions and especially for F– and 

AcO– ions. 

Experimental Section 

General 

All melting points were determined with a Yanagimoto MP-S1 

melting point apparatus. 1H-NMR spectra were determined at 

300 MHz with a Nippon Denshi JEOL FT-300 NMR 

spectrometer with TMS as an internal reference; J-values are 

given in Hz. UV-vis spectra were measured with a Shimadzu 

240 spectrophotometer. Mass spectra were obtained on a 

Nippon Denshi JMS-01SG-2 mass spectrometer at an 

ionization energy of 70 eV using a direct inlet system through 

GLC. Elemental analyses were performed by Yanaco MT-5.  

Materials 

Unless otherwise stated, all other reagents used were purchased 

from commercial sources and were used without further 

purification. Compounds 1,11d,12 212 and 312 were prepared 

following the reported procedures. 

 

Preparations 

 

4a: To a solution of compound 3 (150 mg, 0.166 mmol) in 

CH2Cl2 (10 mL) was added phenyl isocyanate (44 mg, 0.37 

mmol) and the mixture was stirred at room temperature for 24 h 

under argon. The resulting precipitate was collected by 

filtration, washed with CH3OH to give receptor 4a as a white 

solid. Recrystallization from CHCl3–CH3OH (2:1) gave 

receptor 4a (146 mg, 72 %) as a white solid. M.p. 200–202 °C. 

IR: max (KBr)/cm-1: 3220, 2958, 1683, 1542, 1439, 1214, 1206, 

1137, 994, 812 and 760. 1H NMR (300 MHz, CDCl3): δ = 0.85 

(18H, s, tBu × 2), 1.22 (18H, s, tBu × 2), 3.05 (4H, br, CH2NH 

× 2), 4.01 (4H, br, OCH2 × 2), 5.08 (4H, s, OCH2 × 2), 5.56 

(2H, s, NH × 2), 6.90–7.22. (20H, m, Phenyl–H × 20), 7.09 (4H, 

s, Ar–H × 4), 7.18 (2H, s, NH × 2) and 7.41 (4H, s, Ar–H × 4) 

ppm. 13C NMR (100 MHz, CDCl3): δ = 30.9 (CH3), 31.0 (CH3), 

33.9 (C(CH3)3), 34.1 (C(CH3)3), 40.9 (CH2), 70.8 (OCH2), 72.0 

(OCH2), 124.6 (ArC), 125.9 (ArC), 126.2 (ArC), 126.3 (ArC), 

126.5 (ArC), 126.7 (ArC), 128.0 (ArC), 128.3 (ArC), 128.5 

(ArC), 128.6 (ArC), 128.8 (ArC), 129.0 (ArC), 129.1 (ArC), 

129.3 (ArC), 130.0 (ArC), 132.0 (ArC), 135.2 (ArC), 142.8 

(ArC), 146.1 (ArC) and 155.4 (CO) ppm. FABMS: m/z: 

1224.50 (M+). C72H80N4O6S4 (1224.50): calcd C 70.55, H 6.58, 

N 4.57. Found: C 70.52, H 6.57, N 4.58. 

 

4b: To a solution of compound 3 (150 mg, 0.166 mmol) in 

CH2Cl2 (10 mL) was added p–tolyl isocyanate (48 mg, 0.37 

mmol) and the mixture was stirred at room temperature for 24 h 

under argon. The resulting precipitate was collected by 

filtration, washed with CH3OH to give receptor 4b as a white 

solid. Recrystallization from CHCl3–CH3OH (3:1) gave 

receptor 4b (146 mg, 70 %) as white solid. M.p. 203–204 °C. 

IR: max (KBr)/cm-1: 3301, 2946, 1605, 1583, 1426, 1211, 1196, 

1123, 1016, 889 and 802. 1H NMR (300 MHz, CDCl3): δ = 

0.82 (18H, s, tBu × 2), 1.22 (18H, s, tBu × 2), 2.29 (6H, s, CH3 

× 2), 3.06 (4H, br, CH2NH × 2), 4.03 (4H, br, OCH2 × 2), 5.05 

(4H, s, OCH2 × 2), 5.50 (2H, br, NH × 2), 6.86 (2H, s, NH × 2), 

6.96–7.18. (18H, m, Phenyl–H × 18), 7.10 (4H, s, Ar–H × 4) 

and 7.41 (4H, s, Ar–H × 4) ppm. 13C NMR (100 MHz, CDCl3): 

δ = 20.0 (CH3), 31.3 (CH3), 34.3 (C(CH3)3), 39.4 (CH2), 70.1 

(OCH2), 71.3 (OCH2), 119.8 (ArC), 121.9 (ArC), 125.1 (ArC), 

125.2 (ArC), 125.4 (ArC), 125.9 (ArC), 126.2 (ArC), 126.5 

(ArC), 127.1 (ArC), 127.5 (ArC), 127.8 (ArC), 128.0 (ArC), 

128.3 (ArC), 128.5 (ArC), 128.6 (ArC), 128.8 (ArC), 129.0 

(ArC), 129.1 (ArC), 129.3 (ArC), 130.0 (ArC), 135.1 (ArC), 

136.2 (ArC), 147.8 (ArC), 148.0 (ArC), 149.5 (ArC), 151.9 

(ArC), 154.0 (ArC) and 158.4 (CO) ppm. FABMS: m/z: 

[M+H]+ Calcd for C74H85N4O6S4 (1253.5352) ; Found 

1253.4812. 

4c: To a solution of compound 3 (150 mg, 0.166 mmol) in 

CH2Cl2 (10 mL) was added p–(trifluoromethyl)phenyl 

isocyanate (68 mg, 0.366 mmol) and the mixture was stirred at 

room temperature for 24 h under argon. The resulting 

precipitate was collected by filtration, washed with CH3OH to 

give receptor 4c as a white solid. Recrystallization from CHCl3–

CH3OH (3:2) gave receptor 4c (147 mg, 65%) as a white solid. 

M.p. 210–211 °C. IR: max (KBr)/cm-1: 3279, 2923, 1602, 1572, 

1538, 1225, 1170, 1091, 1068, 905 and 794. 1H NMR (300 

MHz, CDCl3): δ = 0.82 (18H, s, tBu × 2), 1.19 (18H, s, tBu × 

2), 3.12 (4H, br, CH2NH × 2), 4.03 (4H, br, OCH2 × 2), 5.08 

(4H, s, OCH2 × 2), 5.75 (2H, s, NH × 2), 6.92–7.30. (18H, m, 

Phenyl–H × 18), 7.13 (4H, s, Ar–H × 4), 7.33 (2H, s, NH × 2) 

and 7.41 (4H, s, Ar–H × 4) ppm. 13C NMR (100 MHz, CDCl3): 

δ = 32.1 (CH3), 35.6 (C(CH3)3), 40.0 (CH2), 70.1 (OCH2), 70.9 

(OCH2), 118.1 (ArC), 118.8 (ArC), 122.2 (ArC), 122.4 (ArC), 

122.7 (ArC), 122.9 (ArC), 123.0 (ArC), 123.3 (ArC), 123.6 

(ArC), 124.0 (ArC), 124.4 (ArC), 124.8 (ArC), 126.1 (ArC), 

126.5 (ArC), 126.8 (ArC), 127.3 (ArC), 127.8 (ArC), 128.0 

(ArC), 128.7 (ArC), 129.3 (ArC), 129.5 (ArC), 138.2 (ArC), 

138.9 (ArC), 149.2 (ArC), 155.2 (ArC) and 160.7 (CO) ppm. 

FABMS: m/z: 1361.4861 [M+H]+. C74H79F6N4O6S4 

(1361.4787): calcd C 65.27, H 5.77, N 4.11. Found: C 65.32, H 

5.75, N 4.08. 

Determination of the association constants 

The association constants (Ka) were determined by using 1H 

NMR spectroscopic titration experiments with a constant 

concentration of host receptor (4.0 × 10-3 M) and varying the 

guest concentrations (0–8.0 × 10-3 M). The 1H NMR chemical 

shifts of the urea protons (NH) signal were used as a probe. The 

Ka values for the complexes of receptor 4a~c were calculated by 

nonlinear curve-fitting analysis of the observed chemical shifts 

of the NH protons according to the literature procedure.13a 

1H NMR titration experiments 

A solution of Bu4NX (X = F, Cl, Br, I, AcO, H2PO4) in CD3CN 

(4.0 × 10-3 M) was added to a CDCl3 solution of receptor 4a~c in 

an NMR tube. 1H NMR spectra were recorded after addition of 
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the reactants and the temperature of the NMR probe was kept 

constant at 27 °C.  

Crystallographic analyses of 4a 

Diffraction data were collected on a Bruker APEX 2 CCD 

diffractometer equipped with graphite-monochromated Mo-Kα 

radiation at 150(2)K.15 Data were corrected for Lorentz and 

polarisation effects and for absorption.15 The structures were solved 

by direct methods and refined by full-matrix least-squares methods, 

on F2.16 The asymmetric unit contains four calixarenes two chloride 

anions, two tetrabutylammonium cations, one chloroform and two 

acetonitrile molecules of crystallisation. Within each of the four 

calixarenes there are pairs of N–H···O hydrogen bonds between urea 

moieties to a single carbonyl O atom. Looking down on the S4 

square-shaped planes of the four unique calixarenes, three are 

approximately geometrically aligned in parallel while one, 

containing S(1A), is slightly twisted. 

Two tBu groups on calixarenes were modelled as disordered 

over two sets of positions for the Me groups. See tables for the 

occupation factors. Two n-butyl chains in the cations exhibit some 

signs of disorder, but this was not modelled. The chloroform 

molecule was modelled as fully disordered over two sets of 

positions. There are two molecules of acetonitrile of crystallisation 

which reside in claixarene clefts on molecules containing S(1) and 

S(1B). 

Pairs of calixarene molecules are linked via four H-bonds 

between both urea N–H moieties on each calixarene and a chloride 

ion. n-butyl ammonium cations reside close to the chloride anions, 

due to electrostatic attraction. So, each pair of calixarenes is able to 

capture one chloride ion. The overall packing type is in layers. 

Crystal data for 4a: C144H160N8O12S8·C16H36N
+·Cl–·0.5(CHCl3)· 

C2H3N, M = 2829.91. Triclinic, space group P¯1, a =15.1315 (5), b 

= 28.8618 (11), c = 35.9491 (13) Å, V = 15113.8 (9) Å3. Z = 4, Dc = 

1.244 g.cm–3, F(000) = 6044, T = 100 K, μ(Mo-Kα) = 0.226 cm–1, 

λ(Mo-Kα) = 0.71073 Å, colourless crystal of size 0.16 × 0.13 × 0.04  

mm3. The total number of reflections measured, to θmax = 25.3, was  

42128 of which 27707 were unique (Rint = 0.062); 8953 were 

‘observed’ with I > 2σ(I). For the ‘observed’ data only, R1 = 0.068; 

wR2 = 0.185 for all 42128 reflections and 3705 parameters. Residual 

electron density within +/– 0.86 eÅ
–3. 

 Crystallographic data (excluding structure factors) for the 

structures in this paper have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication number 

CCDC 1062186 for 4a. Copies of the data can be obtained, free of 

charge, on application to CCDC, 12 Union Road, Cambridge CB2 

1EZ, UK [fax: 144-1223-336033 or e-mail: 

deposit@ccdc.cam.ac.uk]. 

Supporting information: 1H, 13C NMR & IR spectra of 

compounds 2, 3 and 4a~c.  
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